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a b s t r a c t 

In most countries, buildings are responsible for significant energy consumption where space heating and air 
conditioning is responsible for the majority of this energy use. To reduce this massive consumption and decrease 
carbon emission, thermal insulation of buildings can play an important role. The estimation of energy savings 
following the improvement of a building’s insulation remains a key area of research in order to calculate the 
cost savings and the payback period. In this paper, a case study has been presented where deep retrofitting 
has been introduced to an existing building to bring it closer to a Passivhaus standard with the introduction of 
insulation and solar photovoltaic panels. The thermal performance of the building with its improved insulation 
has been evaluated using infrared thermography. Artificial intelligence using deep learning neural networks is 
implemented to predict the thermal performance of the building and the expected energy savings. The prediction 
of neural networks is compared with the actual savings calculated using historical weather data. The results of 
the neural network show high accuracy of predicting the actual energy savings with success rate of about 82% 

when compared with the calculated values. The results show that this suggested approach can be used to rapidly 
predict energy savings from retrofitting of buildings with reasonable accuracy, hence providing a practical rapid 
tool for the building industry and communities to estimate energy savings. A mathematical model has been also 
developed which has indicated a life-long monitoring will be needed to precisely estimate the benefits of energy 
savings in retrofitting due to the change in weather conditions and people’s behaviour. 
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. Introduction 

With the ongoing increase in the world’s population and the use of
echnology, worldwide energy demand is increasing [1] . However, the
eserve of fossil fuel, currently the most common source of energy, is
imited. Therefore, it is not only necessary to find alternative, ideally re-
ewable, sources of energy but also it is important to develop strategies
or reducing energy consumption, particularly in buildings. The Paris
greement to mitigate the climate change impact sets the target of keep-

ng the global temperature increase below 2 °C of the pre-industrial stage
2] with the aspiration to keep the temperature increase below 1.5 °C.
oreover, the UK Government’s Climate Change Act (2008) [3] sets a

arget of reducing greenhouse gas emissions to 80% of the 1990 level
y the year 2050. In view of achieving these targets, the Committee on
limate Change [4] recommended that policies should be implemented
o make new buildings highly energy efficient as well as to upgrade ex-
sting buildings’ thermal insulation. According to the UK Green Building
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ouncil [5] , the infrastructure industry controls 16% of the UK’s total
arbon emissions, and 37% of the UK’s total carbon emissions are related
o the use of infrastructure. Buildings consume 20% of overall energy
roduced worldwide [6] and in the UK domestic energy consumption
s 27.2% of overall energy demand [7] . Space heating and hot water is
esponsible for 80% of overall household energy consumption [8] and
eating of residential buildings in the UK is responsible for about 17%
f energy related CO 2 emission [9] . The UK Government is going to
dopt strategies for limiting greenhouse gas emissions from the built en-
ironment to half of the 1990 level by 2050 [10] . In general, it is more
ffective to reduce the energy demand than to increase the amount of
nergy production, both economically and environmentally [11] . There-
ore, it is necessary to focus on developing strategies to reduce energy
onsumption in buildings and, in particular, in existing buildings. 

Insulation plays an important role in this case by reducing heat loss
hrough the building elements, and consequently reducing the burning
f natural resources, such as gas and coal, for electricity generation [12] .
e 2020 
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d  
he effectiveness of insulation depends on the climate, type of insula-
ion and material used for insulation. In warm regions, space cooling
s the central focus during summer, whereas space heating in winter is
he major concern in cold climatic regions. Kim and Moon [13] have
ound that if the U-value of a wall is decreased from 0.57 W/m 

2 K to
.14 W/m 

2 K by improving wall insulation, it could reduce energy con-
umption by 25.5% for space heating in cold climate areas in the USA.
owever, in warm climate areas in the USA, reduction in energy con-

umption for cooling due to the similar improvement of wall insulation
s around 0.14%. Observing the thermal performance of Irish buildings,
yrne et al. [14] have concluded that cavity wall insulation can reduce
eat flux through walls by 50% to 52%; and additional external insula-
ion may reduce the heat flux further by 48–60%. In the same way, Lee
t al. [15] have observed that insulation significantly reduces energy
onsumption for heating; however, the reduction in energy consump-
ion for cooling depends on the internal heat gain as highly insulated
uildings with limited ventilation tend to overheat in summer. Berger
t al. [16] demonstrated that additional external insulation in Austrian
uildings increases the cooling energy demand in summer slightly; how-
ver, the large reduction in heating energy demand in winter outweighs
his. On the other hand, Fang et al. [17] have found that external walls
ade of hollow bricks and insulated with 30 mm extruded polystyrene

educe the energy consumption by 23.5% for air-conditioning compared
o uninsulated solid walls in a tropical climate during summer. Derradji
t al. [18] also have given evidence of external insulation being more ef-
ective in reducing energy consumption for cooling during summer than
eating during winter in Algeria. Therefore, it can be concluded that in-
ulation plays an important role in reduction of energy consumption
uring both hot summer and cold winter periods in almost all climatic
egions although, the effectiveness of insulation varies at different cli-
ate zones. 

Depending on the building’s surface where the insulation is applied,
t can be classified as external insulation or internal insulation. Kossecka
nd Kosny [19] have showed that external insulation is more effective
han internal insulation in different climate zones in the USA. Kolaitis
t al. [20] also have found that buildings with external wall insulation
f 80 mm Expanded Polystyrene consume 4–10% less energy than build-
ngs with internal insulation of the same thickness and material in the
ame weather conditions. They have also stated that, considering the
pace cooling only, the energy consumption with internal insulation is
arginally less than the energy consumption with external insulation of

imilar thickness. However, for space heating the energy consumption
ith internal insulation is substantially larger than that with external

nsulation. On the contrary, Wang et al., [21] have presented that in-
ernal insulations are the most suitable type to reduce energy consump-
ion during winter and summer in residential buildings of Chongqing
ity in China. Reilly and Kinnane [22] also have shown that internally
nsulated building envelopes of Passivhaus standard consume 10% less
nergy than that of an external insulated building envelopes of the same
tandard. Although some researchers [ 21 , 22 ] got analytical results in
avour of internal insulation, it has the drawback of reducing available
pace inside buildings. Furthermore, considering thermo-physical prop-
rties of wall insulation, such as time lag and decrement factor, external
nsulation has been found to have a better performance than internal
nsulation and cavity wall [23] . Considering the heat storage property
f insulation material, Long and Ye [24] have found that external wall
nsulation has significant influence on energy consumption conversely,
nternal insulation has almost no influence in this case. Turning to dy-
amic insulation, Menyhart and Krarti [25] have demonstrated that dy-
amic insulation in an external wall is also useful to reduce energy con-
umption for cooling and heating; however, it is more appropriate in
he regions where there is a high temperature fluctuation between win-
er and summer. Other than wall insulation, floor and loft insulation
lso assists in reducing energy consumption. Although floor insulation
ay increase the cooling energy demand during the summer period,

t significantly reduces the heating energy demand during winter, and
2 
ventually the net energy savings for both heating and cooling is around
.5 kWh/m 

2 /year [26] . 
As part of the available technology, infrared thermography has been

uccessfully used for the last five decades to monitor building’s ther-
al performance [27] . Infrared thermography is a method of identify-

ng heat radiation from any object. According to Stephan Boltzmann’s
aw the net heat transfer due to radiation can be expressed as: 

 = 𝜀𝑘 
(
𝑇 4 − 𝑇 4 

𝑐 

)
(1)

here E is the net heat transfer, 𝜀 is the emissivity, k is the Stephan
oltzmann’s constant, T is the surface temperature and T c is the sur-
ounding temperature respectively. The value of k is usually taken as
.67 ×10 − 8 W/m 

2 K 

4 . The assumption for Eq. (1) is that the object will
ehave as either a black body for emissivity equal to 1 or a grey body for
missivity less than 1; however, we assume that the object will not be-
ave as a non-grey body. It has been assumed that the emissivity value
ill be constant within the working temperature range and within the

pectral range of the camera, which is 7.5–13 𝜇m [28] . In general, the
missivity of a brick wall, doors and windows ranges between 0.85 and
.95 [29] ; however, the emissivity of a low emission glass window is less
han 0.07 [30] . An infrared image of a building can reveal heat losses
hrough the building’s envelope. For a given building, if the inside tem-
erature is higher than the outside temperature, there will be a net heat
ransfer to the outdoor environment in the form of radiation and con-
ection. In the case of a higher outside temperature and lower inside
emperature, the mechanism is reversed. The convection heat flux can
e quantified by multiplying the temperature difference between sur-
ace and environment with the heat transfer coefficient of convection as
xpressed below [31] : 

 = 𝛼𝑐 
(
𝑇 𝑠 − 𝑇 𝑎𝑖𝑟 

)
(2)

here H is the convection heat flux, 𝛼c is the heat transfer coefficient of
onvection, T s is the surface temperature and T air is the environmental
emperature. An infrared camera captures the infrared radiation emit-
ed from a surface, which is the combination of three emissions namely:
mission from that surface, reflection of the surroundings from the sur-
ace and emission form the atmosphere. Combining these three, the sur-
ace temperature T s can be calculated by using the following expression
32] : 

 𝑠 = 

4 

√ √ √ √ 

𝑊 𝑡𝑜𝑡 − 

(
1 − 𝜀 𝑠 

)
𝜏𝑎𝑡𝑚 𝑘 

(
𝑇 𝑟𝑒𝑓 

)4 − 

(
1 − 𝜏𝑎𝑡𝑚 

)
𝑘 
(
𝑇 𝑎𝑡𝑚 

)4 
𝜀 𝑠 𝜏𝑎𝑡𝑚 𝑘 

(3)

here W tot is the total radiation received by the camera, ɛ s is the emis-
ivity of the surface, 𝜏atm 

is the transmittance of the atmosphere, k is
he Stephan Boltzmann’s constant, T ref is the reflective temperature and
 atm 

is the atmospheric temperature. As the value of 𝜏atm 

is close to 1,
he effect of atmospheric temperature is negligible. 

An infrared image of a building in the UK is shown in Fig. 1 , with
lear sky and an average ambient temperature of about − 1 °C. The areas
f higher surface temperatures shown in the image expose the poor qual-
ty of wall and window insulation as well as air infiltration between the
oof and the walls. Furthermore, the warmer structure of the chimney
epresents heat losses due to the flow of hot air through the chimney,
hich may be caused by the flue gas from a gas fire. Infrared thermog-

aphy has a wide range of applications in buildings and they range from
valuating thermal bridging, air leakage, and missing insulation to de-
ection of hot and cold pipes [33] . It is typically useful for measuring
 building’s thermal performance even in non-steady conditions [34] .
he infrared radiation propagates through air for a short distance and
ence, it is easier to measure a building’s wall surface temperature than
ith any other methods [35] . In-situ measurement of building heat dis-
ersion using infrared thermographic is a very simple and useful tool
or quick assessment of building’s thermal performance [36] . Albatici
t al. [37] have argued in favour of using infrared thermography for con-
ucting quick thermal performance surveys of existing buildings prior
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Fig. 1. An infrared image of a building in Nottingham UK. 

t  

a  

e  

[  

t  

[  

p  

t  

[
 

i  

m  

o  

v  

i  

h  

t  

s  

s  

b  

f  

c  

p  

t  

s  

9  

t  

c  

o  

a  

r  

p  

N  

p  

p  

E  

a  

e  

l  

e  

c  

c  

p  

a  

m  

c  

c  

o  

t  

t  

a  

b  

e
 

s  

t  

d  

r  

c  

f  

o

 

 

 

 

 

 

s  

r  

a  

b

2

 

i  

p  

p  

a  

s  

b  

t  

n  

m  

t  

T  

i  

e  

T  

o  

t  

b  

[

𝑃  

w  

s
i  

i  

s  

[  

b  

t  
o adopting an investment policy for energy retrofitting. Al-Habaibeh
nd Siena [38] have utilised infrared thermography to estimate the en-
rgy savings in buildings due to improved insulation. Al-Habaibeh et al.
39] have also showed the use of thermography to compare the heat loss
hrough openings of different door designs. Bienvenido-Huertas et al.
40] have used infrared thermography for characterising the thermal
erformance of a building façade. Furthermore, it could also be used
o investigate transient temperature response behaviour over the time
41] . 

Different Artificial Intelligence (AI) based techniques have been used
n the prediction of energy consumption in buildings, and amongst those
ethods the Artificial Neural Network (ANN) is the most widely used

ne [42] . ANN is a mathematical model that mimics the biological ner-
ous system to process information. It consists of several neurons organ-
sed in different layers namely input layer, output layer and one or more
idden layers. The input layer process input data for the network and
he output layer delivers the results. The hidden layer(s) are mainly re-
ponsible for learning the characteristics of input data and the relation-
hip between inputs and outputs. The neurons are composed of weights,
iases and a transfer function. The network learns the desired feature
rom given training data sets and uses the knowledge later on to pro-
ess unknown inputs. ANN can be used to predict energy consumption
atterns of a pre-retrofitted building to compare the energy savings af-
er retrofitting [43] . In terms of predicting energy consumption due to
pace heating in commercial buildings, ANN has been found to achieve
4% precision [44] ; while for predicating cooling load, it drops down
o 90% [45] . Furthermore, using a complex network architecture by
ombining different types of neural networks, the prediction accuracy
f heating energy demand could be as high as 98% [46] . Although there
re software available to forecast energy consumption in buildings with
easonable accuracy [42] [43] , ANN can provide a simpler solution for
rediction with less input data and similar accuracy. For instance, Ben-
akhi and Mahmoud [47] have used a regression neural network to
redict hourly cooling load and found very strong agreement with the
rediction made using a building energy simulation software namely
SP-r. In another study for predicting daily energy consumption, Neto
nd Fiorelli [48] found that ANN can produce very close results to the
stimation made by the energy simulation software EnergyPlus. Martel-
otta et al. [49] have also conducted analogous study to predict hourly
nergy usage of houses modelled on EnergyPlus software, and in 92%
ases, they found ANN’s prediction accuracy is over 95%. Similar out-
ome has been found while comparing the ANN result of cooling load
rediction with TRNSYS software [50] . The work of Naji et al. [51] has
lso reinforced the fact that ANN produce close prediction to the esti-
3 
ation made by EnergyPlus software for residential buildings’ energy
onsumption. The advantage of ANN for predicting buildings’ energy
onsumption over the conventional statistical methods is its capability
f mapping complex relationship between inputs and outputs without
he requirement of any prior knowledge about the input-output rela-
ionship [52] . Modelling heat losses through a building’s wall contains
 non-linear and complex relationship amongst the parameters. ANN
ased thermal model is found to have a very good capability of nonlin-
ar fitting in such complex cases [53] . 

Literature has shown significant success of using ANNs in energy con-
umption prediction; however, limited research has been found in rela-
ion to integrating infrared thermography with neural networks to pre-
ict future energy consumption. Therefore, this paper includes a novel
esearch where infrared thermography of a deep retrofitted building is
ombined with deep learning neural networks to estimate the future ef-
ectiveness of wall insulation in terms of energy savings. The key aspects
f this research work are: 

• Evaluating the thermal wall characteristic of insulated and uninsu-
lated buildings using infrared thermography. 

• Estimating energy savings due to retrofitting of a building with wall
insulation. 

• Predicting future heat losses through walls in insulated and uninsu-
lated buildings using ANN from infrared data and historical weather
data. 

• Evaluating the performance of ANN against calculated heat losses
through walls in insulated and uninsulated buildings. 

The next sections of this paper include the methodology of the re-
earch work followed by a case study in Section 3 . Later in Section 4 the
esults of infrared thermography and the ANN analysis are presented
nd discussed. The limitation of the study is stated in Section 5 followed
y the concluding remarks in Section 6 . 

. Methodology 

In this work, a deep retrofitted building in the UK is studied using
nfrared thermography and temperature sensors to examine the thermal
erformance of the building due to improved insulation. It is then com-
ared with the thermal performance of a standard building in the same
rea to estimate the energy savings of the retrofitted building. Fig. 2
hows the flow chart of the methodology used for this case study. At the
eginning, several infrared images of the retrofitted building are cap-
ured to analyse the thermal performance. Infrared images of a nearby
on-insulated building are also captured for comparison. FLIR E25 ther-
al camera is used to capture the infrared images and those images are

aken on 28th and 29th March at 11:15 pm and 9:30 am respectively.
he ambient temperature values are found to be 9 °C and 7 °C, and the

ndoor temperatures are measured at 19 °C and 20 °C respectively. The
arly morning (6 am) temperature is found approximately to be 4 °C.
hen, the wall temperature values are extracted from infrared images
f both insulated and uninsulated walls. The total heat dissipated from
he external wall surface due to convection and radiation is calculated
y combining Eqs. (1) and (2) ,which is expressed as in Eq. (4) below
54] . 

 = 5 . 67 𝜀 𝑡𝑜𝑡 

( ( 

𝑇 𝑖 

100 

) 4 
− 

( 

𝑇 𝑜𝑢𝑡 

100 

) 4 
) 

+ 3 . 8054 𝜈
(
𝑇 𝑖 − 𝑇 𝑜𝑢𝑡 

)[
W∕ m 

2 ] (4)

here P is the total thermal power, 𝜀 tot is the emissivity on the entire
pectrum, 𝜈 is the wind speed, T i is the wall surface temperature and T out 

s the external environment temperature. The coefficient of convection
s replaced with wind speed according to Jurges’ equation [54] . Con-
idering a common brick wall, the emissivity value is assumed at 0.93
55] ; and the average wind speed is assumed to be 2 m/s in this case
ased on past studies [ 38 , 56 ]. If 1 W/m 

2 heat is radiated for one hour,
his will be equivalent to 1 Wh/m 

2 . Therefore, the total heat loss in any
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Fig. 2. The flow chart of the proposed method- 
ology. 

g  

b

𝑃  

W  

f  

u  

r  

i  

e  

T  

f

2

 

t  

t  

b
 

y  

f  

a
 

p

 

t
 

w  

t
 

w

 

H  

S

1  

S

 

R

𝑁

 

H  

e  

g  

s

S  

I

𝑁
 

H

𝑀  

F  

o  

p  

w  

e  

i  

p

iven month i through an area of one per square metre of a wall, P i , can
e expressed as: 

 𝑖 = 𝑃 × 24 ×𝐷 (5)

here D represents the number of days in a month. In order to predict
uture heat losses ANN is used in this paper and the heat losses obtained
sing Eq. (5) to validate the prediction. The advantage of ANN is that
ather than calculating future heat losses using forecasted temperature
n Eq. (4) , the future heat loss can be estimated quickly and thereby
liminating the uncertainty associated with the temperature forecast.
he above calculation can be extended to determine monthly heat losses
or N years using historical climate data of that locality. 

.1. Optimum number of years to monitor a building 

The variation in total heat losses in different years will depend on
he variation in weather conditions and occupant’s behaviour leading
o the question of what should be the optimum number of years ( N ) a
uilding should be monitored to estimate energy savings. 

To address this, let E i be the energy consumption of a building in a
ear, where energy consumption can mathematically be expressed as a
unction of weather and people’s behaviour assuming the building char-
cteristic is fixed. 

Hence : 𝐸 𝑖 = 𝑓 ( 𝑤, 𝑏 ) ; where w is the weather condition and b is peo-
le’s behaviour. 

Let, 
𝑁 ∑
1 
𝐸 𝑖 is the energy consumption over N number of years; hence,

he average of annual energy consumption will be 
∑𝑁 

1 𝐸 𝑖 
𝑁 

. 
If we choose to take another number of years M such that 𝑀 = 𝑁 + 𝑘 ,

here k is an integer and k ≥ 0; then average of annual energy consump-

ion will be 
∑𝑀 

1 𝐸 𝑖 
𝑀 

. 
when N reaches its optimum value then the addition of further years

ill not change the average annual energy consumption; or simply ∑𝑁 

1 𝐸 𝑖 

𝑁 

= 

∑𝑀 

1 𝐸 𝑖 

𝑀 

(6)

ence 𝑀 

𝑁 

= 

∑𝑀 

1 𝐸 𝑖 ∑𝑁 

𝐸 𝑖 

= 

(
𝐸 1 + 𝐸 2 + 𝐸 3 + …………+ 𝐸 𝑀 

)(
𝐸 1 + 𝐸 2 + 𝐸 3 + …………+ 𝐸 𝑁 

) (7)
1 

4 
Let, M = N + k where k is the number of additional years, this gives: 

𝑁 + 𝑘 
𝑁 

= 
(
𝐸 1 + 𝐸 2 + 𝐸 3 + …………+ 𝐸 𝑁 + 𝐸 𝑁+1 + 𝐸 𝑁+2 + …………+ 𝐸 𝑁+ 𝑘 

)(
𝐸 1 + 𝐸 2 + 𝐸 3 + …………+ 𝐸 𝑁 

)
= 

∑𝑁 

1 𝐸 𝑖 + 
∑𝑘 

𝑁+1 𝐸 𝑖 ∑𝑁 

1 𝐸 𝑖 

(8) 

implifying Eq. (8) leads to: 

 + 

𝑘 

𝑁 

= 1 + 

∑𝑘 

𝑁+1 𝐸 𝑖 ∑𝑁 

1 𝐸 𝑖 

(9)

ubtracting 1 from each side in Eq. (9) : 

𝑘 

𝑁 

= 

∑𝑘 

𝑁+1 𝐸 𝑖 ∑𝑁 

1 𝐸 𝑖 

(10)

e-arranging Eq. (10) leads to: 

𝑘 ∑
+1 
𝐸 𝑖 = 

(
𝑘 

𝑁 

) 𝑁 ∑
1 
𝐸 𝑖 (11)

ence from Eq. (10) , as k and N are finite numbers, this makes the
quality in the equation is highly unlikely as it is almost impossible to
et identical weather condition and occupants’ behaviour due to the
tochastic and probabilistic nature of the variables to satisfy Eq. (10) . 

ince by def inition ∶ 𝑀 

𝑁 

= 

𝑁 + 𝑘 

𝑁 

(12)

f M →∞ then N →∞ as k is a constant and hence, 

lim 

→∞

𝑁 + 𝑘 

𝑁 

= lim 

𝑁→∞

𝑁 

𝑁 

+ 

𝑘 

𝑁 

𝑁 

𝑁 

= lim 

𝑁→∞

1 + 

𝑘 

𝑁 

1 
= 1 (13)

ence from (12) an (13) this leads to 𝑀 

𝑁 

= 1 or simply: 

 = 𝑁 (14)

rom (14) it can be concluded that as long as we have any finite number
f years of monitoring the energy consumption of a building, it is not
ossible to guarantee equality of Eq. (8) given the changing nature of
eather and people’s behaviour. Therefore, from Eq. (8) , k should be
qual to zero. Hence only infinite number of years to monitor a build-
ng is the only guarantee to accurately quantify the energy savings and
ayback period. 



A. Al-Habaibeh, A. Sen and J. Chilton Energy and Built Environment xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: ENBENV [m5GeSdc; September 25, 2020;14:16 ] 

Fig. 3. The implemented ANN architecture. 
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.2. The implemented approach 

The current case study utilises eight years of mean historical tem-
erature data of each month (from 2010 to 2017) extracted from the
nline sources [57] and [58] . The calculated heat loss data is split into
wo parts. First part is used for training and validating the ANN model,
nd the second part is used to compare the difference between ANN pre-
iction and calculated heat losses. The first part of data set is randomly
ivided as 70% for training, 15% for validation and 15% for testing,
hich is the suggested settings of training and validation using Matlab

oftware. The ANN predicts monthly heat losses for exactly the same
umber of years as the second part of data. The training and prediction
s repeated for 25 times to avoid overfitting and the mean value of 25
rediction is used to estimate the error. The error and percentage errors
re calculated using Eqs. (15) and (16) , respectively. 

 = 

12 ∑
𝑖 =1 

(
𝑌 𝑖 − 𝑃 𝑖 

)
(15)

 𝑝 = 

𝑒 ∑12 
𝑖 =0 𝑃 𝑖 

× 100% (16)

ere e is the error, e p is the percentage error, Y is the ANN predicted
eat loss and P is the calculated heat loss from Eq. (5) . To identify the
verall performance of the ANN with different training data sets, the
hole process of ANN training and prediction is repeated six times by
radually increasing the training data set from two to seven years. As a
esult, the ANN predicts heat losses for year three to eight. For example,
hen the ANN is trained with heat losses data from 2010 to 2011, it
redicts heat losses for year 2012 to 2017; when the ANN is trained
ith heat losses data from 2010, 2011 and 2012, it predicts heat losses

or year 2013 to 2017 and so on. 
Fig. 3 represents the ANN architecture used in this research work.

he input and the output layers contain 12 neurons each as the input
ata set is composed of numerical representation of the months of the
ear, for several past years, and the output provides the respective heat
osses of all those months for future years. 

To determine the best architecture of the ANN, the average perfor-
ance is evaluated using 1–5 hidden layers, containing 12, 18, 24, 30,
6, 42 and 48 neurons respectively within the hidden layers. Fig. 4 -
 represents the average performance of the ANN containing 1–5 hid-
en layers and Fig. 4 -b represents the average performance of the ANN
ith 12, 18, 24, 30, 36, 42 and 48 neurons respectively in each hid-
en layer. Absolute Percentage Error (APE) has been considered as the
t

5 
erformance measure of ANN which is presented in Eq. (17) . 

𝑃 𝐸 = 

∑12 
𝑖 =1 

||𝑌 𝑖 − 𝑃 𝑖 
||∑12 

𝑖 =0 𝑃 𝑖 
× 100% (17)

The first four years’ (2010–2013) data is used to train the network
nd the following four years’ data (2014–2017) is used to evaluate the
erformance for both insulated and uninsulated walls. As mentioned
bove, the training and evaluation is conducted 25 times to average the
ariation in different iterations. It has been found as shown in Fig. 4 -a,
he APE drops significantly in the region between 1 and 3 hidden lay-
rs. Then the drop is minor between 3 and 4, then he error is found to
mprove for the 5 hidden layers ANN. It can be argued that 5 hidden lay-
rs could be the best option. However, the calculation time significantly
ncreases in case of four and five layers. Therefore, three hidden layer
rchitecture will be the best compromise in this case. Fig. 4 -b shows that
here is no significant change in APE with the increase of neurons in the
idden layers. However, as the number of neurons in the hidden lay-
rs are increased, the calculation time significantly increases. Previous
tudies have shown that doubling the number of input neurons for the
idden layers would achieve the best performance [59] and [60] . Based
n the above analysis and review of past studies, the ANN with three
idden layers and 24 neurons in each layer has been carefully chosen in
his study. Hyperbolic tangent sigmoid transfer function is used in the
eurons of hidden layer and, Levenberg–Marquardt back-propagation
lgorithm is used for training the network. In this paper the ANN are
sed to predict the future thermal performance and Eq. (4) is used to
alidate the prediction using real data. 

. The case study 

An early 19th century house in the UK has been deep retrofitted
n accordance with Greening the Box R ○ design concept to reduce the
nergy cost as well as the dependency on fossil fuel, aiming to minimise
reenhouse gas emissions to zero [61] . The location of the house in
erial view is shown in Fig. 5 -a, and Fig. 5 -b and -c shows the plan
f the first floor and ground floor. The entrance to the house from the
treet is on the north-east side. There is a solar photovoltaic array with
he capacity of 5.5 kWp on the roof of the house, which consists of nine
anels, as shown in Figs. 5 -a and 6 -a. 

As a part of the refurbishment, all bedrooms are relocated to the
round floor; and the kitchen, office and living room are moved to the
rst floor. The south elevation of the house in Fig. 6 -a shows that the
round floor of the two-storied building is well below the adjacent street
evel and the first floor is slightly below street level. Fig. 6 -b shows the
ntrance of the house from the east side. The house initially had an
il-fired central heating system which has been replaced with an under
oor electric heating system and a wood burning secondary fireplace. 

The solid walls of the house, before retrofit, had no insulation. To
mprove the insulation of the building 200 mm thick Styrofoam 

TM A has
een externally applied to the external walls as well as underneath
he concrete slab of ground floor [61] . Styrofoam 

TM A is an extruded
olystyrene foam and has very good insulating capability ( R -value circa
.45 m 

2 K/W). 
The cross section of the original wall brickwork and thickness of

ew cladding and wood batten holding the cladding in place is shown
n Fig. 7 . The thickness of the solid walls was approximately 330 mm
efore refurbishment resulting in a total thickness of over 500 mm
ost-refurbishment ( Fig. 8 ). In order to achieve net positive solar gain,
he cumulative window area on the south elevation is increased from
.9 m 

2 to 9.3 m 

2 and on the north side is reduced from 11.3 m 

2 to
.1 m 

2 [64] . Therefore, the net glazed area is increased by 0.2 m 

2 

hich is an increase of only 1.32% from the initial glazed area. All
he new windows are fitted with double glazed glass. After retrofitting,
he thermal performance of the house is monitored using infrared
hermography. 
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Fig. 4. The average performance of the ANN with different number of hidden layers and neurons within each hidden layer. 

Fig. 5. (a) Location of the house and roof top solar panel [source: Google map], (b) First floor layout, (Reproduced from [62] ) (c) Ground floor layout. (Reproduced 
from [63] ). 

Fig. 6. (a) South elevation of the house with entrance to the house from street level on the right hand side; (b) house entrance from the east side. 
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Fig. 7. A cross-section in one of the walls showing the external insulation. 
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. Result and discussion 

.1. Discussion on infrared thermography result 

The infrared images of the building have shown a significant im-
rovement in thermal performance due to the insulation. The visual
mage ( Fig. 9 -a), and the infrared image ( Fig. 9 -b), taken from the east
ide of the house, shows the position of a chimney and heat loss through
t. The bright colour of the chimney signifies the high heat loss through
he chimney with infrared radiation reaching saturation. In contrast, the
ark colour of the wall section shows that there is less heat loss through
he wall section. 

According to the temperature scale on the right hand side of the
nfrared image, the temperature of the chimney is around 12 °C and the
emperature of the wall section is around 5 °C. However, more detailed
nalysis shows that the temperature at the top portion of the chimney is
bout 30.6 °C and the temperature of the darkest part of wall is 3.6 °C.
hese discrepancies are due to image saturation. 

Figs. 10 and 11 show the heat loss through the walls and windows
rom the north elevation. Different sections on the visual image are
hown with rectangular frames and the corresponding infrared image
f each section is indicated. 

The image in Fig. 10 is taken from the north-east side of the house
nd Fig. 11 from the north-west. The bright colour of the windows in the
nfrared images shows the higher heat loss through the windows, and the
Fig. 8. The post-refurbishment wall th

7 
emperature of the window glazing is about 9 °C according to the tem-
erature scale shown on the image. On the other hand, the insulated wall
ections are darker in colour than the windows, which indicates lower
eat losses through the wall section. The wall temperature is around
 °C according to the scale shown in Fig. 11 . Fig. 12 includes visual and
nfrared images taken from the south-east corner of the house, and the
nfrared image reveals the heat losses through the wall and windows.
gain, the bright colour of the windows represents high heat losses and

he dark colour of the insulated wall section represents lower heat losses.
he temperatures, according to the scale given, of the window and the
all sections are approximately 9 °C and 5 °C, respectively. 

Fig. 13 includes the visual as well as infrared images of different sec-
ions of the house taken from the south side. As in the previous infrared
mages, the high heat losses through the door, windows, gaps around
he door frame and chimney are represented in bright colour and the
arker colour of the insulated wall sections represent lower heat losses.
he temperature of the gap around the door frame is approximately
2 °C and the temperatures of the door and window sections are ap-
roximately 9 °C according the scale shown on the right hand side. 

The wall temperature varies from 4 °C to 5 °C, on an average, in dif-
erent places according to the same scale although the lowest tempera-
ure is found to be 3.6 °C by the infrared image. Comparing the bright
nd dark sections of the infrared images and interpreting the respec-
ive temperatures from the scale associated with those images it can
e clearly recognised that the externally insulated wall significantly re-
uces heat losses. 

In order to compare the thermal performance of the insulated wall
ith that of a wall of similar construction without insulation, the pixel
y pixel temperature values are extracted from the infrared images of
n uninsulated building and the insulated building. The IR image of
he standard building is taken from a nearby building and at the same
ime as of the retrofitted building. These values are plotted in 3D, next
o each other, Fig. 14 , using Matlab. The temperature profile reveals
hat the uninsulated wall’s surface temperature is around 10 °C and the
nsulated wall’s surface temperature is around 4 °C. Here the average
emperature of all points in the wall sections are considered. 

To further distinguish the thermal performance of the uninsulated
uilding and insulated building, the temperature profiles of both walls
re constructed along a line as shown in Fig. 15 . Line AB is constructed
n the infrared image containing a section of the standard building and
ine CD is constructed on the infrared image containing a section of
he insulated building. The temperature values at every pixel along the
ines AB and CD are extracted using Matlab. These temperature values
re then plotted against every pixel. Fig. 15 also shows the plotted curve
f surface temperature against pixel position along line AB (red) and CD
blue), respectively. The temperature profile of line AB shows that the
all surface temperature mostly remains between 9 °C and 10 °C. The
indow-glazed section’s temperature is around 11 °C. However, there is
 sharp rise in temperature between pixels 150 and 200 possibly due to
ickness as seen from the inside. 
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Fig. 9. An infrared image showing heat loss through chimney compared to the insulated wall; (a) visual image and (b) infrared image from the east side. 

Fig. 10. Thermal images of different portions 
of walls and windows (infrared and visual im- 
age from the north-east side). 
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Table 1. 

Typical temperature values of wall and window sections extracted from differ- 
ent infrared images. 

Elevation of 
image 

Wall temperature 
(°C) 

Window temperature 
(°C) 

Insulated Building East 5 9 

North east 5 9 

North west 5 9 

South east 5 9 

South 4 9 

Uninsulated Building – 10 11 

b  

n  

F
 

a  

i  

i  
ir leakage around a window’s opening. The temperature of that portion
s 14 °C; and it is assumed that the wall sections are homogenous and
ence the average wall temperature is considered. Comparing with the
arly morning ambient temperature (4 °C) it is clear that the wall and the
indow of the standard building are radiating more heat. Conversely,
all surface temperature of the insulated building, which is close to
mbient temperature, establishes the fact that there are very minor heat
osses through the wall. 

As the surface temperatures of the doors and windows of the in-
ulated building are higher than the ambient temperature, it will be
xpected that the heat losses in the insulated building occur mainly
hrough doors and windows. In contrast, the temperature profile of line
D indicates that the wall surface temperature of the insulated building
emains between 4 °C and 6 °C and, the double-glazed window section’s
emperature is between 8 °C and 9 °C. The typical temperature values of
all and window sections extracted from different infrared images are

ummarised in Table 1 . 
To further understand the effect of insulation during summer, the

nternal and external temperatures of the house are recorded from 4th
une to 10th June 2011. The internal temperature profiles of the three
v  

8 
edrooms, kitchen, living room and office are shown with the exter-
al temperature profile for the above mentioned seven-day period in
ig. 16 -a to -f, respectively. 

The maximum temperature, minimum temperature, average temper-
ture and the range of variation in temperature for each case are shown
n Table 2 . It is found from the table that, in spite of the large variation
n external temperature, the internal temperature shows a lower diurnal
ariation in all rooms. Fig. 16 -a, b and c shows that all three bedrooms
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Fig. 11. Thermal images of different portions 
of wall and windows (infrared and visual image 
from north west side). 

Fig. 12. The heat loss through windows (infrared and visual image from south east side). 

Table 2. 

The maximum, minimum and average temperatures of external environment, 
bedroom 01, bedroom 02, bedroom 03, kitchen, living room and office, from 

4th to 10th June 2011. 

Rooms Maximum 

temperature (°C) 
Minimum 

temperature (°C) 
Average 
temperature (°C) 

Range of 
variation ( °C) 

External 20.34 5.88 13.54 14.46 

Bedroom 01 20.92 18.87 20.03 2.05 

Bedroom 02 20.20 18.38 19.36 1.82 

Bedroom 03 19.31 17.76 18.63 1.55 

Kitchen 22.27 17.71 19.98 4.56 

Living Room 22.11 19.07 20.73 3.04 

Office 23.58 19.16 21.56 4.42 
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o  
ave lower variation in temperature than the living room, office and
itchen. This is for three reasons. Firstly, the ground floor rooms are
ess exposed to solar irradiation and, as a result, the heat gain is lower
han the upper floor. 

Table 2 also reveals that the maximum and minimum temperatures
f all three bedrooms are lower than those rooms on the first floor. Sec-
9 
ndly, the bedrooms are likely to be occupied during the night only
typically about 8 h), with sleeping occupants, and therefore the in-
ernal heat gain is low. Fig. 16 -d–f shows the temperature variation in
he kitchen, living room and office respectively. They have higher fluc-
uation in internal temperature compared to the bedrooms. The high-
st variation in temperature is found in the kitchen and this is most
ikely because of cooking activities. The living room and office tend to
e mostly occupied during the daytime and evening hours, hence the
nternal heat gain is higher than those of the bedrooms. A third possible
eason is the natural buoyancy of warm air, which means that the first-
oor rooms will tend to be warmer than those on the ground floor. In
ddition, the larger area of windows could also influence the heat gain
uring daytime. Furthermore, the temperature variation in bedroom 1
nd bedroom 2 are slightly higher than that of bedroom 3 as bedroom
 and bedroom 2 are south facing ( Fig. 5 -c) and hence more exposed to
olar irradiation. This could be also a reason for the higher temperature
n the upper floor as the three rooms in the upper floor have more ex-
osure to the external environment within the south side (see Fig. 5 -b).
ith the large variation in external temperature, the overall variation

n internal temperature remains small and this indicates that insulation
f the heavy masonry significantly contributes to maintain a steady in-
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Fig. 13. Thermal imaging of different portions 
of walls and windows (Infrared and Visual im- 
age from south side). 

Fig. 14. The 3D temperature profile of a standard building versus the insulated deep-retrofitted building. 
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Fig. 15. Temperature profiles across the two 
buildings. 
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ernal temperature. It is observed in Fig. 16 -b and -c that the internal
emperature of bedroom 2 and bedroom 3 remain lower than the exter-
al temperature in the afternoons of 4th and 5th June. Hence, it can be
aid that a well-designed insulation in some cases could prevent houses
rom being extra warm in summer months as well. Using the maximum
alues of wall temperature from Table 1 in Eq. (4) , the estimated heat
osses through the uninsulated wall is about 45.62 W/m 

2 and the esti-
ated heat losses through the insulated wall is about 7.61 W/m 

2 . The
ata in Table 1 shows that at 4 °C ambient temperature, the insulated
all surface temperature is 5 °C and the uninsulated wall surface tem-
erature is at 10 °C. Assuming the room temperature to be at 20 °C for
oth buildings throughout the year, the external wall temperature of
oth walls will be similar to the ambient temperature when the ambi-
nt temperature rises to 20 °C in summer. It is assumed in the analysis
hat double-glazed windows have the same performance for both build-
ngs and there will be no air-conditioning. 

The walls’ temperature for both buildings relative to different am-
ient temperatures can be obtained by using interpolation within this
ange as shown in Fig. 17 . The outdoor temperature varies day to day
s well as at different times during the same day. To even out this varia-
ion, the hourly temperature of each day for a whole month is averaged
nd that monthly average temperature is used in this study. Consider-
ng the average temperature for each month during that year extracted
rom historical temperature data of that locality, and estimating wall
emperature for both buildings from Fig. 17 , the net difference in heat
osses between the two buildings are estimated in Table 3 using Eq. (5) .

As the total heat loss through a building’s wall depends on the size
nd shape of that building, heat loss per square metre has been consid-
red to compare between insulated and uninsulated walls. Table 3 shows
he heat loss through walls of the insulated and uninsulated building
or each month as well as the difference in heat losses between the two
uildings. According to Table 3 , the energy savings due to retrofitting
or 1 m 

2 of wall area is 177.10 kWh. Therefore, the energy savings for
 typical three bedroom house with 120 m 

2 of wall area exposed to ex-
ernal environment will be 177 . 10 kWh ∕ m 

2 × 120 m 

2 = 21 , 252 kWh . This
mplies around £2741.51 per annum of savings in electricity bills at a
 s  

11 
ate of 12.90 pence/kWh excluding VAT or, around £612.06 per annum
f savings in gas bills at a rate of 2.88 pence/kWh excluding VAT for
he household during winter [66] . 

.2. . ANN prediction of heat losses and energy savings 

The predicted heat losses for the years 2015, 2016 and 2017 by the
NN, that has been trained with the calculated heat losses of years 2010

o 2014, are shown in Fig. 18 . Fig. 18 -a, c and e represents the calculated
nd predicted output of the ANN for the heat loss profiles through the
nsulated wall for the years 2015, 2016 and 2017 respectively. Fig. 18 -b,
 and f represents similar profiles of heat losses through the uninsulated
all for the above-mentioned years. It has been found from Fig. 18 -a
nd b that the ANN predicted the heat losses at higher levels than the
alculated heat losses in December 2015 for both types of wall. The local
istorical temperature map, as in Fig. 19 , shows that 2015 has experi-
nced a warmer December than the previous 5 years; hence, the calcu-
ated heat losses in December 2015 are less than that of the past 5 years.
s ANN learns the features of the training data, it predicts higher heat

osses than the calculated values based on the past 5 years of training
ata. However, 2016 and 2017 experienced cooler December than 2015,
nd the ANN predicted heat losses of those periods at a closer level. Now,
he ANN is trained with heat losses data of years 2010 to 2015 and the
rediction is made for years 2016 and 2017 for both types of walls, as
hown in Fig. 20 . The predicted profiles have shown a significant drop
n heat losses in December 2016. However, with the inclusion of heat
osses data from year 2016 for training, the predicted heat losses for De-
ember become very close to the calculated heat losses, see Fig. 21 . It is
lso noticed that in all profiles of Fig. 18 that there is a small peak in the
rofiles of ANN predicted heat losses in August. According to Fig. 19 ,
he average temperature in August in 2015 and 2016 is found higher
han the average of the previous 5 years. As a result, the calculated
eat losses in year 2015 and 2016 are less than those of the previous 5
ears during August. This is not reflected in the ANN prediction of heat
osses because ANN depends on the data pattern of the training data
et. The temperature in August of 2017 is found to be near the average
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Fig. 16. The external and internal temperature profiles of 
the building from 4th June to 10th June 2011: (a) external 
temperature vs bedroom 01, (b) external temperature vs bed- 
room 02, (c) external temperature vs bedroom 03, (d) ex- 
ternal temperature vs kitchen, (e) external temperature vs 
living room, (f) external temperature vs office. (reproduced 
from seminar presentation of “Greening The Box TM – Retrofit 
of Hard to Treat Housing ” by John Chilton and Amin Al- 
Habaibeh at Nottingham Trent University [65] . 
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emperature in August of the years 2010 to 2014; and hence, the ANN
redicted similar heat losses in August when compared to the calculated
alues (see Fig. 18 -e and f). The inclusion of further heat losses data from
ears 2015 and 2016 for training has altered the situation, where the
redicted heat losses are closer to the calculated heat losses for the year
016 and less than those for the year 2017 ( Figs. 20 and 21 ). There are
urther aberrant predictions found in September 2017 as in Fig. 21 . This
s due to adding the heat losses data from the year 2016 in the training
ata set. The month of September in 2016 is found to be the warmest
12 
mongst all Septembers from year 2010 to 2016. Hence, the calculated
eat losses for September 2016 is the least amongst all other Septembers
n that period. The ANN replicates this feature in the prediction of heat
osses for 2017 ′ s September; and hence, elicit noticeable differences. 

From the analysis of above figures, it has been found that ANN pre-
ictions of heat losses for both insulated and uninsulated walls show
ood agreement with the calculated heat losses in most of the cases,
hough there are some nonconformities in some predictions. These non-
onformities arise due to the variation in the calculated heat losses data,
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Fig. 17. The relationship between the external 
ambient temperature and external wall temper- 
ature. 

Table 3. 

The estimated heat loss through insulated and uninsulated walls in different months of a typical year. 

Month Average external 
temperature (°C) 

External wall temperature (°C) Heat loss (kWh/m 

2 ) for whole month Difference in heat loss 
(kWh/m 

2 ) for the month Insulated building Uninsulated building Insulated building Uninsulated building 

Jan 4.50 5.47 10.31 5.49 32.91 27.42 

Feb 7.00 7.81 11.88 4.16 24.93 20.77 

Mar 7.40 8.19 12.13 4.46 26.76 22.30 

Apr 12.70 13.16 15.44 2.50 15.00 12.50 

May 13.20 13.63 15.75 2.41 14.44 12.03 

Jun 14.90 15.22 16.81 1.75 10.48 8.73 

Jul 16.00 16.25 17.50 1.42 8.49 7.07 

Aug 16.20 16.44 17.63 1.34 8.07 6.73 

Sep 15.60 15.86 17.25 1.51 9.04 7.53 

Oct 13.00 13.48 15.63 2.48 14.87 12.39 

Nov 10.50 11.09 14.06 3.25 19.52 16.27 

Dec 6.80 7.63 11.75 4.67 28.03 23.36 

Total 35.44 212.54 177.10 
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hich is not exactly featured by the training data sets. Furthermore, the
osition of predicted curves in Figs. 18 , 20 and 21 versus the training
ata confirms that there is no overfitting in the prediction process. 

Fig. 22 represents the comparison between the calculated yearly heat
osses and ANN predictions of yearly heat losses with different training
ata sets for the insulated and uninsulated walls. As data from 2010
o 2011 are used for training, no predictions are possible for those two
ears. The highest number of predictions are made for 2017 as this is
he only year that is not included in the training process. It is noted in
ig. 22 that the ANN predicted heat losses are slightly higher than the
alculated ones in 14 out of 21 cases for each wall type, which signi-
es the tendency of ANN to overestimate the heat losses in this case.
owever, one consistency that is also noticed from both figures that

f the ANN overestimates the heat loss for the insulated wall, it also
verestimates the figure for the uninsulated wall; and similarly for the
nderestimation process. This is also noted in Fig. 23 , which shows the
ercentage error ( e p ) in the prediction made by the ANN with different
raining data sets. The direction of the error is the same in each case for
oth walls. Fig. 23 also reveals that the range of error for the insulated
all is − 13% to + 15%, and for the uninsulated wall is − 14% to + 17.5%.
he uninsulated wall has higher error range than the insulated wall, as
he heat losses for the uninsulated wall are much higher. Considering the
ighest limit of error range, it can be said that the ANN can predict heat
osses through building’s wall with at least 82.5% accuracy regardless
f the wall type and training data size. However, the pattern of percent-
13 
ge error is not conclusive enough to identify the type of wall. Fig. 24 -a
epresents the absolute values of percentage error (| e p |) in each year’s
redictions for the insulated and uninsulated walls and Fig. 24 -b repre-
ents the average | e p | per year of the predictions made by the ANN with
ifferent training data sets. From these two figures, it is observed that
here is no correlation between the prediction error and the size of the
raining data set. For instance, if we consider year 2017 in Fig. 24 -a, the
ercentage error of the ANN trained with three years of data is higher
han that of the ANN when trained with two years of data. However,
he percentage error of the ANN trained with five years of data is less
han that of the ANN when trained with four years of data. The per-
entage error again rises when the ANN is trained with six years of data
ollowed by a drop when it is trained with seven years of data. Fig. 24 -b
lso conveys similar information as the absolute percentage error per
ear is found higher for the ANN when trained with three years of data
han for the ANN trained with two years of data. On the other hand, the
bsolute percentage error per year becomes less for the ANN trained
ith five years of data than for the ANN trained with four years of data.
gain, the percentage error per year rises when the ANN is trained with
ix years of data. It is also noticed that the absolute percentage error for
he uninsulated wall is higher than that of the insulated wall in majority
f cases. 

Due to global warming, ambient temperature prediction tends to be
ess accurate, and this phenomenon influences the prediction of the en-
rgy loss because heat losses of a building have a direct relationship with
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Fig. 18. The comparison between calculated heat loss and ANN simulated heat loss through the insulated and uninsulated wall for years 2015, 2016 and 2017. 
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Fig. 19. The historical monthly average tem- 
perature map from year 2010 to 2017 of that 
locality. 

Fig. 20. The comparison between the calculated heat loss and ANN predicted heat loss through the insulated and uninsulated wall for years 2016 and 2017. 
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Fig. 21. The comparison between the calculated heat loss and ANN simulated heat loss through the insulated and uninsulated wall for the year 2017. 

Fig. 22. The comparison between the calculated yearly heat losses and ANN predictions of yearly heat losses with different training data set for (a) insulated wall; 
and (b) uninsulated wall. 
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Fig. 23. The percentage error in the ANN predicted yearly heat losses with different data set for (a) insulated wall; and (b) uninsulated wall. 
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mbient temperature. Considering the change in ambient temperature
y ± 1 °C, the percentage error in the ANN prediction is summarised in
ig. 25 -a and b for the insulated and uninsulated walls respectively. If
he environmental temperature decreases or increases by 1 °C, then the
ctual heat loss will be more or less than that of normal situation respec-
ively. Hence, it is revealed from the above figures that the percentage
rror in prediction of the ANN ranges between − 20.68% and + 29.68%
or the insulated wall and between − 20.48% and + 33.32% for the unin-
ulated wall. Again, the percentage error is higher for the uninsulated
all than that of the insulated wall because of the higher level of heat

osses. Considering the effect of global warming, the minimum accuracy
f the ANN prediction will drop from 82.5% to 66.68% in case of ± 1 °C
hange in ambient temperature. It is worth mentioning that monitoring
 building for a year or more before and after retrofitting to estimate
he benefits could be time consuming and expensive. Particularly with
he variation in weather conditions and people’s behaviour, as we have
een mathematically. Therefore, in this paper the proposed approach
as utilised a simplified and a rapid method to evaluate the benefits
sing key parameters, infrared thermography and deep learning neu-
al networks. This should provide a tool to encourage the owners of
on-insulated buildings to assess the benefits of insulation to improve
hermal insulation. 

. Limitations and assumptions of the simulation technique 

Buildings go through complex environmental and weather condi-
ions as well as significant variation in occupants’ behaviour. Given
uch complexity, it will be difficult to provide exact figures about en-
rgy savings regardless of the efforts used in the simulation and real
ata analysis. Therefore, the authors acknowledge such limitations and
ave assumed some average values of the environmental parameters to
stimate energy savings. For example, wind speed and direction vary
reatly over time; and hence an average value estimated from previous
tudies have been used. The effect of thermal bridges is ignored, as nor-
ally the area of any thermal bridging will be small when compared

o the area of whole wall to influence the overall heat loss. Hence the
ffect of thermal bridges is not considered during this comparison pro-
ess. An assumption is made that heating will be switched on when the
mbient temperature below 20 °C. This might have its own limitations
ince during summer, the temperature falls below 20 °C at night but the
eat losses in most cases are offset by daytime solar gain. Therefore, in
17 
ost cases no space heating is used in the UK during that period of the
ear. We have assumed heating will be on at any time when the ambi-
nt temperature is below 20 °C for the payback period calculations. As
iscussed in this paper, mathematically the number of years should be
nfinite (i.e. life-time monitoring to achieve accurate comparison for the
ffect of insulation and the payback period). 

. Conclusion 

To meet the goal of the UK Government’s Climate Change Act (2008),
eduction in energy consumption should have priority over the reduc-
ion in carbon emission at the source of energy production [67] . Heat-
ng and air-conditioning is responsible for the major part of energy con-
umption in buildings. Insulation can play a significant role in improving
hermal performance of buildings by restricting heat losses and reducing
nergy consumption for heating and air-conditioning. The key conclu-
ions of this work are as follows: 

• As demonstrated by the estimated monthly heat losses given in
Table 3 , there is a potential for annual energy savings of about 80%
for the retrofitted and externally insulated building when compared
to an equivalent uninsulated building. 

• Infrared thermography is a very effective tool in evaluating build-
ings’ thermal performance. The results of the case study presented
in this paper show a very good agreement with that. 

• It is demonstrated from the weeklong monitoring of indoor and out-
door temperatures that insulation could aid in maintaining a steady
indoor temperature during summer as well as during the heating
season. 

• The novel use of ANN combined with infrared thermography data is
found to be capable of predicting future heat losses with over 82%
accuracy regardless of wall type and training data size. 

• The heat loss predictions can be used to estimate future energy sav-
ings due retrofitting; and consequently, rationalise the investment
on retrofitting in terms of savings on energy bills. Hence the sug-
gested novel approach provides a tool for rapid analysis of energy
savings for communities. 

• The use of infrared thermography combined with ANN can support
architects and energy consultants to rapidly evaluate the effective-
ness of wall insulation for a particular locality without using expen-
sive energy simulation software. 
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Fig. 24. The percentage error in the ANN predicted yearly heat losses through insulated and uninsulated wall, (a) absolute values of percentage error; and (b) 
averaged absolute value of percentage error per year. 
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Fig. 25. The percentage error in the prediction of the ANN if the temperature is changed by ± 1 °C, (a) insulated wall; and (b) uninsulated wall. 
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• In order to accurately estimate the energy savings from insulation,
this paper has proved mathematically that a life-long monitoring will
be needed. 

Simplicity and practicality of this novel approach to characterise
uildings’ energy performance is the key objective of this paper. Real
uildings in real world are affected by variable wind speed, variable sun
19 
osition and people’s behaviour. Hence, monitoring the same building
ver several years will most likely to lead to different results in any case.
sing a simplified model with some given assumptions will provide suf-
cient information and data estimation about the potential performance
f a building and enable modelling the main factors that influence its
hermal behaviour. In this way, it will produce a reasonable comparison
n relatively a short period of time by focusing on the insulation factor.
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