
AndroDialysis: Analysis of Android Intent Effectiveness in Malware
Detection

Ali Feizollaha,1, Nor Badrul Anuara, 1, Rosli Salleha, Guillermo Suarez-Tangilb,2, Steven Furnellc
aDepartment of Computer System and Technology, Faculty of Computer Science and Information Technology,

University of Malaya, 50603, Kuala Lumpur, Malaysia
bComputer Security (COSEC) Lab, Department of Computer Science, Universidad Carlos III de Madrid,

28911 Leganes, Madrid, Spain
cCentre for Security, Communications and Network Research, School of Computing, Electronics and Mathematics,

Plymouth University, Drake Circus, Plymouth, PL4 8AA, UK

Abstract

The wide popularity of Android systems has been accompanied by increase in the number of
malware targeting these systems. This is largely due to the open nature of the Android framework
that facilitates the incorporation of third-party applications running on top of any Android device.
Inter-process communication is one of the most notable features of the Android framework as it
allows the reuse of components across process boundaries. This mechanism is used as gateway to
access different sensitive services in the Android framework. In the Android platform, this
communication system is usually driven by a late runtime binding messaging object known as
Intent. In this paper, we evaluate the effectiveness of Android Intents (explicit and implicit) as a
distinguishing feature for identifying malicious applications. We show that Intents are
semantically rich features that are able to encode the intentions of malware when compared to
other well-studied features such as permissions. We also argue that these type of feature is not the
ultimate solution. It should be used in conjunction with other known features. We conducted
experiments using a dataset containing 7,406 applications that comprise of 1,846 clean and 5,560
infected applications. The results show detection rate of 91% using Android Intent against 83%
using Android permission. Additionally, experiment on combination of both features results in
detection rate of 95.5%.

Keywords: mobile malware, android, intent, smartphone security, static analysis

1. Introduction

Smartphones have emerged as popular portable devices with increasingly powerful computing,
networking and sensing capabilities, and they are now far more powerful than early personal
computers (PCs). In addition, their popularity has been repeatedly corroborated by recent surveys
[1]. The combination of device capability and popularity has served to make them an attractive
target for malware. Accordingly, malware is quickly permeating most popular Android-based
applications markets. In the case of official applications market (Google Play), operators are
generally more concerned about the security aspect of the software they distribute. For instance,

1 Corresponding Author
2 Currently at Royal Holloway University of London. Email: guillermo.suarez-tangil@rhul.ac.uk

Email addresses: ali.feizollah@siswa.um.edu.my (Ali Feizollah), badrul@um.edu.my(Nor Badrul Anuar),
rosli_salleh@um.edu.my (Rosli Salleh), guillermo.suarez.tangil@uc3m.es (Guillermo Suarez-Tangil)
S.Furnell@plymouth.ac.uk (Steven Furnell)

mailto:S.Furnell@plymouth.ac.uk

Google Play employs a review system to vet potentially dangerous applications [2]. Despite all
these efforts, commercial surveys still report a large number of malicious applications attacking
the Android markets. For instance, GData reported nearly half a million new Android malware in
20153. More recently, new malware such as the BrainTest [3], have succeeded in infecting over
half a million Android devices, targeting Google Play in particular. Many recent studies have
resulted in a number of automated approaches to tackle the spread of malware [4] [5] [6] [7]. Static
analysis techniques, which have traditionally been used for detecting malware targeting desktop
computers, have recently gained popularity as effective measures for the protection of mobile
applications [8]. In particular, static approaches aim at detecting Android malware by analyzing
their permission usage [9], mining their code structures [10], understanding the components they
used [11], and monitoring the APIs they invoked [11] [12] [13]. Inter-process communication is
one of the most notable features of the Android framework as it allows the reuse of components
across process boundaries. It is used as gateway to access different sensitive services in the
Android framework. In the Android platform, this communication system is usually driven by a
late runtime binding messaging object known as Intent. Intent objects provide an abstract
definition of the operations an application intends to perform.

The rich semantics encoded in this type of component indicate that Intent could be used to
characterize malware. For instance, the listing in Table 1 shows an excerpt of Intent actions used
in a legitimate banking application and the actions stipulated in the infected version of the same
application. In this example, it is obvious that the infected version of the application is subscribing
to a notification service that will be triggered by the Android OS whenever the
BOOT_COMPLETED event occurs. In addition, SMS_RECEIVED allows the subscriber to
access all incoming SMS messages [14]. While the former action is used by the malware as a form
of evasion, the latter is used to steal the Transaction Authorization Code (TAC) [15] [16].

Table 1. Intent Section of Clean and Infected Versions of Zurich Cantonal Bank Application

Clean Version Infected Version

android.intent.action.MAIN
android.intent.action.MAIN

android.intent.action.BOOT_COMPLETED
android.provider.Telephony.SMS_RECEIVED

In this paper, we propose AndroDialysis4, a system that analyzes two different types of Intent
objects, i.e.: implicit and explicit Intents. To evaluate the effectiveness of the proposed system, we
will compare our results with that from a baseline detection system that uses similar level of
granularity, and we will then analyze the permissions usage. In summary, we make the following
contributions in this paper:

1. We propose the use of Android Intents (implicit and explicit) for detecting Android
malware. The usage of Intents will be extracted from both clean and infected applications
in a dataset containing 7,406 applications.

3 www.gdata-software.com
4 Android Deep Intent Analysis

2. We extract permissions used by each application and evaluate the effectiveness of our
approach when compared to the use of permissions. We also conduct experiment on
combination of Android permission and Android Intent to verify that they are not
overlapping.

3. We also compare the time taken to process permissions and Intents in our experiments, as
it is important to determine which component of the Android file is faster and more
efficient. Furthermore, we calculated power consumption of AndroDialysis and compared
it with three popular applications.

This paper is organized as follows: Section 2 explains in detail Android Intent, and presents a
snippet code for implicit and explicit Intents, respectively. Section 3 discusses the method of data
collection and analysis of the dataset, analyzing the permission and Intent. Section 4 describes the
proposed system and its various modules and sub-modules. Section 5 presents details of
experiments and the results obtained, as well as evaluation of the proposed system. Section 6
reviews related works done by other researchers, and highlights their weaknesses and strengths.
Section 7 concludes this paper by summarizing main findings from this research.

2. Android Intent

Intent is a complex messaging system in the Android platform, and is considered as a security
mechanism to hinder applications from gaining access to other applications directly. Applications
must have specific permissions to use Intents. This is a way of controlling what applications can
do once they are installed in Android. Intent-filter - defined in AndroidManifest.xml file -
announces the type of Intent the application is capable of receiving.

Applications use Intents for intra-application and inter-application communications. Intra-
application communication takes place inside an application between activities. An Android
application consists of many activities, each referring to buttons, labels, and texts available on a
single page of the application, with which the user interacts. When interacting with the application,
the user moves from activity to activity (i.e. from page to page). Android Intents assist developers
in performing interactions among the activities. Furthermore, Intents are used in pushing data from
one activity to another, carrying the results at the end of any particular activity [17].

Inter-application communication is achieved when applications send messages or data to other
applications through Intent. The applications should also be able to receive data from other
applications. To receive Intents, applications must define what type of Intent they accept in the
Intent section of AndroidManifest.xml file, as intent-filter. Many past studies [18] [19] [20]
referred to this type of Intent. The actual communication between two applications is done through
the Binder, which handles all inter-process communications. The Binder provides the features for
binding functions and data between one execution environment and another, as each Android
application runs in its own Dalvik5 environment. The Intent mechanism is considered higher than
Binder, hence, it is built on top of Binder.

5 Each Android application runs in its own Dalvik virtual machine, which is separate from other applications. An Android device
can run multiple Dalvik virtual machines for each application efficiently. Applications communicate through Android Intent.
Additionally, they can share data using content providers.

Figure 1. Inter-application Communication Using Android Intent and Binder

Figure 1 shows the architecture of inter-application communication. The Binder driver manages
part of the address space of each application and makes it as read-only and all writing is done by
the kernel section of Android. When application A sends a message to application B, the kernel
allocates some space in the destination applications memory, and copies the message directly from
the sending application. It then queues a short message to the receiving application telling it the
location of the received message. The recipient can then access that message directly because it is
in its own memory space. When application B has finished processing the message, it notifies the
Binder driver to mark the memory as free [21].

There are two types of Intent: explicit and implicit. When developers know exactly what
component to use to perform a specific action, they use explicit Intent. This component can be any
activity, service, or broadcast receiver. Explicit Intent is used for intra-application and inter-
application communications, and developers use this type of Intent to navigate from an activity to
another activity inside applications, as well as to exchange messages between applications. For
instance, there are some applications, which are used for browsing, such as the default browser on
the device or Google Chrome. Developers use explicit Intent to request Android to open a link
specifically using Google Chrome. On the other hand, developers use implicit Intent and ask
Android to open a link, but they do not specify the exact target application. In response, Android
offers a list of all applications capable of opening a link to the user. Such a list is populated based
on the intent-filter section of AndroidManifest.xml files. In our study, our aim is to extract both
implicit and explicit Intents and conduct a comprehensive evaluation of their effectiveness in
malware detection.

Intents have three components - action, category, and data. The action component describes what
kind of action is to be executed by the Intent such as MAIN, CALL, BATTERY LOW, SCREEN
ON, and EDIT. Intents specify the category they belong to, such as LAUNCHER, BROWSABLE
and GADGET. The data components provide the necessary data to the action component. For
instance, CALL action requires phone number, and EDIT action needs document or HTTP URL
to complete the action. Table 2 shows a sample code of explicit and implicit Intents.

Application A Application B
Conceptual Function Call

Binder

Android Kernell

IntentIntent

Actual Function Call

Table 2. Sample Code Snippet of Explicit and Implicit Intents

Explicit Intent Implicit Intent
String url=”www.yahoo.com”;
Intent explicit=new Intent(Intent.ACTION_VIEW);
explicit.setData(Uri.parse(url));
explicit.setPackage(”com.android.chrome”);
startActivity(explicit)

String url=”www.yahoo.com”;
Intent implicit=new Intent(Intent.ACTION_VIEW);
implicit.setData(Uri.parse(url));
startActivity(implicit);

Table 2 shows that implicit Intent uses Intent.ACTION_VIEW to open the specified URL.
However, explicit Intent states the exact component name - in this case com.android.chrome - to
open the URL.

3. Data Collection and Analysis

For our experiment, we used real-world applications that include both clean and infected
applications. We gathered clean applications from Google Play6 and scanned them with
VirusTotal7 to ensure the cleanness of the applications. The applications collected include both
free and paid types since ProfileDroid [22] mentioned that paid applications behave differently
from free ones, and it is important to include all such applications. Google Play applications are
categorized into 27 main application categories, and games category has 17 sub-categories. We
gathered samples from 24 main application categories, and 17 games sub-categories to cover a
wide variety of applications, as shown in Table 3.

Table 3. Categories of Gathered Applications

Books & References Medical Tools Games - adventure
Business Weather Games - action Games - strategy
Comics Travel Games - card Games - simulation
Communication Photography Games - casino Games – family
Education Productivity Games - casual Games – racing
Entertainment Shopping Games - educational Games – sports
Finance Social Games - music Games – arcade
Health & Fitness Sports Games - puzzle
Music & Audio Media & Video Games - role playing
News & Magazines Transportation Games - word
Personalization Live Wallpaper Games - board

The clean dataset contains 1,846 applications. Additionally, we used DREBIN [11] as infected
dataset. It is a collection of 5,560 applications from 179 different malware families. We used our
Python code to extract permission and Intent from applications in our dataset. The top 10
permissions of both clean and infected applications are shown in Table 4. Google categorizes
Android permissions into four groups - normal, dangerous, signature, and signatureOrSystem [23].

6 http://play.google.com
7 www.virustotal.com

Table 4. Top 10 Permissions in Clean and Infected Applications

Clean Applications Infected Applications
Permissions Frequency Permissions Frequency

INTERNET 98% INTERNET 98%
ACCESS_NETWORK_STATE 89% READ_PHONE_STATE 89%
WRITE_EXTERNAL_STORAGE 83% WRITE_EXTERNAL_STORAGE 67%
WAKE_LOCK 53% SEND_SMS 54%
READ_PHONE_STATE 52% RECEIVE_SMS 38%
ACCESS_WIFI_STATE 48% WAKE_LOCK 38%
GET_ACCOUNTS 42% READ_SMS 37%
VIBRATE 41% ACCESS_COARSE_LOCATION 32%
BILLING 39% ACCESS_FINE_LOCATION 30%
ACCESS_COARSE_LOCATION 24% READ_CONTACTS 23%

Table 4 also shows that five permissions are common - as highlighted - between clean and infected
applications, such as, INTERNET, WRITE_EXTERNAL_STORAGE, WAKE_LOCK,
ACCESS_COARSE_LOCATION, and READ_PHONE_STATE. However, these applications
have five different permissions among the top 10 permissions. Infected applications request
SEND_SMS, RECEIVE_SMS and READ SMS permissions, which are categorized as dangerous.
In fact, WRITE_SMS, which is also dangerous, should be in the list of top frequent permissions.
It is ranked 11th in our dataset, and it is requested by 22% of infected applications. Therefore, it is
evident that infected applications request four SMS-related permissions to have full access to SMS
functionality of the devices. In our experiment, 30% of infected applications requested the
ACCESS_FINE_LOCATION permission to access precise location, and 33% of them requested
the ACCESS_COARSE_LOCATION permission, which is a common permission, to access
proximate location. In general, the viciousness of infected applications can be gauged through
permissions. We also extracted Intent of applications, as shown in Table 5, which shows top 10
Intents used in clean and infected applications. It is worth noting that the VIEW Intent was
removed from the top 10 Intents, since it is used in all clean and infected applications.

Table 5. Top 10 Intents in Clean and Infected Applications

Clean Applications Infected Applications
Intents Frequency Intents Frequency

SEND_MULTIPLE 45% BOOT_COMPLETED 56%
SCREEN_OFF 23% SENDTO 45%
USER_PRESENT 18% DIAL 42%
SEARCH 17% SCREEN_OFF 37%
PICK 10% TEXT 28%
DIAL 9.5% SEND 27%
GET_CONTENT 9% USER_PRESENT 22%
EDIT 8.7% PACKAGE_ADDED 21%
MEDIA_MOUNTED 8% SCREEN_ON 18%
BATTERY_CHANGED 7% CALL 10%

Malicious applications wait for BOOT_COMPLETED to start their malicious activity. CALL and
DIAL are used for making phone calls. CALL requires CALL_PHONE permission, whereas DIAL
does not require such permission. As it is presented in Table 5, DIAL is used more than CALL,
which allows the malicious application to make a premium phone call without user’s knowledge.

Figure 2. Percent of Applications That Request Specific Number of Permissions

Figure 3. Percent of Applications That Request Specific Number of Intents

Figure 2 shows the percentage of applications that requested permissions - clean and infected - in
two datasets. The graph shows that infected applications request more permissions as there are
spikes at multiple points in the figure. Furthermore, only 2% of clean applications requested
between 35-55 permissions, compared to 7% of infected applications. This is indicative of the
vicious intentions of infected applications.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0 5 10 15 20 25 30 35 40 45 50 55

Pe
rc

en
t o

f A
pp

s
R

eq
ue

st
in

g
X

Pe
rm

is
si

on
s

Number of Permissions

Clean

Infected

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250

Pe
rc

en
t o

f A
pp

s
R

eq
ue

st
in

g
X

In
te

nt
s

Number of Intents

Clean

Infected

Similarly, Figure 3 shows the percentage of applications that requested Intents - implicit and
explicit - in two datasets. When comparing Figure 2 and Figure 3, the difference between their
X-axis is obvious. While permissions have maximum number of 55, number of Intents ends at
250. The wide difference is due to the fact that developers use Intents much more frequently than
permissions in the code to perform actions.

Intent and permission are potentially useful features for Android malware detection. However,
according to Moonsamy et al. [24], there are requested permissions as well as required
permissions. It is possible that actual permissions used by applications are different from the
requested permissions that is sent to the user for approval. On the other hand, Intent reflects the
actual intentions of applications resulting directly from activities. This indicates that Intent is more
effective for malware detection.

4. Mobile Malware Detection System Overview

Figure 4 shows the architecture for our proposed system, AndroDialysis. The top level of the
architecture - Android application framework - refers to applications installed on the device. The
detector module performs the main task of detection. It consists of four sub-modules - decompiler,
extractor, intelligent learner, and decision maker. The system sends the results to users through the
graphical user interface. The following sections describe four sub-modules in more detail.

Figure 4. Overview of AndroDialysis, a Mobile Malware Detection System

4.1. Decompiler

The decompiler sub-module is responsible for dissecting the apk files and decoding its
components. Every apk file has various components. AndroidManifest.xml is a scrambled file and
needs to be decoded in order to make it readable. Similarly, the dex file is a Java source code

Decision Maker

Intelligent Learner

User Interface

Android Application Framework

Features

Extractor
Permission
Intent-filter

Decompiler
dex file xml file

Implicit Intent
Explicit Intent

compiled in Dalvik format and needs to be decompiled. After decompilation, the produced file is
not a pure Java code, but it is easy to read. We used Apktool for decompiling Android files, since
it utilizes the latest Android SDK, which is better in optimizing files [25]. Decompiling files results
in readable AndroidManifest.xml file and generates Smali version of Java code.

4.2. Extractor

The extractor sub-module extracts explicit Intent, implicit Intent, intent-filter, and permission from
Java code and AndroidManifest.xml file for processing in subsequent sub-modules. The
BeautifulSoup package of the Python language is used to extract intent-filter and permission
sections from the AndroidManifest.xml file [26]. In order to extract Intents from Java code, we
used Androguard to reverse dex files and get Intents (implicit and explicit) from the code. The
extracted data are stored in a features database for use in the next process. Furthermore, a copy of
data is sent to the decision maker sub-module for determining maliciousness of the data, which
will be discussed in section 4.4.

4.3. Intelligent Learner

This sub-module takes data from the features database and uses Bayesian Network algorithm to
learn pattern of the data. It then sends output model to the decision maker sub-module. The
Bayesian Network algorithm [27] was chosen to evaluate our system because it has been
successfully used in real-world problems, for example Cohen et al. [28] used Bayesian Network
in human facial expression recognition and achieved a good performance. It is a dual-process
algorithm, it first learns network structure, and then it learns probability tables. Bayesian Network
uses local score metrics to learn the network structure of data. It is considered an optimization
problem in which the quality of the network is optimized. To calculate the local score, Bayesian
Network employs search algorithms. Once the network structure of data has been learned,
Bayesian Network utilizes estimators to learn the probability tables [29]. Two widely used
estimators are simple estimator, and multinomial estimator. The aforementioned two steps are
defined as follows:

Suppose that 𝑉 = {𝑥1, … … . . , 𝑥𝑘}, 𝑘 ≥ 1 is a set of variables. Bayesian Network B over V is a
network structure BS that is a directed acyclic graph known as DAG over the set of variables V. It
is also a set of probability tables 𝐵𝑃 = {𝑝(𝑣|𝑝𝑎(𝑣))|𝑣 ∈ 𝑉} where 𝑝𝑎(𝑣) is the set of parents of
v in BS. Finally, a Bayesian Network represents a probability distribution
𝑃(𝑉) = ∏ 𝑝(𝑣|𝑝𝑎(𝑣))𝑣∈𝑉 .

Compared to other algorithms, the Bayesian Network has the following advantages:

x It is a fast algorithm with low computational overhead once trained.
x It has the ability to model both expert and learning systems with relative ease. It integrates

probabilities into the system. It is also considered as a performance-tuning tool, but without
incurring computational overhead.

x Many outstanding real-world applications have used this algorithm and have performed
comparably well against other state-of-the-art algorithms [29].

As mentioned above, Bayesian Networks are collections of directed acyclic graphs (DAGs), where
the nodes are random variables, and where the arcs specify the independence assumptions between
these variables. It is difficult to search the Bayesian Network that best reflects the dependence
relationship in a database of cases because of the large number of possible DAG structures, given
even a small number of nodes to connect. As a result, researchers have developed various search
algorithms to overcome this problem. In this paper, we use four search algorithms for our
experiments –K2, Geneticsearch, HillClimber, and LAGDHillClimber algorithms.

K2 algorithm heuristically searches for the most probable belief network structure in a given
database of cases, which includes different combinations of values for attributes [30].
Geneticsearch algorithm uses the genetic algorithm to find the optimum result in a Bayesian
Network. The algorithm is based on the mechanics of natural selection and natural genetics.
Although it is capable of solving complex problems, it is a time-consuming algorithm for some
data (see Table 9) [31]. It combines survival of the fittest among string structures with a structured,
yet randomized, information exchange to form a search algorithm that under certain conditions
evolves into the optimum with a probability that is arbitrarily close to one [32].

The HillClimber search algorithm starts learning by initializing the structure of Bayesian
Network. Unlike previous algorithms that potentially get stuck in the search process, the Hill
Climber solved that problem [33]. Each possible arc from any node is then evaluated using leave-
one-out cross validation to estimate the accuracy of the network with that arc added. If no arc
shows any improvement in accuracy, the current structure is determined. An arc that has the most
improvement is retained, but the node the arc points to is removed. This process is repeated until
there is just one node remaining, or no arc can further be added to improve the classification
accuracy [34]. The LAGDHillClimber search algorithm uses a Look Ahead Hill Climbing
algorithm. Unlike Hill Climber, it does not calculate a best arc (by adding, deleting or reversing
an arc), but it considers a sequence of best arcs instead of considering the best arc at each step.
Since it is very time-consuming to find the best sequence among all the possible arcs, it must first
find a set of good arcs and then find the best sequence of arcs among them [35]. Such improvement
over Hill Climber algorithm, results in better performance (see Table 6).

We evaluate the performance of Bayesian Network using k-fold cross validation. In this method,
the dataset is divided into k subsets, and the holdout method is repeated k times. Each time, one of
the k subsets serves as the test set and the other k-1 subsets are compiled to form a training set.
Then, the average error across all k trials is computed. The advantage of this method is that it
matters less how the data is divided. Every data point gets to be in a test set exactly once, and in a
training set k-1 times. The variance of the resulting estimate is reduced as k increases [6].
Specifically, a 10-fold option is used, which is described as applying the classifier to data 10 times
and every time the dataset is divided into 90:10 groups - 90% of data used for training, and 10%
used for testing, which is widely used among researchers [36]. At the end, this sub-module
produces a model - based on available data in the features database - that is used for detection
purpose. It is worth noting that the intelligent learner is constantly learning from the data added to
the features database.

4.4. Decision Maker

The decision maker sub-module is responsible for determining whether the data is clean or
malicious. It receives two sets of data from the extractor and the intelligent learner sub-modules.
A set of data from the intelligent learner sub-module contains a produced model based on the
collection of data in the features database. The model is then used to vet the data received from
extractor sub-module. Another set of data that is received from the extractor sub-module contains
extracted data of one application. The decision maker sub-module utilizes the model to determine
the maliciousness of the application. The final decision is passed to the user interface module,
which prepares appropriate message for the user and presents it through the graphical user
interface, as shown in Figure 5. Such design of the decision maker sub-module ensures faster
detection and higher performance, as it was adopted by Shabtai et al. [37].

Figure 5. Screenshot of the Results Presented to the User

5. Results and Discussion

In this section, we discuss our results and findings. It is important to restate that the purpose of this
paper is to study the effectiveness of Android Intent (implicit and explicit) in malware detection,
and not malware detection per se. We present the results from experiments conducted on

permissions, Intents, and both in Android malware detection. Additionally, to get a better
assessment of the current development of Android Intent, we analyzed our datasets.

5.1. Intent Analysis and Attacks

We analyze Intents in our datasets from the security standpoint to assess the current status or
importance of Intents. As mentioned in section 2, implicit Intent does not specify its destination
component. However, it is offered to entities that can receive specific type of Intent. Therefore,
when an application sends an implicit Intent, there is no guarantee that the Intent will be received
by the intended recipient. A malicious application can intercept an implicit Intent simply by
declaring an intent-filter - in AndroidManifest.xml file - with all the actions, data, and categories
listed in the Intent. This situation - unauthorized Intent receipt - causes the malicious application
to gain access to all the data in any matching Intent, resulting in activity hijacking [38].

In our dataset, infected applications declare intent-filter 7.5 times more than clean applications.
On an average, each clean application declares 1.18 intent-filters, whereas each infected
application declares 1.61 intent-filters. Thus, it is evident that infected applications tend to
intercept Intents using intent-filters until they succeed in hijacking the activities.

In view of this threat, it is suggested that developers use explicit Intent so that the recipient is
clearly specified in order to hinder malicious applications from hijacking the activities. We have
analyzed our dataset with regard to this threat, and found that 28.78% of Intents used were implicit
and 71.22% were explicit. In general, developers are doing what is appropriate; nevertheless, it is
essential to stay vigilant, as attackers are known to change their attack plan frequently.

5.2. Experimental Results

This experiment was performed on a Sony Xperia Z3 Compact device, model D5803. It is running
Android Marshmallow, version 6.0.1 with latest updates. The device has 2GB of RAM and 16GB
of storage.

We aim to answer the following research questions. A. Is Intent a plausible feature for Android
malware detection? B. What are best configurations in Bayesian Network that produce the best
results? C. How effective is Android Intent compared to Android permission?

5.2.1. Effectiveness

We employed Bayesian Network with different configurations for our experiment. As discussed
earlier, Bayesian Network uses a search algorithm for calculating the local score metrics, and an
estimator algorithm for learning the probability table. In order to achieve the best results, we
experimented with different configurations, and the results are presented in Table 6. The table
shows results of permission and Intent with simple estimator and multinomial estimator
algorithms; and K2, Geneticsearch, HillClimber, and LAGDHillClimber as search algorithms.

Table 6. Results of Android Permission and Android Intent Experiments

 Android Permission Android Intent
 Simple Estimator Multinomial Simple Estimator Multinomial
 TPR FPR TPR FPR TPR FPR TPR FPR
K2 82% 18% 24% 76% 89% 11% 19% 81%
Geneticsearch 83% 17% Null Null 91% 9% Null Null
HillClimber 82% 18% 24% 76% 89% 11% 19% 81%
LAGDHillClimber 83% 17% Null Null 91% 9% Null Null

The results of experiments reflect the performance of our method. Detection rate, also known as a
true positive rate (TPR), is the probability of correctly detecting an instance as a malware. On the
other hand, false positive rate (FPR) is another measurement that is defined as wrongly detecting
normal traffic as being infected. The higher the TPR, the better is the result. Conversely, the lower
the FPR, the better is the result. The best results are obtained by combining a simple estimator and
Geneticsearch; and a simple estimator and LAGDHillClimber - both combinations achieving 83%
true positive rate. We conducted our experiment in 30 iterations. As the number of iterations goes
up, the system learns the pattern of the data more accurately. Figure 6 shows the true positive rate
and the false positive rate for each iteration of the experiment.

Figure 6. True Positive Rate versus False Positive Rate for 30 Iterations

Figure 6 shows that true positive rate increases from just above 80% to 90% as number of iterations
goes up. However, false positive rate does not follow the same rate of increase as the true positive
rate. It starts from 6% and increases to 9%, which is considered as a good result, considering that
the true positive rate increases by 10%.

Additionally, we conducted experiments for each malware family to assess effectiveness of
Android Intent for an individual family. The results are tabulated in Table 7. The experiments are
conducted on families with highest number of malware samples in our dataset. Since our previous
results with multinomial algorithm were not encouraging, we use simple estimator for this
experiment. The lowest detection rate belongs to DroidKungfu family. This malware gains root

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30

R
at

e

Number of Iterations

TPR
FPR

access in the device and installs an application called legacy that pretends to be a legitimate Google
Search application bearing the same icon. The DroidKungfu then performs its malicious activities
through the legacy application [39]. We believe that such strategy makes it trickier to detect, since
malicious activities are performed by an agent application other than the main one. Other malware
families show relatively high to high detection results.

Table 7. The results of Android Intent Experiments for Each Malware Family

 K2 Geneticsearch HillClimber LAGD
HillClimber

Number
of

malwares

FakeInstaller TPR 85.78% 84.02% 84.91% 84.02% 925 FPR 14.21% 15.97% 15.08% 15.97%

DroidKungFu TPR 76.41% 76.14% 76.41% 76.14% 667 FPR 23.58% 23.85% 23.58% 23.85%

Plankton TPR 79.59% 79.59% 79.34% 79.54% 625 FPR 20.40% 20.40% 20.65% 20.45%

Opfake TPR 93.06% 93.06% 92.76% 93.06% 613 FPR 6.93% 6.93% 7.23% 6.93%

GinMaster TPR 77.35% 77.35% 77.15% 77.58% 339 FPR 22.64% 22.64% 22.84% 22.41%

BaseBridge TPR 81.96% 81% 83% 80.17% 330 FPR 18.03% 19% 17% 19.82%

Iconosys TPR 76.74% 76.87% 76.74% 76.87% 152 FPR 23.25% 23.12% 23.25% 23.12%

FakeDoc TPR 81.89% 81.65% 81.89% 81.65% 132 FPR 18.10% 18.34% 18.10% 18.34%

Geinimi TPR 87.39% 87.39% 79.91% 80.55% 92 FPR 12.60% 12.60% 20.08% 19.44%
 Total 3,875

It is necessary to verify that Android Intent is in fact an effective feature, and our results are not
just a fluke. Therefore, we conduct experiments using both features – Android permissions and
Android Intents. This is essential to show that the features are not overlapping, and Android Intent
can really increase the detection rate. Table 8 represents results of experiments on combination of
Android Permissions and Android Intents. Not only are the results show that Android Intent -
explicit and implicit - is an effective feature, it also boosts other features - i.e. Android permissions
- in malware detection.

It is worth noting that the choice of Android permissions in this study is based on the fact that this
feature has been widely explored and its importance and effectiveness has been established.
Feizollah et al. [40] conducted an extensive study on Android features. Among static features,
Android permission is the most used features. Various approaches have been taken to analyze
Android permissions. Authors of [41], [42], [43], [44] used permissions to evaluate applications
and rank them based on possible risk. Numerous studies simply extracted permissions and utilized
machine learning to detect malicious application, [45], [46], [47],[48]. Researchers in [49], [50]

argue that merely analyzing requested permissions is not sufficient for detecting malicious
applications. They analyzed used permissions in addition to requested permissions in order to
detect malware. AppGuard [51] has gone one step further and has extended Android’s permission
system to alleviate current vulnerabilities. They claim that their system is a practical extension for
Android permission system as it is possible to use it on devices without any modification or root
access. As a result, Android permissions is a strong candidate for this paper in order to compare it
with Android Intents.

Table 8. Results of Experiments Using Both Permissions and Intents

 Simple Estimator
 TPR FPR
K2 95.5% 4.4%
Geneticsearch 95.4% 4.5%
HillClimber 95.5% 4.4%
LAGDHillClimber 95.4% 4.5%

5.2.2. Efficiency

Besides evaluating the effectiveness of our system, we calculated the time taken by each
combination to produce the results, as shown in Table 9.

Table 9. Time Taken to Produce Results (seconds)

 Android Permission Android Intent
 Simple Estimator Multinomial Simple Estimator Multinomial
K2 0.06 0.89 0.01 0.07
Geneticsearch 2.86 Null 0.91 Null
HillClimber 0.02 0.87 0.01 0.07
LAGDHillClimber 0.05 Null 0.05 Null

Based on Table 9, results in Android permission are produced faster when the simple estimator
and HillClimber are combined. With regard to Android Intent, combining the simple estimator
with LAGDHillClimber achieved true positive rate of 91% in less time than Geneticsearch.

In addition, we show the Receiver Operating Characteristic (ROC) curve for the best results of
permission and Intent. The ROC curve is normally used to measure performance in detecting
intrusions. It indicates how the detection rate changes, as the internal threshold is varied to generate
more or fewer false alarms. It plots intrusion detection accuracy against false positive probability.
ROC curves signify the tradeoff between false positive and true positive rates, which means that
any increase in the true positive rate is accompanied by a decrease in the false positive rate. As the
ROC curve line is closer to the left-hand border and the top border, it indicates that it produces the
best results among other curves. The ROC curves for Android permission and Android Intent are
shown in Figure 7.

Figure 7. ROC Curve for Android Permission and Android Intent

The ROC curves are difficult to compare, as they seem to be almost similar under some situations,
therefore, the area under the curve (AUC) is used to measure the accuracy of detection. An area of
1 means a perfect result, while an area of 0.5 is a worthless result. The AUC point system is as
follows: 0.90 - 1.00 = excellent (A); 0.80 - 0.90 = good (B); 0.70 - 0.80 = fair (C); 0.60 - 0.70 =
poor (D); and 0.50 - 0.60 = fail (F). The AUC of Android permissions is 0.7897, and Android
Intent is 0.8929. This shows that Android Intent performed better.

The nature of AndroDialysis raises concerns about battery consumption of the device. Running
our malware detector on the device does not consume too much battery. To address this issue, we
measured power consumed by our application. Additionally, the measurement is performed for
three popular applications. These applications are selected from three categories of popular
activities: games, online social networking, and multimedia [52].

The experiments have been conducted in a Google Nexus One smartphone. Power consumption
has been measured by applying a battery tests involving mainly computation capabilities. The
device was previously instrumented with AppScope [53], an energy metering framework based on
monitoring kernel activity for Android. AppScope collects usage information from the monitored
device and estimates the consumption of a running application using an energy model given by
DevScope [54]. AppScope provides the amount of energy consumed by an app in the form of
several time series, each one associated with a component of the device - CPU, Wi-Fi, cellular,
touchscreen, etc. We restrict our measures to CPU for computations, as our tests do not have
communications nor a graphical user interface at computation stage. Note that we do not require
user interaction to analyze applications and, therefore, do not report measurements in any other
component.

Table 10 Shows outcomes of the measurement during 10 minutes of usage. The AndroDialysis
consumes 23.25 joules for testing one application on the device. Thus, we assume a number N=20
for the average number of applications a user has on the device and multiply N by 23.25 joules.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Tr
ue

 P
os

iti
ve

 R
at

e

False Positive Rate

Permission ROC Curve

Intent ROC Curve

We have to mention that this is subject to the size of applications, and that although there might
be larger apps, this measurement still gives an estimation of the power consumption.

Table 10. Power Consumption (in Joules) of Three Popular Applications and AndroDialysis
During 10 Minutes Usage

Application CPU Communications Display Total
YouTube 30.11 12.59 508.90 551.59
MX Moto 129.24 5.75 509.54 644.52
Facebook 137.76 27.42 471.42 637.27

AndroDialysis 23.25 0 0 465 (23.25×20)

It is necessary to discuss re-running time. The AndroDialysis should only be executed every time
a user installs a new application. Thus, if a user installs 20 applications in a period of one month,
our tool would consume 20 × 23.25 = 465 joules after a month, which is less than running YouTube
application during 10 minutes. Figure 8 shows power consumption of AndroDialysis in Watt unit.
It is worth mentioning that Joules unit is calculated using 𝐸(𝑗) = 𝑃(𝑤) × 𝑡(𝑠) equation, where unit
of power is Watt and unit of time is seconds.

Figure 8. Power Consumption of AndroDialysis in our Experiment

6. Related Works

Many studies have been conducted to address the problem of the rapid growth of mobile malware.
We discuss recent researches related to this paper.

Barrera et al. [55] performed permission-based analysis on 1,100 Android applications using self-
organizing maps algorithm. From the results, they observed that certain permissions are used in

applications with similar pattern. They also concluded that there are pairs of permissions requested
by some types of applications. They mentioned, however, that their analysis does not include any
malware, and they had merely examined available applications in the market. Zhou et al. [56]
conducted permission-based analysis, and the results show a high false positive rate of 40%. As a
result, manual analysis was conducted to reduce the false positive rate. Grace et al. [44] developed
RiskRanker that ranks applications based on certain defined rules. If an application satisfies a rule,
it is ranked as high, medium, or low, as the case may be. Similarly, Chakradeo et al. [18] introduced
MAST that uses multiple correspondence analysis (MCA) to analyze the applications attributes.
They used a questionnaire and poll selection to identify malicious applications. RiskRanker and
MAST employed rules and polls to detect malware. When an unknown malware appears, they
need to add a new rule and poll to detect it. The rules might not be applicable to all known malware,
as there are too many malwares in existence.

Some researchers integrated Intent as examining features in their systems. Intent is one of eight
feature sets that DREBIN [11] extracts for examination. It used machine-learning methods on
feature sets to detect malicious applications. A3 [20] is another system that mentioned Intent as
one of three extracted features. It utilized heuristic algorithm for detection. DroidMat [57] includes
Intent in the feature sets. It extracts permission, API calls, Intent, as well as performs deployment
of components. It then employs various machine-learning methods to evaluate applications and
identify malicious ones. MAST [18] includes Intent extracted from AndroidManifest.xml file as
its examining feature. As mentioned above, implicit and explicit Intents are as important as Intent
in XML file.

Chin et al. [38] developed a system that analyzes inter-application communications (includes
explicit and implicit Intents) in developers’ applications for analyzing and detecting malware.
They also guide developers on using Intents correctly to avoid attacks - application hijacking.
Apposcopy [19] is a malware detection tool that integrates static taint analysis and Intent analysis
(explicit and implicit) to generate a signature for applications. However, this system adopts a
signature-based approach that is unable to detect unknown malware. Octeau et al. [58] tried to
solve the problem of Multi-Valued Composite (MVC) constant propagation. They used COAL
declarative language to build a solver to find all the values of complex objects that may have
multiple fields, taking into consideration the correlations between the fields. This method can be
applied to a wide variety of static program analyses where the range of values of objects needs to
be determined, including Android Intent. However, attackers can simply modify their code and
use various methods of obfuscation to mislead such systems. IccTA [59] analyzes inter-component
communications in Android applications. They include explicit and implicit Intent, since they are
essential part of Android’s internal communication mechanisms. They focus on detecting
applications with privacy leaks using data flow analysis. Although this approach outperforms
similar systems, it is unable to analyze the multi-threading part of applications. It also consumes
too much memory for analyzing some applications. Barros et al. [60] analyzed data flow of Intent
in Android by using pattern of Android Intent in Java code as well as the syntax and semantics of
Intent types. Since their work is dependent on data flow analysis, it is not immune to obfuscation
methods. This approach pays little attention to analyzing explicit and implicit Intents; nevertheless,
we believe that it is very effective for malware detection. In this paper, we use intelligent learner

for detection. In this context, we extracted and used permission, explicit Intent and implicit Intent
from a large dataset to produce accurate results.

7. Conclusions

In this paper, we explored Android Intent – explicit and implicit - as a feature for malware
detection, and experimented with Android permission for comparison. The results show that the
use of Android Intent in our approach not only achieves higher detection rate, but it is also faster
in completing the detection process. We also verified our results by experimenting on combination
on Android Intent and Android permission, to show that these features do not overlap. Thus, to
answer the first question, Android Intent is a plausible feature in malware detection. In addition,
combining the simple estimator with LAGDHillClimber is the best configuration for Bayesian
Network algorithm to achieve higher detection rate and faster detection. In conclusion, we declare
that Android Intent is indeed more effective than Android permission in malware detection. As a
result of this work, it behooves researchers to emphasis on Android Intents (explicit and implicit)
for mobile malware detection. It is beneficial to develop new detection methods as attackers
change their strategy frequently to avoid the current detection methods.

We are determined to develop comprehensive methods based on this work in conjunction with
dynamic analysis to tackle mobile malware. In addition, the graphical user interface will be
improved to show list of applications that are considered malware, and why our application
considers it malicious. This way, the AndroDialysis learns about applications, which makes it
smarter. Additionally, the user will be presented with options on how to deal with malicious
applications.

Acknowledgments

This work was supported by the Ministry of Science, Technology, and Innovation, under Grant
eScienceFund 01-01-03-SF0914.

References

[1] Gartner (2015), "PC shipments hit by biggest drop in two years", Available at:
http://www.techradar.com/us/news/computing/pc/pc-shipments-hit-by-biggest-drop-in-
two-years (Accessed: 1st April 2016).

[2] Oberheide J and Miller C (2012), "Dissecting the android bouncer", Proceedings of the
SummerCon, New York, USA.

[3] Polkovnichenko A and Boxiner A (2015), "A new level of sophistication in mobile
malware". Available at: http://blog.checkpoint.com/2015/09/21/braintest-a-new-level-of-
sophistication-in-mobile-malware (Accessed: 1st April 2016).

[4] Aresu M, Ariu D, Ahmadi M, Maiorca D and Giacinto G (2015), "Clustering Android
Malware Families by Http Traffic", Proceedings of the 10th International Conference on
Malicious and Unwanted Software, Puerto Rico.

[5] Tam K, Khan SJ, Fattori A and Cavallaro L (2015), "CopperDroid: Automatic
Reconstruction of Android Malware Behaviors", Proceedings of the Network and
Distributed System Security Symposium (NDSS), San Diego, USA.

http://www.techradar.com/us/news/computing/pc/pc-shipments-hit-by-biggest-drop-in-two-years
http://www.techradar.com/us/news/computing/pc/pc-shipments-hit-by-biggest-drop-in-two-years
http://blog.checkpoint.com/2015/09/21/braintest-a-new-level-of-sophistication-in-mobile-malware
http://blog.checkpoint.com/2015/09/21/braintest-a-new-level-of-sophistication-in-mobile-malware

[6] Feizollah A, Anuar NB, Salleh R, Amalina F, Ma’arof RuR and Shamshirband S (2013),
"A Study Of Machine Learning Classifiers for Anomaly-Based Mobile Botnet Detection",
Malaysian Journal of Computer Science, Vol. 26 No. 4, pp. 251-265.

[7] Narudin FA, Feizollah A, Anuar NB and Gani A (2016), "Evaluation of machine learning
classifiers for mobile malware detection", Soft Computing, Vol. 20 No. 1, pp. 343-357.

[8] Desnos A (2012), "Android: Static Analysis Using Similarity Distance", Proceedings of
the 2012 45th Hawaii International Conference on System Science (HICSS), Maui, USA,
pp. 5394-5403.

[9] Zhang Y, Yang M, Xu B, Yang Z, Gu G, Ning P, Wang XS and Zang B (2013), "Vetting
undesirable behaviors in android apps with permission use analysis", Proceedings of the
2013 ACM SIGSAC Conference on Computer & Communications Security, Berlin,
Germany.

[10] Suarez-Tangil G, Tapiador JE, Peris-Lopez P and Blasco J (2014), "Dendroid: A text
mining approach to analyzing and classifying code structures in Android malware
families", Expert Systems with Applications, Vol. 41 No. 4, Part 1, pp. 1104-1117.

[11] Arp D, Spreitzenbarth M, Hubner M, Gascon H and Rieck K (2014), "DREBIN: Effective
and Explainable Detection of Android Malware in Your Pocket", Proceedings of the 2014
Network and Distributed System Security (NDSS) Symposium, San Diego, USA.

[12] Aafer Y, Du W and Yin H (2013), "DroidAPIMiner: Mining API-Level Features for
Robust Malware Detection in Android", Proceedings of the 9th International Conference
on Security and Privacy in Communication Networks, Vol. 127, Sydney, Australia, pp. 86-
103.

[13] Yang C, Xu Z, Gu G, Yegneswaran V and Porras P (2014), "Droidminer: Automated
mining and characterization of fine-grained malicious behaviors in android applications",
Proceedings of the 19th European Symposium on Research in Computer Security,
Wroclaw, Poland.

[14] Fratantonio Y, Bianchi A, Robertson W, Kirda E, Kruegel C and Vigna G (2016),
"TriggerScope: Towards Detecting Logic Bombs in Android Applications", Proceedings
of the IEEE Security & Privacy, San Jose, California, USA.

[15] Jiang X and Zhou Y (2013), "Android Malware", New York: Springer.
[16] Jain K (2015), "Warning: 18,000 Android Apps Contains Code that Spy on Your Text

Messages", Available at: http://thehackernews.com/2015/10/android-apps-steal-sms.html
(Accessed: 1st April 2016).

[17] Aftab MUB and Karim W (2014), "Learning Android Intents", Packt Publishing.
[18] Chakradeo S, Reaves B, Traynor P and Enck W (2013), "MAST: triage for market-scale

mobile malware analysis", Proceedings of the Sixth ACM Conference on Security and
Privacy in Wireless and Mobile Networks, Budapest, Hungary, pp. 13-24.

[19] Feng Y, Anand S, Dillig I and Aiken A (2014), "Apposcopy: semantics-based detection of
Android malware through static analysis", Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, Hong Kong, China, pp.
576-587.

[20] Luoshi Z, Yan N, Xiao W, Zhaoguo W and Yibo X (2013), "A3: Automatic Analysis of
Android Malware", Proceedings of the 1st International Workshop on Cloud Computing
and Information Security, Shanghai, China, pp. 89-93.

[21] Hellman E (2013), "Android programming: Pushing the limits", John Wiley & Sons.

http://thehackernews.com/2015/10/android-apps-steal-sms.html

[22] Wei X, Gomez L, Neamtiu I and Faloutsos M (2012), "ProfileDroid: multi-layer profiling
of android applications", Proceedings of the 18th Annual International Conference on
Mobile Computing and Networking, Istanbul, Turkey, pp. 137-148.

[23] Google (2014), "permission", Available at:
http://developer.android.com/guide/topics/manifest/permission-element.html (Accessed:
1st April 2016).

[24] Moonsamy V, Rong J and Liu S (2013), "Mining permission patterns for contrasting clean
and malicious android applications", Future Generation Computer Systems, Vol. 36 No.
July 2014, pp. 122–132.

[25] Winsniewski R (2012), "Android–apktool: A tool for reverse engineering android apk
files", Available at: http://ibotpeaches.github.io/Apktool/ (Accessed: 1st April 2016).

[26] Richardson L (2007), "Beautiful soup documentation", Available at:
https://www.crummy.com/software/BeautifulSoup/bs4/doc/ (Accessed: 1st April 2016).

[27] Friedman N, Geiger D and Goldszmidt M (1997), "Bayesian network classifiers", Machine
Learning, Vol. 29 No. 2-3, pp. 131-163.

[28] Cohen I, Sebe N, Gozman FG, Cirelo MC and Huang TS (2003), "Learning Bayesian
network classifiers for facial expression recognition both labeled and unlabeled data",
Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, Vol. 1, Wisconsin, USA, pp. I-595-I-601 vol.591.

[29] Bielza C and Larrañaga P (2014), "Discrete Bayesian network classifiers: a survey", ACM
Computing Surveys (CSUR), Vol. 47 No. 1, pp. 5.

[30] Ruiz C (2005), "Illustration of the K2 algorithm for learning Bayes net structures",
Worcester Polytechnic Institute. Available at:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.190.7306 (Accessed: 1st April
2016).

[31] Yan LJ and Cercone N (2010), "Bayesian network modeling for evolutionary genetic
structures", Computers & Mathematics with Applications, Vol. 59 No. 8, pp. 2541-2551.

[32] Larrañaga P, Poza M, Yurramendi Y, Murga RH and Kuijpers CM (1996), "Structure
learning of Bayesian networks by genetic algorithms: A performance analysis of control
parameters", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 18
No. 9, pp. 912-926.

[33] Chickering D, Geiger D and Heckerman D (1995), "Learning Bayesian networks: Search
methods and experimental results", Proceedings of the Fifth Conference on Artificial
Intelligence and Statistics, Florida, USA, pp. 112-128.

[34] Jo NY, Lee KC and Park B-W (2011), "Exploring the optimal path to online game loyalty:
Bayesian networks versus theory-based approaches", in Ubiquitous Computing and
Multimedia Applications, Springer, pp 428-437.

[35] Salehi E and Gras R (2009), "An empirical comparison of the efficiency of several local
search heuristics algorithms for Bayesian network structure learning", Proceedings of the
Learning and Intelligent Optimization Workshop (LION 3), Vol. 72.

[36] Damopoulos D, Menesidou SA, Kambourakis G, Papadaki M, Clarke N and Gritzalis S
(2012), "Evaluation of anomaly-based IDS for mobile devices using machine learning
classifiers", Security and Communication Networks, Vol. 5 No. 1, pp. 3-14.

[37] Shabtai A, Tenenboim-Chekina L, Mimran D, Rokach L, Shapira B and Elovici Y (2014),
"Mobile malware detection through analysis of deviations in application network
behavior", Computers & Security, Vol. 43 No. June 2014, pp. 1-18.

http://developer.android.com/guide/topics/manifest/permission-element.html
http://ibotpeaches.github.io/Apktool/
http://www.crummy.com/software/BeautifulSoup/bs4/doc/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.190.7306

[38] Chin E, Felt AP, Greenwood K and Wagner D (2011), "Analyzing inter-application
communication in Android", Proceedings of the 9th International Conference on Mobile
Systems, Applications, and Services, Bethesda, Maryland, USA, pp. 239-252.

[39] Jiang X (2011), "New Sophisticated Android Malware DroidKungFu Found in Alternative
Chinese App Markets", Available at:
https://www.csc.ncsu.edu/faculty/jiang/DroidKungFu.html (Accessed: 1st November
2016).

[40] Feizollah A, Anuar NB, Salleh R and Wahab AWA (2015), "A review on feature selection
in mobile malware detection", Digital Investigation, Vol. 13 No. C, pp. 22-37.

[41] Peng H, Gates C, Sarma B, Li N, Qi Y, Potharaju R, Nita-Rotaru C and Molloy I (2012),
"Using probabilistic generative models for ranking risks of Android apps", Proceedings of
the 2012 ACM Conference on Computer and Communications Security, Raleigh, North
Carolina, USA, pp. 241-252.

[42] Au KWY, Zhou YF, Huang Z and Lie D (2012), "Pscout: analyzing the android permission
specification", Proceedings of the 2012 ACM Conference on Computer and
Communications Security, Raleigh, NC, USA, pp. 217-228.

[43] Pandita R, Xiao X, Yang W, Enck W and Xie T (2013), "WHYPER: towards automating
risk assessment of mobile applications", Proceedings of the 22nd USENIX Security
Symposium, Washington, D.C, USA, pp. 527-542.

[44] Grace M, Zhou Y, Zhang Q, Zou S and Jiang X (2012), "RiskRanker: scalable and accurate
zero-day android malware detection", Proceedings of the 10th International Conference
on Mobile Systems, Applications, and Services, Low Wood Bay, Lake District, UK, pp.
281-294.

[45] Samra AAA, Yim K and Ghanem OA (2013), "Analysis of Clustering Technique in
Android Malware Detection", Proceedings of the 2013 Seventh International Conference
on Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS), Taichung,
Taiwan, pp. 729 - 733.

[46] Aung Z and Zaw W (2013), "Permission-Based Android Malware Detection",
International Journal of Scientific & Technology Research, Vol. 2 No. 3, pp. 228-234.

[47] Yerima SY, Sezer S and McWilliams G (2014), "Analysis of Bayesian classification-based
approaches for Android malware detection", IET Information Security, Vol. 8 No. 1, pp.
25-36.

[48] Sanz B, Santos I, Laorden C, Ugarte-Pedrero X, Bringas P and Álvarez G (2013), "PUMA:
Permission Usage to Detect Malware in Android", in International Joint Conference
CISIS’12-ICEUTE´12-SOCO´12 Special Sessions, Springer Berlin Heidelberg, pp 289-
298.

[49] Moonsamy V, Rong J and Liu S (2013) 'Mining permission patterns for contrasting clean
and malicious android applications'. Future Generation Computer Systems, DOI:
http://dx.doi.org/10.1016/j.future.2013.09.014 [Online]. Available at:
http://www.sciencedirect.com/science/article/pii/S0167739X13001933.

[50] Huang C-Y, Tsai Y-T and Hsu C-H (2013), "Performance Evaluation on Permission-Based
Detection for Android Malware", Proceedings of the International Computer Symposium
ICS, Hualien, Taiwan, pp. 111-120.

[51] Backes M, Gerling S, Hammer C, Maffei M and Styp-Rekowsky Pv (2013), "AppGuard:
enforcing user requirements on android apps", Proceedings of the 19th International

http://www.csc.ncsu.edu/faculty/jiang/DroidKungFu.html
http://dx.doi.org/10.1016/j.future.2013.09.014
http://www.sciencedirect.com/science/article/pii/S0167739X13001933

Conference on Tools and Algorithms for the Construction and Analysis of Systems, Rome,
Italy, pp. 543-548.

[52] Suarez-Tangil G, Tapiador JE, Peris-Lopez P and Pastrana S (2015), "Power-aware
anomaly detection in smartphones: An analysis of on-platform versus externalized
operation", Pervasive and Mobile Computing, Vol. 18 No. April 2015, pp. 137-151.

[53] Yoon C, Kim D, Jung W, Kang C and Cha H (2012), "Appscope: Application energy
metering framework for android smartphone using kernel activity monitoring",
Proceedings of the 2012 USENIX Annual Technical Conference (USENIX ATC 12),
Boston, USA, pp. 387-400.

[54] Jung W, Kang C, Yoon C, Kim D and Cha H (2012), "DevScope: a nonintrusive and online
power analysis tool for smartphone hardware components", Proceedings of the eighth
International Conference on Hardware/Software Codesign and System Synthesis
(IEEE/ACM/IFIP), Scottsdale, AZ, USA, pp. 353-362.

[55] Barrera D, Kayacik HG, Oorschot PCv and Somayaji A (2010), "A methodology for
empirical analysis of permission-based security models and its application to android",
Proceedings of the 17th ACM Conference on Computer and Communications Security,
Chicago, Illinois, USA, pp. 73-84.

[56] Zhou Y, Wang Z, Zhou W and Jiang X (2012), "Hey, you, get off of my market: Detecting
malicious apps in official and alternative android markets", Proceedings of the 19th Annual
Network and Distributed System Security Symposium (NDSS), San Diego, USA, pp. 5-8.

[57] Wu D-J, Mao C-H, Wei T-E, Lee H-M and Wu K-P (2012), "DroidMat: Android Malware
Detection through Manifest and API Calls Tracing", Proceedings of the Seventh Asia Joint
Conference on Information Security (Asia JCIS), Tokyo, Japan, pp. 62-69.

[58] Octeau D, Luchaup D, Dering M, Jha S and McDaniel P (2015), "Composite constant
propagation: Application to android inter-component communication analysis",
Proceedings of the 37th International Conference on Software Engineering-Volume 1, pp.
77-88.

[59] Li L, Bartel A, Bissyandé TF, Klein J, Le Traon Y, Arzt S, Rasthofer S, Bodden E, Octeau
D and McDaniel P (2015), "IccTA: Detecting inter-component privacy leaks in Android
apps", Proceedings of the 37th International Conference on Software Engineering-Volume
1, pp. 280-291.

[60] Barros P, Just R, Millstein S, Vines P, Dietl W, d’Amorim M and Ernst MD (2015), "Static
analysis of implicit control flow: Resolving Java reflection and Android intents (extended
version)", University of Washington Department of Computer Science and Engineering,
Seattle, WA, USA, Tech. Rep. UW-CSE-15-08-01,

