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Abstract

The access of machine learning techniques in popular programming lan-

guages and the exponentially expanding big data from social media, news,

surveys, and markets provide exciting challenges and invaluable opportunities

for organizations and individuals to explore implicit information for decision

making. Nevertheless, the users of machine learning usually find that these

sophisticated techniques could incur a high level of tensions caused by the

selection of the appropriate size of the training data set among other factors.

In this paper, we provide a systematic way of resolving such tensions by ex-

amining practical examples of predicting popularity and sentiment of posts

on Twitter and Facebook, blogs on Mashable, news on Google and Yahoo,

the US house survey, and Bitcoin prices. Interesting results show that for the
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case of big data, using around 20% of the full sample often leads to a better

prediction accuracy than opting for the full sample. Our conclusion is found

to be consistent across a series of experiments. The managerial implication

is that using more is not necessarily the best and users need to be cautious

about such an important sensitivity as the simplistic approach may easily

lead to inferior solutions with potentially detrimental consequences.

Keywords: Big data; Machine learning; Data size; Prediction accuracy;

Social media

1. Introduction and tensions due to big data

Texts on the online posts of social media and news websites provide a

potentially unlimited new source of data that can be meaningful for orga-

nizations, individuals, and society (George et al., 2014). This new source

of data is particularly valuable where relevant data on social outcomes are

missing, e.g., the popularity or sentiment of a post. An accurate prediction

of popularity provides benefits to organizations (or individuals) for decision

making, such as the selection of products to promote (or purchase), see, e.g.,

Wamba et al. (2015) and Economist (2017). To this end, machine learning

yields predictions from large-scale text data and allows us to recover implicit

information for making effective decisions (see, e.g., Hou et al., 2018; Olhede

and Wolfe, 2018).

Machine learning algorithms are not only powerful in discovering implicit

relationships within unconventional high-dimensional big data but also con-

venient to implement on personal computers. This is mainly due to the

advances in computer technology (Wang et al., 2018) and the rapid develop-
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ment of many tool packages in popular statistics systems and programming

languages like R and Python (Pedregosa et al., 2011). Although a deep

understanding of these algorithms can be mathematically demanding, these

algorithms are now made accessible to a wider audience.

However, an important issue that is usually overlooked by academics and

especially practitioners1 is the tension that could arise due to the sensitivity of

the prediction accuracy of machine learning methods with respect to several

factors including the size of the data that are utilized to train a machine

learning model. Other factors that could also cause tensions include the

choice of the technique, the fine-tuning of the algorithm parameters, sampling

methods, data characteristics, and problem objectives (see, e.g., Varian, 2014;

Mullainathan and Spiess, 2017; Corbett, 2018). An appropriate choice of

these factors is a challenging and complex issue since it could be problem-

and-data dependent. Informative attempts to address some of these concerns

are carried out in the research area of meta-learning (Reif et al., 2012).

To address the challenge, in our research, we firstly deal with the tension

caused by the size of the training data set. We then perform a series of

robustness experiments to demonstrate the consistency of our suggestion

across different situations using other potential factors that could also cause

tensions. In addition, to generalize our analysis and provide robust results,

1The practitioners and academics refer to the professionals who apply machine learning

methods to a broad range of areas including promotion advertisements, brand strategies,

the choices of services and products, economic analysis, managing operations, text and

sentiment analysis, sports predictions, and spatial analysis (see, e.g., Miller, 2014; Kayser

and Blind, 2017; Jun et al., 2018).
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two random sampling methods are also considered.

Admittedly, one may assume that the power of computing is no longer a

limitation and therefore adopting a straightforward and crude approach that

selects the best option by evaluating all possible combinations of the factors

causing tensions would be the easiest way forward. Though this complete

enumeration technique might be feasible in certain situations, in many real-

life instances it is necessary to find an efficient and novel approach that limits

the evaluation of unnecessary computations. Furthermore, it is also crucially

important to stress that it is usually overlooked that machine learning tech-

niques, which are heuristics in the wider sense, do not guarantee optimality

and therefore ignoring this important issue could be vital to practitioners as

the obtained solutions can be potentially suboptimal and hence inferior, see

Salhi (2017).

Indeed, in many cases, the performance of machine learning is simply

counter-intuitive. For instance, a larger size of training data set may not

necessarily result in a more accurate prediction. This important observation

raises the tension which is the result of the following question: what is the

most suitable training size one should use and how do we guarantee, at least

empirically, that a prediction from the suggested size is sufficiently accurate?

We aim to respond to this question by providing solutions to alleviate

such tension. To the best of our knowledge, this is the first time that the

challenging issue of tackling the tension is explored. Specifically, we illustrate

our approach by examining four cases of popularity and sentiment predic-

tion based on big data from social media, blogs, and news websites. To

provide extra robustness to our approach, we extended our experiments to
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two entirely different sectors, namely, the US house market and Bitcoin price

prediction.

Our analysis of prediction accuracy shows that some machine learning

methods perform well under different sizes of training data, while the pre-

diction performance of many others fluctuates largely with the training size.

The relative advantages of different methods vary with different data sets.

Thus, the user needs to perform a systematic comparison of representative

methods under a variety of training sizes. This comparison is practical if the

computational time is not considerably high but it could become a burden

otherwise. We solve this challenge by suggesting a generally suitable fraction

of the full sample. According to our robust empirical results, using approx-

imately 20% of the full sample often provides relatively significant gains in

the accuracy compared with using the full sample.

The implicit premise for advocating big data is that better predictions

or decisions will be achieved if more training data are available. In other

words, the more the better. However, previous works point out that this is

not always the case as more data could carry errors that lead to overfitting

issues and misleading biases.

First, big data usually carry measurement errors, outliers, dependencies,

and incidental homogeneity. For instance, Fan et al. (2014) discover that

these errors make it difficult to validate many exogenous assumptions and re-

sult in wrong predictions and decisions. Lazer et al. (2014) also demonstrate

that big data from Google Flu Trends lead to large errors in predictions.

Hashem et al. (2015) summarize interesting challenges such as scalability,

integrity, and heterogeneity while Hák et al. (2016) emphasize that the data-
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driven priorities of policy agenda may result in distortions.

Second, the overfitting issue widely exists in a variety of data sources.

Hippert et al. (2005) address overfitting in the prediction of electricity load

using neural networks. Liu and Gillies (2016) deal with overfitting related to

feature extraction for classification tasks. Silva et al. (2018) examine over-

fitting in a semi-supervised learning problem where there is a lack of labeled

data. Jollans et al. (2019) illustrate overfitting in neuroimaging data due

to the characteristics of low signal-to-noise and large feature sets. Ha et al.

(2019) show that overfitting in some models can be prevented by randomly

dropping out some parts of the models during the iterative training process.

Very recently, Abdollahi et al. (2020) discover that by allowing their model

to remove randomly approximately 20% of the network nodes can prevent

overfitting. We found that this is an exciting area of research that needs to

be pursued.

Third, a wealth of information diverts the attention of an algorithm to-

wards large biases. This is demonstrated by Corbett (2018) who highlights

that more data bring more cognitive burden that produces more chances to

make the biases persist or more acute. For example, in the case of short pre-

diction, using a smaller but relevant amount of current information can be

more useful than relying on a long time period where a large amount of infor-

mation is irrelevant and likely to distort the results. This idea was also noted

by Cai et al. (2018) who demonstrate that removing irrelevant and redundant

data from high-dimensional data is necessary to improve learning accuracy.

Similarly, de Amorim (2019) proposes a method to deal with only a fraction

of a data set by removing irrelevant features. Jollans et al. (2019) point out
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that the data points in neuroimaging data are more than subjects, which af-

fects the performance of prediction methods. Kanarachos et al. (2019) show

that instantaneous monitor of vehicle fuel consumption using smartphones

leads to rich data causing prediction models’ performance losses, whereas

ignoring GPS speed or acceleration could improve performance.

Our paper relates to the recent literature that studies the development

and applications of big data and machine learning in social science. Kayser

and Blind (2017) address the use of new textual data sources and prediction

methods in new research questions. Blazquez and Domenech (2018) propose

an architecture with new data sources to predict the changes in social and

economic agents. Jun et al. (2018) review a wide range of research areas that

employ big data to overcome the restriction of a single source. Iqbal et al.

(2020) discuss the application in developing smart city including intelligent

transportation. Gan et al. (2020) use deep learning technologies to provide an

effective pricing method for Asian options in financial markets. In this study,

we point out the challenges arising from a large number of heterogeneous

sources of text data on social media and news websites.

The paper is organized as follows. Section 2 briefly describes the machine

learning methods, data sets, and the performance measures that are used in

this study. Sections 3 and 4 illustrate the tensions by investigating four sce-

narios for predicting the popularity and sentiment of posts on social media,

blogs, and online news platforms. Section 5 describes the robustness of our

findings under random sampling while Section 6 deals with the extension of

our implementation to two additional experiments. In Section 7, we discuss

data characteristics and managerial implications for different problem objec-

7



tives. Section 8 summarizes our findings and suggestions. For completeness,

we have also added appendices to show detailed results regarding the consis-

tency of our findings under different sampling methods, prediction methods,

and corresponding parameters.

2. Machine learning methods, data sets, and performance mea-

sures

In this section, we firstly provide a concise introduction to machine learn-

ing methods that we examine. We then present the data sets in social media

and markets that are used as the platform to test our approach alongside the

measures of performance that we adopted.

2.1. A brief on the machine learning techniques used

Machine learning is attracting a great amount of interest because it offers

new tools to reveal generalizable patterns successfully from very complex and

unregulated big data. The reason is that the assumptions in classical statis-

tical techniques about the underlying structure are not considered necessary

anymore. Machine learning achieves such a breakthrough since it turns the

deductive problem of finding a rule to an inductive one by letting the data

inform us the best rule characterizing data (Mullainathan and Spiess, 2017).

We briefly introduce those machine learning methods that we examined.

We select four regression methods, namely, elastic net, gradient boosting,

decision tree, and random forest. The four classification methods that we

adopt include ridge, SVM (Support Vector Machines) with SGD (Stochastic

Gradient Descent), decision tree, and random forest. These machine learning
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methods are easily available in the tool package scikit-learn of Python pro-

gramming language developed by Pedregosa et al. (2011). These methods are

purposely selected to (a) represent several widely-used families of algorithms

and (b) demonstrate distinctive prediction accuracies. For completeness and

to ensure that our chosen methods generally cover the possible range of accu-

racies, we provide a large number of methods with their respective accuracies

in the appendices.

The algorithms discussed in this study are referred to as the “super-

vised” machine learning algorithms that solve a prediction problem. We do

not explore “unsupervised” learning for pattern recognition and cutting-edge

algorithms. Instead, we focus on the tensions in big data when we use super-

vised machine learning techniques with the aim of providing practical advice

and examples for the applications of machine learning arising in the social

sciences.

In our regression analysis, we use the “elastic nets” regressor, which ap-

plies a convex combination of Lasso (least absolute shrinkage and selection

operator) with the L1-norm of the coefficient vector as the regularizer and

the ridge regressor with the L2-norm. The regularity is imposed through

a parameter α. Such a combination trains a sparse model like Lasso and

meanwhile maintains the regularization properties of the ridge method. The

elastic net method is particularly suitable to fit the data with multiple cor-

related features. Another linear method of doing text analysis and natural

language processing is the SGD method. It fits linear models in a simple and

efficient way by using different convex loss functions and different penalties.

This is particularly appropriate for the data with a large number of obser-
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vations and features. We use a loss function that fits a linear support vector

machine (SVM).

The “random forest” algorithm is a widely-used technique to improve the

prediction performance, see, e.g., Blazquez and Domenech (2018), Cai et al.

(2018), and Jollans et al. (2019). It takes a weighted average over a number of

so-called “decision tree” predictors that are restricted to a randomly selected

subset of features. The “gradient boosting” algorithm builds an additive tree

model by optimizing differentiable loss functions on its negative gradient. It

has the advantages of naturally dealing with heterogeneous features of data,

high predictive power, and robustness to outliers, see Pedregosa et al. (2011).

We also use the “decision tree” method where only one single tree model is

fitted rather than a few tree models as in the random forest case.

For simplicity, the default values of the parameters in these methods, as

encoded in the scikit-learn package, are used here. This is a commonly used

assumption since the users of machine learning methods, especially in social

science, often rely on these default settings. We do not investigate the effects

of tuning the parameter values but instead, we focus on the tensions in big

data that are caused by the choices of machine learning methods and training

sizes. Meanwhile, we also briefly discuss the way that we change the value of

the parameter α for the linear models and the number of estimators for the

ensemble-based models like the random forest below.

To choose the value of parameter α, we perform an iterative search in

a given set of possible values by carrying out a so-called cross-validation

scheme with iterative fitting along a regularization path. For the ensemble-

based methods, we set the number of estimators to 5 for the random forest
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method as well as the other ensemble methods that are listed in Appendix A.

However, for the gradient boosting we keep the default parameter value, 100,

given by the scikit-learn package for the number of estimators. In this way, we

show that using a large number of estimators in an ensemble method usually

do not improve performance substantially besides being too time-consuming.

For this reason, we choose a relatively smaller number of estimators which is

found to achieve an accurate prediction relatively faster.

2.2. Data sets and the measure of performance

We apply the aforementioned methods to four examples of big data from

social media (Twitter and Facebook), online blogs (Mashable) and news

(Google and Yahoo). The first three are taken to provide a prediction of

the popularity of a post while the fourth presents a sentiment analysis of

news. To conduct a robustness analysis, we also examine two additional

cases, namely, the American Housing Survey (AHS) and Bitcoin. We per-

form a regression analysis on the first two examples and the AHS case. We

run a classification analysis on the third and fourth examples, as well as the

Bitcoin case.

For each case, we take a range of percentages (20%, 25%, ..., 100%) of

the full sample to demonstrate the tension of big data in terms of the se-

lection of data sizes. Within each selected percentage of the full sample, we

examine four partitions of training and testing sets. For example, consider

the 75%/25% partition. After taking 20% of the full sample as the observa-

tions, we further use 75% of these observations, i.e., 75% × 20% of the full

sample, as the training set. Then the remaining 25% of the observations are

allocated for the testing set to measure the prediction accuracy of a given
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machine learning model.

To measure the performance of regression, we use the variance score R2,

which shows the extent to which future observations are likely to be predicted

by the model. The scikit-learn package provides the r2 score function to

compute R2, which is defined as

R2(y, ŷ) = 1−
∑nsamples−1

i=0 (yi − ŷ)2∑nsamples−1
i=0 (yi − ȳ)2

,

where ŷi is the predicted value of the i-th observation, yi is the correspond-

ing true value, and the sample mean ȳ = 1
nsamples

∑nsamples−1
i=0 yi. A value of 1

indicates the best model while 0 corresponds to a constant model that disre-

gards the input features. To quantify the tension of determining the size of

the training set, we compute the deviation (in %) of the variance score R2

using a partial set against its corresponding full set as follows:

Deviation of R2 = 100× R2
Partial −R2

Full

|R2
Full|

.

A positive percentage difference indicates that using a partial sample achieves

a better performance than utilizing a full sample.

For the classification problem, the classification accuracy score is defined

in the range of 0 to 1 to measure the prediction performance. The scikit-learn

package provides the accuracy score function to compute the classification

accuracy as follows.

Accuracy(y, ŷ) =
1

nsamples

nsamples−1∑
i=0

1(ŷi = yi),

where 1(x) is the indicator function. Similarly, we compute the deviation

(in %) of accuracy using a partial set against its corresponding full set as
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follows:

Deviation of Accuracy = 100× AccuracyPartial − AccuracyFull

AccuracyFull

.

In short, machine learning algorithms generate boundless and exciting

opportunities for organizations, individuals, and society in general for ex-

ploring helpful information in big data. Nevertheless, these algorithms raise

tensions when they are trained with big data, which we aim to illustrate

using applications in social media, news websites, and markets.

3. Tensions using big data: Applications to the prediction of pop-

ularity

Goes (2014) and Bello-Orgaz et al. (2016) summarize that the advantage

of big data comes from the ability of machine learning to reveal information

from various combinations of the “5Vs” characteristics: volume, variety, ve-

locity, value, and veracity. Data from social media and news websites are

typical big data with these characteristics. In this section, we examine the

tensions arising from the applications of machine learning to the prediction

of the popularity of posts on social media and news websites.

3.1. Prediction of Twitter post popularity

We start to illustrate the tensions in big data by examining a regression

problem based on Twitter data. Usually, after a message is posted, there is

a high volume of message exchange taking place in the day and the replies to

the message largely occur during the following week. Due to the popularity

and the fast-spreading speed of message, Twitter users’ online activity data

are therefore a natural source for analyzing popularity.
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Figure 1. Different Regression Methods for Twitter Data.

Figure 1 plots the regression variance scores of four machine learning methods under (a)

the partition of 75% observations as the training set and 25% observations as the testing

set; (b) the partition of 55% observations as the training set and 45% observations as the

testing set.

We use the Twitter users’ activity data that are collected by the AMA

(Data Analysis, Modeling and Machine Learning Group) website of Grenoble

Informatics Laboratory, Joseph Fourier University and ’BestofMedia’ Group,

see Mayuri et al. (2015).2 We apply a group of machine learning regression

methods for predicting the popularity of a post during the time-series of the

data. The popularity is measured by the mean number of active discussions

(NAD). There are 583,250 instances (i.e. observations), where each instance

comprises 77 features (i.e. variables) that record the evolution of these fea-

tures through the time series of the data.

Figure 1 plots the changes in the regression variance scores of four machine

2http://ama.liglab.fr/resourcestools/datasets/buzz-prediction-in-social-media/
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learning methods in accordance with the changes in the size of the training

set. To vary the size of the training set, we incrementally take 20% to 100%

of the full sample as the observations. For each size of the observations,

Figure 1(a) splits the observations into a partition of 75% observations as

the training set and 25% observations as the testing set. Similarly, Figure

1(b) shows the results based on the partition of 55% observations as the

training set and 45% observations as the testing set.

Figure 1 implies two types of tensions that the user of machine learning

will encounter. The first tension is that the user has to choose appropriate

methods for the data set. To avoid selecting those methods that perform

worse, one way would be to perform a comparison of different methods and

choose the overall best solution. This strategy requires the user to perform

this comparison for each data set because a method that is superior for a

given set of data might not be so for the other data sets. In other words,

there is no one method that guarantees to outperform every single one under

all conditions as these techniques are heuristics in nature (Salhi, 2017). If this

was not the case, such a method will be referred to as an optimal or “exact”

method making the use of other methods obsolete. Figure 1 shows that the

performance of the decision tree method is worse than the performances of

the other three methods whose performances happen to be close to each

other and fluctuate slightly. For example, in Figure 1(a) the R2 of the elastic

net regressor is lower than the gradient boost regressor when the size of the

training set is 174,975, while the former performs better when the size is

349,950.

The second tension in the big data is that the prediction performance of
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Figure 2. Different Partitions of Twitter Data for Regression.

Figure 2 displays the regression variance scores using (a) the Elastic Net Method; (b) the

Decision Tree Method, under four partitions of observations with the ratios of the training

set to the testing set as: 55%/45%, 65%/35%, 75%/25%, and 85%/15%.

a model does not necessarily improve after more observations are provided to

train the model. Figure 1(a) shows that the four methods perform relatively

worse when the sizes of training observations are around from 150,000 to

200,000 and from 250,000 to 300,000. On the contrary, both Figure 1(a) and

Figure 1(b) show that under both partitions of 75%/25% and 55%/45%, the

four methods all perform relatively better with 20% of the sample (87,487

observations) when compared to using the full sample.

To highlight the second tension about the size of the training set, Figure 2

depicts the changes in the variance score R2 with respect to the size of the

training set for the four partitions of data with the ratios of the training set

to the testing set as: 55%/45%, 65%/35%, 75%/25%, and 85%/15%. Figure

2(a) uses the elastic net method and the R2 scores are at the bottom when

the size of the training set is around 200,000 to 300,000. Figure 2(b) plots
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Table 1. Deviation of Variance Score R2 w.r.t. the Full Sample (%)

using the Partition of Train/Test=75/25 for Twitter Data

Fraction of Obs. 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

Training Size 87,487 131,231 174,975 218,718 262,462 306,206 349,950 393,693

Elastic Net 1.71 -0.57 -4.05 -1.37 -2.38 -2.70 -0.43 -0.23

Gradient Boost 0.58 -0.83 -1.88 -0.87 -2.16 -2.47 -1.10 -0.55

Decision Tree 0.68 -4.53 -2.59 -0.42 -4.69 -4.14 0.42 0.50

Random Forest 0.27 -1.88 -2.20 -1.67 -3.01 -2.97 -1.49 -0.28

Notes. The first row shows the fraction of the observations with respect to the full sample.

The last four rows display the deviations (in %) of R2 where a positive value indicates a

better performance than the full sample.

the results of the decision tree. The results fluctuate largely for the training

size below 200,000 and gradually turn to be more stable for larger sizes of

the training set. These figures all show that the input with 20% of the full

sample leads to a better performance than the input of the full sample.

Table 1 displays the deviations of R2 for the four methods under the

partition of 75%/25%. The results show that the elastic net method obtains

more than 1% gains, followed by the gradient boost and the decision tree

that get more than 0.5% gains, whereas the random forest generates the least

gains. As the elastic net method performs better than the others, we provide

in Table 2 the corresponding deviations of R2 for the following four partitions

of the data, namely, 55%/45%, 65%/35%, 75%/25% and 85%/15%. Table 2

indicates that using 85% input data as the training set generally performs

worse than other partitions using smaller inputs as the training sets. In

summary, Table 1 and Table 2 indicate that using the four models with the
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Table 2. Deviation of Variance Score R2 w.r.t. the Full Sample (%)

using the Method of Elastic Net for Twitter Data

Fraction of Obs. 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

Training Size 64,157 96,236 128,315 160,393 192,472 224,551 256,630 288,708

Train/Test=55/45 1.28 0.07 -1.73 -1.73 -2.27 -2.15 -0.70 -0.66

Training Size 75,822 113,733 151,645 189,556 227,467 265,378 303,290 341,201

Train/Test=65/35 1.32 -1.03 -2.83 -1.98 -2.22 -2.69 -0.89 -0.52

Training Size 87,487 131,231 174,975 218,718 262,462 306,206 349,950 393,693

Train/Test=75/25 1.71 -0.57 -4.05 -1.37 -2.38 -2.70 -0.43 -0.23

Training Size 99,152 148,728 198,305 247,881 297,457 347,033 396,610 446,186

Train/Test=85/15 0.56 -0.34 -3.35 -2.67 -3.77 -3.21 -0.53 -1.04

Notes. The first row shows the fraction of the observations with respect to the full sample.

The last eight rows display the training sizes and the deviations (in %) of R2 for four

partitions of data: 55%/45%, 65%/35%, 75%/25%, and 85%/15%.

20% of the full sample achieves a better performance than the models using

the full sample.

3.2. Prediction of Facebook post popularity

We discuss the tensions in big data by running regression methods to a

data set from another popular social media, Facebook. The users can put a

post of texts, photos, and multimedia, which can be shared with other users

who can make comments to the post. The number of comments received by

a post can be used as an index for measuring the popularity of the post.

We use a set of data about Facebook comment volume that are available

from the UC Irvine Machine Learning Repository (Singh et al., 2015; Singh,
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Figure 3. Different Regression Methods for Facebook Data.

Figure 3 plots the regression variance scores of four machine learning methods under (a)

the partition of 75% observations as the training set and 25% observations as the testing

set; (b) the partition of 55% observations as the training set and 45% observations as the

testing set.

2016)3. There are 199,030 instances in this data set including 53 features

that are extracted from the posts on Facebook. We predict the number of

comments that are received by a post through a group of machine learning

methods.

Predicting the popularity of Facebook posts with machine learning meth-

ods also raises the same two tensions in big data as highlighted in the previous

case.

(i) The choice of the method - First, the user is faced with the difficulty

in determining appropriate methods for his/her data. Figure 3 plots the pre-

diction performance of four machine learning methods in terms of variance

3https://archive.ics.uci.edu/ml/datasets/Facebook+Comment+Volume+Dataset
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scores R2 under the 75%/25% partition and the 55%/45% partition respec-

tively. Under both partitions, the elastic net method and the decision tree

method display poorer performance with all values of R2 being below 0.5. In

other words, the two methods cannot explain more than 50% of variations

of the testing sets. By contrast, the gradient boost method and the random

forest methods achieve variance scores higher than 0.5 almost for all training

sizes in Figure 3(a) and Figure 3(b).

(ii) The effect of the size of the training set - As shown in Figure 3,

the R2 values of the four methods decrease with the number of observations.

This result is even more marked especially with the elastic net method which

shows a large decline when the training size is large at around 120,000. More

importantly, Figure 3 shows that training these machine learning models

with a fraction of the full sample can yield large gains compared with fitting

these models with the full sample. These results are summarized in Table 3

and Table 4.

Table 3 displays that generally the four methods can achieve better gains

in the prediction performance when we use 20% to 50% of the full sample.

The elastic net, gradient boost, and random forest produce 25% to 40% gains

in the variance score when a training set of 20% of the full sample is used

only, which is a training size of 29,854. In contrast, using 70% to 90% of the

full sample leads to significant losses in the prediction performance with up

to 116% worse for the elastic net method.

As an example, we consider the method of random forest to investigate its

prediction performance by using four partitions of training and testing sets.

Table 4 summarizes these results. In almost all cases, random forest using
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Table 3. Deviation of Variance Score R2 w.r.t. the Full Sample (%)

using the Partition of Train/Test=75/25 for Facebook Data

Fraction of Obs. 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

Training Size 29,854 44,781 59,709 74,636 89,563 104,490 119,418 134,345

Elastic Net 41.62 11.54 1.03 34.73 0.47 -50.34 -116.39 -27.07

Gradient Boost 25.18 17.38 -3.37 24.89 8.73 -2.80 -20.88 -7.97

Decision Tree 13.12 30.71 -58.63 30.14 -21.22 47.77 13.60 25.15

Random Forest 25.24 15.88 0.89 22.95 4.70 -1.00 -6.70 -1.43

Notes. The first row shows the fraction of the observations, which are used by the methods,

to the full sample. The last four rows display the deviations (in %) of R2 and a positive

value indicates a better performance than the full sample.

Table 4. Deviation of Variance Score R2 w.r.t. the Full Sample (%)

using the Method of Random Forest for Facebook Data

Fraction of Obs. 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

Training Size 21,893 32,839 43,786 54,733 65,679 76,626 87,573 98,519

Train/Test=55/45 15.74 33.51 12.16 28.63 21.72 24.03 7.03 2.89

Training Size 25,873 38,810 51,747 64,684 77,621 90,558 103,495 116,432

Train/Test=65/35 9.27 21.53 7.57 19.12 17.81 11.30 -9.57 -5.79

Training Size 29,854 44,781 59,709 74,636 89,563 104,490 119,418 134,345

Train/Test=75/25 25.24 15.83 0.87 22.99 4.70 -0.92 -6.68 -1.47

Training Size 33,835 50,752 67,670 84,587 101,505 118,422 135,340 152,257

Train/Test=85/15 25.81 40.37 -11.65 29.79 21.73 30.64 7.77 34.97

Notes. The first row shows the fraction of the observations, which are used by the methods,

to the full sample. The last eight rows display the training sizes and the deviations (in %)

of R2 for four partitions of data: 55%/45%, 65%/35%, 75%/25%, and 85%/15%.

partial samples achieves a better performance than using the full sample.

Besides, in most cases, the performance gain is around 20%. Also, the ten-
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sion due to the sensitivity of the prediction performance to the training size

strikingly stands out when we choose 40% of the full sample instead. In par-

ticular, the gain is over 12% under the partition of 55%/45% and it decreases

sharply to 7.57% and 0.87% under the partitions of 65%/35% and 75%/25%

respectively. The worst scenario is to adopt the partition of 85%/15%, which

results in an important performance loss of 11.65% when compared with the

full sample case. In other words, a user who happens to choose the 40%

sample set with these chosen partitions could potentially incur significant

performance losses.

3.3. Prediction of Mashable blog popularity

We now explore the case of classification problems using big data from

a well-known online blog platform, namely Mashable. It publishes diverse

topics and attracts millions of followers. We study a large data set with 39,000

articles published on the Mashable website, which is collected by Fernandes

et al. (2015) and which can also be obtained from the UC Irvine Machine

Learning Repository4. The data consist of 39,644 instances of articles, each

containing 59 features.

We use a group of machine learning classification algorithms to predict

the popularity of an article. The popularity of an article is measured by the

number of shares of this article in some large social media platforms including

Facebook, Twitter, Google+, LinkedIn, StumbleUpon, and Pinterest. We

study a classification problem to distinguish between popular articles and

those that are not. We do this by setting the mean of the number measuring

4https://archive.ics.uci.edu/ml/datasets/online+news+popularity

22



5000 10000 15000 20000 25000 30000
The Size of Training Examples

0.65

0.70

0.75

0.80

Cl
as

sif
ica

tio
n 

Ac
cu

ra
cy

 S
co

re

Prediction Performance with the Partition of Train_Test=75_25

Ridge Classifier
SVM with SGD
Decision Tree
Random Forest

(a) Partition of 75% Training / 25% Testing

5000 7500 10000 12500 15000 17500 20000 22500
The Size of Training Examples

0.60

0.65

0.70

0.75

0.80

Cl
as

sif
ica

tio
n 

Ac
cu

ra
cy

 S
co

re

Prediction Performance with the Partition of Train_Test=55_45

Ridge Classifier
SVM with SGD
Decision Tree
Random Forest

(b) Partition of 55% Training / 45% Testing

Figure 4. Different Classification Methods for Mashable Data.

Figure 4 plots the classification accuracy scores of four machine learning methods under

(a) the partition of 75% observations as the training set and 25% observations as the

testing set; (b) the partition of 55% observations as the training set and 45% observations

as the testing set.

popularity as the threshold.

We demonstrate the results of four classification methods of predicting

the popularity of the blogs in the data set. Figure 4 highlights two tensions

in big data that arise when users try to classify the blogs to find out whether

they are popular. First, the classification accuracy scores demonstrate large

differences for the methods of decision tree, random forest, and ridge clas-

sifier, as shown in Figure 4(a) and Figure 4(b). For example, a user who

chooses the decision tree method will generally incur about 20% losses in

accuracy scores compared with the one who opts for the ridge classifier.

Second, the four methods generally show a U-shape of accuracy scores

when they are trained by using more training observations. For example,

Figure 4(a) displays that a user taking about 15,000 to 20,000 training ob-
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Table 5. Deviation of Classification Accuracy w.r.t. the Full Sample

(%) using the Partition of Train/Test=75/25 for Mashable Data

Fraction of Obs. 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

Training Size 5,946 8,919 11,892 14,866 17,839 20,812 23,786 26,759

Ridge Classifier -4.21 -2.72 -5 -8.51 -8.51 -5.43 -2.59 -0.74

SVM with SGD -1.76 -7.89 0.89 -7.37 -7.06 -16.26 2.25 1.76

Decision Tree -11.21 -5.12 -4.52 -12.03 -7.79 -5.87 -3.24 -2.70

Random Forest -6.13 -4.31 -5.73 -8.54 -9.71 -7.19 -4.46 -2.27

Notes. The first row shows the fraction of the full sample used by the methods. The

last four rows display the deviations (in %) of accuracy where a positive value indicates a

better performance than the full sample.

servations (i.e., 50% - 70% of the full set) will achieve the least prediction

performance. The tension is more significant when the user discovers that

the SVM (Stochastic Vector Machine) method displays large fluctuations in

its scores. For instance, it generates a score which is lower than the one

obtained by the decision tree at about 20,000 but at around 25,000 the same

method produces a much better result by overtaking the random forest. It

can also be noted that in this class, the ridge classifier outperforms the other

methods over all training sizes making it appropriate for the user to opt for.

According to Table 5, although the four methods with partial samples of

the data set generally cause performance losses in the classification accuracy,

there are exceptions of positive performance gains coming from the SVM

method. For instance, these happen when using 40% or 80% of the full

sample. These exceptions reflect the large fluctuations in the performance

of the SVM method as shown in Figure 4. To examine this method further,
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Table 6. Deviation of Classification Accuracy w.r.t. the Full Sample

(%) using the Method of SVM with SGD for Mashable Data

Fraction of Obs. 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

Training Size 4,360 6,541 8,721 10,902 13,082 15,262 17,443 19,623

Train/Test=55/45 9.83 -0.66 2.95 7.03 3.46 -0.48 6.15 1.08

Training Size 5,153 7,730 10,307 12,884 15,460 18,037 20,614 23,191

Train/Test=65/35 -32.21 -15.20 16.21 -1.73 3.48 11.15 -4.19 11.70

Training Size 5,946 8,919 11,892 14,866 17,839 20,812 23,786 26,759

Train/Test=75/25 -1.76 -7.89 0.89 -7.37 -7.06 -16.26 2.25 1.76

Training Size 6,738 10,109 13,478 16,848 20,218 23,587 26,957 30,327

Train/Test=85/15 -4.13 -13.78 -16.15 -14.21 -19.81 -11.78 -12.80 -3.57

Notes. The first row shows the fraction of the full sample used by the methods. The

last eight rows display the training sizes and the deviations (in %) of accuracy for four

partitions of data: 55%/45%, 65%/35%, 75%/25%, and 85%/15%.

Table 6 displays the deviations of accuracy using partial samples with respect

to the accuracy with the full sample under four different partitions. We find

that using the SVM method with partial samples under the training/test

partitions of 55%/45% and 65%/35% have more chances to outperform the

method with the full sample. Therefore, the tension in big data caused by

the sensitivity of classification methods to the training size is still serious

when the SVM method is applied to the Mashable data.

4. Tensions using big data: Application to the prediction of news

sentiment

In this section, we illustrate the tensions in big data from Online News

when a user wants to classify the news into two categories, namely, the
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optimistic and the pessimistic.

We study sentiment that is revealed by news on Google News and Yahoo

News. We use a large data set of news items published on Google and

Yahoo, which are collected by Moniz and Torgo (2018) and which can also

be downloaded from the UC Irvine Machine Learning Repository5. The data

carry the topics of news involving the economy, computers, and politics.

The data also include the respective feedback of news on multiple social

media platforms including Facebook, Google+, and LinkedIn. In addition,

it provides a sentiment score derived from the title texts of the news items.

The data contain 90,722 instances of news and there are 171 features in each

instance. In this classification problem, we set the mean of the sentiment

score as the threshold when we want to distinguish between optimistic news

and pessimistic news.

Figure 5 shows that the ridge classifier outperforms the other three clas-

sification methods. It is also worth noting that the results obtained by SVM

fluctuate around those found by the decision tree method and the random

forest method, which makes the choice between these three methods diffi-

cult. A user who only tries the ridge classifier will not face the tension in the

choice of the last three methods as the chosen method outperforms the oth-

ers. Though the user has chosen the right approach on this occasion, he/she

has to deal with the tension about the determination of an appropriate train-

ing size. As shown in Figure 5(a) and Figure 5(b), the ridge classifier with

the input of a 30% of the full sample achieves higher accuracy scores than if

5https://archive.ics.uci.edu/ml/datasets/News+Popularity+in+Multiple+Social

+Media+Platforms
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Figure 5. Different Classification Methods for News Data.

Figure 5 plots the classification accuracy scores of four machine learning methods under

(a) the partition of 75% observations as the training set and 25% observations as the

testing set; (b) the partition of 55% observations as the training set and 45% observations

as the testing set.

Table 7. Deviation of Classification Accuracy w.r.t. the Full Sample

(%) using the Partition of Train/Test=75/25 for Online News Data

Fraction of Obs. 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

Training Size 13,608 20,412 27,216 34,020 40,824 47,628 54,432 61,236

Ridge Classifier 1.03 1.89 -1.41 0.32 -0.34 0.21 1.27 0.38

SVM with SGD -1.56 1.12 1.25 4.76 -0.61 1.32 4.01 0.04

Decision Tree 1.94 0.74 4.14 2.17 1.80 0.29 2.35 1.17

Random Forest 1.02 1.42 1.35 2.71 2.70 0.19 0.71 0.97

Notes. The first row shows the fraction of the observations, which are used by the methods,

to the full sample. The last four rows display the deviations (in %) of accuracy and a

positive value indicates a better performance than the full sample.

the full or almost the full sample is considered instead.

27



Table 8. Deviation of Classification Accuracy w.r.t. the Full Sample

(%) using the Method of Ridge Classifier

Fraction of Obs. 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

Training Size 9,979 14,968 19,958 24,948 29,938 34,927 39,917 44,906

Train/Test=55/45 -1.44 1.16 -0.42 -0.42 -0.38 0.42 0.03 0.23

Training Size 11,793 17,690 23,587 29,484 35,381 41,278 47,175 53,071

Train/Test=65/35 0.38 1.20 -0.62 -1.06 -0.40 0.34 0.09 0.23

Training Size 13,608 20,412 27,216 34,020 40,824 47,628 54,432 61,236

Train/Test=75/25 1.03 1.89 -1.41 0.32 -0.34 0.21 1.27 0.38

Training Size 15,422 23,133 30,844 38,556 46,268 53,979 61,690 69,401

Train/Test=85/15 1.24 5.43 0.52 2.10 0.65 2.26 2.16 1.35

Notes. The first row shows the fraction of the observations, which are used by the methods,

to the full sample. The last eight rows display the training sizes and the deviations (in %)

of accuracy for four partitions of data: 55%/45%, 65%/35%, 75%/25%, and 85%/15%.

A quantitative analysis of this tension is further presented in Table 7 and

Table 8 where the results reveal that in most cases with the four methods

and under the four partitions of the data set, the use of partial samples

yields positive gains in the prediction performance. Many of these gains

range from 1% to 2%, except for a handful of cases where the gains are

more than 4%. Particularly, the decision tree method and the random forest

method with the 75%/25% partition in Table 7 and the ridge classifier with

the 85%/15% partition in Table 8 produce positive gains in accuracy for

the different fractions of the full data sample. These results empirically

demonstrate the tension that simply using the full sample is likely to lead to

inferior outcomes with considerable losses in the prediction accuracy.
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5. Robustness analysis using random sampling

In Sections 3 and 4, we focused on the tension caused by the sample size

only. For simplicity, we did not introduce randomness into the train/test

partitions and in the partial samples of the above four data sets. In addi-

tion to the sample size, as we mentioned earlier, tensions can also be caused

by other factors such as sampling methods, prediction methods and corre-

sponding parameters, data quality and characteristics, and the objectives

and complexities of the problem.

Hence, in this section, we show the consistency of our findings using ran-

domly selected samples. In the appendices, we examine our findings further

by using different sampling methods, key parameters, and prediction meth-

ods. Under random sampling, we report means and standard errors and our

results imply that taking a partial sample usually provides a significantly

more accurate prediction than the full sample.6

Specifically, we show that our findings hold when we take two different

random sampling methods. Among the four cases of big data from social

media, we take the case about the prediction of Mashable blog popularity

as an example. Similar results can be derived for the other data sets. In

Section 6 and Appendix B, we also apply the sampling methods to two ad-

ditional cases and obtain the same conclusion. We report the results with

different numbers of random sampling for generality. Besides, these results

are obtained under a random partition of 75% observations as the training

6We are grateful to three anonymous referees’ helpful comments about robustness and

extension.
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Table 9. Deviation of Classification Accuracy w.r.t. the Full Sample

(%) with Random Sampling 35 Times for Mashable Data

Fraction of Obs. 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

Ridge Classifier 0.81 0.49 0.77 0.75 0.80 0.73 0.91 0.62

std. 0.14 0.15 0.11 0.10 0.10 0.09 0.07 0.09

SVM with SGD -2.71 -2.45 -1.73 -1.37 0.29 -0.69 0.69 -0.17

std. 0.66 0.66 0.48 0.45 0.63 0.59 0.45 0.48

Decision Tree 0.22 0.05 0.61 0.71 0.86 0.86 0.81 0.60

std. 0.23 0.22 0.18 0.16 0.15 0.13 0.10 0.09

Random Forest 0.75 0.45 0.93 1.03 1.06 1.02 1.25 1.04

std. 0.20 0.14 0.14 0.11 0.11 0.11 0.09 0.09

Notes. The first row shows the fraction of the observations from the sample examined.

The last eight rows display the means and standard errors of the deviations (in %) of

accuracy. A positive mean value indicates a better performance from random sampling on

average.

set and 25% observations as the testing set within a particular sample that

is examined.

Table 9 reports the deviation of classification accuracy with respect to

the full sample in percentage points. Within each column, we randomly

take a specific fraction of all observations in the full sample 35 times. The

three methods (the ridge classifier, the decision tree, and the random forest)

with partial samples (especially 20% of the full sample) lead to a higher

prediction performance than those with the full sample. The SVM (Support

Vector Machines) with SGD (Stochastic Gradient Descent) also provides a

better performance with a fraction of the observations than the full sample.

To show the superior performance of partial samples with random sam-
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Table 10. Deviation of Classification Accuracy (%) with Random Sam-

pling 10 Times, Based on a Random 20% Complete Sample 5 Times for

Mashable Data (Total 50 Random Runs)

Fraction of Obs. 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

Ridge Classifier 0.48 0.53 0.20 0.43 0.55 0.59 0.48 0.50

std. 0.20 0.17 0.11 0.16 0.17 0.19 0.15 0.15

SVM with SGD 2.45 2.04 2.07 2.10 2.11 2.39 2.47 2.36

std. 0.78 0.62 0.62 0.62 0.65 0.72 0.75 0.72

Decision Tree 0.53 0.27 0.13 0.17 0.43 0.29 0.66 0.49

std. 0.20 0.21 0.11 0.15 0.19 0.11 0.20 0.16

Random Forest 0.37 0.45 0.07 0.29 0.53 0.38 0.41 0.55

std. 0.22 0.16 0.09 0.18 0.17 0.14 0.13 0.18

Notes. The first row shows the fraction of the observations from the sample examined.

The last eight rows display the means and standard errors of the deviations (in %) of

accuracy. A positive mean value indicates a better performance from random sampling on

average.

pling further, we use a two-loop random sampling method and list the results

in Table 10. In the first loop, we randomly take a subsample with 20% ob-

servations from the complete sample set of the data. That is 20% of 39,644

observations and is a subsample with 7,929 observations. In the second loop,

for each column, we randomly take a specific fraction of the subsample, e.g.,

a random 30% of the 7,929 observations in the column of “0.30”. We take 5

random runs in the first loop and 10 random runs in the second loop, result-

ing in a total of 50 random runs. Table 10 exhibits that for the four methods,

adopting 20% to 90% fractions of the five random 7,929 observations provides

more accurate results than using all these observations. These results imply
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that for the five random subsamples where each subsample carries 20% of the

complete sample, a further 20% fraction of these subsamples is also sufficient

to obtain a better prediction accuracy.

6. Experiments with big data in two other sectors

In addition to the previous four cases of big data on social media, we

examine another two data sets from two different sectors in the economy,

namely, the US house market and the Bitcoin market. These additional

experiments are performed to assess further the robustness of our findings

and find out whether taking a partial sample is still useful and valid.

6.1. Big data of the U.S. house market

The American Housing Survey (AHS) 2013 national data contain rich

information about individual housing units.7 We apply a procedure like

Mullainathan and Spiess (2017) to clean the data. As a result, we take

35,852 instances with 138 features from the survey to predict house values

by using four regression methods in machine learning.

Table 11 reports the deviations of R2 after a two-loop random sampling

with a total 100 random runs, where a random partial sample for each column

is taken from a random subsample with 20% observations in the complete

sample. Except for a small number of negative deviations, the positive de-

viations imply that on average, using a fraction (e.g., 20% for the decision

tree method) of a subsample with 20% of the complete sample in AHS survey

7https://www.census.gov/programs-surveys/ahs/data/2013.html
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Table 11. Deviation of Variance Score R2 (%) with Random Sampling

10 Times, Based on a Random 20% Complete Sample 10 Times for the

U.S. House Data (Total 100 Random Runs)

Fraction of Obs. 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

Elastic Net -2.53 0.93 1.76 4.71 2.95 2.52 1.98 2.27

std. 2.58 1.80 0.73 1.82 1.37 0.97 1.02 0.80

Gradient Boost -4.60 0.14 -0.23 5.01 4.50 2.73 3.49 1.36

std. 2.50 1.60 1.09 1.86 1.84 1.08 1.29 0.79

Decision Tree 4.33 0.50 1.12 3.39 2.36 1.66 2.05 3.34

std. 1.94 1.59 0.93 1.51 1.68 1.53 1.39 1.15

Random Forest 7.26 -6.47 -11.45 14.78 16.67 10.67 12.76 6.84

std. 9.61 11.39 9.83 9.36 7.46 4.96 7.77 4.14

Notes. The first row shows the fraction of the observations from the sample examined.

The last eight rows display the means and standard errors of the deviations (in %) of R2.

A positive mean value indicates a better performance from random sampling on average.

data can significantly achieve superior performance in the prediction of house

values.

6.2. The Bitcoin price prediction with news data

Another additional case is a combination of news data and the Bitcoin

data from the Kaggle website. First, we take 15,000 news titles from a data

set that contains 48% records from Breitbart, 28% records from CNN, and

24% records from other U.S. newsagents (Thompson, 2017).8 Second, we

take the time-series data of Bitcoin that is one of the most popular crypto-

8https://www.kaggle.com/snapcrack/all-the-news/version/1
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Table 12. Deviation of Classification Accuracy w.r.t. the Full Sample

(%) with Random Sampling 40 Times for Bitcoin Data

Fraction of Obs. 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

Ridge Classifier 14.62 16.88 11.33 13.39 13.86 13.11 13.66 13.68

std. 2.83 2.76 2.21 1.65 1.35 1.47 1.36 1.12

SVM with SGD 5.13 4.36 0.15 -0.85 6.35 1.82 5.63 6.88

std. 3.20 2.57 2.18 2.63 2.46 1.65 1.73 1.61

Decision Tree 9.14 7.09 0.48 7.05 1.99 -0.97 1.42 0.36

std. 3.31 2.80 2.30 1.44 1.90 2.02 1.81 1.48

Random Forest 1.05 6.09 1.97 3.42 1.56 0.18 3.03 -0.77

std. 2.83 2.49 2.08 2.25 1.53 1.81 1.38 1.46

Notes. The first row shows the fraction of the observations from the sample examined.

The last eight rows display the means and standard errors of the deviations (in %) of

accuracy. A positive mean value indicates a better performance from random sampling on

average.

currencies.9 Third, we employ the Term Frequency-Inverse Document Fre-

quency (TF-IDF) technique to transfer the news titles to a large vector of

word-based data and then merge them to the Bitcoin data according to the

same dates.

We use the news data to predict the up or down trends of Bitcoin prices.

Table 12 is obtained by simply taking 40 random partial samples for each

column based on the complete sample. More robustness results with the

two-loop random sampling are listed in Appendix B. Table 12 shows that the

ridge classifier significantly achieves the largest performance gains in predic-

9https://www.kaggle.com/jessevent/all-crypto-currencies
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tion when random partial samples are adopted. Using partial samples, the

decision tree method and the SVM method usually provide a better predic-

tion performance than those with the complete sample. The random forest

method with partial samples also obtains performance gains, although the

gains are relatively small compared with the other three methods. Indeed,

Table 14 to Table 17 in Appendix B, which adopt partial samples that are

randomly taken from the 20% to 80% of the complete sample, consistently

demonstrate a superior performance. In addition, Table 18 to Table 20 show

that this conclusion still holds for other alternative machine learning tech-

niques and for different values of some key parameters in selected techniques.

Overall, our results from the two additional cases of big data again sup-

port that the tension due to the sample size is crucial in the data from social

media, news, economics, and financial time-series data. Applying machine

learning to a partial sample such as 20% of the full sample empirically shows

the superior performance of prediction.

7. Data characteristics and managerial implications

In this section, we discuss the quality, characteristics, and managerial

implications of the six cases of big data.

Data reliability. To begin with, the sources and quality of the six data sets

are reliable. The first set of data about Twitter is organized by a respected

university laboratory and an industrial partner. The cases of data about

Facebook posts, Mashable blogs, and News in Google and Yahoo are widely

downloaded by academics from a repository of big data (see the download

statistics from the website of the UC Irvine Machine Learning Repository).
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The four sets of data are successfully used by academic publications, see,

e.g., Mayuri et al. (2015), Singh et al. (2015), Singh (2016), Fernandes et al.

(2015), Moniz and Torgo (2018). The U.S. house data are collected by a na-

tional survey. The Bitcoin and news data are widely examined by academics

and practitioners on the Kaggle website, which is the largest data community

in the world with over one million users including many leading data experts.

Data quality. All data sets in our analysis do not have missing values, except

the U.S. house data where we followed a similar procedure of Mullainathan

and Spiess (2017) to clean the data including the removal of missing values,

which represented a very tiny proportion.

Feature standardization. Furthermore, machine learning methods usually re-

quire users to standardize all features in a training data set into a standard

normal distribution. This process avoids some features with large variances

dominating the objective function of a machine learning method because the

large variances prevent the model to learn from other features effectively. We

use a preprocessing class StandardScaler in the scikit-learn package to com-

plete the task of standardization, after which we can ignore the distribution

form of data and focus on the prediction task.

Data characteristics. Next, we investigate the characteristics of the six data

sets in terms of their cluster features. Naturally, some samples in a data set

are located in an area where they are close to each other and are described

as a cluster. Although it is not convenient to draw the cluster pattern for big

data, we apply a clustering algorithm to fit the six sets of data. In this study,

we use the k-means algorithm with all default parameter values provided by
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Table 13. Cluster Characteristics of Six Data Sets

Case of Data Set Data Cluster Characteristics: “Inertia” Attribute

Twitter Message 729,225,654,957.4763

Facebook Post 55,113,530,406,607,400

Mashable Blog 152,497,231,110,915.53

Google & Yahoo News 346,750.18708093156

U.S. House Market 7,316,325,268,523.303

Bitcoin and News 45.33088765908155

Notes. We use the k-means method with 8 clusters to fit the six data sets. The attribute

of “inertia” is the sum of squared distances of samples to their closest cluster center. The

distinctive values of “inertia” imply the diverse characteristics of the six data sets.

the scikit-learn package.

Particularly, the k-means method allocates the samples of each data set

to 8 clusters. Based on the cluster allocation, the method can return the

attribute of “inertia”, which is the sum of squared distances of all samples

in a data set to their closest cluster center. Therefore, we choose such at-

tribute of “inertia” to represent the characteristics of the six sets of data.

These are summarized in Table 13. The results show distinctive values of

“inertia” which indicate the diverse characteristics of the six data sets. This

demonstrates that our claim of “using partial samples provides superior per-

formance” is robust to data characteristics which are crucial in big data

validation.

Managerial implications. Finally, we discuss the managerial implications of

our results relating to the problem objectives of the six cases of data under

certain circumstances. Our results demonstrate that the sample size causes
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a tension and taking a partial sample, particularly around 20% of the full

sample, usually brings superior prediction performance. For instance, let

us consider the Twitter case as an example of the prediction of popularity.

A manager at an organization or corporation can use the Twitter data to

predict the popularity of a topic through 77 features that describe the evo-

lution of these features through time t. For example, a feature represents

the number of new authors interacting on a message’s topic at time t. Our

results show that when the manager uses the linear method of the elastic net

with 20% of the full sample under a 75/25 train/test partition, a relatively

high prediction performance can be achieved. The reason why the manager

is advised to take this suggestion is that our scheme not only avoids unnec-

essary computing efforts to deal with the large full sample but also prevents

the manager from making under-/over-estimation of the topic’s popularity.

Based on an accurate prediction of popularity, the manager would then be

able to make appropriate decisions in his/her operating activities such as

production and sale.

Similar discussions apply to popularity prediction with data from Face-

book and Mashable. The results from the Facebook data show that a man-

ager can obtain better prediction performance when applying linear methods

or ensemble methods such as the random forest method while using 20% of

the full sample under the train/test partitions with heavy weights on the

training sets like 75/25 or 85/15. About the Mashable data, the manager can

take 20% of the full sample when the SVM method is applied to a train/test

partition of 55/45 with a relatively light weight on the training set.

In addition to popularity, a manager can use big data on news, gov-
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ernment survey, and market prices to predict sentiment and price trends in

markets. A manager or investor can use 20% of online news data that we

examine to classify the optimistic or pessimistic categories of sentiment more

accurately when employing ensemble methods or linear methods such as the

ridge classifier while assigning more data allocations to the training set like

the 85/15 train/test partition. Regarding the U.S house market, the investor

could obtain gains in prediction when adopting the decision tree method and

small partial samples. Similarly, the investor could predict the trends of Bit-

coin prices more accurately based on partial samples from news data when

the decision tree method or the ridge classifier is employed.

For example, Lazer et al. (2014) illustrate that the prediction from Google

Flu Trends often leads to substantial errors due to the large size of data.

Our method and finding shed light on the interesting example by providing

suggestions to practitioners analyzing flu trends. The practitioners can run

representative machine learning methods on an incremental percentage of the

full sample both sequentially and randomly in order to identify an appropri-

ate percentage of the full sample, likely around 20%, that would reduce the

degree of overfitting and provide a high prediction performance.

Indeed, we reveal that on a number of occasions a better prediction per-

formance can be achieved by using a proportion (approximately 20%) of

the full sample rather than relying on a large sample. The relatively poor

performance using a large sample is often due to the excessive, unnecessary

and sometimes misleading information and noise that are embedded into

the training process of a machine learning method. The search then incor-

porates all information resulting in a compromise to obtain a good overall
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result, which is not necessary the best.10 We find that the result could be

easily improved if less noisy data are introduced by only taking about 20% of

the full sample. The underlying reason can be illustrated by a simple exam-

ple. Suppose that there are 100 items of noisy data in a full sample with the

size of 1000. The 100 noisy data disturb the machine learning method when

the method tries to train a model to fit the full sample. On the contrary,

taking 20% of the full sample probably carries only 20 items of noisy data

whose disturbing effect on training is much weaker than the effect of 100

items of noisy data since the adverse effect of noisy data largely depends on

the absolute quantity of noise rather than the relative level of noise in the

sample. Hence, repeating the procedure of drawing 20% of the full sample

randomly increases the chance of introducing less noise to training, which

eventually improves the prediction performance.

In short, the six cases in our analysis cover different problems from var-

ious sectors and objectives. These include the predictions of the number of

active discussion (NAD) to a Twitter topic, the number of comments re-

ceived by a Facebook post, the number of shares of a blog on Mashable,

sentiment implied by Google and Yahoo news, U.S. house prices, and Bit-

coin prices. Our finding is therefore beneficial and worthwhile in guiding

managerial decisions to be reached in a more appropriate way, which results

in more robust solutions that are shown to be reliable in a variety of cases

and data characteristics.

10A similar conclusion in the literature is that a model with a high level of complex-

ity is liable to result in a poor prediction performance since it is distracted by noise or

unnecessary details when it fits the complex model with data, see, e.g., Fenner (2019).
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8. Conclusion and suggestions

The exponential growth of data from social media, news, and market

provides users with diverse sources of big data. The application of machine

learning algorithms to these big data provides new channels for organiza-

tions, individuals, and society to improve predictions and decisions (Wamba

et al., 2015). Although we could embrace the exciting advantages of big data

with enthusiasm, we need to be cautious about the tensions related to the

application of machine learning.

The implicit premise of big data states that training more data could pro-

duce predictions with a higher accuracy but contemporary studies highlight

that more data could also carry errors as well irrelevant information (Fan

et al., 2014; Lazer et al., 2014; Hashem et al., 2015; Hák et al., 2016), which

could unfortunately result in problems including overfitting issues (Hippert

et al., 2005; Liu and Gillies, 2016; Silva et al., 2018; Jollans et al., 2019) and

misleading biases (Corbett, 2018; Jollans et al., 2019). In our study, we in-

vestigate the tensions through six commonly used machine learning methods

on real-world data sets purposely selected to represent a wide range of appli-

cations and diversity. We examine four representative regression methods for

the data on Twitter, Facebook, and U.S. house surveys. We also apply four

classification methods to the data on Mashable, Google and Yahoo News,

and Bitcoin. Our numerical results reveal the tensions in big data that are

caused by the different sensitivities of machine learning methods to several

factors including the size of the training data set.

Recent developments in this particular research area related to problems

and challenges arising in big data suggest some interesting ways such as
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dropping parts of the models (Ha et al., 2019) or around 20% of network

nodes (Abdollahi et al., 2020), removing irrelevant data (Cai et al., 2018;

Kanarachos et al., 2019) or irrelevant features (de Amorim, 2019). These

research avenues are open questions that deserve a thorough investigation

from both academics as well as practitioners. Our empirical results show

that using approximately 20% of the full sample often provides performance

gains compared with using the full sample. Our findings support the con-

cerns raised by the above researchers. Meanwhile, it was also found that the

relative advantages in the prediction performance of different methods vary

with different data sets.

Moreover, our analysis under a variety of data sets and the train/test

partitions provides suggestions to the application of machine learning to big

data in social science. First, a user of machine learning can divide the full

sample of a data set into a range of subsets with different percentages of

the full sample. Second, he/she takes these subsets of data as the input

of some representative machine learning methods. These subsets of data

are further partitioned into training sets and testing sets under different

partitions. Third, the user performs the methods on these training sets and

then examines the prediction scores of these methods under different training

sizes.

Fourth, the tension due to the availability of diverse methods can be re-

solved by comparing the performance of these methods. The representative

methods can include several families of algorithms, e.g., general linear meth-

ods, tree methods, and ensemble-based methods. In addition, the user can

run a comprehensive list of methods on a data set and check that the se-
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lected representative methods cover feasible ranges of accuracy variation and

exclude those that are substantially inferior.

Fifth, the tension arising from the sensitivity of prediction accuracy to

the training size can be resolved by firstly quantifying the deviation between

the accuracy with a partial sample and the accuracy with a full sample. Then

comparing the accuracy deviations for different sizes of samples reveals the

training size that leads to high prediction performance.

In conclusion, though big data can obviously help organizations and in-

dividuals to make informed decisions (Blazquez and Domenech, 2018; Jun

et al., 2018), it is also worth mentioning that one must be cautious about

the tensions when applying machine learning methods to big data (Varian,

2014; Mullainathan and Spiess, 2017; Corbett, 2018). This is mainly because

these methods are heuristic in nature and hence cannot guarantee optimality

as many may not be aware of such a dilemma. However, these methods con-

tribute to the best way forward to deal with such large data and hence need

to be appreciated and deserve to be analyzed and studied even further. A

systematic analysis of the prediction accuracy under a variety of training sizes

will also indicate the way to resolve the tensions as empirically demonstrated

in this study. We show that the tensions can be alleviated reasonably well if

an appropriate fraction (or the use of a few fractions to be on the safe side)

of the full sample is adopted instead of straightforwardly opting for the full

size. In our experiments, around 20% of the sample shows to be reasonably

promising. Our claim may also have some links with the well-established 20-

80 Pareto Curve which one may like to explore further. Our finding, which

is empirically proved on certain classes of instances, emphasizes that more is
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not always necessarily the best. In brief, we as academics and practitioners

need to be aware of this hidden aspect whose effect ought not to be underes-

timated or taken lightly. More studies that explore this dedicate issue would,

in our view, be a promising research area that is worth the challenge.

Appendix A: Performance of more machine learning methods

We discussed four regression methods and four classification methods in

this paper. To provide a robust check, we use a number of machine learning

methods under different families of algorithms to show that the methods

discussed in the text generally cover feasible ranges of accuracy variation

and exclude clearly worse methods for a data set. The regression methods

include a neural network multi-layer perception regressor, ten general linear

regressors, a stochastic vector regressor (SVR), a neighbor regressor, two

tree-based regressors, and five ensemble-based regressors. The classification

methods also consist of these families of algorithms for classification. In

addition, we include two naive Bayes (NB) classifiers.

Figure 6 plots the regression variance scores using a variety of machine

learning methods based on (a) Twitter data; (b) Facebook data while Fig-

ure 7 displays the classification accuracy scores using a variety of machine

learning methods based on (a) Mashable data; (b) Google and Yahoo News

data. In these experiments, we use the full sample of these data and split it

into a 75% training set and a 25% testing set.
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(b) Data of Facebook

Figure 6. Performance of Regression Methods based on Twitter and

Facebook Data.
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Figure 7. Performance of Classification Methods based on Mashable

and News Data.
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Appendix B: Additional analysis on the consistency of sampling,

parameters, and methods: Case of Bitcoin price prediction

In this appendix, we use the Bitcoin data to show that the machine

learning methods that we examined consistently demonstrate a superior per-

formance in prediction when partial samples are taken from the 20% to 80%

of the full sample. These results are summarized in Table 14 to Table 17.

The experiment for each column runs up to 100 times in total with random

partial samples.

In addition, in Table 18 and Table 19, we also show that our conclusion

is robust regarding the choice of the key parameter for both the decision tree

method (DTM) and the random forest method (RFM). The total number of

random runs for each column in the two tables is 100 times as well.

(a) Case of DTM- Here we investigate the parameter about the minimum

number of samples that need to be kept in an internal node of a decision tree

when the algorithm allocates the data into the tree structure.

(b) Case of RFM- In this scenario, we examine the number of the tree

estimators that are built in an ensemble random forest estimator.

Furthermore, we point out that our findings are generalizable to most

machine learning methods with a variety of complexities. The reason is that

the methods in our experiment are taken from some families of methods and

we show that each family of methods usually achieve similar performance, as

shown in Figure 6 to Figure 7 in Appendix A. For example, the elastic net and

the ridge classifier represent a large family of general linear methods while

the random forest and the gradient boosting method are two representatives

of ensemble methods. Meanwhile, since these methods cover various degrees
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of complexities, our conclusion is robust to the complexity of the problem as

well.

In Table 20, we examine another five alternative methods to show that

our conclusion can be generalized to other methods. Particularly, the passive

aggressive classifier (resp. the bagging classifier) is another general linear

(resp. ensemble) method. The K-Neighbors classifier is a widely-used k-

nearest neighbors algorithm and the multi-layer perception is a typical neural

network model. The last method is one of the naive Bayes classifiers. Almost

all these alternative methods with 20% to 90% observations achieve more

accurate predictions than those using 100% observations.

Table 14. Deviation of Classification Accuracy (%) with Random Sam-

pling 10 Times, Based on a Random 20% Complete Sample 10 Times

(Total 100 Random Runs)

Fraction of Obs. 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

Ridge Classifier 4.85 4.14 8.03 5.50 4.73 5.30 4.97 8.29

std. 2.64 2.62 2.58 1.96 1.89 1.98 1.77 2.63

SVM with SGD -0.32 1.31 4.18 2.40 1.16 2.92 0.51 2.32

std. 1.50 1.94 1.54 1.14 0.83 1.38 0.55 0.88

Decision Tree 4.67 2.57 4.12 1.11 1.17 2.37 3.44 3.69

std. 2.09 1.82 1.93 1.44 0.83 1.27 1.43 1.35

Random Forest 8.23 10.20 9.56 6.00 6.84 8.27 7.11 6.34

std. 3.35 3.89 3.23 2.71 2.62 2.75 2.28 2.38
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Table 15. Deviation of Classification Accuracy (%) with Random Sam-

pling 10 Times, Based on a Random 40% Complete Sample 10 Times

Fraction of Obs. 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

Ridge Classifier 0.84 1.77 0.73 -0.17 -0.29 2.90 1.26 1.53

std. 1.00 1.01 0.70 0.57 0.35 0.93 0.54 0.60

SVM with SGD 1.41 3.16 3.99 2.11 1.66 2.70 2.43 2.28

std. 1.22 1.30 1.51 0.76 0.77 0.94 0.90 1.07

Decision Tree 1.79 2.74 3.52 3.18 1.55 4.78 3.90 3.87

std. 0.93 1.48 1.19 1.12 0.90 1.65 1.28 1.36

Random Forest 0.81 2.47 2.22 1.37 1.49 4.94 3.10 2.53

std. 1.04 1.76 0.89 0.79 0.93 1.53 1.06 0.86

Table 16. Deviation of Classification Accuracy (%) with Random Sam-

pling 10 Times, Based on a Random 60% Complete Sample 10 Times

Fraction of Obs. 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

Ridge Classifier 0.57 0.86 2.57 1.82 0.48 0.58 0.21 1.02

std. 0.81 0.78 0.90 0.75 0.48 0.47 0.28 0.42

SVM with SGD 2.32 2.19 2.50 1.04 0.77 0.55 0.67 0.43

std. 1.45 1.13 1.17 0.85 0.67 0.61 0.50 0.48

Decision Tree 1.45 0.17 1.77 1.75 0.54 0.67 1.25 1.51

std. 0.94 0.92 0.71 0.79 0.39 0.42 0.62 0.55

Random Forest 0.54 0.63 0.00 1.29 -0.50 -0.26 -0.47 0.21

std. 0.62 0.77 0.48 0.64 0.48 0.43 0.44 0.30
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Table 17. Deviation of Classification Accuracy (%) with Random Sam-

pling 10 Times, Based on a Random 80% Complete Sample 10 Times

Fraction of Obs. 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

Ridge Classifier -0.62 0.77 0.44 0.08 0.44 -0.47 0.77 -0.25

std. 0.85 0.37 0.62 0.29 0.28 0.34 0.40 0.21

SVM with SGD 0.75 0.62 0.19 0.33 0.83 1.55 0.34 0.93

std. 0.89 0.44 0.66 0.70 0.40 0.60 0.44 0.52

Decision Tree -0.03 -0.52 -0.32 -0.57 -0.76 -1.09 -0.31 -0.43

std. 0.69 0.72 0.42 0.37 0.42 0.47 0.34 0.32

Random Forest -0.77 -0.39 -0.64 -0.83 -1.27 -2.12 -0.99 -1.52

std. 0.64 0.56 0.52 0.36 0.59 0.71 0.42 0.55

Table 18. Deviation of Classification Accuracy (%) with Random Sam-

pling 10 Times, Based on a Random 20% Complete Sample 10 Times

Fraction of Obs. 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

Tree (2 samples/node) 3.20 3.51 1.00 3.20 -0.26 2.38 2.47 1.22

std. 2.00 1.45 0.85 1.57 0.70 0.90 0.93 1.00

Tree (4 samples/node) 2.76 3.51 1.24 1.80 -0.10 2.51 1.86 1.66

std. 1.99 1.52 0.94 1.47 1.13 1.02 0.84 0.90

Tree (6 samples/node) 5.40 6.11 3.14 5.00 2.37 5.64 6.50 5.54

std. 2.92 2.24 1.55 2.09 1.43 1.87 2.16 2.02

Tree (8 samples/node) 5.95 6.50 3.44 6.00 1.98 6.33 5.74 4.03

std. 2.88 2.55 1.72 2.29 0.96 2.08 2.00 1.56
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Table 19. Deviation of Classification Accuracy (%) with Random Sam-

pling 10 Times, Based on a Random 20% Complete Sample 10 Times

Fraction of Obs. 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

Forest (3 estimators) 1.00 2.57 1.73 2.80 2.10 4.44 2.83 3.42

std. 2.01 1.78 1.43 1.79 1.46 1.47 1.03 1.21

Forest (5 estimators) 2.71 4.67 3.58 4.44 2.57 6.65 4.80 4.79

std. 2.82 2.03 1.62 1.92 1.68 2.24 1.62 1.62

Forest (7 estimators) 3.20 3.62 2.77 3.56 2.57 6.65 4.40 4.91

std. 2.76 1.80 1.62 1.88 1.51 2.18 1.53 1.63

Forest (9 estimators) 3.69 5.02 4.12 3.78 2.92 6.50 4.40 5.16

std. 2.71 2.00 1.77 1.93 1.39 2.14 1.48 1.68

Table 20. Deviation of Classification Accuracy (%) with Random Sam-

pling 10 Times, Based on a Random 20% Complete Sample 3 Times

using Five Alternative Methods (Total 30 Random Runs)

Fraction of Obs. 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

Passive Aggressive 15.56 33.02 23.70 42.22 26.90 29.31 31.85 22.89

std. 11.65 11.51 9.59 11.21 9.08 8.36 9.44 7.10

Bagging Classifier 5.78 13.23 12.84 10.37 14.39 7.41 8.77 13.11

std. 3.73 6.65 6.29 3.92 4.74 4.26 2.90 4.26

K-Neighbors 0.89 0.42 1.07 4.44 10.90 10.46 11.03 9.85

std. 5.86 4.79 4.76 2.90 5.00 5.50 4.32 3.44

NN Multi-layer Perceptron -4.00 14.56 22.54 24.76 17.55 11.19 24.29 18.00

std. 8.02 5.16 7.60 8.08 6.95 5.36 7.29 5.65

Bernoulli Naive Bayes 8.00 2.86 2.96 -2.42 9.05 -5.00 4.07 -2.00

std. 5.55 4.69 4.32 1.91 3.33 3.61 2.37 1.79
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