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Abstract 

The wide popularity of Android systems has been accompanied by increase in the number of 
malware targeting these systems. This is largely due to the open nature of the Android framework 
that facilitates the incorporation of third-party applications running on top of any Android device. 
Inter-process communication is one of the most notable features of the Android framework as it 
allows the reuse of components across process boundaries. This mechanism is used as gateway to 
access different sensitive services in the Android framework. In the Android platform, this 
communication system is usually driven by a late runtime binding messaging object known as 
Intent. In this paper, we evaluate the effectiveness of Android Intents (explicit and implicit) as a 
distinguishing feature for identifying malicious applications. We show that Intents are 
semantically rich features that are able to encode the intentions of malware when compared to 
other well-studied features such as permissions. We also argue that these type of feature is not the 
ultimate solution. It should be used in conjunction with other known features. We conducted 
experiments using a dataset containing 7,406 applications that comprise of 1,846 clean and 5,560 
infected applications. The results show detection rate of 91% using Android Intent against 83% 
using Android permission. Additionally, experiment on combination of both features results in 
detection rate of 95.5%. 
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1. Introduction 

Smartphones have emerged as popular portable devices with increasingly powerful computing, 
networking and sensing capabilities, and they are now far more powerful than early personal 
computers (PCs). In addition, their popularity has been repeatedly corroborated by recent surveys 
[1]. The combination of device capability and popularity has served to make them an attractive 
target for malware. Accordingly, malware is quickly permeating most popular Android-based 
applications markets. In the case of official applications market (Google Play), operators are 
generally more concerned about the security aspect of the software they distribute. For instance, 
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Google Play employs a review system to vet potentially dangerous applications [2]. Despite all 
these efforts, commercial surveys still report a large number of malicious applications attacking 
the Android markets. For instance, GData reported nearly half a million new Android malware in 
20153. More recently, new malware such as the BrainTest [3], have succeeded in infecting over 
half a million Android devices, targeting Google Play in particular. Many recent studies have 
resulted in a number of automated approaches to tackle the spread of malware [4] [5] [6] [7]. Static 
analysis techniques, which have traditionally been used for detecting malware targeting desktop 
computers, have recently gained popularity as effective measures for the protection of mobile 
applications [8]. In particular, static approaches aim at detecting Android malware by analyzing 
their permission usage [9], mining their code structures [10], understanding the components they 
used [11], and monitoring the APIs they invoked [11] [12] [13]. Inter-process communication is 
one of the most notable features of the Android framework as it allows the reuse of components 
across process boundaries. It is used as gateway to access different sensitive services in the 
Android framework. In the Android platform, this communication system is usually driven by a 
late runtime binding messaging object known as Intent. Intent objects provide an abstract 
definition of the operations an application intends to perform.  

The rich semantics encoded in this type of component indicate that Intent could be used to 
characterize malware. For instance, the listing in Table 1 shows an excerpt of Intent actions used 
in a legitimate banking application and the actions stipulated in the infected version of the same 
application. In this example, it is obvious that the infected version of the application is subscribing 
to a notification service that will be triggered by the Android OS whenever the 
BOOT_COMPLETED event occurs. In addition, SMS_RECEIVED allows the subscriber to 
access all incoming SMS messages [14]. While the former action is used by the malware as a form 
of evasion, the latter is used to steal the Transaction Authorization Code (TAC) [15] [16]. 

Table 1. Intent Section of Clean and Infected Versions of Zurich Cantonal Bank Application 

Clean Version Infected Version 

android.intent.action.MAIN 
android.intent.action.MAIN 

android.intent.action.BOOT_COMPLETED 
android.provider.Telephony.SMS_RECEIVED 

 
In this paper, we propose AndroDialysis4, a system that analyzes two different types of Intent 
objects, i.e.: implicit and explicit Intents. To evaluate the effectiveness of the proposed system, we 
will compare our results with that from a baseline detection system that uses similar level of 
granularity, and we will then analyze the permissions usage. In summary, we make the following 
contributions in this paper:  

1. We propose the use of Android Intents (implicit and explicit) for detecting Android 
malware. The usage of Intents will be extracted from both clean and infected applications 
in a dataset containing 7,406 applications.  
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2. We extract permissions used by each application and evaluate the effectiveness of our 
approach when compared to the use of permissions. We also conduct experiment on 
combination of Android permission and Android Intent to verify that they are not 
overlapping. 

3. We also compare the time taken to process permissions and Intents in our experiments, as 
it is important to determine which component of the Android file is faster and more 
efficient. Furthermore, we calculated power consumption of AndroDialysis and compared 
it with three popular applications. 

This paper is organized as follows: Section 2 explains in detail Android Intent, and presents a 
snippet code for implicit and explicit Intents, respectively. Section 3 discusses the method of data 
collection and analysis of the dataset, analyzing the permission and Intent. Section 4 describes the 
proposed system and its various modules and sub-modules. Section 5 presents details of 
experiments and the results obtained, as well as evaluation of the proposed system. Section 6 
reviews related works done by other researchers, and highlights their weaknesses and strengths. 
Section 7 concludes this paper by summarizing main findings from this research.  

2. Android Intent 

Intent is a complex messaging system in the Android platform, and is considered as a security 
mechanism to hinder applications from gaining access to other applications directly. Applications 
must have specific permissions to use Intents. This is a way of controlling what applications can 
do once they are installed in Android. Intent-filter - defined in AndroidManifest.xml file - 
announces the type of Intent the application is capable of receiving.  

Applications use Intents for intra-application and inter-application communications. Intra-
application communication takes place inside an application between activities. An Android 
application consists of many activities, each referring to buttons, labels, and texts available on a 
single page of the application, with which the user interacts. When interacting with the application, 
the user moves from activity to activity (i.e. from page to page). Android Intents assist developers 
in performing interactions among the activities. Furthermore, Intents are used in pushing data from 
one activity to another, carrying the results at the end of any particular activity [17].  

Inter-application communication is achieved when applications send messages or data to other 
applications through Intent. The applications should also be able to receive data from other 
applications. To receive Intents, applications must define what type of Intent they accept in the 
Intent section of AndroidManifest.xml file, as intent-filter. Many past studies [18] [19] [20] 
referred to this type of Intent. The actual communication between two applications is done through 
the Binder, which handles all inter-process communications. The Binder provides the features for 
binding functions and data between one execution environment and another, as each Android 
application runs in its own Dalvik5 environment. The Intent mechanism is considered higher than 
Binder, hence, it is built on top of Binder.  
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Figure 1. Inter-application Communication Using Android Intent and Binder 

Figure 1 shows the architecture of inter-application communication. The Binder driver manages 
part of the address space of each application and makes it as read-only and all writing is done by 
the kernel section of Android. When application A sends a message to application B, the kernel 
allocates some space in the destination applications memory, and copies the message directly from 
the sending application. It then queues a short message to the receiving application telling it the 
location of the received message. The recipient can then access that message directly because it is 
in its own memory space. When application B has finished processing the message, it notifies the 
Binder driver to mark the memory as free [21]. 

There are two types of Intent: explicit and implicit. When developers know exactly what 
component to use to perform a specific action, they use explicit Intent. This component can be any 
activity, service, or broadcast receiver. Explicit Intent is used for intra-application and inter-
application communications, and developers use this type of Intent to navigate from an activity to 
another activity inside applications, as well as to exchange messages between applications. For 
instance, there are some applications, which are used for browsing, such as the default browser on 
the device or Google Chrome. Developers use explicit Intent to request Android to open a link 
specifically using Google Chrome. On the other hand, developers use implicit Intent and ask 
Android to open a link, but they do not specify the exact target application. In response, Android 
offers a list of all applications capable of opening a link to the user. Such a list is populated based 
on the intent-filter section of AndroidManifest.xml files. In our study, our aim is to extract both 
implicit and explicit Intents and conduct a comprehensive evaluation of their effectiveness in 
malware detection. 

Intents have three components - action, category, and data. The action component describes what 
kind of action is to be executed by the Intent such as MAIN, CALL, BATTERY LOW, SCREEN 
ON, and EDIT. Intents specify the category they belong to, such as LAUNCHER, BROWSABLE 
and GADGET. The data components provide the necessary data to the action component. For 
instance, CALL action requires phone number, and EDIT action needs document or HTTP URL 
to complete the action. Table 2 shows a sample code of explicit and implicit Intents. 

Application A Application B
Conceptual Function Call

Binder

Android Kernell

IntentIntent

Actual Function Call



Table 2. Sample Code Snippet of Explicit and Implicit Intents 

Explicit Intent Implicit Intent 
String url=”www.yahoo.com”;  
Intent explicit=new Intent(Intent.ACTION_VIEW);  
explicit.setData(Uri.parse(url));  
explicit.setPackage(”com.android.chrome”);  
startActivity(explicit) 

String url=”www.yahoo.com”; 
Intent implicit=new Intent(Intent.ACTION_VIEW); 
implicit.setData(Uri.parse(url)); 
startActivity(implicit); 

 
Table 2 shows that implicit Intent uses Intent.ACTION_VIEW to open the specified URL. 
However, explicit Intent states the exact component name - in this case com.android.chrome - to 
open the URL. 

3. Data Collection and Analysis  

For our experiment, we used real-world applications that include both clean and infected 
applications. We gathered clean applications from Google Play6 and scanned them with 
VirusTotal7  to ensure the cleanness of the applications. The applications collected include both 
free and paid types since ProfileDroid [22] mentioned that paid applications behave differently 
from free ones, and it is important to include all such applications. Google Play applications are 
categorized into 27 main application categories, and games category has 17 sub-categories. We 
gathered samples from 24 main application categories, and 17 games sub-categories to cover a 
wide variety of applications, as shown in Table 3.  

Table 3. Categories of Gathered Applications 

Books & References Medical Tools Games - adventure 
Business Weather Games - action Games - strategy 
Comics Travel Games - card Games - simulation 
Communication Photography Games - casino Games – family 
Education Productivity Games - casual Games – racing 
Entertainment Shopping Games - educational Games – sports 
Finance Social Games - music Games – arcade 
Health & Fitness Sports Games - puzzle  
Music & Audio Media & Video Games - role playing  
News & Magazines Transportation Games - word  
Personalization Live Wallpaper Games - board  

 
The clean dataset contains 1,846 applications. Additionally, we used DREBIN [11] as infected 
dataset. It is a collection of 5,560 applications from 179 different malware families. We used our 
Python code to extract permission and Intent from applications in our dataset. The top 10 
permissions of both clean and infected applications are shown in Table 4. Google categorizes 
Android permissions into four groups - normal, dangerous, signature, and signatureOrSystem [23]. 
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Table 4. Top 10 Permissions in Clean and Infected Applications 

Clean Applications Infected Applications 
Permissions Frequency Permissions Frequency 

INTERNET 98% INTERNET 98% 
ACCESS_NETWORK_STATE 89% READ_PHONE_STATE 89% 
WRITE_EXTERNAL_STORAGE 83% WRITE_EXTERNAL_STORAGE 67% 
WAKE_LOCK 53% SEND_SMS 54% 
READ_PHONE_STATE 52% RECEIVE_SMS 38% 
ACCESS_WIFI_STATE 48% WAKE_LOCK 38% 
GET_ACCOUNTS 42% READ_SMS 37% 
VIBRATE 41% ACCESS_COARSE_LOCATION 32% 
BILLING 39% ACCESS_FINE_LOCATION 30% 
ACCESS_COARSE_LOCATION 24% READ_CONTACTS 23% 

 
Table 4 also shows that five permissions are common - as highlighted - between clean and infected 
applications, such as, INTERNET, WRITE_EXTERNAL_STORAGE, WAKE_LOCK, 
ACCESS_COARSE_LOCATION, and READ_PHONE_STATE. However, these applications 
have five different permissions among the top 10 permissions. Infected applications request 
SEND_SMS, RECEIVE_SMS and READ SMS permissions, which are categorized as dangerous. 
In fact, WRITE_SMS, which is also dangerous, should be in the list of top frequent permissions. 
It is ranked 11th in our dataset, and it is requested by 22% of infected applications. Therefore, it is 
evident that infected applications request four SMS-related permissions to have full access to SMS 
functionality of the devices. In our experiment, 30% of infected applications requested the 
ACCESS_FINE_LOCATION permission to access precise location, and 33% of them requested 
the ACCESS_COARSE_LOCATION permission, which is a common permission, to access 
proximate location. In general, the viciousness of infected applications can be gauged through 
permissions. We also extracted Intent of applications, as shown in Table 5, which shows top 10 
Intents used in clean and infected applications. It is worth noting that the VIEW Intent was 
removed from the top 10 Intents, since it is used in all clean and infected applications. 

Table 5. Top 10 Intents in Clean and Infected Applications 

Clean Applications Infected Applications 
Intents Frequency Intents Frequency 

SEND_MULTIPLE 45% BOOT_COMPLETED 56% 
SCREEN_OFF 23% SENDTO 45% 
USER_PRESENT 18% DIAL 42% 
SEARCH 17% SCREEN_OFF 37% 
PICK 10% TEXT 28% 
DIAL 9.5% SEND 27% 
GET_CONTENT 9% USER_PRESENT 22% 
EDIT 8.7% PACKAGE_ADDED 21% 
MEDIA_MOUNTED 8% SCREEN_ON 18% 
BATTERY_CHANGED 7% CALL 10% 

 



Malicious applications wait for BOOT_COMPLETED to start their malicious activity. CALL and 
DIAL are used for making phone calls. CALL requires CALL_PHONE permission, whereas DIAL 
does not require such permission. As it is presented in Table 5, DIAL is used more than CALL, 
which allows the malicious application to make a premium phone call without user’s knowledge. 

 

Figure 2. Percent of Applications That Request Specific Number of Permissions 

 

Figure 3. Percent of Applications That Request Specific Number of Intents 

Figure 2 shows the percentage of applications that requested permissions - clean and infected - in 
two datasets. The graph shows that infected applications request more permissions as there are 
spikes at multiple points in the figure. Furthermore, only 2% of clean applications requested 
between 35-55 permissions, compared to 7% of infected applications. This is indicative of the 
vicious intentions of infected applications. 
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Similarly, Figure 3 shows the percentage of applications that requested Intents - implicit and 
explicit - in two datasets. When comparing Figure 2 and Figure 3, the difference between their    
X-axis is obvious. While permissions have maximum number of 55, number of Intents ends at 
250. The wide difference is due to the fact that developers use Intents much more frequently than 
permissions in the code to perform actions.  

Intent and permission are potentially useful features for Android malware detection. However, 
according to Moonsamy et al. [24], there are requested permissions as well as required 
permissions. It is possible that actual permissions used by applications are different from the 
requested permissions that is sent to the user for approval. On the other hand, Intent reflects the 
actual intentions of applications resulting directly from activities. This indicates that Intent is more 
effective for malware detection.  

4. Mobile Malware Detection System Overview 

Figure 4 shows the architecture for our proposed system, AndroDialysis. The top level of the 
architecture - Android application framework - refers to applications installed on the device. The 
detector module performs the main task of detection. It consists of four sub-modules - decompiler, 
extractor, intelligent learner, and decision maker. The system sends the results to users through the 
graphical user interface. The following sections describe four sub-modules in more detail. 

 

Figure 4. Overview of AndroDialysis, a Mobile Malware Detection System 

4.1. Decompiler 

The decompiler sub-module is responsible for dissecting the apk files and decoding its 
components. Every apk file has various components. AndroidManifest.xml is a scrambled file and 
needs to be decoded in order to make it readable. Similarly, the dex file is a Java source code 
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compiled in Dalvik format and needs to be decompiled. After decompilation, the produced file is 
not a pure Java code, but it is easy to read. We used Apktool for decompiling Android files, since 
it utilizes the latest Android SDK, which is better in optimizing files [25]. Decompiling files results 
in readable AndroidManifest.xml file and generates Smali version of Java code.  

4.2. Extractor 

The extractor sub-module extracts explicit Intent, implicit Intent, intent-filter, and permission from 
Java code and AndroidManifest.xml file for processing in subsequent sub-modules. The 
BeautifulSoup package of the Python language is used to extract intent-filter and permission 
sections from the AndroidManifest.xml file [26]. In order to extract Intents from Java code, we 
used Androguard to reverse dex files and get Intents (implicit and explicit) from the code. The 
extracted data are stored in a features database for use in the next process. Furthermore, a copy of 
data is sent to the decision maker sub-module for determining maliciousness of the data, which 
will be discussed in section 4.4. 

4.3. Intelligent Learner 

This sub-module takes data from the features database and uses Bayesian Network algorithm to 
learn pattern of the data. It then sends output model to the decision maker sub-module. The 
Bayesian Network algorithm [27] was chosen to evaluate our system because it has been 
successfully used in real-world problems, for example Cohen et al. [28] used Bayesian Network 
in human facial expression recognition and achieved a good performance. It is a dual-process 
algorithm, it first learns network structure, and then it learns probability tables. Bayesian Network 
uses local score metrics to learn the network structure of data. It is considered an optimization 
problem in which the quality of the network is optimized. To calculate the local score, Bayesian 
Network employs search algorithms. Once the network structure of data has been learned, 
Bayesian Network utilizes estimators to learn the probability tables [29]. Two widely used 
estimators are simple estimator, and multinomial estimator. The aforementioned two steps are 
defined as follows:  

Suppose that 𝑉 =  {𝑥1, … … . . , 𝑥𝑘}, 𝑘 ≥ 1 is a set of variables. Bayesian Network B over V is a 
network structure BS that is a directed acyclic graph known as DAG over the set of variables V. It 
is also a set of probability tables 𝐵𝑃 =  {𝑝(𝑣|𝑝𝑎(𝑣))|𝑣 ∈ 𝑉} where 𝑝𝑎(𝑣) is the set of parents of 
v in BS. Finally, a Bayesian Network represents a probability distribution                                                  
𝑃(𝑉) =  ∏ 𝑝(𝑣|𝑝𝑎(𝑣))𝑣∈𝑉 .  

Compared to other algorithms, the Bayesian Network has the following advantages: 

x It is a fast algorithm with low computational overhead once trained.  
x It has the ability to model both expert and learning systems with relative ease. It integrates 

probabilities into the system. It is also considered as a performance-tuning tool, but without 
incurring computational overhead.  

x Many outstanding real-world applications have used this algorithm and have performed 
comparably well against other state-of-the-art algorithms [29]. 



As mentioned above, Bayesian Networks are collections of directed acyclic graphs (DAGs), where 
the nodes are random variables, and where the arcs specify the independence assumptions between 
these variables. It is difficult to search the Bayesian Network that best reflects the dependence 
relationship in a database of cases because of the large number of possible DAG structures, given 
even a small number of nodes to connect. As a result, researchers have developed various search 
algorithms to overcome this problem. In this paper, we use four search algorithms for our 
experiments –K2, Geneticsearch, HillClimber, and LAGDHillClimber algorithms.  

K2 algorithm heuristically searches for the most probable belief network structure in a given 
database of cases, which includes different combinations of values for attributes [30]. 
Geneticsearch algorithm uses the genetic algorithm to find the optimum result in a Bayesian 
Network. The algorithm is based on the mechanics of natural selection and natural genetics. 
Although it is capable of solving complex problems, it is a time-consuming algorithm for some 
data (see Table 9) [31]. It combines survival of the fittest among string structures with a structured, 
yet randomized, information exchange to form a search algorithm that under certain conditions 
evolves into the optimum with a probability that is arbitrarily close to one [32].  

The HillClimber search algorithm starts learning by initializing the structure of Bayesian 
Network. Unlike previous algorithms that potentially get stuck in the search process, the Hill 
Climber solved that problem [33]. Each possible arc from any node is then evaluated using leave-
one-out cross validation to estimate the accuracy of the network with that arc added. If no arc 
shows any improvement in accuracy, the current structure is determined. An arc that has the most 
improvement is retained, but the node the arc points to is removed. This process is repeated until 
there is just one node remaining, or no arc can further be added to improve the classification 
accuracy [34]. The LAGDHillClimber search algorithm uses a Look Ahead Hill Climbing 
algorithm. Unlike Hill Climber, it does not calculate a best arc (by adding, deleting or reversing 
an arc), but it considers a sequence of best arcs instead of considering the best arc at each step. 
Since it is very time-consuming to find the best sequence among all the possible arcs, it must first 
find a set of good arcs and then find the best sequence of arcs among them [35]. Such improvement 
over Hill Climber algorithm, results in better performance (see Table 6).  

We evaluate the performance of Bayesian Network using k-fold cross validation. In this method, 
the dataset is divided into k subsets, and the holdout method is repeated k times. Each time, one of 
the k subsets serves as the test set and the other k-1 subsets are compiled to form a training set. 
Then, the average error across all k trials is computed. The advantage of this method is that it 
matters less how the data is divided. Every data point gets to be in a test set exactly once, and in a 
training set k-1 times. The variance of the resulting estimate is reduced as k increases [6]. 
Specifically, a 10-fold option is used, which is described as applying the classifier to data 10 times 
and every time the dataset is divided into 90:10 groups - 90% of data used for training, and 10% 
used for testing, which is widely used among researchers [36]. At the end, this sub-module 
produces a model - based on available data in the features database - that is used for detection 
purpose. It is worth noting that the intelligent learner is constantly learning from the data added to 
the features database. 

 



4.4. Decision Maker 

The decision maker sub-module is responsible for determining whether the data is clean or 
malicious. It receives two sets of data from the extractor and the intelligent learner sub-modules. 
A set of data from the intelligent learner sub-module contains a produced model based on the 
collection of data in the features database. The model is then used to vet the data received from 
extractor sub-module. Another set of data that is received from the extractor sub-module contains 
extracted data of one application. The decision maker sub-module utilizes the model to determine 
the maliciousness of the application. The final decision is passed to the user interface module, 
which prepares appropriate message for the user and presents it through the graphical user 
interface, as shown in Figure 5. Such design of the decision maker sub-module ensures faster 
detection and higher performance, as it was adopted by Shabtai et al. [37].  

 

Figure 5. Screenshot of the Results Presented to the User 

5. Results and Discussion 

In this section, we discuss our results and findings. It is important to restate that the purpose of this 
paper is to study the effectiveness of Android Intent (implicit and explicit) in malware detection, 
and not malware detection per se. We present the results from experiments conducted on 



permissions, Intents, and both in Android malware detection. Additionally, to get a better 
assessment of the current development of Android Intent, we analyzed our datasets.  

5.1. Intent Analysis and Attacks 

We analyze Intents in our datasets from the security standpoint to assess the current status or 
importance of Intents. As mentioned in section 2, implicit Intent does not specify its destination 
component. However, it is offered to entities that can receive specific type of Intent. Therefore, 
when an application sends an implicit Intent, there is no guarantee that the Intent will be received 
by the intended recipient. A malicious application can intercept an implicit Intent simply by 
declaring an intent-filter - in AndroidManifest.xml file - with all the actions, data, and categories 
listed in the Intent. This situation - unauthorized Intent receipt - causes the malicious application 
to gain access to all the data in any matching Intent, resulting in activity hijacking [38]. 

In our dataset, infected applications declare intent-filter 7.5 times more than clean applications. 
On an average, each clean application declares 1.18 intent-filters, whereas each infected 
application declares 1.61 intent-filters. Thus, it is evident that infected applications tend to 
intercept Intents using intent-filters until they succeed in hijacking the activities.  

In view of this threat, it is suggested that developers use explicit Intent so that the recipient is 
clearly specified in order to hinder malicious applications from hijacking the activities. We have 
analyzed our dataset with regard to this threat, and found that 28.78% of Intents used were implicit 
and 71.22% were explicit. In general, developers are doing what is appropriate; nevertheless, it is 
essential to stay vigilant, as attackers are known to change their attack plan frequently. 

5.2. Experimental Results 

This experiment was performed on a Sony Xperia Z3 Compact device, model D5803. It is running 
Android Marshmallow, version 6.0.1 with latest updates. The device has 2GB of RAM and 16GB 
of storage.  

We aim to answer the following research questions. A. Is Intent a plausible feature for Android 
malware detection? B. What are best configurations in Bayesian Network that produce the best 
results? C. How effective is Android Intent compared to Android permission?  

5.2.1. Effectiveness 

We employed Bayesian Network with different configurations for our experiment. As discussed 
earlier, Bayesian Network uses a search algorithm for calculating the local score metrics, and an 
estimator algorithm for learning the probability table. In order to achieve the best results, we 
experimented with different configurations, and the results are presented in Table 6. The table 
shows results of permission and Intent with simple estimator and multinomial estimator 
algorithms; and K2, Geneticsearch, HillClimber, and LAGDHillClimber as search algorithms. 

 

 



Table 6. Results of Android Permission and Android Intent Experiments 

 Android Permission Android Intent 
 Simple Estimator Multinomial Simple Estimator Multinomial 
 TPR FPR TPR FPR TPR FPR TPR FPR 
K2 82% 18% 24% 76% 89% 11% 19% 81% 
Geneticsearch 83% 17% Null Null 91% 9% Null Null 
HillClimber 82% 18% 24% 76% 89% 11% 19% 81% 
LAGDHillClimber 83% 17% Null Null 91% 9% Null Null 

 
The results of experiments reflect the performance of our method. Detection rate, also known as a 
true positive rate (TPR), is the probability of correctly detecting an instance as a malware. On the 
other hand, false positive rate (FPR) is another measurement that is defined as wrongly detecting 
normal traffic as being infected. The higher the TPR, the better is the result. Conversely, the lower 
the FPR, the better is the result. The best results are obtained by combining a simple estimator and 
Geneticsearch; and a simple estimator and LAGDHillClimber - both combinations achieving 83% 
true positive rate. We conducted our experiment in 30 iterations. As the number of iterations goes 
up, the system learns the pattern of the data more accurately. Figure 6 shows the true positive rate 
and the false positive rate for each iteration of the experiment. 

 

Figure 6. True Positive Rate versus False Positive Rate for 30 Iterations 

Figure 6 shows that true positive rate increases from just above 80% to 90% as number of iterations 
goes up. However, false positive rate does not follow the same rate of increase as the true positive 
rate. It starts from 6% and increases to 9%, which is considered as a good result, considering that 
the true positive rate increases by 10%.  

Additionally, we conducted experiments for each malware family to assess effectiveness of 
Android Intent for an individual family. The results are tabulated in Table 7. The experiments are 
conducted on families with highest number of malware samples in our dataset. Since our previous 
results with multinomial algorithm were not encouraging, we use simple estimator for this 
experiment. The lowest detection rate belongs to DroidKungfu family. This malware gains root 
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access in the device and installs an application called legacy that pretends to be a legitimate Google 
Search application bearing the same icon. The DroidKungfu then performs its malicious activities 
through the legacy application [39]. We believe that such strategy makes it trickier to detect, since 
malicious activities are performed by an agent application other than the main one. Other malware 
families show relatively high to high detection results.  

Table 7. The results of Android Intent Experiments for Each Malware Family 

 K2 Geneticsearch HillClimber LAGD 
HillClimber 

Number 
of 

malwares 

FakeInstaller TPR 85.78% 84.02% 84.91% 84.02% 925 FPR 14.21% 15.97% 15.08% 15.97% 

DroidKungFu TPR 76.41% 76.14% 76.41% 76.14% 667 FPR 23.58% 23.85% 23.58% 23.85% 

Plankton TPR 79.59% 79.59% 79.34% 79.54% 625 FPR 20.40% 20.40% 20.65% 20.45% 

Opfake TPR 93.06% 93.06% 92.76% 93.06% 613 FPR 6.93% 6.93% 7.23% 6.93% 

GinMaster TPR 77.35% 77.35% 77.15% 77.58% 339 FPR 22.64% 22.64% 22.84% 22.41% 

BaseBridge TPR 81.96% 81% 83% 80.17% 330 FPR 18.03% 19% 17% 19.82% 

Iconosys TPR 76.74% 76.87% 76.74% 76.87% 152 FPR 23.25% 23.12% 23.25% 23.12% 

FakeDoc TPR 81.89% 81.65% 81.89% 81.65% 132 FPR 18.10% 18.34% 18.10% 18.34% 

Geinimi TPR 87.39% 87.39% 79.91% 80.55% 92 FPR 12.60% 12.60% 20.08% 19.44% 
 Total 3,875 

 
It is necessary to verify that Android Intent is in fact an effective feature, and our results are not 
just a fluke. Therefore, we conduct experiments using both features – Android permissions and 
Android Intents. This is essential to show that the features are not overlapping, and Android Intent 
can really increase the detection rate. Table 8 represents results of experiments on combination of 
Android Permissions and Android Intents. Not only are the results show that Android Intent - 
explicit and implicit - is an effective feature, it also boosts other features - i.e. Android permissions 
- in malware detection. 

It is worth noting that the choice of Android permissions in this study is based on the fact that this 
feature has been widely explored and its importance and effectiveness has been established. 
Feizollah et al. [40] conducted an extensive study on Android features. Among static features, 
Android permission is the most used features. Various approaches have been taken to analyze 
Android permissions. Authors of [41], [42], [43], [44] used permissions to evaluate applications 
and rank them based on possible risk. Numerous studies simply extracted permissions and utilized 
machine learning to detect malicious application, [45], [46], [47],[48]. Researchers in [49], [50] 



argue that merely analyzing requested permissions is not sufficient for detecting malicious 
applications. They analyzed used permissions in addition to requested permissions in order to 
detect malware. AppGuard [51] has gone one step further and has extended Android’s permission 
system to alleviate current vulnerabilities. They claim that their system is a practical extension for 
Android permission system as it is possible to use it on devices without any modification or root 
access. As a result, Android permissions is a strong candidate for this paper in order to compare it 
with Android Intents.   

Table 8. Results of Experiments Using Both Permissions and Intents 

 Simple Estimator 
 TPR FPR 
K2 95.5% 4.4% 
Geneticsearch 95.4% 4.5% 
HillClimber 95.5% 4.4% 
LAGDHillClimber 95.4% 4.5% 

 
5.2.2. Efficiency 

Besides evaluating the effectiveness of our system, we calculated the time taken by each 
combination to produce the results, as shown in Table 9. 

Table 9. Time Taken to Produce Results (seconds) 

 Android Permission Android Intent 
 Simple Estimator Multinomial Simple Estimator Multinomial 
K2 0.06 0.89 0.01 0.07 
Geneticsearch 2.86 Null 0.91 Null 
HillClimber 0.02 0.87 0.01 0.07 
LAGDHillClimber 0.05 Null 0.05 Null 

 
Based on Table 9, results in Android permission are produced faster when the simple estimator 
and HillClimber are combined. With regard to Android Intent, combining the simple estimator 
with LAGDHillClimber achieved true positive rate of 91% in less time than Geneticsearch.  

In addition, we show the Receiver Operating Characteristic (ROC) curve for the best results of 
permission and Intent. The ROC curve is normally used to measure performance in detecting 
intrusions. It indicates how the detection rate changes, as the internal threshold is varied to generate 
more or fewer false alarms. It plots intrusion detection accuracy against false positive probability. 
ROC curves signify the tradeoff between false positive and true positive rates, which means that 
any increase in the true positive rate is accompanied by a decrease in the false positive rate. As the 
ROC curve line is closer to the left-hand border and the top border, it indicates that it produces the 
best results among other curves. The ROC curves for Android permission and Android Intent are 
shown in Figure 7. 



 

Figure 7. ROC Curve for Android Permission and Android Intent 

The ROC curves are difficult to compare, as they seem to be almost similar under some situations, 
therefore, the area under the curve (AUC) is used to measure the accuracy of detection. An area of 
1 means a perfect result, while an area of 0.5 is a worthless result. The AUC point system is as 
follows: 0.90 - 1.00 = excellent (A); 0.80 - 0.90 = good (B); 0.70 - 0.80 = fair (C); 0.60 - 0.70 = 
poor (D); and 0.50 - 0.60 = fail (F). The AUC of Android permissions is 0.7897, and Android 
Intent is 0.8929. This shows that Android Intent performed better.  

The nature of AndroDialysis raises concerns about battery consumption of the device. Running 
our malware detector on the device does not consume too much battery. To address this issue, we 
measured power consumed by our application. Additionally, the measurement is performed for 
three popular applications. These applications are selected from three categories of popular 
activities: games, online social networking, and multimedia [52].  

The experiments have been conducted in a Google Nexus One smartphone. Power consumption 
has been measured by applying a battery tests involving mainly computation capabilities. The 
device was previously instrumented with AppScope [53], an energy metering framework based on 
monitoring kernel activity for Android. AppScope collects usage information from the monitored 
device and estimates the consumption of a running application using an energy model given by 
DevScope [54]. AppScope provides the amount of energy consumed by an app in the form of 
several time series, each one associated with a component of the device - CPU, Wi-Fi, cellular, 
touchscreen, etc. We restrict our measures to CPU for computations, as our tests do not have 
communications nor a graphical user interface at computation stage. Note that we do not require 
user interaction to analyze applications and, therefore, do not report measurements in any other 
component. 

Table 10 Shows outcomes of the measurement during 10 minutes of usage. The AndroDialysis 
consumes 23.25 joules for testing one application on the device. Thus, we assume a number N=20 
for the average number of applications a user has on the device and multiply N by 23.25 joules. 
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We have to mention that this is subject to the size of applications, and that although there might 
be larger apps, this measurement still gives an estimation of the power consumption. 

Table 10. Power Consumption (in Joules) of Three Popular Applications and AndroDialysis 
During 10 Minutes Usage 

Application CPU Communications Display Total 
YouTube 30.11 12.59 508.90 551.59 
MX Moto 129.24 5.75 509.54 644.52 
Facebook 137.76 27.42 471.42 637.27 

AndroDialysis 23.25 0 0 465 (23.25×20) 
 
It is necessary to discuss re-running time. The AndroDialysis should only be executed every time 
a user installs a new application. Thus, if a user installs 20 applications in a period of one month, 
our tool would consume 20 × 23.25 = 465 joules after a month, which is less than running YouTube 
application during 10 minutes. Figure 8 shows power consumption of AndroDialysis in Watt unit. 
It is worth mentioning that Joules unit is calculated using  𝐸(𝑗) =  𝑃(𝑤) ×  𝑡(𝑠) equation, where unit 
of power is Watt and unit of time is seconds. 

 

Figure 8. Power Consumption of AndroDialysis in our Experiment 

6. Related Works 

Many studies have been conducted to address the problem of the rapid growth of mobile malware. 
We discuss recent researches related to this paper.  

Barrera et al. [55] performed permission-based analysis on 1,100 Android applications using self-
organizing maps algorithm. From the results, they observed that certain permissions are used in 



applications with similar pattern. They also concluded that there are pairs of permissions requested 
by some types of applications. They mentioned, however, that their analysis does not include any 
malware, and they had merely examined available applications in the market. Zhou et al. [56] 
conducted permission-based analysis, and the results show a high false positive rate of 40%. As a 
result, manual analysis was conducted to reduce the false positive rate. Grace et al. [44] developed 
RiskRanker that ranks applications based on certain defined rules. If an application satisfies a rule, 
it is ranked as high, medium, or low, as the case may be. Similarly, Chakradeo et al. [18] introduced 
MAST that uses multiple correspondence analysis (MCA) to analyze the applications attributes. 
They used a questionnaire and poll selection to identify malicious applications. RiskRanker and 
MAST employed rules and polls to detect malware. When an unknown malware appears, they 
need to add a new rule and poll to detect it. The rules might not be applicable to all known malware, 
as there are too many malwares in existence. 

Some researchers integrated Intent as examining features in their systems. Intent is one of eight 
feature sets that DREBIN [11] extracts for examination. It used machine-learning methods on 
feature sets to detect malicious applications. A3 [20] is another system that mentioned Intent as 
one of three extracted features. It utilized heuristic algorithm for detection. DroidMat [57] includes 
Intent in the feature sets. It extracts permission, API calls, Intent, as well as performs deployment 
of components. It then employs various machine-learning methods to evaluate applications and 
identify malicious ones. MAST [18] includes Intent extracted from AndroidManifest.xml file as 
its examining feature. As mentioned above, implicit and explicit Intents are as important as Intent 
in XML file.  

Chin et al. [38] developed a system that analyzes inter-application communications (includes 
explicit and implicit Intents) in developers’ applications for analyzing and detecting malware. 
They also guide developers on using Intents correctly to avoid attacks - application hijacking. 
Apposcopy [19] is a malware detection tool that integrates static taint analysis and Intent analysis 
(explicit and implicit) to generate a signature for applications. However, this system adopts a 
signature-based approach that is unable to detect unknown malware. Octeau et al. [58] tried to 
solve the problem of Multi-Valued Composite (MVC) constant propagation. They used COAL 
declarative language to build a solver to find all the values of complex objects that may have 
multiple fields, taking into consideration the correlations between the fields. This method can be 
applied to a wide variety of static program analyses where the range of values of objects needs to 
be determined, including Android Intent. However, attackers can simply modify their code and 
use various methods of obfuscation to mislead such systems. IccTA [59] analyzes inter-component 
communications in Android applications. They include explicit and implicit Intent, since they are 
essential part of Android’s internal communication mechanisms. They focus on detecting 
applications with privacy leaks using data flow analysis. Although this approach outperforms 
similar systems, it is unable to analyze the multi-threading part of applications. It also consumes 
too much memory for analyzing some applications. Barros et al. [60] analyzed data flow of Intent 
in Android by using pattern of Android Intent in Java code as well as the syntax and semantics of 
Intent types. Since their work is dependent on data flow analysis, it is not immune to obfuscation 
methods. This approach pays little attention to analyzing explicit and implicit Intents; nevertheless, 
we believe that it is very effective for malware detection. In this paper, we use intelligent learner 



for detection. In this context, we extracted and used permission, explicit Intent and implicit Intent 
from a large dataset to produce accurate results. 

 

7. Conclusions 

In this paper, we explored Android Intent – explicit and implicit - as a feature for malware 
detection, and experimented with Android permission for comparison. The results show that the 
use of Android Intent in our approach not only achieves higher detection rate, but it is also faster 
in completing the detection process. We also verified our results by experimenting on combination 
on Android Intent and Android permission, to show that these features do not overlap. Thus, to 
answer the first question, Android Intent is a plausible feature in malware detection. In addition, 
combining the simple estimator with LAGDHillClimber is the best configuration for Bayesian 
Network algorithm to achieve higher detection rate and faster detection. In conclusion, we declare 
that Android Intent is indeed more effective than Android permission in malware detection. As a 
result of this work, it behooves researchers to emphasis on Android Intents (explicit and implicit) 
for mobile malware detection. It is beneficial to develop new detection methods as attackers 
change their strategy frequently to avoid the current detection methods.  

We are determined to develop comprehensive methods based on this work in conjunction with 
dynamic analysis to tackle mobile malware. In addition, the graphical user interface will be 
improved to show list of applications that are considered malware, and why our application 
considers it malicious. This way, the AndroDialysis learns about applications, which makes it 
smarter. Additionally, the user will be presented with options on how to deal with malicious 
applications.  
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