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Abstract

In this study, we test the herding towards a market consensus in the main financial industries

of the United States and the Eurozone equity markets. We find that herding is more likely to

be present in high quantiles that reflects turbulent market conditions. This herding appears

to be more pronounced during financial crisis periods and in cases of asymmetric conditions

of volatility, credit deterioration, and illiquid funding. Furthermore, we provide evidence

that the cross-sectional dispersion of returns throughout the domestic equity market can be

partly explained by the corresponding dispersions of the financial industries. In our analysis

we cover the last two main global financial crises and identify new evidence of “spurious”

and “intentional” herding by corporates. Further, our results are robust when considering

short-selling bans.
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1. Introduction

The Global Financial Crisis (GFC) and the Eurozone Crisis (EZC) emphasized the idea

that stock market prices may deviate from their fundamentals due to waves of irrational mar-

ket sentiment. This sentiment may become herding that could undermine financial stability

and could pose unhedgeable systemic risk to market participants and financial institutions.

Studies commonly describe herding as a behavioral tendency in which investors suppress

their own beliefs and mimic collective actions in the market that leads to a convergence or a

correlated pattern of actions (see Nofsinger and Sias, 1999; Welch, 2000; Hwang and Salmon,

2004). In a single market set-up herding has been thoroughly discussed for investors’ trades

at the security level (Lakonishok et al., 1992; Sias, 2004; Barber et al., 2009). More recent

studies observed that herding also emerges at the industry level. This means that, after

taking into account the characteristics of the securities, institutional investors’ demands for

securities for a specific industry in consecutive periods are positively correlated (Choi and

Sias, 2009).

The Federal Reserve System (FED) and the European Central Bank (ECB) are two of

many central banks that monitor cyclical and structural developments in the banking indus-

try as well as other financial industries. Both the FED and the ECB require the corporates

in these industries to identify possible sources of risk and vulnerability to financial stability

so that they can assess the identified risks in order to develop more stringent measures aimed

at improving financial stability and regulation.

The GFC caused a strong fall in the European financial sector, mainly in banks, from

which it has still barely recovered from compared to the strong recovery in the financial

sector in the US equity market. This study uses the S&P 500 and the S&P 350 Europe

as benchmarking indices for each side of the Atlantic, respectively; both have performed

quite differently since the GFC. After this crisis and until the end of December 2017, the

S&P 500 had risen by 156%, while the S&P 350 Europe had only gained 76%. This gap

is similar when comparing financial industries (141% in the US compared with 71% in the

Eurozone). European shares have not managed to keep up with US shares. With GDP

growth in the euro area at 21% while it has been 35% in the US, the underlying economic

fundamentals are probably the main factor behind this gap between the two stock markets.

Furthermore, the impact of these regions’ respective monetary policies is important. In the

US, the FED acted more quickly and more aggressively than the ECB, which benefited US

equities. Moreover, the Eurozone has had to tackle significant local episodes of risk aversion,

such as the EZC and, more recently, Brexit. Additionally, financial systems are shaped by

the use of different types of financial instruments and by how those instruments are used and

in what proportion; for example, bank loans represent a significant share of funding sources
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for borrowers in the Eurozone, and capital market instruments prevail in the US.

In this study, we test for herding towards a market consensus for the US and the Eurozone

equity markets and their financial sectors. As in Straetmans and Chaudhry (2015), we use

both US and Eurozone data to facilitate a cross-Atlantic comparison of the financial systems’

riskiness and stability. Moreover, we argue that such a study of herding in the Eurozone

at the aggregate level, rather than considering “stand-alone countries”, makes sense. As

empirically demonstrated by Kim et al. (2005), the macroeconomic convergence associated

with the introduction of the Economic and Monetary Union (EMU) of the European Union

increased the regional and global stock market integration of the Eurozone. Schmitz and

Von Hagen (2011) show that with the introduction of a common currency, the elasticity with

respect to per-capita incomes of net capital flows within the Eurozone has increased for its

members. Samarina et al. (2017) find that the effect of the euro’s introduction increases

the coherence of business credit cycles in the EMU. There is therefore increasing financial

integration in the Eurozone in which herding threatens the financial stability of this area as

a whole. Therefore, in case of market tail conditions, all the markets within the Eurozone

could experience extreme tail conditions that could call for intervention by the ECB.

Along with a cross-Atlantic comparison, we find little evidence of herding based on the

standard OLS technique but we also apply the more insightful quantile regression method.

Using this method, we find that herding is more likely to be present in the high quantiles in

both markets. Herding appears more pronounced during the financial crises, and our results

support the presence of herding in cases of asymmetric conditions of volatility, credit deteri-

oration, and illiquid funding. By investigating the presence of herding for corporates due to

fundamental or non-fundamental information, we extend this analysis to the last two main

global financial crises. Here, we consider the short-selling bans introduced by the market

authorities and highlight new evidence of “spurious” and “intentional” herding that indi-

cates different crises may affect herding in different ways and that these two economies react

differently to information spread in the market. For instance, while the banking industry

may herd due to fundamental information in the US, the same result does not occur in the

Eurozone during the GFC.

Policymakers and supervisory authorities have an interest in identifying correlated pat-

terns of trades that may worsen the volatility in returns that then erodes financial stability

(Demirer et al., 2010). The literature identifies several reasons why investors herd. Avery

and Zemsky (1998) point out that in turbulent states of the economy, market participants

herd because they think that other investors may have more accurate information. This

herding may also lead to information cascades as showed by Zhou and Lai (2009). Likewise,

Devenow and Welch (1996) argue that investors may have an intrinsic preference for confor-
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mity with the market consensus. Money managers may imitate collective actions because

of the incentives provided by the compensation scheme and terms of employment, as dis-

cussed in Bikhchandani and Sharma (2000), with an increasing trend to herd as their careers

progress (Boyson, 2010). Bernile and Jarrell (2009) and Carow et al. (2009) suggest another

possible cause and argue that particularly after the arrival of public information, there are

systematic patterns in institutional activities that may destabilize market prices that causes

herding by private investors.

Hott (2009) develop a model for herding formation without assuming any speculative

motivations. This model shows how herding generates a price bubble. In the corporate bond

market, institutional investors’ herding is higher than the reported level observed in equities,

and its effect is highly asymmetric (Cai et al., 2019). However, Bernile et al. (2015) find that

the anticipated trades by institutional investors ahead of other firms is more likely to reflect

their superior ability to process publicly available information, rather than their access to

private information.

A large body of research covers herding effects in several stock markets (see, e.g., Christie

and Huang, 1995; Chang et al., 2000; Gleason et al., 2004; Demirer and Kutan, 2006; Tan

et al., 2008; Chiang et al., 2010; Chiang and Zheng, 2010; Economou et al., 2011; Philip-

pas et al., 2013; Zhou and Anderson, 2013; Mobarek et al., 2014). Overall, their findings

show that herding is more prevalent within emerging markets and in economic downturns.

Galariotis et al. (2015) report evidence of herding for US investors when fundamental macroe-

conomic announcements are released and spillover herding from the US to the UK markets.

Moreover, since herding leads also to important informational inefficiencies in the market

that contribute to, on average, 4% of the asset’s expected value (Cipriani and Guarino, 2014),

they examine the presence of “spurious” and “intentional” herding in these two markets. In

a follow up study, Galariotis et al. (2016) provide new evidence on the relation between

herding and the liquidity in the G5 equity markets, namely the US, France, Germany, the

UK, and Japan.

In our study, we focus on corporates’ herding during the GFC and EZC for the US and

Eurozone equity markets by zooming in on the financial sector. Moreover, in our analysis of

the US equity market, we consider all the companies included in the S&P500 that capture

approximately 80% of the available US market capitalization. As a robustness check, we

also consider the short-selling bans imposed in the US during the GFC and in the Eurozone

during both crises. This robustness analysis1 is fundamental because, as argued Diamond

and Verrecchia (1987), the short-selling bans moderate the trading of informed traders that

1A more detailed description of the robustness test is described in the Supplement Appendix A.
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prevents bad news from being rapidly impounded into stock prices in the belief that such bad

news is “unwarranted” in the sense that it represents a negative bubble or herding rather than

fundamental information. To the best of our knowledge, there are no studies on herding that

have conducted this type of analysis. Therefore, our study represents an important novel

contribution. In particular, we show that not taking into account the short-selling bans

actually jeopardizes the results.

Our study enriches the literature by examining the existence of herding in the US and

Eurozone equity markets. It contributes by providing new evidence on herding in the fi-

nancial sector,2 namely banks, diversified financials, insurance, and real estate, for a sample

period that fully captures the aforementioned international financial events. This approach

facilitates our investigation into different investing behaviors related to the subperiods in our

sample. In particular, despite the literature that offers a comprehensive analysis of herd-

ing during the GFC (see, e.g., Chiang and Zheng, 2010; Galariotis et al., 2015; Mobarek

et al., 2014), the investigation of herding during times of turbulence in the primary market

is limited. We fill this gap by extending the empirical analysis to both the EZC and the US.

Our study extends the investigation on herding under asymmetric conditions in the mar-

ket. In particular, we use the implied market volatility as a measure of investors’ sentiment

as per Baker and Wurgler (2006). Further, we build on Norden and Weber (2009) who

report that positive stock returns are associated with negative changes in the CDS spread

and use credit default indexes (CDX and iTraxx) as proxies for the credit conditions in the

market. Moreover, we consider that firms facing a severe liquidity constraint may have to

sell a large part of their assets to avoid bankruptcy. This sell-off causes a fire sale that could

affect the entire industry by leading to correlated patterns of actions (Oh, 2018). We also

use the TED spread to study herding under tighter funding liquidity. Our study provides

evidence that herding is more pronounced in cases of high volatility, credit deterioration, and

illiquid funding. This evidence enriches the cases of market asymmetries used to investigate

herding that in the literature are mainly related to negative and positive market returns,

high or low trading volume, and return volatility (see, e.g., Chiang and Zheng, 2010; Zhou

and Anderson, 2013; Mobarek et al., 2014).

The study also provides new insights into how the spillover of herding in the financial

2Considering the Global Industry Classification Standard (GICS) framework, the financial sector is com-
posed of the banking, insurance and diversified financial industries. We also add the real estate industry
because, before the 31 August, 2016, the GICS considered this industry as part of the financial sector.
However, because of the increase in size and importance of the real estate industry, the GICS moved this
industry from the financial sector to an independent real estate sector. For a detailed description of the
GICS methodology, readers can refer to: “Global Industry Classification Standard (GICS) Methodology”,
Standard & Poor’s, 2009; or, https://www.msci.com/gics.
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sector migrates to the domestic equity market. It concludes by continuing the analysis of

Galariotis et al. (2015) on the presence of “spurious” and “intentional” herding in the US

and Eurozone equity markets and their financial sectors during the entire sample period

and the last two main crises. As an important, novel contribution, this study considers the

short-selling bans that the market authorities imposed in the US and Eurozone during the

last two main crises.

The remainder of this study is organized as follows: In 2, we describe the framework

of our study and present our method. Section 3 has a summary of the characteristics of

the data used in this study. In Section 4, we discuss the empirical results. And Section 5

provides concluding remarks.

2. Methodology

2.1. Quantile regression analysis

Studies by Chiang et al. (2010), Zhou and Anderson (2013), Bekiros et al. (2017) and

Pochea et al. (2017) have already examined herding with quantile regressions. However,

the findings are confined to Chinese markets, the US REIT, and some US and central and

eastern European (CEE) equity markets, respectively. We use quantile regressions on the

herding in the US and Eurozone equity markets, financial sectors, and industries.

In this section, we offer a brief description of the quantile regression method.3 Koenker

and Bassett Jr (1978) and Koenker (2005) argue that classical linear regression methods

can only provide inference on the conditional mean functions. In this case, information

about the tails of the distribution is lost. To address this issue, Koenker and Bassett Jr

(1978) developed a quantile regression in order to estimate models for the conditional median

function and for the full range of all the other conditional quantile functions.

In financial markets, extreme outliers can significantly affect the tail values of a distri-

bution, and in turn, these values can affect and distort the estimated herding coefficients.

Unlike the classical linear regression methods, a quantile regression can alleviate some of the

statistical issues due to outliers, especially for fat-tailed distributions4 (Härdle and Song,

2010). Therefore, we use quantile regressions to test whether the herding is sensitive to

different quantiles of the returns’ dispersion.

In the simplest terms, a quantile regression facilitates the estimation of a collection of

3For a detailed description of the quantile regression method, readers can refer to Koenker and Bassett Jr
(1978) and Koenker (2005).

4For symmetric conditional distributions, the quantile curve coincides with the mean regression, that is,
the quantile estimate with τ = 0.5 (median) coincides with the nonparametric mean regression estimate.
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conditional quantile equations that can be generically written as:

yi = ατ + βτx
′
i + ετ,i (1)

where yi is the dependent variable, x′i is a vector of predictors, ατ is the constant, βτ is

the vector of the estimated coefficients, and ετ is the error term. The subscript τ ∈(0,1)

represents the quantile. We write the τ th conditional quantile function as Qτ (y|x) = βτx
′.

The estimator β̂τ is computed by minimizing the weighted sum of the absolute errors,

where the weights are dependent on the quantile values:

β̂τ = arg min

( ∑
i=yi>x′iβτ

τ
∣∣∣yi − xiβτ ∣∣∣ +

∑
i=yi<x′iβτ

(1− τ)
∣∣∣yi − xiβτ ∣∣∣) (2)

As previously explained, the quantile regression focuses on estimating the interrelation

between the dependent variables and their predictors at the median level (τ = 0.5 = 50th)

and at any other specific quantile. In our study, we consider estimates at the 10th, 25th,

50th, 75th, 95th and 99th quantiles. In the literature, low quantiles (e.g., up to the 50th)

are considered tranquil periods in the market; while high quantiles (e.g., above the 75th)

represent distress in the market (see, e.g., Adrian and Brunnermeier, 2016).

2.2. Detecting herding behavior

In the literature, there are two main measures of herding at this moment in time: the

first is based on cross-sectional data from stock returns (Christie and Huang, 1995; Chang

et al., 2000; Hwang and Salmon, 2004), and the second is constructed with transaction data

(Lakonishok et al., 1992; Wermers, 1999; Welch, 2000).

Our study continues and enriches the line of research that focuses on the cross-sectional

dispersion of stock returns in distressed market conditions. The main studies of Christie

and Huang (1995) and Chang et al. (2000) introduce measures to detect how herding affects

the cross-sectional standard deviation (CSSD) and the cross-sectional absolute deviation

(CSAD), respectively. These herding measures rely on the fact that investors tend to ignore

their prior heterogeneous beliefs and information in order to follow the market consensus.

Christie and Huang (1995) were the first to point out that herding is more likely to appear

in periods of market distress. They argue that when individual returns cluster around the

market consensus, return dispersions should be relatively low. By contrast, rational asset

pricing models predict an increase in return dispersions in periods of market distress because

individual returns differ in their sensitivity to the market returns (Hwang and Salmon, 2004).

However, one criticism of the model developed by Christie and Huang (1995) is that it can
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only be used to analyze herding during periods of market distress,5 and it does not model

herding during tranquil periods of the market (Hwang and Salmon, 2004). Therefore, we

use the more robust CSAD herding measure introduced by Chang et al. (2000) as:

CSADt =
1

N

N∑
i=1

|Ri,t −Rm,t| (3)

where Ri,t is the company i return at time t, and Rm,t is the cross-sectional average return of

the N companies considered in the universe at time t. The testing focuses on the nonlinear

relation between the return dispersions and the market return as follows:

CSADt = α + γ1|Rm,t|+ γ2R
2
m,t + et (4)

where Rm,t is the cross-sectional average of the N returns in the aggregate market portfolio

at time t. The nonlinear term (R2
m,t) is introduced to capture the herding effect. We use

the West and Newey (1987) estimator to obtain the heteroskedastic and autocorrelation

consistent (HAC) co-variances for all the OLSs. Further, we use regression model (4) for

each market (and financial industry) to test whether or not there is herding within the

US and Eurozone equity markets (and their financial sectors) for the entire sample period.

Hence, in the presence of herding γ2 should be negative and statistically significant.

2.2.1. Financial crises and herding behavior

We examine whether or not herding was more pronounced during the GFC and the EZC.

To this end, we add a dummy variable, DCrisis, to model (4) that equals one during a crisis

and zero otherwise:

CSADt = α + γ1D
Crisis|Rm,t|+ γ2(1−DCrisis)|Rm,t|+

γ3D
CrisisR2

m,t + γ4(1−DCrisis)R2
m,t + et (5)

In model (5), herding exists if γ3 is negative and significant.

In order to determine the length of a crisis, we follow (Forbes and Rigobon, 2002) and

consider that the GFC covered the period from August 9, 2007, to the March 31, 2009.

August 2007 saw BNP Paribas freeze three funds because of subprime mortgage sector

problems that started the crisis. The year 2009 saw declining volatilities and recovering

5Christie and Huang (1995) developed the following regression to test for herding: CSSDt = α + βLDL
t

+ βUDU
t +et; where CSSDt =

√∑N
i=1(Ri,t−Rm,t)2

N−1 , and DL
t (DU

t ) is a dummy variable that equals one if

the market return at time t lies in the extreme lower (upper) tail of the distribution, and zero otherwise.
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asset prices that followed more determined policy action that gave markets more optimism

and managed to halt the financial crisis.6 The EZC covers the period from the May 2,

2010, to December 31, 2012. May 2 is considered the beginning of the crisis because of the

first bailout package of the International Monetary Fund (IMF) for Greece. December of

2012 represents the end of the crisis because the Greek government bought back e21 billion

of their bonds.7 Moreover, this event precedes the ECB announcement of free unlimited

support for all the Eurozone countries through the Outright Monetary Transactions and the

establishment of the European Stability Mechanism, which took place in September 2013.

2.2.2. Asymmetry and herding behavior

When distressful conditions affect many firms simultaneously, stock prices will react

negatively to divestments (Finlay et al., 2018). Avramov et al. (2006) argued that financial

stress and bearish markets more generally may have caused herding in a direct and indirect

manner through changes in market volatility. Thus, herding could be prevalent in periods

of market distress when high values of volatility, credit deterioration, and illiquid funding

exist. Thus, we use three sub-cases to capture these conditions.8 Similar to Chiang and

Zheng (2010), the asymmetric behavior of the returns’ dispersion is estimated as follows:

CSADt = α+γ1D
High|Rm,t|+γ2(1−DHigh)|Rm,t|+γ3D

HighR2
m,t+γ4(1−DHigh)R2

m,t+et (6)

where Rm,t is the cross-sectional average of the N returns in the aggregate market portfolio

at time t, and DHigh is a dummy variable that equals one if the variable used to measure the

market asymmetry on day t is greater than the previous 22-trading-day (1 trading month)

moving average and zero otherwise. Therefore, the cross-sectional dispersion of stock returns

should lessen during days with high volatility, credit deterioration, and illiquid funding. More

formally, herding is present if γ3 (γ4) is negative and statistically significant. If γ3 < γ4 and

these values are significant, then herding is more pronounced during the periods of market

distress.

6Major explanations for the usage of this period as a proxy for the GFC time frame can be found on the
79th Annual Report of the Bank for International Settlements, (Bank for International Settlements (BIS),
2009).

7We identify the beginning of the EZC as in Mobarek et al. (2014); however, their sample period ends in
February. Our sample period permits a more appropriate identification of the EZC.

8Other studies (see, e.g., Chiang and Zheng, 2010; Zhou and Anderson, 2013; Mobarek et al., 2014)
examine and find herding around market asymmetries, such as negative and positive market returns, high
or low trading volume, or return volatility.
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2.2.3. Financial cross-industry analysis of herding behavior

The GFC, and then the EZC, emphasize the importance of the financial sector and the

industries within it. Bekaert et al. (2014) analyze the contagion of the GFC from the US to

415 country-industry equity portfolios due to global and domestic factors. While they find

small effects of contagion from the US and the global financial sector, their main findings

indicate that there was a substantial domestic contagion phenomenon. Baur (2012) shows

that the GFC led to an increased co-movement of returns and thus contagion between the

financial sector and the domestic market, while Brunnermeier (2009) argues that fire sales

amplified the initial negative shocks that then spread across the system. Others, like Allen

and Gale (2000), argue that financial crises or shocks initially affect only a few financial insti-

tutions and then spread to the rest of the financial sector that then infects other sectors and

the whole domestic market later on. Furthermore, studies often advocate that in periods of

financial distress, herding can pose a threat to financial stability because the initial negative

shocks to the financial sector, or to one of its industries, may be amplified by a pro-cyclical

market mechanism that affects other sectors and ultimately the whole domestic market. For

this reason, we are motivated to analyze the existence of a spillover of herding. This analysis

is of pivotal relevance to policymakers and supervisory authorities, because the presence of

spillover herding may lead to a systemic crisis. The following models underpin our analysis

for the US and Eurozone, respectively:

CSADUS,m,t = α + γ1|RUS,m,t|+ γ2R
2
US,m,t + δ1CSADUS,j,t + δ2R

2
US,j,t + et (7)

CSADEZ,m,t = α + γ1|REZ,m,t|+ γ2R
2
EZ,m,t + δ1CSADEZ,j,t + δ2R

2
EZ,j,t + et (8)

where CSADUS,m,t (CSADEZ,m,t) is the CSAD that refers to the N stock in the aggregate

market portfolio at time t; RUS,m,t (REZ,m,t) is the cross-sectional average of the correspond-

ing N returns at time t;9 CSADUS,j,t (CSADEZ,j,t) is the CSAD that refers to the n stock in

the financial sector portfolio, or financial industry portfolio, at time t; and R2
US,j,t (R2

EZ,j,t) is

the squared cross-sectional average of the corresponding n returns at time t. In the US, the

presence of herding between the market “m” and the financial sector, or one of its industry,

“j”, is highlighted by δ2 that is negative and statistically significant in model (7) (model (8)

for the Eurozone).

9We computed the aggregate market portfolio after excluding all the companies included within the
financial sector, or financial industry, in order to avoid a spurious correlation between the variables involved
in models (7) and (8). Keeping these companies within the aggregate market portfolio means that herding
that affecting affects the financial sector, or the financial industry, would mechanically impact affect the
equity market even in the absence of spillover effects between the two variables.
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In order to obtain a more comprehensive analysis, as an additional test, we also use the

Granger causality test to study the information available on the past values of R2
US,j,t (R2

EZ,j,t)

that do not have a statistical effect on the present and values of CSADUS,m,t (CSADEZ,m,t).

Further, the Granger causality test is based on the concept of predictability, or a time-based

succession, and assumes the stationarity of the time series in the long term. Moreover, it

does not mean that one variable is the effect of the other; more precisely, it indicates that

one variable contains information about the other.

2.2.4. Herding behavior on fundamental information

Bikhchandani and Sharma (2000) argue that investors’ herding may be either “spuri-

ous” in the sense of deviations due to changes in fundamental information (fundamental

driven), or “intentional” in the sense of deviations due to other reasons (non-fundamental

driven). Building on this argument, Galariotis et al. (2015) investigate the herding driven

by fundamental or non-fundamental information. Choi and Skiba (2015) present empirical

evidence that that herding is more likely to be driven by fundamental information. In order

to explore this issue, we decompose the CSAD measure into deviations due to fundamental

information and deviations due to non-fundamental information. The reasoning behind this

decomposition of the CSAD is that the return factors such as the one Fama and French (1995,

1996) and Carhart (1997) adequately capture the important fundamental information that

may affect investors’ decisions on a market level. Thus, the CSAD due to non-fundamental

information is estimated as the residuals of the following regression model:

CSADt = α + β1(Rm,t −Rft) + β2HMLt + β3SMBt + β4MOMt + εt (9)

where (Rm,t−Rft) is the market risk premium, and the HMLt is the high-minus-low return

factor that refers to the outperformance of value stocks over growth stocks. It is estimated as

the equally weighted average of the returns for two high book-to-market (BM) equity port-

folios for a region minus the average of the returns for two low BM portfolios. SMBt is the

small-minus-big return factor that refers to the excess return of smaller market capitalization

stocks versus larger stocks. It is estimated as the equally weighted average of the returns on

the three small stock portfolios for the region minus the average of the returns on the three

big stock portfolios. Finally, the MOMt is the momentum factor that is the tendency for

the stock price to continue rising if it is going up (positive momentum) or continue declining

if it is going down (negative momentum). It is the equally weighted average of the returns

for two positive momentum portfolios for a region minus the average of the returns for two

negative momentum portfolios.

The residuals of model (9) represent the measure of clustering due to investors responding

11



to non-fundamental information:

CSADNONFUND,t = εt (10)

It follows that the difference between the total CSADt and the CSADNONFUND,t rep-

resents the measure of clustering due to investors responding to fundamental information:

CSADFUND,t = CSADt − CSADNONFUND,t (11)

Once CSADNONFUND,t and CSADFUND,t are estimated, the spurious and intentional

herding can be separated by estimating the two regressions:

CSADNONFUND,t = α + γ1|Rm,t|+ γ2R
2
m,t + et (12)

CSADFUND,t = α + γ1|Rm,t|+ γ2R
2
m,t + et (13)

In models (12) and (13), herding is driven by, respectively, non-fundamental and fundamental

information and is associated with a negative and statistically significant γ2.

Moreover, we investigate the herding effects due to non-fundamental and fundamental

information during the GFC and the EZC. This analysis facilitates an investigation into

whether local corporates have better outcomes than foreign ones because of informational

advantages as demonstrated by (Agudelo et al., 2019). We estimate the coefficients of the

following two regressions that are similar to model (5):

CSADNONFUND,t = α + γ1D
Crisis|Rm,t|+ γ2(1−DCrisis)|Rm,t|+

γ3D
CrisisR2

m,t + γ4(1−DCrisis)R2
m,t + et (14)

CSADFUND,t = α + γ1D
Crisis|Rm,t|+ γ2(1−DCrisis)|Rm,t|+

γ3D
CrisisR2

m,t + γ4(1−DCrisis)R2
m,t + et (15)

where DCrisis is a dummy variable that equals one during the crisis and zero otherwise.

In the presence of the herding driven by non-fundamental and fundamental information

during the crisis period, γ3 is negative and statistically significant in models (14) and (15),

respectively.10

10As a robustness check, we also test models (14) and (15) that consider a sub-sample with only
observations from the crisis period analyzed. In particular, we test the following two regressions:
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3. Data

For the empirical analysis we collect daily equity prices from all the constituent stocks of

the S&P500 and the S&P Europe 350 for the US and Eurozone equity markets, respectively.

The S&P500 index comprises the 500 leading companies and captures approximately 80%

of the available market capitalization; while the S&P Europe 350 index is designed to reflect

the Eurozone market and accounts for around 70% of the region’s market capitalization.

In order to examine the herding that is related to the US (Eurozone) financial industries,

namely banks, diversified financials, insurance, and real estate, we collect data on the daily

equity prices from all the constituent stocks of the S&P 500 Banks Industry Group GICS

Level 2 (S&P Europe 350 Banks Industry Group GICS Level 2), S&P 500 Diversified Finan-

cials Industry Group GICS Level 2 (S&P Europe 350 Diversified Financials Industry Group

GICS Level 2), S&P 500 Insurance Industry Group GICS Level 2 (S&P Europe 350 Insur-

ance Industry Group GICS Level 2), and the S&P 500 Real Estate Industry Group GICS

Level 2 (S&P Europe 350 Real Estate Industry Group GICS Level 2). We are strongly moti-

vated to consider the GICS framework2 because it has become widely recognized by market

participants worldwide and enables meaningful comparisons of sectors and industries across

countries, regions, and the globe. Moreover, MSCI and Standard & Poor’s review the entire

framework annually to ensure an accurate representation of the marketplace.

The S&P Europe 350 is very similar to the STOXX Europe 600 index regarding its

methodology, with similar total returns and volatility over the short and long term and with

the correlation between the two indices equal to 100% and the tracking error less than 1%

(Srivastava and Orzano, 2014).

The sample covers the period from January 3, 2005, to December 29, 2017. We calculate

the daily returns as Ri,t = ln(Pi,t/Pi,t−1) × 100. Following the literature, we construct the

market portfolio return Rm,t as the equally weighted average of the N returns in the aggregate

market portfolio at time t.11 The calculation of Rm,t is required to estimate the CSAD as in

model (3). The sample consists of 3,271 daily return observations for the US market, and

3,327 observations for the Eurozone. The equity prices are obtained from Bloomberg.

The economic and financial variables we consider in order to detect the herding due to

market asymmetries in the US (Eurozone) market are the VIX (VSTOXX) index, the CDX

CSADNONFUND,t = α + γ1|Rm,t| + γ2R
2
m,t + et, and CSADFUND,t = α + γ1|Rm,t| + γ2R

2
m,t + et. The

results are both quantitatively and qualitatively similar to those disclosed in Section 4.5 and are available
on request.

11For robustness purposes, we have alternatively used a value-weighted market portfolio returns to test all
the employed models in this study. Results are both quantitative and qualitative similar and are available
upon request.
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(iTraxx) index, and the US (EU) TED spread. Their values are all taken from Bloomberg

on a daily frequency. The daily returns of the SMB, HML, and MOM factors have been

downloaded from Kenneth French’s online data library.12

Table 1 presents the summary statistics of the US (Panel A) and Eurozone (Panel B)

equity markets and the corresponding financial sector. The statistics show that the means

and standard deviations of CSAD and Rm are similar across the US and Eurozone markets

and sectors. However, the t-tests point to a significant difference in means only for the

CSAD that excludes the equity markets. The US equity market and the financial sector

reach maximum and minimum values, for CSAD and Rm, respectively. They are consistently

higher and lower than the Eurozone. These values give the impression that given asymmetric

market conditions, herding might exist in the US market.

4. Empirical evidence

4.1. Estimates of herding behavior

We investigate the existence of herding effects in the US and Eurozone equity markets

and financial industries, based on model (4). Table 2 presents the estimated results from

using daily data for the period from January 2005 to December 2017 for the US and the

Eurozone, respectively. As stated earlier, a significantly negative value for the coefficient

of R2
m,t (γ2) is consistent with herding. The OLS results indicate a positive and significant

coefficient for the linear term |Rm,t| in all cases in both equity markets. This result confirms

that the CSAD increases with the magnitude of market returns; this is a feature in line with

standard asset pricing models. We find a positive and significant coefficient for the squared

market returns (R2
m,t) as well. Thus, our analysis based on the OLS estimates does not find

any evidence of herding in the US and Eurozone equity markets and financial sectors. For

the US, these results are consistent with the finding in the literature on herding (Christie and

Huang, 1995; Chang et al., 2000; Gleason et al., 2004). However, the evidence regarding the

presence of herding in the Eurozone is mixed in the literature. It mainly finds some evidence

of herding in Portugal, Italy, and Greece (Economou et al., 2011) while more recent evidence

highlight herding behaviour for CEE countries such as Bulgaria, Croatia, Czech Republic,

Estonia, Hungary, Latvia, Lithuania and Slovenia but not for Poland and Romania (see

Pochea et al., 2017).

After analyzing the quantile regression estimates, we do not find evidence for differences

12Due to the increased synchronization of business cycles and co-movements of equity markets among
European (including Eurozone) countries, we consider the SMB, HML, and MOM factors as computed for
Europe.
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Table 2: Estimates of herding for the US and Eurozone equity markets and financial industries, during the
period from January 2005 to December 2017.

Panel A: United States Panel B: Eurozone
γ1 γ2 α Adj. R2 γ1 γ2 α Adj. R2

All Market Equities

OLS 0.261*** 1.568*** 0.008*** 46.98% 0.209*** 2.765*** 0.009*** 41.52%
Quantile Regression
τ=10th 0.106*** 1.936*** 0.006*** 12.57% 0.079*** 3.088*** 0.007*** 13.42%
τ=25th 0.112*** 2.639*** 0.007*** 14.96% 0.092*** 3.677*** 0.007*** 16.00%
τ=50th 0.139*** 3.729*** 0.008*** 20.40% 0.127*** 4.212*** 0.008*** 19.97%
τ=75th 0.214*** 4.382*** 0.009*** 27.15% 0.211*** 3.894*** 0.009*** 25.22%
τ=95th 0.646*** -1.964** 0.012*** 39.38% 0.581*** -1.229 0.012*** 30.29%
τ=99th 0.517*** -1.621* 0.021*** 36.07% 0.685*** -4.308** 0.020*** 31.02%
Banks
OLS 0.278*** 0.466* 0.004*** 53.64% 0.220*** 1.774* 0.008*** 44.74%
Quantile Regression
τ=10th 0.077* 0.913 0.002*** 14.31% 0.138*** 1.011*** 0.004*** 15.54%
τ=25th 0.114*** 0.947*** 0.003*** 19.36% 0.164*** 1.315*** 0.005*** 18.34%
τ=50th 0.178*** 0.993*** 0.004*** 26.04% 0.189*** 1.797** 0.007*** 21.93%
τ=75th 0.301*** 0.775*** 0.005*** 32.86% 0.182*** 3.155*** 0.010*** 26.23%
τ=95th 0.632*** 0.039 0.009*** 46.46% 0.328*** 4.088*** 0.015*** 32.82%
τ=99th 1.091*** -2.887*** 0.016*** 47.56% 0.465*** 2.602*** 0.025*** 33.15%
Diversified Financials
OLS 0.281*** 0.576 0.006*** 47.93% 0.198*** 1.111*** 0.007*** 32.53%
Quantile Regression
τ=10th 0.132*** 0.585*** 0.004*** 13.08% 0.067*** 1.634*** 0.004*** 9.03%
τ=25th 0.128*** 1.716*** 0.005*** 16.37% 0.100*** 1.390*** 0.005*** 10.54%
τ=50th 0.180*** 1.768*** 0.006*** 21.94% 0.141*** 1.817*** 0.006*** 13.56%
τ=75th 0.283*** 1.186*** 0.008*** 29.52% 0.225*** 1.343*** 0.008*** 17.93%
τ=95th 0.540*** -0.293 0.012*** 37.38% 0.466*** 0.080 0.012*** 26.10%
τ=99th 0.991*** -3.839*** 0.020*** 38.54% 0.318 3.649 0.022*** 25.54%
Insurance
OLS 0.306*** 2.001*** 0.005*** 60.21% 0.223*** 1.969*** 0.006*** 46.32%
Quantile Regression
τ=10th 0.047 3.045* 0.003*** 13.96% 0.073*** 2.023*** 0.004*** 13.52%
τ=25th 0.087*** 3.349*** 0.004*** 19.63% 0.073*** 3.113*** 0.004*** 16.95%
τ=50th 0.143*** 3.325*** 0.005*** 26.69% 0.121*** 3.116*** 0.005*** 21.77%
τ=75th 0.267*** 3.502*** 0.006*** 35.47% 0.215*** 2.599** 0.007*** 27.15%
τ=95th 0.809*** -0.483 0.008*** 51.48% 0.725*** -1.440** 0.010*** 37.49%
τ=99th 1.175*** -3.346 0.016*** 52.39% 0.992*** -3.847*** 0.019*** 36.35%
Real Estate
OLS 0.274*** 0.251 0.005*** 58.90% 0.131*** 2.708*** 0.006*** 25.92%
Quantile Regression
τ=10th 0.105*** 0.701*** 0.004*** 15.47% 0.023 2.298* 0.003*** 5.46%
τ=25th 0.128*** 1.050* 0.004*** 19.49% 0.046*** 2.698*** 0.004*** 8.25%
τ=50th 0.174*** 1.169 0.005*** 26.10% 0.069*** 3.466*** 0.005*** 10.78%
τ=75th 0.206*** 1.683* 0.007*** 35.22% 0.141*** 3.637*** 0.007*** 14.96%
τ=95th 0.482*** -0.144 0.009*** 49.70% 0.457*** 1.714 0.012*** 21.57%
τ=99th 0.967*** -3.128*** 0.013*** 48.45% 0.603 0.996 0.022*** 21.07%

Notes: The table reports the estimated coefficients for the benchmark model (4): CSADt = α + γ1|Rm,t|
+ γ2R

2
m,t + et, where CSADt is the cross-sectional absolute deviation and Rm,t is the market return. West

and Newey (1987) correction is applied to estimate standard errors. ***, **, and * indicate significance at
1%, 5%, and 10% levels, respectively.

16



in the linear term. However, there is evidence that indicates the significance and the sign

of the nonlinear term (γ2) changes across different quantiles. In the US, apart from the

insurance industry, this coefficient has a negative and significant value for high quantiles

for all the cases analyzed. More specifically, γ2 is positive and significant up to the 75th

quantile and then switches to negative in the higher quantiles. In the Eurozone, we find

the same result for the equity market and the insurance industry. There is no evidence of

herding effects in the other Eurozone financial industries, even for the high quantiles. Figure

1 displays a more detailed picture of the quantile-varying features of γ2.

Combining the information on quantile estimates from Table 2 with that in Figure 1

(Panel A), we deduce that for the US equity market and its financial sector, the returns’

dispersion increases in the lower range of quantiles but decreases in the upper quantile range.

These results show that herding is more pronounced when the market experiences distressed

conditions, and they can be interpreted as the investors changing their previous beliefs and

becoming more likely to herd during these periods. Moreover, analyzing the estimates of

γ2 from Figure 1 (Panel A), we can see that herding becomes more pronounced when the

market becomes more turbulent as described by the increasing quantile. The results related

to the US point to the presence of herding in the equity market and its financial industries

except for the insurance industry in which the coefficient is negative but not statistically

significant. In the Eurozone, the same conclusion is valid only for the equity market and

the insurance industry. For the entire equity market, 1 (Panel B) also shows that due to

the change in sign from positive to negative, the negative slope of the herding coefficient is

much more pronounced in the Eurozone than in the US. For the financial industries, herding

is more relevant for the US that is in contrast to a positive return dispersion for banks,

diversified financials, and real estate for the entire range of quantiles in the Eurozone.

The results analyzed in this subsection illustrate the advantages of the quantile regression

that can offer a more detailed analysis in order to detect herding.

4.2. Herding behavior during crises

The results in subsection 4.1 motivate us to inspect whether the reduction in the returns’

dispersion was more pronounced during the last two main financial crises. We use model (5)

in order to test how the GFC, first, and then the EZC affect herding.

Table 3 presents the estimated coefficients. The OLS estimates for the herding coeffi-

cient γ3 are significant and negative for both the US and the Eurozone equity markets and

diversified financials. In the US, we find the same result the real estate industry. These find-

ings support the hypothesis that herding was more pronounced during the GFC. Moreover,

the quantile regression estimates demonstrate that the returns’ dispersion strongly decreased

17



Figure 1: Quantile regression estimates of herding for the US and Eurozone equity markets and financial
industries, during the period from January 2005 to December 2017.

(a) Panel A: United States

All Market Equities

(b) Panel B: Eurozone

Banks

Diversified Financials

Insurance

Real Estate

Notes: The graphs show the quantile herding coefficient (γ2) for the US (a) and Eurozone (b) equity markets
and financial industries. The herding coefficient (γ2) has been estimated from model (4): CSADt = α +
γ1|Rm,t| + γ2R

2
m,t + et, where CSADt is the cross-sectional absolute deviation and Rm,t is the market

return. The solid line represents the point estimates of γ2, and the dashed lines bound the 95% confidence
intervals.
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during this period and that herding increased when the market became more turbulent across

all the financial industries. In the Eurozone, the herding coefficient for banks decreases in

the upper quantiles. However, the estimates are not statistically significant.

Figure 2 plots the herding coefficient (γ3) for the entire range of quantiles during the

GFC. It shows the presence of herding during this period that strengthens the hypothesis

that herding is more pronounced for the high range of quantiles. Starting from the median,

γ3 is negative and significant that provides evidence of herding during tranquil states of

the market, and it decreases in the upper tail of the quantiles that confirms herding is

more pronounced during distressed states of the market. The results for the US market

in Table 3 and Figure 2 (Panel A) show that during the GFC, investors also herded in

the quantiles lower than the 75th. Moreover, Figure 2 clearly shows that the slope of the

herding coefficient is much steeper for US industries than for the Eurozone in the higher

quantiles. This slope means that investors changed their beliefs when markets suffered

extremely distressed conditions, with the Eurozone being impacted by the GFC more than

the US in high quantiles. Based on the combined results for the Eurozone in Table 3 and

Figure 2 (Panel B), we conclude that herding is present and more pronounced mainly for

high quantiles.

Table 4 presents the herding estimates for the US and Eurozone equity markets and

financial sectors during the EZC. Contrary to the GFC, the results do not show the presence

of herding in both equity markets. The OLS and quantile estimates indicate a positive value

for the nonlinear term (γ3). Analyzing the financial sector, we find that the herding coefficient

is negative and significant for the middle range of quantiles for banks in both the US and

Eurozone. The OLS estimate provides evidence of herding in the insurance industry for the

US up to the 95th quantile, while in the Eurozone, it shows that the real estate industry

has herding during this period in the lower quantiles. Figure 3 plots the herding coefficient

(γ3) estimated during the EZC for the entire range of quantiles. For the γ3, rather than

being negative and significant only when the market is in extremely distressed conditions

like during the GFC, it is negative for almost all the quantiles for banks and not necessarily

in the high quantiles for the other financial industries. These findings mean that during

the EZC, herding was pronounced during tranquil market states and mainly involved the

banking industries in both the Eurozone and the US. This crisis affects the other industries

to a lesser extent, with the results pointing to herding in the diversified financials in the US

and the insurance and real estate industries in the Eurozone.

These results provide new insights into the US and Eurozone equity markets and financial

sectors. They indicate that during crises, the mutual imitation that leads to a convergence

of actions may start even without extremely distressed conditions.
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Figure 2: Quantile regression estimates of herding for the US and Eurozone equity markets and financial
industries, during the GFC.

(a) Panel A: United States

All Market Equities

(b) Panel B: Eurozone

Banks

Diversified Financials

Insurance

Real Estate

Notes: The graphs show the quantile herding coefficient (γ3) for the U.S. (a) and Eurozone (b) equity markets
and financial industries during the GFC. The herding coefficient (γ3) has been estimated from model (5):
CSADt = α + γ1D

Crisis|Rm,t| + γ2(1−DCrisis)|Rm,t| + γ3D
CrisisR2

m,t + γ4(1−DCrisis)R2
m,t + et, where

CSADt is the cross-sectional absolute deviation, Rm,t is the market return and DCrisis is a dummy variable
that equals one during the GFC and zero otherwise. The solid line represents the point estimates of γ3, and
the dashed lines bound the 95% confidence intervals.21
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Figure 3: Quantile regression estimates of herding for the US and Eurozone equity markets and financial
industries, during the EZC.

(a) Panel A: United States

All Market Equities

(b) Panel B: Eurozone

Banks

Diversified Financials

Insurance

Real Estate

Notes: The graphs show the quantile herding coefficient (γ3) for the U.S. (a) and Eurozone (b) equity markets
and financial industries during the EZC. The herding coefficient (γ3) has been estimated from model (5):
CSADt = α + γ1D

Crisis|Rm,t| + γ2(1−DCrisis)|Rm,t| + γ3D
CrisisR2

m,t + γ4(1−DCrisis)R2
m,t + et, where

CSADt is the cross-sectional absolute deviation, Rm,t is the market return and DCrisis is a dummy variable
that equals one during the EZC and zero otherwise. The solid line represents the point estimates of γ3, and
the dashed lines bound the 95% confidence intervals.23



4.3. Herding behavior under asymmetric market conditions

We focus on three sub-cases to investigate the herding under asymmetric market condi-

tions that are captured by model (6). Tables 5–7 present the results related to any significant

herding effects during asymmetric market conditions.

4.3.1. Asymmetric equity market volatility

We present the first set of our results in Table 5. The implied market volatility is used as

a measure of investors’ sentiment (see, e.g., Baker and Wurgler, 2006). The OLS estimates

show that there is no evidence of herding during higher and lower volatility conditions in

both markets and the industries. However, the quantile regression analysis shows evidence of

herding during higher volatility conditions for the US equity market and its financial sector

except for the insurance industry. The herding exists for the high quantiles that indicates it

is more likely during cases of higher volatility.

Overall, for the US market, we find evidence that herding is likely to occur more in

higher (γ3) than in lower (γ4) conditions of market volatility, which is indicative of the

asymmetry of herding. Analyzing the quantile regression coefficients, we observe that γ3 is

negative and significant over a wider distribution range of quantiles compared to γ4. This

range means that herding is more pronounced during distressed markets due to conditions of

high volatility. In cases where we find herding for both conditions of the market, we conduct

an equality test for the two herding coefficients (γ3 = γ4) to confirm that herding asymmetry

is more apparent during conditions of higher volatility.

In the Eurozone, we find the same pattern for the equity market. However, we find

evidence of herding only in the higher quantiles of the diversified financials and insurance

industries when there is high volatility. We find no evidence of herding for the real estate

industry; while, for the banking and insurance industries, herding is more likely when there is

lower volatility. In particular, for the insurance industry, we find that the difference between

the two herding coefficients (γ3 = γ4) at the 99th quantile is statistically significant. Thus,

for the banking and insurance industries of the Eurozone, herding is more likely during other

distressed market conditions than high volatility.

4.3.2. Asymmetric credit quality

Norden and Weber (2009) report that positive stock returns are associated with negative

changes in the CDS spread. Furthermore, Friewald et al. (2014) advocate that firms’ CDS

forward curves are strongly related to equity excess returns, and Zhang et al. (2009) argue

that the equity volatility alone predicts 48% of the variation in CDS spreads. Given this

background and using the CDX and iTraxx indexes as proxies for the credit condition of the

market, we investigate herding during higher and lower credit deteriorations of the market.
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Table 6 presents the results. The OLS coefficients do not indicate any herding, neither

for the lower nor for the higher credit deterioration for both equity markets and the respective

financial sectors. Analyzing the quantile estimates, the US equity market and all its financial

industries herd more in the high quantiles when the credit deterioration is higher (γ3) than

when it is lower (γ4). The herding coefficient related to high credit deterioration (γ3) is

negative and statistically significant over a wider range of quantiles compared to γ4. In

the case where both estimates are negative and significant, the difference between the two

herding coefficients (γ3 = γ4) is statistically significant that means herding is more likely

during distressed market states due to high credit deterioration. In the Eurozone equity

market, the diversified financials and the insurance industry herd in more (in the sense of

absolute value) in the case of higher credit deterioration. There is no evidence of herding

for the banks, while the real estate industry herds when there is lower credit deterioration

in the high quantiles.

4.3.3. Asymmetric funding liquidity

The literature indicates that high values of the TED spread lead to tighter funding

liquidity. By construction, a widening of this spread indicates a destabilizing spiral between

the liquidity of the equity market and the margin loan market (Brunnermeier and Pedersen,

2008). Therefore, the TED spread provides a useful basis for gauging the severity of a

liquidity crisis, and it can be used as a proxy for funding liquidity. Moreover, Oh (2018)

argues that firms that facing a severe liquidity constraint may be forced to sell a large part

of their assets to avoid bankruptcy that causes a fire sale effect that could lead to correlated

patterns of actions that then affect the entire industry. Analyzing the GFC, Cornett et al.

(2011) find that the time variation in the TED tracked the severity of the GFC very closely.

Thus, analyzing herding during periods of higher and lower illiquid funding is relevant.

The results in Table 7 indicate that in both the US and the Eurozone, there is no evidence

of herding from the OLS analysis. On the other hand, the quantile regression estimates offer

a richer perspective, and the evidence points to a change across the two markets.

In the US, except for the insurance industry that herds when there is lower illiquid

funding, we find evidence of herding when there is higher illiquid funding in the equity

market and the other financial industries for the upper quantiles. This finding indicates that

in the US, herding is more likely during periods of strict illiquid funding. The results related

to the Eurozone are different, we could not find any evidence of herding by banks but the

real estate industry and the equity market herd during lower illiquid funding. And, there is

evidence that the insurance industry herds during low and high illiquid funding when the

strict illiquid funding (γ3) is greater in absolute value than its relative γ4 in the highest
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quantile (99th).

4.4. The role of the financial sector and industries

In addition to an investigation on herding under asymmetric market conditions, we

are also interested in examining how the financial sector affects herding, given its role in

the equity market.9 As discussed in subsection 2.2, the initial negative shocks may be

exacerbated and amplified by procyclical market mechanisms in other sectors, and this in

turn may lead to a crisis in the whole domestic market. Therefore, we test whether various

sources of herding synchronize across the domestic equity market and the financial sector.

The results in Table 8 show the estimates of models (7) and (8). The domestic equity

market should potentially be subject to the spillover of herding from the financial sector to

bilateral trade and payoffs. For both equity markets, the cross-sectional dispersion in the

domestic equity market is strongly affected by the measure of dispersion and the returns of

the financial sector. This is demonstrated by the adjusted-R2 reported in Table 8 that in all

the cases, has a value that is almost double that of the respective one estimated with model

(4) (without the CSAD and the return of the financial sector or industry) in Table 2. The

positive and highly significant CSAD coefficient δ1 across all the cases indicates a dominant

influence of the financial sector on the domestic equity market.

For the US equity market, we do not find evidence of herding around the financial sector

δ2. The results change when we consider individual financial industries. First, there is no

evidence of spillovers from the real estate industry. However, we find that the US equity

market herds around the banks for the lowest quantiles (we report τ = 10th) and the other

industries during distressed states of the market (τ = 99th). The results for the insurance

industry are very interesting. We find evidence of herding in both the OLS and the quantile

analyses. The OLS has a negative and significant δ2. The quantile regression estimates of δ2

show that this value decreases when the quantiles increase. This increase indicates that the

herding in the US equity market around the insurance industry intensifies when the market

becomes more distressed. This result underlines the relevance of the insurance industry to

the US economy.

The OLS shows that the Eurozone equity market herds around the financial sector. The

different quantile estimations show that the spillover herding decreases when the quantile

increases. This increase indicates that the herding around the financial sector is more intense

when the market is in a tranquil state. Almost the same result appears for the insurance

industry. No spillover herding is detected in the real estate industry. Contrary to what we

found for the other financial industries, Table 8 shows that the Eurozone equity market herds

around banks when the market becomes more distressed, that is, in the high quantiles. These
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results mark the importance of the banking industry as a major systemic risk source in the

Eurozone, which is in line with Black et al. (2016) who argue that the systemic contribution

of this industry significantly increased during the EZC.

Our results are also robust to the Granger causality test13 as reported in Table 9. The

null hypothesis states that R2
US,j,t (R2

EZ,j,t) “does not cause” CSADUS,m,t (CSADEZ,m,t).

The results indicate that there is strong Granger causality between the two variables used

in this test, with the banking industry having a greater influence in both panels.

Our results highlight the fact that any shockwave in the financial sector, except in real

estate, affects the domestic equity market depending on the state of the economy. Recogniz-

ing this effect could help policymakers and supervisory authorities to more efficiently observe

that the insurance industry in the US and the banks in the Eurozone are more affected by

herding in the equity market during distressed states of the economy.

4.5. Herding on fundamental information

The results in Table 10 are from the estimates of models (12) and (13) for the CSAD

(CSADNONFUND,t) driven by non-fundamental information and the CSAD (CSADFUND,t)

driven by fundamental information, respectively. The OLS shows that for the US and the

Eurozone equity markets and financial sectors, we have no evidence of herding due to either

non-fundamental or fundamental information.

However, the quantile estimates indicate that in the US, herding due to fundamental

information occurs in the lower range of quantiles (with τ = 10th, the γ2 estimates are

also statistically significant) for the equity market and diversified financials. Banks and

insurance industries are characterized by fundamental information in the upper range of

quantiles, while the real estate industry has only a negative and significant γ2 up to the 75th

quantile but is not statistically significant in the upper quantiles. Hence, herding due to

fundamental information affects the US equity market and diversified financials in tranquil

periods. Banks and insurance tend to herd on fundamental information when the market

becomes more distressed, and there is slight evidence that the real estate industry does also.

On the other hand, we find that the herding that is driven by non-fundamental information

occurs in the US equity market and the related financial sector only for the extreme upper

quantiles. This finding indicates that the herding due to non-fundamental information is

more likely during tail events of the market.

In the Eurozone, we find evidence that the herding driven by fundamental information

is present for the diversified financials and the insurance industries, while the herding driven

13The augmented Dickey-Fuller test (ADF) and KPSS test indicate that the R2
US,j,t (R2

EZ,j,t) and the
CSADUS,m,t (CSADEZ,m,t) are stationary.
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Table 9: Granger causality test between the US and Eurozone financial sectors and industries and the related
equity markets.

Panel A: United States
Lag of R2

j j = Financial sector j = Banks j = Diversified Financials j = Insurance j =Real Estate

t− 1 92.640*** 108.293*** 92.473*** 21.111** 61.668***
t− 2 24.786*** 24.105*** 36.971*** 16.636*** 17.635***
t− 3 9.220*** 10.038*** 14.938*** 12.319** 9.701***
t− 4 7.446*** 7.908*** 15.254*** 12.245*** 9.233***
t− 5 5.329*** 6.878*** 7.982*** 11.666*** 9.856***
t− 6 3.912*** 6.185*** 6.036*** 11.997*** 8.002***
t− 7 4.717*** 9.138*** 5.626*** 11.564*** 7.375***
t− 8 5.126*** 9.050*** 6.801*** 10.226*** 7.469***
t− 9 5.285*** 9.801*** 7.391*** 8.978*** 6.682***
t− 10 5.374*** 9.947*** 7.264*** 8.859*** 6.423***
t− 11 5.157*** 9.044*** 6.790*** 8.299*** 6.245***
t− 12 5.029*** 8.559*** 6.381*** 7.515*** 6.221***
t− 13 4.686*** 8.080*** 5.901*** 7.029*** 5.989***
t− 14 5.025*** 8.677*** 5.834*** 6.823*** 5.909***
t− 15 4.472*** 8.199*** 5.161*** 6.104*** 5.469***
t− 16 4.629*** 7.482*** 5.549*** 5.806*** 5.448***
t− 17 4.349*** 7.058*** 5.206*** 5.556*** 5.106***
t− 18 4.131*** 6.783*** 4.988*** 5.448*** 4.836***
t− 19 3.940*** 6.568*** 4.946*** 5.141*** 4.749***
t− 20 3.687*** 6.490*** 4.648*** 4.896*** 4.519***

Panel B: Eurozone
Lag of R2

j j = Financial sector j = Banks j = Diversified Financials j = Insurance j =Real Estate

t− 1 180.460*** 215.383*** 52.594*** 100.868*** 27.609***
t− 2 58.009*** 66.244*** 14.240*** 37.689*** 6.786***
t− 3 24.261*** 29.104*** 5.645*** 16.386*** 2.212*
t− 4 16.253*** 18.141*** 4.158*** 12.477*** 5.133***
t− 5 11.832*** 11.796*** 4.213*** 9.978*** 6.149***
t− 6 9.317*** 9.347*** 3.627*** 7.786*** 4.729***
t− 7 7.591*** 7.919*** 3.947*** 6.564*** 4.352***
t− 8 6.762*** 7.509*** 3.356*** 5.879*** 3.782***
t− 9 5.574*** 6.272*** 3.383*** 5.763*** 2.797***
t− 10 4.773*** 5.530*** 3.586*** 5.559*** 2.729***
t− 11 4.724*** 5.310*** 3.962*** 5.141*** 2.723***
t− 12 4.652*** 5.179*** 4.198*** 4.759*** 2.725***
t− 13 4.492*** 4.979*** 3.913*** 4.406*** 2.583***
t− 14 4.447*** 4.688*** 4.818*** 4.150*** 2.883***
t− 15 4.105*** 4.391*** 5.073*** 3.859*** 2.778***
t− 16 3.834*** 4.074*** 4.726*** 3.601*** 2.871***
t− 17 3.707*** 3.844*** 4.534*** 3.809*** 2.710***
t− 18 3.600*** 3.770*** 4.354*** 3.709*** 2.626***
t− 19 3.459*** 3.538*** 4.495*** 3.597*** 2.438***
t− 20 3.358*** 3.334*** 4.986*** 3.426*** 2.391***

Notes: The table reports the F-Statistics from the Granger causality test between the R2
US,j,t

(R2
EZ,j,t) and the CSADUS,m,t (CSADEZ,m,t), for the entire financial sector and each industry

included in this study. The null hypothesis states that each variable “does not Granger Cause”
the other. ***, **, and * indicate significance at 1%, 5%, and 10% levels, respectively.
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Table 10: Estimates of herding due to non-fundamentals and fundamentals for the US and Eurozone equity
markets and financial industries.

Panel A: United States Panel B: Eurozone
CSADNONFUND,t CSADFUND,t CSADNONFUND,t CSADFUND,t
γ1 γ2 γ1 γ2 γ1 γ2 γ1 γ2

All Market Equities

OLS 0.253*** 1.693*** 0.008** -0.133 0.184*** 2.751*** 0.019*** 0.071
Quantile Regression
τ=10th 0.108*** 1.737*** -0.014*** -0.204*** 0.056** 2.840*** -0.009 0.024
τ=25th 0.120*** 2.472 -0.013* -0.007 0.084*** 2.908*** -0.001 -0.024
τ=50th 0.147*** 3.261*** 0.001 0.014 0.120*** 3.821*** 0.017*** 0.039
τ=75th 0.211*** 4.011* 0.017*** 0.018 0.229*** 3.032*** 0.028*** 0.374***
τ=95th 0.608*** -1.797*** 0.028* 0.082 0.546*** -1.115 0.070*** 0.101
τ=99th 0.473*** -1.380** 0.027 0.330 0.661*** -4.362*** 0.099*** -0.127
Banks
OLS 0.274*** 0.451* 0.005** 0.006 0.204*** 1.767* 0.010*** 0.034
Quantile Regression
τ=10th 0.077*** 0.814 -0.027*** 0.107*** 0.107*** 1.259*** -0.003 -0.043
τ=25th 0.110*** 0.998*** -0.011*** 0.066*** 0.148*** 1.372*** -0.006* 0.139***
τ=50th 0.176*** 0.996*** 0.003 0.029 0.174*** 1.981** 0.006 0.082
τ=75th 0.297*** 0.763*** 0.024*** -0.074*** 0.165*** 3.226*** 0.020*** 0.003
τ=95th 0.640*** -0.229 0.047*** -0.120** 0.324*** 4.039*** 0.033 0.210
τ=99th 1.156*** -3.210*** 0.055*** -0.167 0.466*** 2.447*** 0.064*** -0.120
Diversified Financials
OLS 0.272*** 0.634 0.005** -0.040 0.176*** 1.154*** 0.016*** -0.001
Quantile Regression
τ=10th 0.124*** 0.631*** -0.011*** -0.062*** 0.038*** 1.801*** -0.008 0.050
τ=25th 0.124*** 1.726*** -0.007*** -0.013 0.079*** 1.480*** -0.003 0.073***
τ=50th 0.175*** 1.715*** 0.003* -0.021 0.138*** 1.257*** 0.012** 0.005
τ=75th 0.259*** 1.598** 0.013*** 0.010 0.192*** 1.541*** 0.021*** 0.205**
τ=95th 0.501*** 0.036 0.027*** -0.063 0.429*** 0.569 0.057*** -0.146**
τ=99th 0.902*** -3.165*** 0.036*** -0.100 0.331 2.925 0.072 0.154
Insurance
OLS 0.301*** 2.034*** 0.005** -0.037 0.204*** 1.995*** 0.014*** 0.010
Quantile Regression
τ=10th 0.051 2.832** -0.026*** 0.106*** 0.050*** 1.987*** -0.008* 0.044
τ=25th 0.082*** 3.452*** -0.014*** 0.062 0.053*** 3.024*** 0.000 0.035
τ=50th 0.139*** 3.324*** 0.002 0.016 0.098*** 3.070*** 0.010** 0.079
τ=75th 0.270*** 3.203*** 0.019*** -0.075** 0.201*** 2.922** 0.023*** 0.027
τ=95th 0.790*** -0.373 0.033*** -0.070*** 0.730*** -1.440*** 0.050*** 0.033
τ=99th 1.201*** -3.791*** 0.037*** -0.070 0.971*** -3.639*** 0.100*** -0.514***
Real Estate
OLS 0.274*** 0.240 0.002 -0.004 0.113*** 2.783*** 0.011*** -0.003
Quantile Regression
τ=10th 0.116*** 0.594*** -0.012*** -0.031 0.028 1.839 -0.004 -0.072
τ=25th 0.125*** 1.112*** -0.010*** 0.061*** 0.029* 2.711*** -0.001 0.032
τ=50th 0.172*** 1.213** 0.001 0.005 0.058*** 3.479*** 0.003 0.075
τ=75th 0.204*** 1.899*** 0.010*** -0.026*** 0.123** 3.609* 0.016* 0.065
τ=95th 0.466*** 0.020 0.018*** 0.050 0.428*** 1.187 0.045*** -0.042
τ=99th 0.989*** -3.249*** 0.025* 0.002 0.359 4.824 0.059 0.203

Notes: The table reports the estimated coefficients for the augmented models (12) and (13):
CSADNONFUND,t = α + γ1|Rm,t| + γ2R

2
m,t + et, and CSADFUND,t = α + γ1|Rm,t| + γ2R

2
m,t + et;

CSADNONFUND,t = εt, form regression (9): CSADt = α + β1(Rm,t − Rf ) + β2HMLt + β3SMBt +
β4MOMt + εt; CSADFUND,t = CSADt - CSADNONFUND,t. West and Newey (1987) correction is ap-
plied to estimate standard errors. ***, **, and * indicate significance at 1%, 5%, and 10% levels, respectively.
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by non-fundamental information occurs in the equity market and the insurance industry.

In both cases, we find that the herding coefficients are negative and significant only for the

extreme upper distribution of the quantiles that means “intentional” and “spurious” herding

are present only during extremely distressed periods of the related market.

Table 11 illustrates the results of testing based on models (14) and (15) during the

GFC for the US and the Eurozone, respectively. We find that the US investors herd due to

fundamental information during the GFC. The OLS analysis shows a negative and significant

herding coefficient γ3 for the equity market, diversified financials, and real estate. The

results related to the US market become more interesting when analyzing the estimates of

the quantile regression. There is evidence that the US equity market and all the financial

industries start herding when the market has intermediately distressed conditions (τ = 50th).

Overall, our results indicate that the herding detected during the GFC in the US was spurious

more than intentional. The above analysis shows that there is herding during the GFC for

the US equity market and financial industries. The analysis disclosed in this subsection

gives a more comprehensive view compared to the results discussed in subsection 4.2, since it

shows that herding is based on fundamental information and thus likely due to informational

cascades.

Our results are in line with Galariotis et al. (2015) for the US equity market and with

Humayun Kabir (2018) for the US financial sector during the GFC. Our analysis is more

comprehensive, because it includes the estimates for all the US financial industries and,

moreover, considers the quantile regression method that provides a better understanding of

herding across different states of the economy.

The GFC affects the herding due to non-fundamental and fundamental information in

the Eurozone as well. For the herding driven by fundamental information, the OLS analysis

does not show any evidence of herding apart for the equity market, whose coefficient γ3 is

negative and significant. The quantile regression analysis shows evidence of herding in all the

financial industries, except for banks that herd due to non-fundamental information. Similar

to what we find in the US, the herding due to fundamental information is more pronounced

in the left half of the quantiles and the estimates again indicate that herding was spurious

more than intentional during this period.

Table 12 presents the estimates of models (14) and (15) that test the herding due to

non-fundamental and fundamental information during the EZC for the US and the Eurozone,

respectively. During the EZC, the OLS analysis shows the presence of herding due to non-

fundamental information for the US and the Eurozone equity markets and financial sectors.

In the US, the quantile regression analysis in Table 12 provides evidence of “intentional”

herding in the equity markets and all the financial industries especially in the lower quantiles
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Table 11: Estimates of herding due to non-fundamentals and fundamentals for the US and Eurozone equity
markets and financial industries, during the GFC.

Panel A: United States Panel B: Eurozone
CSADNONFUND,t CSADFUND,t CSADNONFUND,t CSADFUND,t
γ3 γ4 γ3 γ4 γ3 γ4 γ3 γ4

All Market Equities

OLS 0.112 -0.279 -1.920*** 3.948*** 0.214 -0.106 -2.195** 6.258***
Quantile Regression
τ=10th -0.025 0.915*** -0.355 1.804*** 0.213** 0.812*** 1.072** 2.261**
τ=25th 0.873** -4.349** -0.875*** 1.638*** 2.297*** -0.580 -0.474 3.141***
τ=50th 0.054 -0.214** -2.907*** 2.669*** 0.256 0.152 -2.415*** 4.627***
τ=75th -0.679*** 0.359 -3.077*** 6.059*** -1.080*** 0.115 -3.873*** 7.437***
τ=95th -0.309*** 0.723** -4.108*** 14.283 -0.486*** 0.671 -8.018*** 12.167***
τ=99th -0.125*** 1.498*** -3.547** 35.024 -0.256*** 0.908*** -13.163 21.573
Banks
OLS 0.019 -1.540*** -0.411 3.543*** 0.136 -0.641*** 0.628 2.475***
Quantile Regression
τ=10th -0.116** -0.901** -0.390 1.308*** -0.172*** -0.377 0.501*** 1.384***
τ=25th 0.099 -8.574*** -0.545** 1.716*** 0.405** -4.870*** -0.030 2.146***
τ=50th 0.160* -0.529*** -1.004*** 2.702*** 0.717** -0.246*** -0.042 3.678***
τ=75th -0.393*** -0.362*** -0.357** 7.808*** -0.734*** -0.099 1.056 4.632***
τ=95th -0.141*** 0.938* -1.699*** 5.524*** -0.320*** 0.388 0.403 6.916**
τ=99th -0.081*** 1.347*** -3.892 7.208 -0.146*** 0.486*** -2.912 20.662
Diversified Financials
OLS 0.011 -0.245 -1.122** 2.896** -0.012 -0.152 -0.565 4.211***
Quantile Regression
τ=10th -0.119* 0.583*** -0.650*** 0.996*** 0.062*** -0.249 0.213 2.238***
τ=25th 0.366*** -2.799** -1.052*** 1.449** 0.483*** -2.196*** -0.366 2.577***
τ=50th -0.031 -0.143* -1.600*** 3.316*** 0.000 0.138 -0.690 3.871***
τ=75th -0.437*** -0.073 -0.901 5.762*** -0.528*** 0.157 -1.051*** 3.907***
τ=95th -0.181*** 1.058** -3.720*** 6.406 -0.219*** 0.770 -3.255*** 13.634
τ=99th -0.090*** 1.200*** -6.098*** 15.312 -0.090* 0.951** -2.655*** 44.341***
Insurance
OLS 0.109 -1.810*** -0.144 4.011*** 0.177 -0.351 -0.402 3.845***
Quantile Regression
τ=10th 0.153** 1.130*** 0.188 1.885*** 0.006 0.615*** 1.246*** 1.662***
τ=25th 0.525*** -12.33*** 0.180 2.039*** 0.676*** -4.572*** 0.249 2.225***
τ=50th -0.202 -0.730*** -0.665 3.311*** 0.012 -0.204 -0.371 3.338***
τ=75th -0.706*** -0.347** 0.887** 10.704*** -0.880*** -0.296** -0.116 4.247***
τ=95th -0.306*** 1.501* -3.810*** 5.921*** -0.229*** 0.616 -5.071*** 3.778***
τ=99th -0.122*** 1.367*** -11.699*** 13.412 -0.097*** 1.144** -7.570 30.943
Real Estate
OLS 0.122 0.032 -0.676*** 1.549** 0.334 -0.115 -1.522 5.404***
Quantile Regression
τ=10th 0.047 0.577 -0.122 0.966*** -0.400 -0.072 -0.773 0.832
τ=25th 1.057*** -0.554 -0.513*** 0.941*** 1.560*** -0.678*** -0.936 2.241
τ=50th -0.069 0.207 -0.830*** 0.758*** 0.695*** -0.012 -2.518*** 4.702***
τ=75th -0.287*** 0.067 -0.841*** 1.320 -0.689*** 0.042 -3.903*** 5.085***
τ=95th -0.118*** 1.186* -1.754* 5.387 -0.192*** 0.656 -4.854*** 19.322***
τ=99th -0.075*** 1.370*** -3.687*** 6.958 -0.061* 0.720** -9.476*** 30.770

Notes: The table reports the estimated coefficients for the augmented models (14) and (15):
CSADNONFUND,t = α + γ1D

Crisis|Rm,t| + γ2(1−DCrisis)|Rm,t| + γ3D
CrisisR2

m,t + γ4(1−DCrisis)R2
m,t +

et, and CSADFUND,t = α + γ1D
Crisis|Rm,t| + γ2(1−DCrisis)|Rm,t| + γ3D

CrisisR2
m,t + γ4(1−DCrisis)R2

m,t

+ et; CSADNONFUND,t = εt, form regression (9): CSADt = α + β1(Rm,t − Rf ) + β2HMLt + β3SMBt

+ β4MOMt + εt; CSADFUND,t = CSADt - CSADNONFUND,t. D
Crisis is a dummy variable that equals

one during the GFC and zero otherwise. West and Newey (1987) correction is applied to estimate standard
errors. ***, **, and * indicate significance at 1%, 5%, and 10% levels, respectively.
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Table 12: Estimates of herding due to non-fundamentals and fundamentals for the US and Eurozone equity
markets and financial industries, during the EZC.

Panel A: United States Panel B: Eurozone
CSADNONFUND,t CSADFUND,t CSADNONFUND,t CSADFUND,t
γ3 γ4 γ3 γ4 γ3 γ4 γ3 γ4

All Market Equities

OLS -2.582*** 0.294 3.614*** 0.481 -2.642*** 0.467* 4.171*** 2.128***
Quantile Regression
τ=10th -11.692*** 0.317*** 1.633*** 1.856*** -10.794*** 0.405*** 3.324*** 3.521***
τ=25th -7.162*** 0.744*** 1.395*** 2.608*** -3.84*** 2.088*** 3.219*** 3.473***
τ=50th -1.689*** 0.225*** 2.391** 1.088* -1.691*** 0.266*** 3.133*** 3.399***
τ=75th -1.235*** 0.448 7.868*** -0.078 -1.197*** 0.653** 6.027*** 1.615***
τ=95th 0.516* -0.262*** 15.636*** -2.797*** 0.522 -0.401*** 10.012*** -3.043***
τ=99th 1.133*** -0.097** 23.071*** -2.149** 1.092*** -0.158 14.016*** -5.206***
Banks
OLS -2.836*** -0.003 1.825*** 0.241 -1.582*** -0.027 1.555** 2.205**
Quantile Regression
τ=10th -11.878*** 0.102 0.828*** 0.841*** -7.895*** 0.198** 1.311*** 1.371***
τ=25th -10.947*** -0.023 0.703* 1.085*** -7.662*** 0.035 0.887*** 1.598***
τ=50th -2.198*** 0.152*** 0.514 0.548*** -1.312*** 0.107 3.553*** 3.898***
τ=75th -1.905*** 0.048 6.657*** 0.834*** -0.886*** 0.231* 3.198*** 4.082***
τ=95th 0.507 -0.157*** 6.341* -0.563 0.294 -0.221*** 1.382** 4.140***
τ=99th 1.477*** -0.052*** 4.719** -2.823*** 0.878*** -0.026 8.730 0.655
Diversified Financials
OLS -1.866*** 0.134 1.915*** 0.008 -1.791*** 0.098 2.675*** 0.836***
Quantile Regression
τ=10th -9.349*** 0.188*** 0.763*** 0.576*** -5.951*** 0.082*** 2.938*** 1.502***
τ=25th -5.251*** 0.373*** 0.376 1.374*** -4.165*** 0.391*** 2.508*** 1.228***
τ=50th -1.559*** 0.178*** 0.940 0.781** -1.548*** 0.078 2.641** 1.475**
τ=75th -1.122*** 0.215 4.877*** 0.418 -1.046*** 0.239** 2.881** 0.997***
τ=95th 0.574 -0.167*** 10.485** -1.005* 0.450 -0.207*** 3.957 -0.318
τ=99th 1.172*** -0.068*** 13.766*** -4.084*** 1.378*** -0.046 28.149*** 0.095
Insurance
OLS -4.289*** 0.145 3.198*** 1.181** -2.305*** 0.335 3.697*** 1.246**
Quantile Regression
τ=10th -16.957*** 0.208** 2.188*** 3.096*** -11.19*** 0.301*** 2.213*** 1.880***
τ=25th -16.93*** 0.490*** 1.911*** 2.903*** -9.338*** 0.645*** 3.111*** 2.436***
τ=50th -3.241*** 0.234 2.049** 1.427*** -2.046*** 0.250*** 3.674*** 1.591***
τ=75th -2.786*** -0.012 10.351*** 2.158*** -1.597*** 0.141 5.172** 1.642***
τ=95th 0.680* -0.290*** 8.616 -1.217 0.407 -0.170*** 7.343 -2.184***
τ=99th 1.783*** -0.080** 19.801* -5.169*** 1.103*** -0.086*** 14.364** -4.878***
Real Estate
OLS -2.373*** 0.202 1.957*** -0.251 -2.684*** 0.460*** 2.424* 1.922***
Quantile Regression
τ=10th -13.934*** 0.145*** 1.189*** 0.568*** -9.116*** 0.277*** -0.079 2.818***
τ=25th -7.637** 0.731*** 0.940*** 0.084 -2.513*** 1.609*** -0.006 1.975***
τ=50th -1.879*** 0.235*** 0.915*** -0.118 -2.060*** 0.373*** 1.831* 1.976
τ=75th -1.695*** -0.083 6.218*** -0.122 -1.331*** 0.617*** 4.178*** 1.732***
τ=95th 0.328 -0.140*** 12.182* -0.866 0.743** -0.148** 9.149 -0.810
τ=99th 1.242*** -0.056*** 7.584 -3.103*** 1.432*** -0.053 30.259 1.169

Notes: The table reports the estimated coefficients for the augmented models (14) and (15):
CSADNONFUND,t = α + γ1D

Crisis|Rm,t| + γ2(1−DCrisis)|Rm,t| + γ3D
CrisisR2

m,t + γ4(1−DCrisis)R2
m,t +

et, and CSADFUND,t = α + γ1D
Crisis|Rm,t| + γ2(1−DCrisis)|Rm,t| + γ3D

CrisisR2
m,t + γ4(1−DCrisis)R2

m,t

+ et; CSADNONFUND,t = εt, form regression (9): CSADt = α + β1(Rm,t − Rf ) + β2HMLt + β3SMBt

+ β4MOMt + εt; CSADFUND,t = CSADt - CSADNONFUND,t. D
Crisis is a dummy variable that equals

one during the EZC and zero otherwise. West and Newey (1987) correction is applied to estimate standard
errors. ***, **, and * indicate significance at 1%, 5%, and 10% levels, respectively.
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that means investors were herding due to non-fundamental information during the EZC.

There is no evidence of “spurious” herding. The findings related to the Eurozone are similar

to the US case.

Overall, our results indicate that different crises may affect herding differently. During

the GFC, investors engaged in “spurious” herding. This result changes during the EZC,

because investors show more “intentional” than “spurious” herding.

The findings presented in this subsection represent a new and interesting contribution to

describing herding during the GFC and the EZC in US and the Eurozone. The distinction

between “spurious” and “intentional” herding explains the main driver of herding during

the crises and gives a more specific analysis compared to the usage of the total CSAD,

which cannot give a specific reason for herding (see, e.g., the results referred to the GFC in

subsection 4.2).

5. Summary and conclusions

Herding arises when investors take collective actions in the market. In the short term,

herding increases market volatility by reducing the information content in stock prices and,

thus, potentially causing an information cascade that is characterized by traders merely

copying the actions of others. In the long term, herding could affect economic cycles by

generating price bubbles (Hott, 2009). For these reasons, it has important implications for

policymakers, supervisory authorities, and academia who are involved in identifying and

assessing the sources of risk and the vulnerability of financial stability with the final goal of

developing policies that limit the extent of noise trading.

Our study follows the approach based on the CSAD that Chang et al. (2000) propose by

using a quantile regression analysis in addition to the common practice of an OLS in order

to have a more complete analysis of herding. This approach alleviates some of the statistical

issues related to the OLS. The main findings are summarized in Tables 13 and 14.

We find evidence of herding during the GFC with both methods for the US and Eurozone

equity markets and financial industries, except for banks in the Eurozone. On the other hand,

we do not find significant herding during the EZC in either equity market. However, in the

US banks and insurance industries and in the Eurozone, banks, diversified financials, and

real estate industries, we find herding during the EZC. The results show that during the

GFC, investors tended to herd when the market was moderately distressed, while during the

EZC this behavior was limited to specific industries only.

We show that herding in the US is more likely during extremely distressed market

states with higher volatility, while in the Eurozone, this trend exists only for the diversified

financials. The Eurozone’s banks and insurance industries tend to herd more when there is
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lower volatility. We find that credit deterioration affects herding in the US and Eurozone

equity markets and financial industries, except for the banks in the Eurozone. We find

similar results when illiquid funding exists in the market.

Furthermore, we inspect the presence of spillover herding from the financial sector and

its industries to the domestic equity market. Our results indicate the presence of a spillover

effect from the insurance industry to the domestic market in the US and from the banks to

the domestic market in the Eurozone.

We find evidence of “intentional” herding in the US equity market and all the financial

industries. On the other hand, in the Eurozone, there is herding by the corporates in the

equity market and the insurance industry, while we find the presence of “spurious” herding

by the diversified financials and, again, for corporates in the insurance industries. Analyzing

the GFC, our results indicate that the herding detected during this period was “spurious”

more than “intentional”. During the EZC, the corporates in the US and the Eurozone

equity markets and financial industries tended to herd due to non-fundamental information

– “intentional” herding – that highlights that the two recent financial crises affected herding

differently.

Following our analysis we can conclude that any shockwave in the financial sector or

industries (real estate excluded) will affect the domestic equity market depending on the

state of that economy. Herding detected under a high volatility state of the economy is more

prevalent in the extreme parts of the CSAD distributions. One possible explanation is that

smaller value stocks are subject to more intensive manipulations attracting herding related

to these assets. Previous literature suggests that at the institutional level herding may be

based on fundamental values that determine a faster prices adjustment. The empirical results

contained in our study imply that policy makers may further strengthen the legal framework

to decrease the level of speculative activities in the stock markets. Hence, policymakers and

supervisory authorities will use this information to observe more efficiently these industries

in a country specific manner, that is the insurance companies in the U.S. and the banks in

the Eurozone.

The CSAD methodology is largely used in the literature for capturing herding behavior

but this is a static model and it can lead to biased results as the parameters are considered

constant over the entire period under analysis. Employing the quantile regression to extract

inference to substantiate the existence of herding is a methodological step forward in this

area of research since the analysis can capture effects in various parts of the distribution of

the herding measure, including the tails of the distribution, and not just an average effect.

Because herding behavior is a time-varying phenomenon, a dynamic methodology would be

preferable although currently not available. At the same, there are still challenges how to
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deal with quantile regression in the presence of structural breaks and also for panel data.

Any new developments in the econometric theory of quantile regression along these directions

will improve the depth of the analysis.

Due to the increasing macroeconomic convergence among Eurozone’s countries, it sug-

gests that future researches should take into account the effects of the international integra-

tion of stock markets. Thus, even though representing variables at the global level may be

difficult, investigating herding by adding a layer by considering a global benchmark would

provide a deeper insight into the concept of herding. Another further line of research may

look at both equity and debt of companies when analyzing herding. Designing a herding

measure that will cover both sides of the balance sheet of the company will provide a bridge

between the market based herding measures and the more detailed balance sheet driven

herding measures.
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