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Abstract

In this paper we consider the matrix lattice equation Un,t(Un+1 − Un−1) = g(n)I, in both its

autonomous (g(n) = 2) and nonautonomous (g(n) = 2n − 1) forms. We show that each of these

two matrix lattice equations are integrable. In addition, we explore the construction of Miura

maps which relate these two lattice equations, via intermediate equations, to matrix analogs of

autonomous and nonautonomous Volterra equations, but in two matrix dependent variables. For

these last systems, we consider cases where the dependent variables belong to certain special

classes of matrices, and obtain integrable coupled systems of autonomous and nonautonomous

lattice equations and corresponding Miura maps. Moreover, in the nonautonomous case we present

a new integrable nonautonomous matrix Volterra equation, along with its Lax pair. Asymptotic

reductions to the matrix potential Korteweg-de Vries and matrix Korteweg-de Vries equations are

also given.

Highlights

•We give Miura maps for autonomous and nonautonomous matrix lattice equations and systems.

•We prove the integrability of an autonomous and also of a nonautonomous matrix lattice.

•We obtain integrable multicomponent autonomous and nonautonomous lattices and Miura maps.

•We give a new integrable nonautonomous matrix Volterra equation along with its Lax pair.

•We give asymptotic reductions of matrix lattices to matrix potential KdV and matrix KdV.
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1. Introduction

The aim of the present paper is to undertake a study of the nonautonomous lattice

Un,t = (2n − 1)(Un+1 − Un−1)−1, (1.1)

as well as of its autonomous limit

Un,t = 2(Un+1 − Un−1)−1. (1.2)

Equation (1.1) may be derived using the auto-Bäcklund transformations (aBTs) of a certain matrix

partial differential equation (PDE), or alternatively those of a matrix second Painlevé (PII) equation

[1] (see also [2]). The limiting process from (1.1) to (1.2) is presented later.

The scalar case of the autonomous equation (1.2), that is

un,t =
2

un+1 − un−1

, (1.3)
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is known to be a completely integrable equation. The transformation

wn =
1

un+1 − un−1

, (1.4)

maps solutions of (1.3) to solutions of the equation

wn,t = −2w2
n(wn+1 − wn−1). (1.5)

Alternatively, we may regard the system

wn =
1

un+1 − un−1

, un,t = 2wn, (1.6)

as a Bäcklund transformation (BT) between (1.3) and (1.5). Solutions of equation (1.5) may in

turn be mapped to solutions of the (rescaled) Volterra lattice

yn,t = −2yn(yn+1 − yn−1), (1.7)

using the transformation

yn = wnwn+1. (1.8)

Equation (1.5) and the Volterra equation (1.7) are well-known completely integrable equations.

The above three scalar equations (1.3), (1.5) and (1.7), results on their integrability, relations

between them as well as to other known equations, and also various generalisations thereof, can be

found in [3]—[21]. In particular, the Miura transformation from (1.5) to (1.7), and the composite

Miura transformation from (1.3) to (1.7), can be found for example in [13, 18]. We recall that in

[18] the integrability of scalar lattices is shown by constructing Miura transformations to known

integrable cases. For example, the existence of a Miura transformation from (a generalisation of)

(1.3) to the integrable Volterra equation (1.7) is used to prove the integrability of the former.

One aim of the present paper is to consider to what extent it is possible to extend the above

chain of transformations for the scalar autonomous lattice (1.3) to the matrix case (1.2). Here our

objective is two-fold: to establish the integrability of (1.2) by extending the mapping (1.4) to the

matrix case; and to obtain matrix generalisations of equation (1.7) and the mapping (1.8). A second

aim is to consider asymptotic reductions of autonomous matrix lattices to matrix PDEs. These

topics are considered in Section 2. In Section 3 we turn our attention to the nonautonomous matrix

lattice (1.1), and study the possible extension of the above chain of transformations to this case —

with the same two-fold objective as in the autonomous case — as well as the asymptotic reduction

of nonautonomous matrix lattices to matrix PDEs, and the derivation of autonomous lattices as

limiting cases of nonautonomous lattices. We also briefly consider results in the nonautononmous

scalar case. In each of sections 2 and 3 a variety of new results are presented. The final section of

the paper consists of a discussion and conclusions.

2. The autonomous matrix lattice

2.1. Integrability of the autonomous matrix lattice

We start by considering the autonomous matrix equation (1.2), that is

Un,t = 2(Un+1 − Un−1)−1. (2.1)

It can be shown that solutions of this equation are mapped by the transformation

Wn = (Un+1 − Un−1)−1, (2.2)

to solutions of the equation

Wn,t = −2Wn(Wn+1 −Wn−1)Wn. (2.3)

2



As with the scalar case (1.6), we may regard the system

Wn = (Un+1 − Un−1)−1, Un,t = 2Wn, (2.4)

as a BT between equations (2.1) and (2.3). Let the shift (E) and difference (∆) operators be defined

by

E fn = fn+1, ∆ = E − E−1, (2.5)

so Ek fn = fn+k for any integer k and ∆ fn = fn+1 − fn−1. The matrix equation (2.3) has the Lax pair

Eφn = Fnφn, φn,t = Gnφn, (2.6)

where

Fn =

(
2λW−1

n I

−I 0

)
, Gn = −4λ

(
λI Wn

−Wn−1 −λI

)
, (2.7)

and I is the identity matrix. The compatibility condition of the system (2.6),

0 = Fn,t + FnGn −Gn+1Fn, (2.8)

with the definitions (2.7), yields (2.3). Thus equation (2.3) is integrable, and we may deduce — as

in the classifications of scalar autonomous lattice equations in [18] — that equation (2.1) is also

integrable since it is related to (2.3) by the Miura-type transformation (2.2). We note that (2.3) is a

special case of the Jordan-algebraic multi-component generalisations of (1.5) given in [13] along

with their Lax pairs, and that the Lax pair (2.6), (2.7) readily gives that for the scalar case (1.5).

We note in addition that equation (2.3) can be found in [20] (see also references therein).

The Miura map (2.2) from (2.1) to (2.3) is a matrix version of (1.4) from (1.3) to (1.5). In the

next section we turn to the question of matrix generalisations of (1.7) and (1.8): we are unaware of

a matrix version of the Miura map (1.8), even though it is straightforward to write down a possible

matrix version of (1.7). We note the remark made in [13] that (1.8) is an example of a scalar

transformation which is lacking in the multi-component case, and that (1.7) does not have natural

multi-component analogs corresponding to Jordan algebraic structures.

2.2. Matrix Volterra systems

Let us now consider this question of generalising the transformation (1.8) in order to obtain

a mapping from solutions of (2.3) to solutions of a matrix analog of the Volterra equation (1.7).

However, this process is complicated by the noncommutativity of matrix multiplication, and the

most straightforward matrix generalisation of (1.7) need not in fact be our sought-after matrix

analog of (1.7). We define the two products

Yn =WnWn+1, Zn =Wn+1Wn, (2.9)

which imply

Yn,t = − 2(YnZn+1 − Zn−1Yn), (2.10)

Zn,t = − 2(Yn+1Zn − ZnYn−1). (2.11)

That is, solutions of (2.3) are mapped to solutions of the system (2.10), (2.11). We note, however,

that in the system (2.10), (2.11), the entries of the matrices Yn and Zn will be subject to constraints.

For example, if the entries of a k × k matrix Wn constitute a set of k2 independent functions, so

the W-system (2.3) has k2 degrees of freedom, then the system (2.10), (2.11) will also have k2

— rather than 2k2 — degrees of freedom, and so the entries of Yn and Zn will be subject to k2

constraints. Such restrictions on the dependent variables of the system (2.10), (2.11) are important

for an understanding of its relationship to equation (2.3) under the transformation (2.9).

As an example of the constraints that may be required, let us consider the case where

Wn =

(
an bn

0 cn

)
. (2.12)
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Equation (2.3) is then written

(
an,t bn,t

0 cn,t

)
= −2

(
a2

n∆an anbn∆an + ancn∆bn + bncn∆cn

0 c2
n∆cn

)
, (2.13)

where the operator ∆ is defined as in (2.5). In general matrices of the form (2.12) do not commute,

and so the matrices Yn =WnWn+1 and Zn =Wn+1Wn (2.9) are distinct: we have

Yn =

(
un yn

0 vn

)
, Zn =

(
un zn

0 vn

)
,

un = anan+1,

vn = cncn+1,

yn = anbn+1 + bncn+1,

zn = an+1bn + bn+1cn.
(2.14)

Whilst the expressions for yn and zn are similar, in general yn , zn. So the transformation (2.9)

maps the system (2.13) in the three variables (an(t), bn(t), cn(t)) to the system (2.10), (2.11) in the

four variables (un(t), vn(t), yn(t), zn(t)), that is,

un,t = − 2un(un+1 − un−1), yn,t = − 2yn(vn+1 − un−1) − 2unzn+1 + 2vnzn−1, (2.15)

vn,t = − 2vn(vn+1 − vn−1), zn,t = − 2zn(un+1 − vn−1) − 2vnyn+1 + 2unyn−1. (2.16)

Thus, there must be a consistency condition between the four variables (un, vn, yn, zn). From (2.14)

note that

an+1yn = an+1anbn+1 + an+1bncn+1 = unbn+1 + cn+1(zn − bn+1cn) = bn+1(un − vn) + cn+1zn, (2.17)

and

cnyn = anbn+1cn + bncncn+1 = an(zn − an+1bn) + bnvn = anzn + bn(vn − un). (2.18)

We thus obtain

bn+1 =
an+1yn − cn+1zn

un − vn

, bn =
anzn − cnyn

un − vn

, bn+1 =
an+1zn+1 − cn+1yn+1

un+1 − vn+1

, (2.19)

where the first two formulae are obtained from (2.17) and (2.18), and the third formula is a shift

of the second. Equating the two expressions for bn+1 gives

an+1

(
yn

un − vn

− zn+1

un+1 − vn+1

)
= cn+1

(
zn

un − vn

− yn+1

un+1 − vn+1

)
, (2.20)

hence

an+1

cn+1

=
zn(un+1 − vn+1) − yn+1(un − vn)

yn(un+1 − vn+1) − zn+1(un − vn)
,

an

cn

=
zn−1(un − vn) − yn(un−1 − vn−1)

yn−1(un − vn) − zn(un−1 − vn−1)
, (2.21)

where, as in (2.19), the second expression is a shift of the first. Taking the product of these two

formulae yields

un

vn

=
[zn(un+1 − vn+1) − yn+1(un − vn)][zn−1(un − vn) − yn(un−1 − vn−1)]

[yn(un+1 − vn+1) − zn+1(un − vn)][yn−1(un − vn) − zn(un−1 − vn−1)]
, (2.22)

which is the required consistency condition on (un, vn, yn, zn). This constraint means that the system

in (un, vn, yn, zn), that is, (2.15)—(2.16), corresponding to (2.13) under the mapping (2.9), is in fact

three-dimensional. We note that the expression (2.22) has no explicit dependence on (an, bn, cn).

We believe that the mapping (2.9) from equation (2.3) to the system (2.10), (2.11) is new. It is

this system (2.10), (2.11) — along with any associated consistency conditions on the entries of the

k× k matrices Yn and Zn implied by the mapping (2.9) — that is our sought-after matrix analog of

(1.7). In the following two subsections, we consider two special subcases of the mapping (2.9) and

the system (2.10), (2.11), defined in terms of properties of the solutions Wn of (2.3). We believe

that a general discussion of these two special subcases is also new.
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2.2.1. Symmetric Wn

If we assume that the matrices Wn are symmetric (that is, WT
n = Wn), then we find ZT

n = Yn,

since ZT
n = (Wn+1Wn)T = WT

n WT
n+1 = WnWn+1 = Yn. (Note, however, that the symmetry of Wn

does not imply that Yn =WnWn+1 is symmetric.) Using the relation Zn = YT
n to replace Zn in the

system (2.10), (2.11) yields the single equation

Yn,t = −2(YnYT
n+1 − YT

n−1Yn), (2.23)

since (2.11) becomes the transpose of (2.10). We note once again, however, that there will be

constraints on the entries of Yn. For example, if the entries of a k × k symmetric matrix Wn

constitute a set of k(k + 1)/2 independent functions, so the W-system (2.3) has k(k + 1)/2 degrees

of freedom, then the entries of Yn will be subject to constraints so that equation (2.23) also has

k(k + 1)/2 degrees of freedom. Such restrictions on the dependent variables of equation (2.23)

are important for an understanding of its relationship to equation (2.3) via the transformation

Yn =WnWn+1.

2.2.2. Commuting Wn

Let us assume that for all integers n and m, the matrices Wn and Wm commute. Then Zn = Yn

and equations (2.10) and (2.11) give rise to

Yn,t = −2(YnYn+1 − Yn−1Yn), (2.24)

and

Yn,t = −2(Yn+1Yn − YnYn−1), (2.25)

respectively. However, since if all matrices Wn, Wm commute then all matrices Yn, Ym must also

commute, we obtain in fact the single equation

Yn,t = −2Yn(Yn+1 − Yn−1), (2.26)

from both (2.24) and (2.25).

We remark that for any matrix Yn, that is, whether or not all Yn and Ym commute, equation

(2.25) has the Lax pair (see equations (2.6) and (2.8))

Eφn =

(
I Yn

λ−1I 0

)
φn, φn,t = 2

(
−Yn λYn

I −Yn−1 − λI

)
φn, (2.27)

and so is integrable. A Lax pair for (2.24), again for any matrix Yn, is given by replacing Yn with

YT
n in (2.27) (since this will have as compatibility condition equation (2.25) in YT

n , the transpose of

which then gives equation (2.24)). The Lax pair (2.27) readily reduces to the well-known Lax pair

for the scalar Volterra equation (1.7). Equations (2.24) and (2.25) are known matrix generalisations

of the Volterra equation (1.7), and can be found for example in [20] (see also references therein).

From the above we see that we also have a Lax pair for the special case (2.26). This special

case is the equation satisfied by the combination Yn = WnWn+1 of solutions Wn of (2.3) having

the property that for all integers n and m the matrices Wn and Wm commute. We remark that

although all such solutions Yn of (2.26) also have the property that all Yn, Ym commute, such a

construction still allows us to obtain nontrivial integrable coupled systems of lattice equations. For

the corresponding special case of (2.3), with solutions Wn such that any Wn and Wm commute, a

Lax pair is provided by equations (2.6) and (2.7). This then yields integrable coupled systems of

lattice equations related to those given by (2.26) by transformations obtained from Yn =WnWn+1.

As an example let us consider the special case of 2 × 2 matrices,

Wn =

(
an bn

cn dn

)
. (2.28)
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The commutativity condition WnWn+1 =Wn+1Wn gives rise to the equations

bncn+1 = bn+1cn, anbn+1 + bndn+1 = an+1bn + bn+1dn, cnan+1 + dncn+1 = cn+1an + dn+1cn. (2.29)

Up to transposition (note that Wn →WT
n is a symmetry of (2.3)), and excluding the trivial case

cn = bn = 0 which gives Wn diagonal and leads to uncoupled systems, equations (2.29) lead us to

Wn =

(
an bn

Kbn an + Mbn

)
, (2.30)

where K and M are arbitrary functions of t (in Appendix A we undertake a further discussion

of the derivation of commuting matrices). We may obtain (2.30) by writing the first equation in

(2.29) as

(E − 1)

(
cn

bn

)
= 0, (2.31)

which gives cn/bn = K and so cn = Kbn. The third equation in (2.29) then reduces to the second,

and this second we solve similarly to the first to obtain dn − an = Mbn.

We note that if Wn is of the form (2.30), then all Wn and Wm commute, and so all Yn and Ym

also commute (where Yn is given by Yn =WnWn+1). We also note that Yn is then given by

Yn =

(
rn sn

Ksn rn + Msn

)
, (2.32)

where

rn = anan+1 + Kbnbn+1, sn = anbn+1 + an+1bn + Mbnbn+1. (2.33)

Equation (2.3) may then be written as

Wn,t = −2W2
n(Wn+1 −Wn−1). (2.34)

This and equation (2.26), which, using the operator ∆ introduced in (2.5), we rewrite as

Wn,t = −2W2
n∆Wn and Yn,t = −2Yn∆Yn, (2.35)

where Wn and Yn are given by (2.30) and (2.32), then give the coupled systems

an,t = − 2(a2
n + Kb2

n)∆an − 2K(2anbn + Mb2
n)∆bn,

bn,t = − 2(a2
n + Kb2

n)∆bn − 2(2anbn + Mb2
n)(∆an + M∆bn), (2.36)

and

rn,t = − 2rn∆rn − 2Ksn∆sn,

sn,t = − 2rn∆sn − 2sn∆rn − 2Msn∆sn, (2.37)

respectively. In the above coupled systems in (an(t), bn(t)) and (rn(t), sn(t)), K and M are now both

constant, as is required by the consistency of each of the entries of the second row in each equation

of (2.35). Equation (2.33) maps solutions of the coupled system in (an(t), bn(t)) to solutions of the

coupled system in (rn(t), sn(t)). Since (2.6), (2.7) provide us with a Lax pair for the coupled system

in (an(t), bn(t)), and (2.27) provides us with a Lax pair for the coupled system in (rn(t), sn(t)), each

of these coupled systems is integrable.

We may recover standard examples of commutative 2 × 2 matrices as follows:

Elliptic/complex case. We set K = −1 and M = 0 to obtain

Wn =

(
an bn

−bn an

)
, Yn =

(
rn sn

−sn rn

)
, (2.38)
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with the corresponding systems of equations in (an, bn) and (rn, sn), being given by

an,t = 2(b2
n − a2

n)∆an + 4anbn∆bn, bn,t = 2(b2
n − a2

n)∆bn − 4anbn∆an,

rn,t = − 2rn∆rn + 2sn∆sn, sn,t = − 2rn∆sn − 2sn∆rn.

These are several special cases of (2.36) and (2.37), with the transformation between these pairs

of variables being given by the corresponding special case of (2.33), that is, rn = anan+1 − bnbn+1

and sn = anbn+1 + an+1bn.

Dual/shear case. We set K = 0 and M = 0 to obtain

Wn =

(
an bn

0 an

)
, Yn =

(
rn sn

0 rn

)
, (2.39)

with the corresponding systems of equations in (an, bn) and (rn, sn) being given by

an,t = − 2a2
n∆an, bn,t = − 2a2

n∆bn − 4anbn∆an,

rn,t = − 2rn∆rn, sn,t = − 2sn∆rn − 2rn∆sn, (2.40)

and the transformation between these pairs of variables by rn = anan+1 and sn = anbn+1 + an+1bn.

Hyperbolic/cyclic case. We set K = 1, M = 0, to obtain

Wn =

(
an bn

bn an

)
, Yn =

(
rn sn

sn rn

)
, (2.41)

with the corresponding systems of equations in (an, bn) and (rn, sn), being given by

an,t = − 2(a2
n + b2

n)∆an − 4anbn∆bn, bn,t = − 2(a2
n + b2

n)∆bn − 4anbn∆an,

rn,t = − 2rn∆rn − 2sn∆sn, sn,t = − 2rn∆sn − 2sn∆rn.

These are special cases of (2.36) and (2.37), with the transformation between these pairs of vari-

ables being given by the corresponding special case of (2.33), that is, rn = anan+1 + bnbn+1 and

sn = anbn+1 + an+1bn.

A generalised hyperbolic case. We set K = 1, M = −2, an = en + fn and bn = fn to obtain

W =

(
en + fn fn

fn en − fn

)
. (2.42)

The corresponding system of equations in en and fn is

en,t = − 2(e2
n + 2 f 2

n )∆en − 8en fn∆ fn, (2.43)

fn,t = − 4en fn∆en − 2(e2
n + 2 f 2

n )∆ fn. (2.44)

With rn = yn + zn and sn = zn we obtain

Yn =

(
yn + zn zn

zn yn − zn

)
, (2.45)

and corresponding system of equations

yn,t = −2yn∆yn − 4zn∆zn, zn,t = −2zn∆yn − 2yn∆zn. (2.46)

The transformation between (en, fn) and (yn, zn), namely

yn = enen+1 + 2 fn fn+1, zn = en fn+1 + en+1 fn, (2.47)

follows from that between (an, bn) and (rn, sn), that is, (2.33).

For a discussion of higher-dimensional commuting matrices, see Appendix A.
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2.3. Asymptotic reduction of the autonomous U-equation to matrix potential KdV

We consider the matrix autonomous equation (2.1), which we write as

2I = Un,t ∆Un = Un,t(t) [ Un+1(t) − Un−1(t) ] . (2.48)

We use asymptotic techniques to approximate long waves introducing a long spatial scale (y),

corresponding to large values of n, that is, n = O(h−1) with h≪ 1, and a fast timescale (τ) via

y = hn, τ = hσt, U(x, t) = Ũ(y, τ) = U0(y, τ) + h2U1(y, τ) + h4U2(y, τ) . . . . (2.49)

Here we have expanded the long-wave solution (U) as a power series in the small parameter h. For

these asymptotic calculations, we make no assumptions about commutativity or symmetry of U j.

The spatial difference of f (n) = f̂ (y) is expanded in terms of derivatives

∆ f (n) = f̂ (y + h) − f̂ (y − h) = 2h f̂ ′(y) + 2
6
h3 f̂ ′′′(y) + . . . (2.50)

Expanding all quantites in (2.48), we find

2I = 2hσ+1
(
U0,τ + h2U1,τ + h4U2,τ + . . .

) (
U0,y + h2U1,y + h4U2,y

+1
6
h2U0,yyy +

1
6
h4U1,yyy +

1
120

h4U0,yyyyy + . . .
)
. (2.51)

Before equating terms of equal order in h, we transform to a moving coordinate frame and intro-

duce a new longer timescale via

z = y − cτ, T = h2τ, ∂y = ∂z, ∂τ = ∂τ − c∂z + h2∂T , (2.52)

so that (2.51) becomes

I =hσ+1
(
U0,τ − cU0,z + h2U0,T + h2U1,τ − ch2U1,z + h4U1,T + h4U2,τ − ch4U2,z + . . .

)

×
(
U0,z + h2U1,z + h4U2,z +

1
6
h2U0,zzz +

1
6
h4U1,zzz +

1
120

h4U0,zzzzz + . . .
)
. (2.53)

Expanding and equating leading order terms, we find

I = h1+σ(U0,τ − cU0,z)U0,z, (2.54)

hence we assign σ = −1 and choose

U0 = zK + τM + L(T ), M = cK +K−1, (2.55)

where K is an arbitrary constant matrix, and L(T ) is an arbitrary matrix function of T . For simplic-

ity, and to obtain the most general form of solution for the higher order term U1, we take K = kI,

so that M = (ck + k−1)I.

2.3.1. First correction terms

The first correction terms from (2.53) imply

0 = (U0,τ − cU0,z)(U1,z +
1
6
U0,zzz) + (U0,T + U1,τ − cU1,z)U0,z, (2.56)

from which, using the leading order solution (2.55), we find

0 = k−2U1,z + L′(T ) + U1,τ − cU1,z. (2.57)

From this equation, we determine the speed of the wave, c, leaving U1 to be determined from

higher order equations. We assume L′(T ) = 0 so there is no evolution of U0 on the long timescale;

also U1,τ = 0, so that U1 has no τ-dependence. Then, from the coefficients of U1,z, we find c = k−2.
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2.3.2. Second correction terms

The second correction terms in (2.53) yield

0 = (U0,τ − cU0,z)(U2,z +
1
6
U1,zzz +

1
120

U0,zzzzz) + (U2,τ − cU2,z + U1,T )U0,z

+ (U1,τ − cU1,z + U0,T )(U1,z +
1
6
U0,zzz); (2.58)

using the formulae (2.55) for U0, this simplifies to

0 = 1
6
U1,zzz − k−1U2

1,z + k2U1,T , (2.59)

where we have assumed no dependence of U2 on τ. This last equation is the matrix form of the

potential KdV equation; U1,z satisfies the matrix KdV equation. Here there are no other restrictions

on U1: it may be asymmetric and we have not imposed any commutativity properties.

2.4. Asymptotic reduction of the autonomous W-equation to matrix KdV

To consider the small amplitude behaviour of solutions of (2.3), we introduce a small parame-

ter, h≪ 1, writing

Wn(t) = W̃0(z, T ) + h2W̃1(z, T ) + h4W̃2(z, T ) + . . . . (2.60)

Using the same notation as in (2.50) and (2.52), we obtain

(cW̃0,z − h2W̃0,T + ch2W̃1,z − h4W̃1,T + ch4W̃2,z + . . .)

= 4(W̃0 + h2W̃1 + h4W̃2 + . . .)(W̃0,z +
1
6
h2W̃0,zzz +

1
120

h4W̃0,zzzzz

+ h2W̃1,z +
1
6
h4W̃1,zzz + h4W̃2,z + . . .)(W̃0 + h2W̃1 + h4W̃2 + . . .). (2.61)

At leading order, we find cW̃0,z = 4W̃0W̃0,zW̃0, which has the solution W̃0 = K(T ).

Using W̃0 = K(T ), the first correction terms give

(cW̃1,z − W̃0,T ) = 4W̃0W̃1,zW̃0, (2.62)

which simplifies to

cW̃1,z −K′(T ) = 4K(T )W̃1,zK(T ). (2.63)

In the case K(T ) = kI we have c = 4k2, and this equation is trivially satisfied. Since W̃0 is then

diagonal, it commutes with any other matrix.

The second correction terms give

(cW̃2,z − W̃1,T ) = 4W̃0(W̃2,z +
1
6
W̃1,zzz)W̃0 + 4W̃0W̃1,zW̃1 + 4W̃1W̃1,zW̃0. (2.64)

which, with W̃0 = K(T ) = kI and W2 = 0, simplifies to the matrix KdV equation

0 = W̃1,T +
2
3
k2W̃1,zzz + 4kW̃1,zW̃1 + 4kW̃1W̃1,z, (2.65)

a well-known integrable equation. Here there is no assumption that W̃1 is symmetric or has any

special properties to allow commutativity with other matrices.

3. The nonautonomous matrix lattice

In this section we give results for the nonautonomous matrix lattice (1.1). These results are

analogous to those given in the previous section for the autonomous case. In addition, we show

how the autonomous case may be derived from the nonautonomous case via a limiting process,

and also briefly discuss results for the scalar case of the nonautonomous lattice.
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3.1. Integrability of the nonautonomous matrix lattice

Let us consider the nonautonomous matrix equation (1.1), that is

Un,t = (2n − 1)(Un+1 − Un−1)−1. (3.1)

Solutions of this equation are mapped by the transformation

Wn = (Un+1 − Un−1)−1, (3.2)

to solutions of the equation

Wn,t = −Wn [ (2n + 1)Wn+1 − (2n − 3)Wn−1 ] Wn. (3.3)

We may alternatively regard the system

Wn = (Un+1 − Un−1)−1, Un,t = (2n − 1)Wn, (3.4)

as a BT between equations (3.1) and (3.3). Equation (3.3) has the nonisospectral Lax pair (see

equations (2.6) and (2.8)),

Eφn =

(
2λ(t)W−1

n I

−I 0

)
φn, φn,t = 2λ(t)

(
−2(n − 1)λ(t)I (1 − 2n)Wn

(2n − 3)Wn−1 2(n − 1)λ(t)I

)
φn, (3.5)

where λ(t) satisfies λt(t) = −4λ(t)3, and so is integrable. Thus equation (3.1) is also integrable, as

it is related to (3.3) via the Miura-type transformation (3.2).

3.2. The scalar case

In the scalar case we obtain the nonautonomous equation

un,t =
2n − 1

un+1 − un−1

, (3.6)

related by the transformation

wn =
1

un+1 − un−1

, (3.7)

to the nonautonomous equation

wn,t = −w2
n [ (2n + 1)wn+1 − (2n − 3)wn−1 ] . (3.8)

In addition, the transformation

yn = wnwn+1, (3.9)

maps solutions of (3.8) to solutions of the nonautonomous Volterra equation

yn,t = yn

[
(2n − 3)yn−1 − (2n + 3)yn+1 − 2yn

]
. (3.10)

This equation and its nonisospectral Lax pair can be found in [17] (equation (67) with α1 = 1, β0 =

2 and β1 = 0); nonisospectral Volterra flows have also been discussed for example in [8, 14, 16].

We note that the nonautonomous matrix lattice (3.3) is a special case of Jordan-algebraic multi-

component generalisations of (3.8) given in [13] along with their Lax pairs, and that the Lax pair

(3.5) readily gives that for the scalar case (3.8). Moreover, the limiting process to autonomous

equations, and the asymptotic reductions of (3.1) and (3.3) to matrix PDEs, as discussed in later

subsections, also readily give corresponding results for the case of scalar dependent variables.

We believe the matrix and scalar nonautonomous equations (3.1) and (3.6) derived in [1] (see

also [2]), and their relation to (3.3) and (3.8) under the mappings (3.2) and (3.7) respectively, to be

new. We also believe the relation between the scalar nonautonomous equations (3.8) and (3.10) via

the transformation (3.9) to be new. This mapping relies on the commutativity of scalar functions;

we now turn to the question of generalising the transformation (3.9) and equation (3.10) to the

matrix case, where (in general) multiplication is noncommutative. At this point we recall once

again the remark made in [13], albeit in the autonomous case, that a multi-component version

of the transformation (3.9) is lacking, and that the scalar equation in yn does not have natural

multi-component analogs corresponding to Jordan algebraic structures.
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3.3. Nonautonomous matrix Volterra systems

In order to address the question spelt out above, we proceed as in the autonomous case. We

use the definitions (2.9), namely Yn =WnWn+1, Zn =Wn+1Wn, which imply

Yn,t =(2n − 3)Zn−1Yn − (2n + 3)YnZn+1 − 2Y2
n, (3.11)

Zn,t =(2n − 3)ZnYn−1 − (2n + 3)Yn+1Zn − 2Z2
n. (3.12)

That is, solutions of (3.3) are mapped to solutions of (3.11), (3.12). As in the autonomous case,

the mapping (2.9) implies constraints on the entries of the matrices Yn and Zn. Such restrictions

on the dependent variables of the system (3.11), (3.12) are important for an understanding of its

relationship to equation (3.3) under the mapping (2.9). It is this system, along with any such

consistency conditions, that is our sought-after matrix analog of (3.10). We believe these results

to be new. We now consider, as in the autonomous case, two special cases defined in terms of

properties of the solutions Wn of (3.3).

3.3.1. Symmetric Wn

If Wn is symmetric, then from (2.9) we have ZT
n = WT

n WT
n+1 = WnWn+1 = Yn, hence the

system (3.11), (3.12) yields the single equation

Yn,t = (2n − 3)YT
n−1Yn − (2n + 3)YnYT

n+1 − 2Y2
n, (3.13)

since (3.12) becomes the transpose of (3.11). We note once again, as in the autonomous case, that

there will be constraints on the entries of Yn, such restrictions being important for an understanding

of the relationship of (3.13) to (3.3) via the transformation Yn =WnWn+1.

3.3.2. Commuting Wn

In the case of commuting matrices Wn, that is, such that for all integers n and m the matrices

Wn and Wm commute, then Zn = Yn and equations (3.11) and (3.12) yield

Yn,t =(2n − 3)Yn−1Yn − (2n + 3)YnYn+1 − 2Y2
n, (3.14)

Yn,t =(2n − 3)YnYn−1 − (2n + 3)Yn+1Yn − 2Y2
n, (3.15)

respectively. Since if all matrices Wn, Wm commute then so do all matrices Yn, Ym, we obtain the

single equation

Yn,t = Yn [ (2n − 3)Yn−1 − (2n + 3)Yn+1 − 2Yn ] , (3.16)

from (3.14) and (3.15).

Let us now consider the nonisospectral Lax pair (see equations (2.6) and (2.8))

Eφn =

(
I Yn

λ(t)−1I 0

)
φn, φn,t =

(
−(2n − 1)Yn − 2Xn (2n + 1)λ(t)Yn

(2n − 1)I −(2n − 3)Yn−1 − 2Xn−1 − (2n + 1)λ(t)I

)
φn,

(3.17)

where λ(t) satisfies λt(t) = 2λt(t)
2, but where no assumptions are made about the commutativity of

any matrices Yn, Ym, Xn, Xm. The compatibility condition of this Lax pair yields the system

Yn,t = (2n − 3)YnYn−1 − (2n + 1)Yn+1Yn + 2 (YnXn−1 − Xn+1Yn) , (3.18)

Xn+1 − Xn = Yn+1, (3.19)

which is therefore integrable. This system can be written alternatively as

Yn,t = (2n − 3)YnYn−1 − (2n + 3)Yn+1Yn − 2Y2
n + 2 [Yn,Xn] , (3.20)

Xn+1 − Xn = Yn+1, (3.21)

where the last term on the right-hand-side of (3.20) is (twice) the commutator of Yn and Xn. We

believe the matrix system (3.20), (3.21) and its nonisospectral Lax pair (3.17) to be new.
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In the special case where, for all integers n and m, all matrices Yn, Ym, Xn and Xm commute, the

above result gives a Lax pair for equation (3.16) (along with equation (3.21) to be satisfied by the

potential Xn). This special case (3.16) is the equation satisfied by the combination Yn =WnWn+1

of solutions Wn of (3.3) having the property that all matrices Wn and Wm commute. We remark

that even though all such solutions Yn of (3.16) have the property that all Yn and Ym commute, we

are still able to obtain nontrivial integrable coupled systems of nonautonomous lattice equations.

For the corresponding special case of (3.3), with solutions Wn such that all Wn and Wm commute,

which we may write as

Wn,t = −W2
n [ (2n + 1)Wn+1 − (2n − 3)Wn−1 ] , (3.22)

a Lax pair is provided by (3.5). This then yields integrable coupled systems of nonautonomous

lattice equations related to those given by (3.16) by transformations obtained from Yn =WnWn+1.

In the autonomous case, whether or not all Yn and Ym commute, we were able to give a Lax pair

for (2.25) (and for (2.24), equivalent to (2.25) under Yn → YT
n ). However, in the nonautonomous

case, without making the additional assumption that all Yn and Ym commute, we are unable to give

Lax pairs for equations (3.14) and (3.15). Whereas in the autonomous case, the noncommutative

generalisation of (2.26) is the similar-looking (2.25) (or (2.24)), in the nonautonomous case the

noncommutative generalisation of (3.16) is the system (3.20), (3.21), or the equivalent system

Yn,t = (2n − 3)Yn−1Yn − (2n + 3)YnYn+1 − 2Y2
n − 2 [Yn,Xn] , (3.23)

Xn+1 − Xn = Yn+1, (3.24)

(note the sign of the last term of (3.23)). A Lax pair for (3.23), (3.24) is given by replacing Yn

and Xn in (3.17) by YT
n and XT

n , since this will then have the system (3.20), (3.21) in YT
n and XT

n as

compatibility condition, the transpose of which then gives the system (3.23), (3.24). We remark in

passing that the solution Xn of (3.21), or (3.24), may be expressed nonlocally as

Xn = Γ(t) +

n∑

j=−∞
Y j, (3.25)

where Γ(t) is an arbitrary matrix function of t.

As an example, we consider once again the special case of commuting 2 × 2 matrices. As in

the autonomous case, we obtain the expressions (2.30) and (2.32) for Wn and Yn. Equations (3.22)

and (3.16) then give rise to the systems

an,t = − (a2
n+Kb2

n)[(2n+1)an+1 − (2n−3)an−1] − Kbn(2an+Mbn)[(2n+1)bn+1 − (2n−3)bn−1],

bn,t = − (a2
n+Kb2

n)[(2n+1)bn+1 − (2n−3)bn−1] − bn(2an+Mbn)[(2n + 1)an+1 − (2n − 3)an−1]

− Mbn(2an+Mbn)[(2n+1)bn+1 − (2n−3)bn−1], (3.26)

and

rn,t = rn[(2n−3)rn−1 − (2n+3)rn+1 − 2rn] + Ksn[(2n−3)sn−1 − (2n+3)sn+1 − 2sn],

sn,t = rn[(2n−3)sn−1 − (2n+3)sn+1 − 2sn] + sn[(2n−3)rn−1 − (2n+3)rn+1 − 2rn]

+ Msn[(2n−3)sn−1 − (2n+3)sn+1 − 2sn], (3.27)

respectively where K and M are arbitrary constants. Here the pairs of variables (an, bn) and (rn, sn)

are related by (2.33) (obtained from Yn =WnWn+1). Each of the above two systems is integrable:

(3.5) gives us a Lax pair for the system in (an, bn), and (3.17) gives us a Lax pair for the system in

(rn, sn). We note that in this commutative case, we may take Γ(t) in (3.25) to be given by

Γ(t) =

(
r(t) s(t)

Ks(t) r(t) + Ms(t)

)
. (3.28)

The systems of nonautonomous lattice equations in (an, bn) and (rn, sn), or (en, fn) and (yn, zn),

corresponding to standard examples of commutative 2 × 2 matrices (elliptic/complex, dual/shear,

hyperbolic/cyclic, generalised hyperbolic), as considered previously in the autonomous case, can

be found in Appendix B.
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3.4. Autonomous limits

Let us consider how to obtain (1.2), (2.3) and the system (2.10), (2.11) as autonomous limits

of (3.1), (3.3) and the system (3.11), (3.12), respectively.

If we write

Un = U(n, t) =
√

p Û(m, t), n = m + p, (3.29)

for any given p ∈ N, then we obtain from (3.1) a lattice equation in Ûm = Û(m, t), given by

Ûm,t =

(
2m − 1

p
+ 2

) (
Ûm+1 − Ûm−1

)−1
. (3.30)

In far-field limit when p→ ∞ this then yields

Ûm,t = 2
(
Ûm+1 − Ûm−1

)−1
, (3.31)

that is, the autonomous lattice (1.2).

Similarly, defining Ŵm = Ŵ(m, t) via

Wn =W(n, t) =
1
√

p
Ŵ(m, t), n = m + p, (3.32)

for any given p ∈ N, we obtain from (3.3) the equation

Ŵm,t = −Ŵm

[(
2m + 1

p
+ 2

)
Ŵm+1 −

(
2m − 3

p
+ 2

)
Ŵm−1

]
Ŵm, (3.33)

which, in the far-field limit p→ ∞ then gives

Ŵm,t = −2Ŵm

(
Ŵm+1 − Ŵm−1

)
Ŵm, (3.34)

that is, the autonomous lattice (2.3).

Finally, defining Ŷm = Ŷ(m, t) and Ẑm = Ẑ(m, t) by

Yn = Y(n, t) =
1

p
Ŷ(m, t), Zn = Z(n, t) =

1

p
Ẑ(m, t), n = m + p, (3.35)

for any given p ∈ N, we obtain from (3.11) and (3.12) the system

Ŷm,t =

(
2m − 3

p
+ 2

)
Ẑm−1Ŷm −

(
2m + 3

p
+ 2

)
ŶmẐm+1 −

2

p
Ŷ2

m, (3.36)

Ẑm,t =

(
2m − 3

p
+ 2

)
ẐmŶm−1 −

(
2m + 3

p
+ 2

)
Ŷm+1Ẑm −

2

p
Ẑ2

m. (3.37)

When p→ ∞ this system becomes

Ŷm,t = 2Ẑm−1Ŷm − 2ŶmẐm+1, (3.38)

Ẑm,t = 2ẐmŶm−1 − 2Ŷm+1Ẑm, (3.39)

that is, the autonomous system (2.10), (2.11).

3.5. Asymptotic reduction of the nonautonomous U-equation to matrix potential KdV

We return to the non-autonomous differential-difference equation

(2n − 1)I = Un,t ∆Un, (3.40)
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which was previously studied in [2]. We start by transforming the independent variable n via

2n− 1 = 2x so that the equation has a more symmetric form 2xI = Ut∆U, where now U = U(x, t).

We then apply the same far-field expansion of this equation as in [2], by defining

x = ah−5 + h−1y, τ = hσt, Un(t) = U0(y, τ) + h2U1(y, τ) + h4U2(y, τ) + . . . (3.41)

The initial expansion of this leads to

2h−5(a + h4y) = 2hσ+1(U0,τ + h2U1,τ + h4U2,τ + . . .)
(
U0,y + h2U1,y + h4U2,y +

1
6
h2U0,yyy

+1
6
h4U1,yyy +

1
120

h4U0,yyyyy + . . .
)
, (3.42)

thus we choose σ = −6.

We now introduce a long timescale (T ) at the same time assuming that the leading order dy-

namics are governed by a travelling wave; thus we define

z = y − acτ, T = h2τ, ∂τ = ∂τ − ac∂z + h2∂T , y = z + h−2acT, (3.43)

where h≪ 1 is a small parameter, c is a wavespeed that will be determined later.

The expansion (3.42) thus becomes

(a + h4z + acTh2)I =
(
U0,τ − acU0,z + h2U0,T + h2U1,τ − h2acU1,z + h4U1,T + h4U2,τ

−h4acU2,z + . . .
) (

U0,z + h2U1,z + h4U2,z +
1
6
h2U0,zzz

+1
6
h4U1,zzz +

1
120

h4U0,zzzzz + . . .
)
. (3.44)

We assume that U1,U2 depend only on (z, T ) and not on τ.

Expanding (3.44) leads to a sequence of equations at successive powers of h, namely

aI = (U0,τ − acU0,z)U0,z, (3.45)

acTI = (U0,τ − acU0,z)(U1,z +
1
6
U0,zzz) + (U0,T − acU1,z)U0,z, (3.46)

zI = (U0,τ − acU0,z)(U2,z +
1
6
U1,zzz +

1
120

U0,zzzzz)

+ (U0,T − acU1,z)(U1,z +
1
6
U0,zzz) + (U1,T − acU2,z)U0,z. (3.47)

Solving the leading order terms gives

U0 = zK + τM + L(T ), M = acK + aK−1, (3.48)

where K is an arbitrary constant matrix and L is an arbitrary function of T . To allow the generality

of solutions obtained at higher order, we take K = kI, then M = a(1 + ck2)I/k.

Using (3.48) to simplify (3.46), we find

acTk−1I = ak−2U1,z + L′(T ) − acU1,z. (3.49)

Our aim here is to find the speed, c, leaving U1 to be determined by higher order equations. Thus

we define

c = 1/k2, L′(T ) = ack−1TI, so that L(T ) = 1
2
ack−1T 2I + C. (3.50)

Considering now the next order terms, namely (3.47), and, using (3.48) to simplify, we find

zkI = aU2,z +
1
6
aU1,zzz + kL′(T )U1,z − ackU1,zU1,z + k2U1,T − ack2U2,z, (3.51)

which can be simplified by using c = k−2 to give a perturbed matrix potential KdV equation

k2U1,T − ackU2
1,z +

1
6
aU1,zzz = kzI − acTU1,z. (3.52)

This equation has the form of a forced matrix potential KdV system. The forcing terms can be

removed by the transformation

U1(z, T ) =
zT

k
I +

1

ck
V(ξ, θ), ξ = z +

acT 2

2k2
, θ =

aT

6k2
, (3.53)

to leave the matrix potential KdV system

Vθ − 6V2
ξ + Vξξξ = 0. (3.54)
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3.6. Asymptotic reduction of the nonautonomous W-equation to matrix KdV

We outline asymptotic reduction of the nonautonomous differential-difference equation for Wn

to the matrix KdV equation. In

Wn,t = −Wn [ (2n + 1)Wn+1 − (2n − 3)Wn−1 ] Wn, (3.55)

we introduce a shifted independent variable, x = n − 1
2
, to symmetrise the discrete difference, and

then expand

Wt(x, t) = −2W(x, t) [ (x + 1)W(x + 1, t) − (x − 1)W(x − 1, t) ] W(x, t), (3.56)

in the far field (x ≫ 1), using the new variables given by

x = ah−5 + yh−1, t = h4τ, h≪ 1, W(x, t) = W̃(y, τ). (3.57)

Taking the continuum limit of (3.56), we find the first few terms, up to O(h4) as

W̃τ = −4W̃
[
aW̃y +

1
6
ah2W̃yyy +

1
120

h4W̃yyyyyy + h4yW̃y + h4W̃
]

W̃. (3.58)

We transform to a moving coordinate frame given by

z = y − cτ, T = h2τ, (3.59)

where T is a long timescale. We assume that there is no τ-dependence in W̃0, W̃1 or W̃2 used

below, so (y, τ) are replaced by (z, T ) via y = z + cT/h2, and ∂τ = −c∂z + h2∂T . We assume

W(x, t) = W̃(y, τ) can be described by an asymptotic expansion of the form

W(x, t) = W̃(y, τ) = W̃0(z, T ) + h2W̃1(z, T ) + h4W̃2(z, T ) + . . . . (3.60)

Hence (3.58) becomes, up to order O(h4)

h2W̃0,T − cW̃0,z + h4W̃1,T − ch2W̃1,z − ch4W̃2,z

= − 4[W̃0 + h2W̃1 + h4W̃2]
[
aW̃0,z + ah2W̃1,z + ah4W̃2,z +

1
6
ah2W̃0,zzz +

1
6
ah4W̃1,zzz

+ 1
120

ah4W̃0,zzzzz + h4(z + cTh−2)W̃0,z + cTh4W̃1,z + h4W̃0

]
[W̃0 + h2W̃1 + h4W̃2]. (3.61)

We now consider terms at each order of h, finding at leading order

−cW̃0,z = −4aW̃0W̃0,zW̃0. (3.62)

We take the solution W̃0,z = 0, which implies W̃0 = L(T ).

At next order, we find

W̃0,T − cW̃1,z = −4aW̃0W̃0,zW̃1 − 4aW̃1W̃0,zW̃0 − 4W̃0

[
aW̃1,z +

1
6
aW̃0,zzz + cTW̃0,z

]
W̃0, (3.63)

which simplifies to

L′(T ) − cW̃1,z = −4aW̃0W̃1,zW̃0. (3.64)

From this equation we choose L′(T ) = 0, and then if W̃0 = L = kI for some arbitrary constant, k,

W̃1(z, T ) is arbitrary, with the speed c being given by c = 4ak2.

At the following order, from (3.61) we have

W̃1,T − cW̃2,z = − 4aW̃2W̃0,zW̃0 − 4aW̃0W̃0,zW̃2 − 4aW̃1W̃0,zW̃1

− 4W̃0

[
aW̃1,z +

1
6
aW̃0,zzz + cTW̃0,z

]
W̃1 − 4W̃1

[
aW̃1,z +

1
6
aW̃0,zzz + cTW̃0,z

]
W̃0

− 4W̃0

[
aW̃2,z +

1
6
aW̃1,zzz + cTW̃1,z +

1
120

aW̃0,zzzzz + zW̃0,z + W̃0

]
W̃0, (3.65)

which can be simplified to

W̃1,T = −4akW̃1,zW̃1 − 4akW̃1W̃1,z − 2
3
ak2W̃1,zzz − 16ak4TW̃1,z − 4k3I, (3.66)

using the leading order solution W̃0 = kI, with c = 4ak2. This has the form of a forced matrix

KdV equation which can be mapped onto the standard matrix KdV equation

Vθ = 3(VVξ + VξV) + Vξξξ, (3.67)

by the transformation

W̃1(z, T ) = −4k3TI + 1
2
kV(ξ, θ), ξ = z + 8ak4T 2, θ = −2

3
ak2T. (3.68)
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4. Conclusions

We have considered the matrix lattice equation Un,t(Un+1 − Un−1) = g(n)I, in both its au-

tonomous (g(n) = 2) and nonautonomous (g(n) = 2n − 1) forms. For each of these cases we have

proved integrability by constructing a Miura map to a corresponding integrable equation in Wn,

that is, equations (2.3) and (3.3) respectively. We have also sought transformations from these

equations in Wn to corresponding autonomous and nonautonomous matrix Volterra systems, in

two matrix dependent variables Yn and Zn. However, in general, the entries of Yn and Zn will be

subject to consistency conditions. Such constraints would seem difficult to embody in any Lax

pairs wherein the only dependent variables are matrices.

This then led us to consider special classes of matrices Yn and Zn defined in terms of properties

of the matrices Wn. The case of symmetric matrices Wn still requires constraints on the entries of

Yn and Zn to be taken into account. However, in the case where all matrices Wn, Wm commute

— which implies that Zn = Yn and that all Yn, Ym also commute — we obtain integrable coupled

systems of autonomous and nonautonomous lattice equations, along with Miura maps and Lax

pairs. Such coupled systems, Miura maps and Lax pairs can be obtained beginning with any

size of square matrix; here we have considered in detail the example of 2 × 2 matrices, with the

structure of commuting 3 × 3 matrices being explored in Appendix A. These integrable coupled

systems are multicomponent analogs of the scalar equation (1.5) and the Volterra equation (1.7),

in the autonomous case, and of the scalar equation (3.8) and the nonisospectral Volterra equation

(3.10), in the nonautonomous case. In the autonomous case, the Lax pairs for the multicomponent

systems are obtained from Lax pairs for matrix equations in Wn and Yn under a commutativity

assumption, and it is the link we obtain between these equations in commuting matrices that

yields multicomponent Miura transformations. Similarly in the nonautonomous case. It is worth

noting that in the nonautonomous case, even the relation between the scalar equation (3.8) and the

nonisospectral Volterra equation (3.10) via the transformation (3.9) — that is, corresponding to

one component — seems to be new. Moreover, the nonisospectral matrix Volterra system (3.20),

(3.21) and its Lax pair — which under a commutativity assumption gives rise to Lax pairs for

multicomponent nonautonomous lattice equations of Volterra type — also appear to be new.

In addition, we have considered asymptotic reductions to matrix PDEs. In both the autonomous

and nonautonomous cases, the U-equation admits such a reduction to the matrix potential KdV

equation, and the W-equation to the matrix KdV equation. Finally, we have shown how the au-

tonomous matrix lattice systems can be obtained as limiting cases of the nonautonomous matrix

lattice systems. In future work, we will explore further the systems discussed here, including for

example their connections with autonomous and nonautonomous matrix lattices of Toda type.
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Appendix A. General classes of commuting matrices

Appendix A.1. Commuting 2x2 matrices

To construct the most general class of 2x2 matrices which commute under multiplication, let

us consider (
a b

c d

) (
â b̂

ĉ d̂

)
=

(
â b̂

ĉ d̂

) (
a b

c d

)
. (A1)

The elements on the leading diagonal imply b̂c = b̂c, or, equivalently, ĉ/̂b = c/b, thus if c = Kb,

we necessarily have ĉ = Kb̂, with the same constant K. Similarly, the upper right element of the

products implies âb + b̂d = âb + bd̂, so we may set

d̂ − â

b̂
=

d − a

b
= M, (A2)
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for some constant M. It can be confirmed that the equation from the lower left element is auto-

matically satisfied. Thus the most general class of commuting 2x2 matrices is

(
a b

Kb a + Mb

)
, (A3)

where a, b can be chosen freely and K, M are fixed.

We note that this class of matrices is closed under multiplication, that is, the product of two

matrices of the form given in (A3) has this same form (see (2.32) and (2.33)):

(
a b

Kb a + Mb

) (
â b̂

Kb̂ â + Mb̂

)
=

(
(âa + Kb̂b) âb + b̂a + Mb̂b

K(̂ab + âb + Mb̂b) (âa + Kb̂b) + M(̂ab + âb + Mb̂b)

)
. (A4)

This class of matrices is also closed under linear combination. These facts are important because

they assure the consistency of the coupled systems of autonomous and nonautonomous lattice

equations derived in Sections 2.2.2 and 3.3.2. (In fact, they assure consistency of the coupled lat-

tice equations derived from a matrix lattice equation, where the evolution of the matrix dependent

variable is polynomial in shifts of the same, when the matrices are assumed to be of this form.)

Appendix A.2. Commuting 3x3 matrices

Following the same procedure, we obtain the general class of commuting 3x3 matrices given

by 
a b c

k7b + k8c a + k4b + k5c k1b + k2c

k8b + k9c k5b + k6c a + k2b + k3c

 , (A5)

where a, b, c can be chosen freely, k j (1 ≤ j ≤ 6) are fixed, and k j (7 ≤ j ≤ 9) are given by

k7 = k1(k5 − k3) + k2(k2 − k4), k8 = k6k1 − k5k2, k9 = k5(k5 − k3) + k6(k2 − k4). (A6)

Once again, this class of matrices is closed under multiplication, that is, the product of two

matrices of the form given in (A5) — one given in terms of a, b, c and the second in terms of â, b̂, ĉ

— has this same form, given by


r s t

k7s + k8t r + k4s + k5t k1s + k2t

k8s + k9t k5s + k6t r + k2s + k3t

 , (A7)

where

r = k7b̂b + k8(̂bc + b̂c) + k9ĉc + âa,

s = k4b̂b + k5(̂bc + b̂c) + k6ĉc + âb + âb,

t = k1b̂b + k2(̂bc + b̂c) + k3ĉc + âc + âc. (A8)

This class of matrices is also closed under linear combination. These facts are important because

they assure the consistency of any coupled systems of autonomous and nonautonomous lattice

equations derived as explained in Sections 2.2.2 and 3.3.2 using 3x3 commuting matrices of the

form given in (A5).

A second class of commuting 3x3 matrices is given by


a b k0b

k1b a + k2b k3b

k4b k5b a + k6b

 , (A9)
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where a, b can be chosen freely and k j (0 ≤ j ≤ 6) are fixed. However, in the general case,

matrices of this form are not closed under multiplication. They are closed under multiplication in

the special case where

k1 = k0k5(k0k5−k6)−k6(k2+k0k5−k6)+k0k2k5, k3 = k0(k2+k0k5−k6), k4 = k5(k0k5−k6).

(A10)

They are also closed under linear combination. Thus in this special case (A10), the consistency of

any coupled systems of autonomous and nonautonomous lattice equations derived as explained in

Sections 2.2.2 and 3.3.2 is assured.

Appendix B. Examples of coupled systems in the nonautonomous case

Here we return to the nonautonomous systems (3.26) and (3.27), and quote the results corre-

sponding to the standard examples — elliptic/complex, dual/shear, hyperbolic/cyclic, and gener-

alised hyperbolic — of commuting 2x2 matrices, as referred to at the end of Section 3.3.2. These

systems are

an,t = − (a2
n+Kb2

n)[(2n+1)an+1 − (2n−3)an−1] − Kbn(2an+Mbn)[(2n+1)bn+1 − (2n−3)bn−1],

bn,t = − (a2
n+Kb2

n)[(2n+1)bn+1 − (2n−3)bn−1] − bn(2an+Mbn)[(2n + 1)an+1 − (2n − 3)an−1]

− Mbn(2an+Mbn)[(2n+1)bn+1 − (2n−3)bn−1], (B1)

and

rn,t = rn[(2n−3)rn−1 − (2n+3)rn+1 − 2rn] + Ksn[(2n−3)sn−1 − (2n+3)sn+1 − 2sn],

sn,t = rn[(2n−3)sn−1 − (2n+3)sn+1 − 2sn] + sn[(2n−3)rn−1 − (2n+3)rn+1 − 2rn]

+ Msn[(2n−3)sn−1 − (2n+3)sn+1 − 2sn]. (B2)

The elliptic/complex case is given by M = 0, K = −1, which leads to the governing equations

for (an, bn), (rn, sn) as

an,t = − (a2
n − b2

n)[(2n + 1)an+1 − (2n − 3)an−1] + 2anbn[(2n + 1)bn+1 − (2n − 3)bn−1],

bn,t = − (a2
n − b2

n)[(2n + 1)bn+1 − (2n − 3)bn−1] − 2anbn[(2n + 1)an+1 − (2n − 3)an−1], (B3)

and

rn,t = rn[(2n − 3)rn−1 − (2n + 3)rn+1 − 2rn] + sn[(2n − 3)sn−1 − (2n + 3)sn+1 − 2sn],

sn,t = rn[(2n − 3)sn−1 − (2n + 3)sn+1 − 2sn] + sn[(2n − 3)rn−1 − (2n + 3)rn+1 − 2rn]. (B4)

In the dual/shear case with K = M = 0, the systems for (an, bn), (rn, sn) are

an,t = − a2
n[(2n + 1)an+1 − (2n − 3)an−1],

bn,t = − a2
n[(2n + 1)bn+1 − (2n − 3)bn−1] − 2anbn[(2n + 1)an+1 − (2n − 3)an−1], (B5)

rn,t = rn[(2n − 3)rn−1 − (2n + 3)rn+1 − 2rn],

sn,t = rn[(2n − 3)sn−1 − (2n + 3)sn+1 − 2sn] + sn[(2n − 3)rn−1 − (2n + 3)rn+1 − 2rn]. (B6)

The hyperbolic/cyclic case is given by K = 1, M = 0, which leads to

an,t = − (a2
n+b2

n)[(2n+1)an+1 − (2n−3)an−1] − 2anbn[(2n+1)bn+1 − (2n−3)bn−1],

bn,t = − (a2
n+b2

n)[(2n+1)bn+1 − (2n−3)bn−1] − 2anbn[(2n + 1)an+1 − (2n − 3)an−1], (B7)

and

rn,t = rn[(2n−3)rn−1 − (2n+3)rn+1 − 2rn] + sn[(2n−3)sn−1 − (2n+3)sn+1 − 2sn],

sn,t = rn[(2n−3)sn−1 − (2n+3)sn+1 − 2sn] + sn[(2n−3)rn−1 − (2n+3)rn+1 − 2rn]. (B8)
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Our generalised hyperbolic case is given by K = 1, M = −2, with an = en + fn, bn = fn, which

leads to

en,t = − (e2
n + 2 f 2

n )[(2n + 1)en+1 − (2n − 3)en−1] − 4en fn[(2n + 1) fn+1 − (2n − 3) fn−1],

fn,t = − (e2
n + 2 f 2

n )[(2n + 1) fn+1 − (2n − 3) fn−1] − 2en fn[(2n + 1)en+1 − (2n − 3)en−1], (B9)

and, with rn = yn + zn and sn = zn, to

yn,t = yn[(2n − 3)yn−1 − (2n + 3)yn+1 − 2yn] + 2zn[(2n − 3)zn−1 − (2n + 3)zn+1 − 2zn],

zn,t = yn[(2n − 3)zn−1 − (2n + 3)zn+1 − 2zn] + zn[(2n − 3)yn−1 − (2n + 3)yn+1 − 2yn]. (B10)
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[3] V Volterra. Leçons sur la Théorie Mathematique de la Lutte pour la Vie (Gauthier-Villars, Paris, 1931).

[4] M Kac & P van Moerbeke. On an explicitly soluble system of nonlinear differential equations related to certain

Toda lattices. Advances Math., 16, 160–169, (1975).

[5] SV Manakov. Complete integrability and stochastization of discrete dynamical systems. Zh. Eksp. Teor. Fiz., 67,

543–555, (1974); Sov. Phys. JETP, 40, 269-274, (1975).

[6] M Wadati. Transformation theories for nonlinear discrete systems. Suppl. Prog. Theor. Phys., 59, 36–63, (1976).

[7] R Hirota & J Satsuma. N-soliton solutions of nonlinear network equations describing a Volterra system. J. Phys.

Soc. Japan, 40, 891–900, (1976).

[8] D Levi, O Ragnisco & MA Rodrı́guez. On non-isospectral flows, Painlevé equations and symmetries of differen-
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