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Abstract 13 

A novel shape-stabilized phase change material was successfully prepared using polyethylene 14 

glycol (PEG) as PCM and mesoporous carbon FDU-15 as support via the melting impregnation method. 15 

The structural and thermal properties of materials were measured by TEM, SEM, XRD, FT-IR, nitrogen 16 

adsorption-desorption isotherms and DSC, respectively. The maximum loading of PEG/FDU-15 17 

reaches up to 75 wt%, and the corresponding crystallization ratio is 71%, which is superior to other 18 

mesoporous-based composite phase change materials. Molecular dynamic (MD) analysis showed that 19 

some PEG adhered to the pore wall with an amorphous structure which failed to crystallize, ultimately 20 

resulting in a gap between the measured latent heat and the theoretical value. It was interesting that the 21 

filling of PEG could stimulate the frequency shift of atomic vibration in FDU-15, which then just fell 22 

in the dominant vibrational zone of PEG, despite the suppressed atomic vibration of PEG after 23 

compounding. Accordingly, the thermal conductivity of the composite is more than 60% higher 24 



 

2 
 

compared to pure PEG, which relates to the reinforced matching of the atomic vibration between the 1 

skeleton and PCM material. FDU-15 was applied to pack PCM for the first time and delivered a better 2 

thermal performance compared with other mesopore-based composite PCMs.  3 

Keywords: polyethylene glycol; FDU-15; composite phase change material; thermal properties; 4 

molecular dynamics 5 
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1. Introduction 7 

Energy storage technology is a way to achieve efficient use of energy, which can alleviate the 8 

mismatch between energy supply and demand[1]. There are mainly three ways of energy storage: 9 

sensible heat storage, latent heat storage, chemical reaction energy storage, among which the latent heat 10 

storage has become the most popular method because of the characteristics such as small temperature 11 

fluctuation, high energy storage density and wide range of phase change temperature, as well as easy 12 

operation and control in the process of energy storage. Researchers’ attentions have been concentrated 13 

upon the fields of latent heat storage using phase change materials (PCM) to solve cutting-edge topics 14 

in renewable energy harvesting[2], chip cooling[3,4], thermal control in spacecraft[5,6] and so on. As the 15 

main function part, PCM plays a critical role in thermal energy storage, but it is very easy to leak out 16 

and corrode the surroundings during the solid-liquid phase change[7-10]. While the nanopore-based 17 

shape-stabilized composite (porous skeleton + PCM) has been regarded as one of the best ways to 18 

address the above issue. Capillary force enables the nanoporous skeleton to bind the PCM in the pores, 19 

so as to avoid leakage[11]. Besides, the nature of porous materials will be assigned to the associated 20 

composites, such as high thermal conductivity, highly flame retardancy, etc. In addition to the building[12] 21 
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and solar-thermal[13] fields which composite PCMs is commonly used, the guest-host interaction 1 

between the porous skeleton and PCM makes composites applicable to more other fields, including 2 

magnetic-thermal conversion[14], thermal management of electronics[15], medical[16] and etc. . At present, 3 

research on composite PCMs is mainly focused on the selection and optimization of substrates. For 4 

example, the substrates with smaller pore size (nanoscale), regular channels, and larger specific surface 5 

area, or porous frameworks that can enhance thermal and heat transfer performance (carbon-based) are 6 

preferred by researchers to encapsulate PCMs (Fig. 1).  7 

 8 

Fig. 1 Applications of composite PCMs and the evolution of porous skeleton[17-21] 9 

Readily synthesized mesoporous materials are expected to be good candidates for packing PCMs 10 

as they possess high specific surface area and pore volume. Here we listed the results[22-24] of thermal 11 

properties for two commonly used PCMs (polyethylene glycol (PEG) and stearic acid (SA)) 12 

immobilized by mesoporous materials, as shown in Table 1. Most of the researches are concentrated on 13 

silica-based composites rather than carbon-based ones. For the ordered mesoporous carbon derived 14 

composite PCMs, CMK-3 fails to further increase the loading of SA with a maximum percentage of 15 

only 46 wt%[24], which might be attributed to the carbon rods arranged pore structure and the absence 16 
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of independent confined space for PCM. The maximum loading of the silicon-based composite PCM 1 

PEG/MCM-41(SBA-15) is 70 wt%[22,23]. But due to the strong interaction between the PEG molecular 2 

and MCM-41(SAB-15) skeleton, many PEG molecules attached to the inner surface of the skeleton 3 

without phase change, the surface functionalization on mesoporous silica is required to drive 4 

crystallization of PEG [22,23]. Yet thermal conductivities of these composites have rarely been collected, 5 

though it is critical for the rate of heat storage/release during practical usage.  6 

Table 1 Shape-stabilized PCMs based on mesoporous materials 7 

PCM  
Mesoporous 

skeletons 

Loading 

(wt%) 

Tm/Tc 

(℃) 

ΔHm/ΔHc 

(J/g) 

k 

(W/m∙K) 
Ref. 

PEG 

MCM-41-OH 70 --/-- 0 -- 
[22] 

MCM-41-NH2 60 50.76/-- 58.76/-- 0.24 

HO-SBA-15-OH 70 --/-- 0 -- 
[23] 

NH2-SBA-15-CH3 70 52/30 88.2/82.2 -- 

SA 
SBA-15 52 69.1/66.7 36.3/35.4 -- 

[24] 
CMK-3 46 82.9/78.9 31.5/26.5 -- 

Actually, the thermal conductivity of carbon-based materials is believed to be superior to silica. So, 8 

mesoporous carbon FDU-15 is selected in this work as the first time to prepare a form-stable PCMs. It 9 

has a pore size of 2.6-6.8 nm and regular two-dimensional hexagonal pore structure, which is similar to 10 

mesoporous silica MCM-41 but in contrast with CMK-3, providing a basis for comparison. It has the 11 

characteristics of good thermal stability (1400℃), large specific surface area (968 m2/g), uniform pore 12 

size and high thermal conductivity[25]. At present, the research on FDU-15 is mostly concentrated on 13 

the fields of adsorption and catalysis[26,27]. We choose PEG as PCM material, which has a suitable 14 

melting temperature (46°C-65°C) and high latent heat (145 J/g-175 J/g) during phase change progress. 15 

Existing studies have shown that the composite phase change material using PEG as PCM exhibits good 16 

thermal properties and therefore has a wide range of applications in thermal energy storage[28]. In this 17 
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paper, we prepared PEG/FDU-15 composites with different mass percentages and characterized their 1 

thermal properties. The phase change and heat transfer mechanism have been investigated by MD 2 

simulations. We expect to obtain composite phase change materials with excellent performance and also 3 

provide directional guidance for the design of such mesopore-based composite phase change materials. 4 

2. Experimental 5 

2.1 Preparation  6 

   FDU-15 was fabricated by XFNANO company, with a specific surface area ≥600 m2/g, and pore 7 

size of 4~6 nm. The PEG/FDU-15 composites were prepared by the melting impregnation method[29,30]. 8 

Firstly, PEG and FDU-15 were weighed according to a certain mass percentage and mixed in a 50 ml 9 

round bottom flask. Then absolute ethanol was added and 1/3 filled the flask. The suspension was placed 10 

in a constant temperature (70°C) water bath and stirred for about 3~4 h to mix well. Finally, the mixture 11 

was dried in an oven at 80°C until the ethanol was entirely evaporated.  12 

2.2 Characterization 13 

   The X-ray diffraction (XRD) was measured by D/max-2500/PC using Cu Kα as the X-ray source. 14 

Transmission electron microscopy (TEM, JEM-2010) and scanning electron microscopy (SEM, ZEISS 15 

SUPRA55) was used to observe the structure of the skeleton and composites, respectively. The chemical 16 

structure analysis of the framework was carried out by Fourier transform infrared spectroscopy (FT-IR, 17 

PerkinElmer Spectrum 100). Nitrogen adsorption-desorption isotherms were performed with a surface 18 

area analyzer (Micromeritics ASAP 2460) at 77K, and the sample was degassed at 150°C under vacuum 19 

for 8 hours before testing. The specific surface area was calculated by the Brunauer-Emmett-Teller (BET) 20 

equation, and the pore size distribution was obtained by the Barret-Joyner-Halenda (BJH) model. Total 21 

pore volumes can be calculated by the amount adsorbed at a relative pressure of 0.98. In addition, the 22 
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maximum loading of the composite was tested by the solid-liquid phase change characteristics of PEG. 1 

We placed the obtained composite on a filter paper, heated it above the PEG phase change temperature 2 

(set to 80° C) and reserved it for 30 min. The leakage of PEG can be judged by observing whether there 3 

was oil on filter paper. The melting point and latent heat were obtained using differential scanning 4 

calorimetry (DSC, TA SDT-Q600). The thermal conductivity was derived from the laser flash (LFA, 5 

NETZSCH LAF467 HyperFlash) measurement. 6 

3. MD simulation 7 

3.1 Models set up 8 

The model of PEG was obtained from the Cambridge Crystallographic Data Centre (CCDC) 9 

(Fig.2a). For FDU-15, we got the model by digging holes in amorphous carbon via material studio 10 

software (Fig.2b). From the atomic level, the mesoporous carbon is amorphous and short-range 11 

disordered, but the arrangement of the pores is highly organized in long-range, and the pore size is 12 

within a narrow distribution, so it also has certain characteristics of crystals[31]. Their crystal information 13 

can be directly obtained by XRD.  14 

                   15 

 Fig.2 Simulation models of (a) PEG and (b) FDU-15 (Red：oxygen; white：hydrogen; grey：carbon) 16 

 17 

(a) (b) 
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          1 

Fig.3 XRD patterns of (a) PEG and (b) FDU-15 2 

As shown in Fig. 3, both PEG and FDU-15 show their unique peaks. Especially, there are three 3 

typical peaks in the XRD diagram of FDU-15 under experimental and simulated conditions, belonging 4 

to the (100), (110) and (200) crystal plane diffraction of the hexagonal system, respectively. According 5 

to the Bragg equation, the corresponding interplanar spacing values for experiments and simulation are 6 

calculated to be 10.38 nm, 5.96 nm, 5.13 nm and 5.7 nm, 3.25 nm, 2.88 nm, respectively, and both of 7 

the relative proportions are in accordance with 1: (1/ 3  ):(1/2)[32]. The results proved that the 8 

mesoporous carbon model has a two-dimensional hexagonal ordered structure, and set-up models for 9 

MD simulation are physically logical. 10 

However, MD modeling is relatively time-consuming due to the massive atoms in the composite 11 

system. Considering that the atoms on the inner wall of the channel possess the main effects on PEG, 12 

we only retain the atoms within this part (with the box size of 46 Å×46 Å×136 Å) according to the 13 

simplified concept (Fig. 4b)[33]. 14 

            15 

Fig. 4 (a) initial and (b) simplified model of PEG/FDU-15 composite 16 

 17 

(a) (b) 

(a) (b) 
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3.2 Force field 1 

Fig. 5 shows the atomic types of FDU-15 and PEG. The force field of the FDU-15 and PEG system 2 

was described by Tersoff [34] and PCFF [35] force field，respectively. The L-J (Lennard-Jones) potential[36] 3 

was used to predict the interaction between FDU-15 and PEG, and the L-J parameters were determined 4 

by Lorentz-Berthelot mixed rule. The long-range Coulomb interaction was calculated based on the 5 

Ewald summation method. The computation was carried out with periodic boundary conditions, using 6 

a time step of 0.1 fs and a total simulation time of 200 ns. 7 

 8 

Fig. 5 Atomic types of FDU-15 and PEG 9 

4. Results and discussion 10 

4.1 Structural characterization 11 

TEM image (Fig. 6a) shows the 2D well-organized hexagonal structure of mesoporous carbon 12 

FDU-15. The XRD characteristic peak for pure PEG located at 19.9° and 23.3° (2θ) in Fig. 6b, and the 13 

wide-angle peak of FDU-15 at 22.0° and 43.0° identifies its amorphous structure, and small-angel peaks 14 

show a hexagonal pore arrangement of FDU-15 as stated above. 15 

  16 
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              1 

Fig. 6 (a)TEM image of FDU-15 and (b) XRD patterns of PEG, FDU-15 and the composites 2 

 After compounding, the peak of PEG gets stronger with increased loading, while a decline for 3 

that of FDU-15. For composites, all characterization peaks were inherited from parent materials without 4 

any new peaks appearing, indicating that the crystal structure of PEG is not affected by the skeleton 5 

FDU-15. Fig. 7 shows the FT-IR of FDU-15, PEG and their composites. For FDU-15, the absorption 6 

vibration at 3433 cm-1 is attributed to the stretching vibration of the O-H bond of the adsorbed water, 7 

the absorption vibration at 1626 cm-1 represents the stretching vibration of the C=C bond in the surface 8 

aromatic structure, and the absorption vibration at 1408 cm-1 is a C-H bond stretching vibration. In 9 

addition, there are many characteristic vibrations that appeared at 943, 1106, 1244, 1345, 1459, 2872, 10 

and 3433 cm-1 referring to a pure PEG. Specifically, the vibrations at 3433 cm-1 and 1106 cm-1 are 11 

corresponded to the stretching vibration of the O-H and C-O bonds, respectively. While the vibrations 12 

at 2872 cm-1 and 943 cm -1 indicate the stretching vibration of the -CH2 group. Moreover, we can see 13 

that there is still no new absorption vibration of the composite even at 75 wt% loading of PEG, and 14 

vibrations from parent materials are all preserved, which certifies that there is only physical combination 15 

of the skeleton and the PEG, rather than a chemical relationship.   16 

(a) (b) 
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 1 

Fig. 7 FT-IR of (a) FDU-15, PEG and (b) the composites with different loading 2 

 3 

Fig. 8 Nitrogen adsorption-desorption isotherms of samples and pore size distribution of substrate (insert).(empty: 4 

adsorption isotherm, solid: desorption isotherm.) 5 

Nitrogen adsorption-desorption isotherms of FDU-15 and PEG/FDU-15 composites were 6 

displayed in Fig. 8, as well as the pore size distribution curve of the substrate (inset of Fig. 8) and 7 

composites (Supporting information Figure S1). The skeleton FDU-15 shows the type IV isotherms. 8 

In the region with low P/P0 (P/P0 <0.4), since nitrogen forms monomolecular and multi-molecular 9 

adsorption on the wall, the nitrogen adsorption amount increases gradually with the increase of P/P0. In 10 

the middle P/P0 region (P/P0 >0.4), capillary condensation occurs in the narrower mesoporous channels, 11 

resulting in a larger increase in the nitrogen adsorption amount. Furthermore, the nitrogen adsorption 12 

capacity increased sharply in the high P/P0 region (P/P0 =0.8-1.0), indicating that agglomeration may 13 

(b) (a) 
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occur between the particles during the synthesis of the material, resulting in a certain number of 1 

macropores. With the filling of PEG, more and more pores are occupied, the composite exhibits a type 2 

II isotherm. The structural parameters of FDU-15 and PEG/FDU-15 composites were summarized in 3 

Table 2. The specific surface area of pure FDU-15 is 898 m2/g, and the total pore volume is 0.89 cm3/g. 4 

When the PEG loading increases to the highest 75 wt%, the specific surface area and pore volume of 5 

the composite are reduced to 40 m2/g, 0.13 cm3/g, respectively. The decrease of total pore volume proves 6 

that the PEG was adsorbed into the pore structure. In addition, the SEM image shows that after 7 

compounding, the basic morphology of FDU-15 was maintained, and no excessive PEG attaching on 8 

the surface of FDU-15. The porous structure of FDU-15 prevents the leakage of liquid PEG due to 9 

capillary action and surface tension, so that PEG molecules can be anchored in the pores (Supporting 10 

information Figure S2).  11 

Table 2 Structural parameters of FDU-15 and PEG/FDU-15 composites 12 

Samples 
Pore volume 

cm3/g 

Average pore size 

nm 

FDU-15 0.89 4.84 

30 wt% PEG/FDU-15 0.29 1.18 

50 wt% PEG/FDU-15 0.17 1.19 

70 wt% PEG/FDU-15 0.15 1.19 

75 wt% PEG/FDU-15 0.13 1.19 

 13 

4.2 Measurement of phase change characteristics 14 

As can be seen from Fig. 9, there will be oil stains on the filter paper when PEG is overloaded. 15 

Hence, the maximum loading of using FDU-15 to pack PEG is derived to be 75wt%, which is superior 16 

to that of the mesoporous carbon composite PCMs SA/CMK-3 (46 wt%)[24] and mesoporous silica 17 

composite PCMs PEG/MCM-41-NH2 (60 wt%)[22]. 18 
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 1 

 Fig. 9 Leakage test of PEG/FDU-15 composite 2 

The melting point and latent heat were further obtained by DSC. The test temperature of the 3 

instrument can be from room temperature to 1500℃. The accuracy of enthalpy measurement is ±2%, 4 

the temperature accuracy is 0.1℃, and the sensitivity of DSC is 1 µW. Only when the filling reaches 40 5 

wt%, the PEG begins to phase change within FDU-15, therefore releases the fusion enthalpy. In addition, 6 

the latent heat of the composite gradually grows with the increase of PEG mass percentage (Fig.10 and 7 

Table 3).  8 

 9 

Fig. 10 Heat flow with the temperature of PEG/FDU-15 10 

Table 3 Measurement results of phase change characteristics of PEG/FDU-15 composites 11 

 

Sample 

PEG loading 

wt% 

Tm/ Tf 

℃ 

ΔHm/ΔHf 

J/g 

Theoretical 

ΔHm/ΔHf 

J/g 

θ 

% 

E 

% 

1 100 

(Pure PEG) 
52.48/19.18 153.0/151.46 -/- -/- - 
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2 30 -/- -/- 45.9/45.44 -/- - 

3 40 46.00/27.06 5.18/3.45 61.2/60.58 8.5/5.7 7.1 

4 50 46.93/27.35 15.47/8.85 76.5/75.73 20.2/11.7 16 

5 60 47.62/32.53 31.47/18.14 91.8/90.88 34.3/20.0 27.2 

6 70 47.55/31.29 74.75/68.85 107.1/106.02 69.8/64.9 67.4 

7 75 50.45/30.23 81.76/80.39 114.75/113.60 71.3/70.8 71.0 

8 75(50 cycles) 50.87/30.14 81.32/80.21 114.75/113.60 70.9/70.6 70.7 

We use crystallization ratio θ reflects the existing state of PEG inside the pores, and heat storage 1 

efficiency E is used to investigate the thermal storage capacity:    2 

                            θ=
HS

wt%×Hpure
×100%                            (1) 3 

                       E=
∆Hm,comp+∆Hf,comp

wt%×(∆Hm,PCM+∆Hf,PCM)
×100%                       (2) 4 

Where ∆Hm,comp  and ∆Hm,PCM  represents the melting latent heat of composite materials and pure 5 

PEG, respectively. ∆Hf,comp and ∆Hm,PCM stands for the cooling enthalpies of composites and PEG, 6 

respectively. Hs is the measured latent heat, wt% represents the mass percentage of PEG, and Hpure is 7 

regarded as the theoretical enthalpy of pure PEG. It is interesting to see a reduced supercooling of PEG 8 

after nanoconfinement (Fig. 11a). The gap between melting point and freezing point narrows to 20℃ 9 

while more than 30℃ for pure PEG. This is because the huge specific surface area of FDU-15 provides 10 

a large number of nucleation sites for heterogeneous nucleation of PEG, which is helpful for the 11 

crystallization of PEG. It's a good sight for its practical application especially during new energy storage 12 

such as solar energy[37]. The crystallization ratio and heat storage efficiency of PEG are more than 70% 13 

at the maximum loading (Fig. 11b), but still a large gap with 100%. It is a kind of very general 14 

phenomenon in nanoporous composite PCMs[22-24, 38]. The confined PEG attached to the wall could 15 

easily form an amorphous structure that was responsible for the loss of crystallization. It seems like that 16 

mesoporous carbon FDU-15 has a better condition for PEG crystallization comparing with same-17 
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structured MCM-41 of ~60% PEG crystallization ratio at a maximum[22]. Moreover, 75 wt% PEG/FDU-1 

15 also presented good thermal stability after 50 times cycling, the melting point, fusion enthalpy, 2 

crystallization ratio and heat storage efficiency of PEG hardly change. We further compared the thermal 3 

properties of several commonly used composite phase change materials (silicon-based, carbon-based, 4 

and metal-organic frameworks). As shown in Fig. 11c, PEG/FDU-15 composite material exhibits a 5 

better heat storage performance.  6 

   7 

                        8 

Fig. 11 (a) Phase transition temperature and supercooling extent of pure PEG and composite, (b) crystallization ratio 9 

and heat storage efficiency of PEG/FDU-15 and (c) maxing loading and latent heat of composite PCMs with 10 

(b) (a) 

(c) 
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different skeletons.[22, 24, 39-42] 1 

4.3 Analysis of phase change mechanisms 2 

The DSC results (Table 3) show that the melting point of the composites is lower than that of the 3 

pure PEG (sample 1). Many studies have indicated that the phase change characteristics of PCMs in 4 

confined spaces are different from their bulks[43,44], but the underlying mechanism is quite complicated 5 

which is associated with nano-size effect and interfacial effect, yet far from being revealed. Here, we 6 

used the radius of gyration to identify the difference between free PEG and confined PEG, further 7 

reflecting the melting point. The formula for calculating the radius of gyration (Rg) is as follow: 8 

                 
2

g =
i i i

i i

m r
R

m




                                   (3) 9 

Where mi represents the atom mass, ri is the distance between the atom i and the centroid. It can be seen 10 

from Fig. 12 that the Rg of the PEG in the confined space (red line) is smaller than that of the bulk PEG 11 

(black line), which means the PEG segments get more flexible within FDU-15 channels results in a 12 

lower melting point[45]. That is to say a much easier breaking down the structure of the confined PEG.      13 

 14 

Fig.12 Radius of gyration of PEG before and after compounding 15 

Taking the center of the mesopore as the origin and the radial direction as the abscissa, the position 16 
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distribution of the PEG atoms was obtained, as shown in Fig. 13. Some atoms of PEG distribute adhere 1 

to the wall. We can determine that these adherent atoms have a strong interaction with the skeleton, and 2 

no phase change occurs. The result is consistent with the DSC experimental results.  3 

 4 

     Fig.13 Atomic distribution of PEG in FDU-15 5 

According to our previous conclusions[46,47], strong guest-host interaction takes a negative effect 6 

on the crystallization of confined PCM. In Fig.14, there is a dramatic reduction in interaction energy 7 

between PEG molecules and FDU-15, comparing with PEG and MCM-41 counterparts. This might 8 

provide evidence for a higher crystallization ratio of PEG in FDU-15. 9 

 10 

Fig.14 Guest-host interaction energy of mesopore-based composite PCMs 11 

4.4 Thermal conductivity  12 

4.4.1 LFA measurement 13 
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The sample is pressed into a sheet with a thickness of h (1-2 mm) in a mold (r = 6.4 mm). The 1 

volume v of the sample is obtained according to Equation 4. Then weigh the mass of the sample and 2 

obtain its density according to Equation 5. The thermal diffusivity and specific heat at temperature T 3 

are obtained by the laser flashing (LFA) method. Finally, the thermal conductivity of the sample could 4 

be obtained according to Equation 6. 5 

        
2  v r h  (4) 

       
m

v
   (5) 

          p( ) ( ) ( ) ( ) T T C T T      (6) 

 6 

 7 

Fig.15 Thermal conductivities of PEG and its composites 8 

The results are displayed in Fig. 15. The thermal conductivity of PEG/FDU-15 with 75 wt% PEG 9 

is 0.44 W/(m∙ K), which is 63%-fold higher than that of pure PEG (0.27 W/(m∙ K)). It also shows 10 

prominent advantage over same-structured silicon-based composite PEG/MCM-41(0.24 W/(m∙K)[22]). 11 

The disordered porous carbon with a certain degree of graphitization may benefit to the thermal 12 

performance (Supporting information Figure S3). Besides, the thermal conductivity of PEG/FDU-15 13 

is comparative to that of PEG/HPC (0.42 W/(m∙ K))[30]. Hierarchical porous carbon (HPC) with an 14 

extremely high loading of PEG (92.5 wt%) is expected to have a higher thermal conductivity as less 15 

confined air within the pores. 16 
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4.4.2 Vibration dynamic density 1 

We are trying to explain the increase of thermal conductivity after guest-host assembling via a 2 

micro-aspect. The vibration of atoms before and after compounding was investigated by calculating the 3 

Vibrational Density of States (VDOS). The VDOS of a class atom is obtained by the Fourier transform 4 

and the weighting factor of its velocity autocorrelation function (VACF). The calculation formula is as 5 

follows[48]: 6 

     ,
0

cospD t c t t dt


                              (7) 7 

         0 / 0 0
N N

i i i ii i
t t

 

         × ×               (8) 8 

Where ω is frequency, 
βΓ  is the velocity of the atom of class β, and ⟨ ⟩  is the time average. The 9 

VDOS of PEG, FDU-15 and the contribution of the respective atomic vibrations to heat transfer are shown 10 

in Fig.16.  11 

 12 

    13 

 14 

    15 
Fig. 16 The VDOS of the material (a, c, e) before and after compounding and the contribution of the respective atomic 16 

vibrations to heat transfer (b, d, f) (A: PEG system; B: FDU-15 system; C: PEG/FDU-15 composites. 17 

Before compounding, the main vibration peaks of the pure PEG fall into the range of 30-50 THz and 18 

(a) (c) (e) 

(b) 

A 

(d) (f) 

B C 
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80-100 THz (Fig.16A(a)), identifying the greatest contribution to heat transfer. For FDU-15, the main 1 

contributor to heat transfer locates in the low frequency range 0-20 THz (Fig.16B(c)). Once the two materials 2 

assembled, the atomic vibration of PEG itself is suppressed (Fig.16A(a)), but the filling of PEG stimulates 3 

the atomic vibration of the intermediate frequency within FDU-15, causing the main vibration peak shifts 4 

from low frequency to intermediate frequency region. Thus, the atomic vibration of the skeleton and PCM 5 

ends up with a better match at middle frequency band (Fig. 16C(f)), which might be responsible for the 6 

promotion of the thermal conductivity.  7 

 8 

4.4.3 Overlapping energy 9 

Based on the qualitative analysis of VDOS, this paper introduces the concept of overlapping energy, and 10 

quantitatively calculates the overlap energy between each two bonding atoms (overlap phonon energy). The 11 

formula is as follow [49]: 12 

 0

B

h
d

h
exp 1

k

overlapE g

T


 

 
 

 


                             (9) 13 

Where g0(v) is the overlap region of VDOS, h is the Planck constant, v is the frequency, 14 

exp(hv∕kBT) -1is the Boltzmann distribution; T is the absolute temperature, and KB is the Boltzmann 15 

constant. The higher the overlap energy, the more coordinated the vibration between the two atom types, thus 16 

the more favorable the transfer of energy. 17 

Since PEG is a polymer with a C-C-O segment repetitive structure, the C-O bond is the “weak link” of 18 

energy transfer along the chain. Therefore, we calculated the overlap energy between C-O to evaluate the 19 

effect of guest host combination on energy transfer.  20 
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 1 

Fig. 17 The overlap energy between C-O atoms in PEG before and after compounding 2 

As shown in Fig. 17, we can see that the overlap energy of C-O in the composite material is much lower 3 

than that of the pure bulk material, indicating that the FDU-15 pore structure makes the PEG chain irregularly 4 

arranged therefore hinders the phonon transport. As a result of the mismatch between the atomic vibrations, 5 

the heat transfer along PEG chains start to suffer. This result also coincides with the above VDOS. It seems 6 

like that the promotion of thermal conductivity of composite should be attributed to the frequency shift of 7 

FDU-15 after assembly, resulting in an improved matching with PEG, even though the guest-host merging 8 

causes a loose of heat transfer ability of PEG.  9 

4.4.4 Local heat flow 10 

For further proof, we select two layers of atoms (64-72 Å) in the longitudinal (z) direction of the skeleton 11 

FDU-15, calculate the local heat flow of the material, and then project the local heat flow of the selected atom 12 

to the XY plane. Considering that the inner surface of the skeleton channel has the greatest influence on the 13 

PCM material, only the information from carbon atoms on the inner surface of the channel is output. As 14 

shown in Fig. 18, after the PEG is filled in, the interaction between PEG and FDU-15 enhances the local heat 15 

flow of the composite as a whole, which is direct evidence for ameliorative heat transfer. 16 
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    1 

Fig. 18 Projection of localized heat flux of (a) FDU-15 and (b) PEG/FDU-15 on X-Y plane 2 

5. Conclusions 3 

A kind of mesoporous carbon FDU-15 was first used to pack phase change PEG as a novel shape-4 

stabilized phase change material. The pore morphology was observed by TEM and the chemical 5 

composition of the materials was characterized by FT-IR. The melting/freezing point and latent heat of 6 

the composites with different loading were measured by DSC. For the phenomena in the experiment, 7 

the phase change and the heat transfer mechanism were explained by molecular dynamics simulation. 8 

The main conclusions of the full text are as follows: 9 

(1) In terms of phase change, experiments show that the maximum loading of PEG/FDU-15 could be 10 

up to 75 wt%, the corresponding crystallization ratio is over 70%. The latent heat increases with the 11 

increase of PEG percentage. The simulation analysis indicated that the flexibility of the segment of the 12 

PEG after assembly was reduced, thus the melting point is slightly lower than pure PEG. Partially 13 

attached-wall atoms exist in the pores form an amorphous configuration with no phase change, resulting 14 

in a loose of latent heat. 15 

(2) In terms of heat transfer, for the PEG, the vibration of the phonon in the intermediate frequency 16 

range after the composite is slightly lowered down. It can be verified by the reduced overlapping energy 17 

of C-O, the atomic vibration with less coordination. For FDU-15, the introduction of the PEG excites 18 

PEG 

(b) (a) 
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the vibration of the atoms shift to the middle frequency domain, then enables the skeleton and PEG 1 

vibrate at a similar frequency. It can be seen from the local heat flow that the filling of PEG reinforces 2 

the heat transfer, and the thermal conductivity of the composite is increased by more than 60% compared 3 

with the pure PCM. 4 

(3) Compared with same-structured PEG/MCM-41 and other mesoporous carbon, PEG/FDU-15 5 

behaves an improved loading, crystallization and heat transfer performance. The choice of a skeleton to 6 

pack PCM matters a lot to the overall thermal properties of the derived composite, therefore provides 7 

us with higher flexibility to design mesopore-based shape-stabilized composite PCM according to actual 8 

needs. 9 
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