
June 22, 2020 17:58 output

An Adaptive Optimization Spiking Neural P System for Binary Problems

MING ZHU, QIANG YANG
School of Control Engineering,

Chengdu University of information Technology, Chengdu, 610225, China
E-mail: zhuming@cuit.edu.cn, yuxia2008@126.com

JIANPING DONG, GEXIANG ZHANG
College of Information Science and Technology,

Chengdu University of Technology, Chengdu 610059, China
E-mail: master−djp@163.com, zhgxdylan@126.com

XIANTAI GOU∗, HAINA RONG, PRITHWINEEL PAUL
School of Electrical Engineering,

Southwest Jiaotong University, Chengdu, 610031, China
E-mail: 491098063@qq.com, ronghaina@126.com, prithwineelpaul@gmail.com

FERRANTE NERI∗

COL Laboratory, School of Computer Science,
University of Nottingham, Nottingham, UK

E-mail: Ferrante.Neri@nottingham.ac.uk

Optimization Spiking Neural P System (OSNPS) is the first membrane computing model to directly derive
an approximate solution of combinatorial problems with a specific reference to the 0/1 knapsack prob-
lem. OSNPS is composed of a family of parallel Spiking Neural P Systems (SNPS) that generate candidate
solutions of the binary combinatorial problem and a Guider algorithm that adjusts the spiking probabili-
ties of the neurons of the P systems. Although OSNPS is a pioneering structure in membrane computing
optimization, its performance is competitive with that of modern and sophisticated metaheuristics for the
knapsack problem only in low dimensional cases.
In order to overcome the limitations of OSNPS, the present paper proposes a novel Dynamic Guider
algorithm which employs an adaptive learning and a diversity based adaptation to control its moving
operators. The resulting novel membrane computing model for optimization is here named Adaptive
Optimization Spiking Neural P System (AOSNPS). Numerical result shows that the proposed approach
is effective to solve the 0/1 knapsack problems and outperforms multiple various algorithms proposed
in the literature to solve the same class of problems even for a large number of items (high dimension-
ality). Furthermore, case studies show that a AOSNPS is effective in fault sections estimation of power
systems in different types of fault cases: including a single fault, multiple faults and multiple faults with
incomplete and uncertain information in the IEEE 39 bus system and IEEE 118 bus system.

Keywords: Spiking neural system; adaptive optimization spiking neural P system; adaptive learning rate;
adaptive mutation; power system fault diagnosis; combinatorial optimization; membrane computing.

1. Introduction

Artificial neural networks (ANNs), also referred
to as neural networks (NNs) or connection mod-

els, are computational models consisting of inter-
connected neurons10; 17 that mimic the behavioral
characteristics of biological neural networks and

1

June 22, 2020 17:58 output

2 M. Zhu, J. Dong, Q. Yang, et al.

perform distributed parallel information process-
ing. ANNs have been extensively investigated and
widely used in various fields, such as signal and
image processing13; 15; 82, classification4, pattern
recognition7; 37, earthquake prediction1; 51; 52,
epilepsy and seizure detection27; 28, medical
diagnostics47, and optimization2; 3; 5; 12; 11.

In the last decades, ANNs have passed three
developmental generations with notable character-
istics.

• The fundamental feature of the first gen-
eration is McCulloch–Pitts neurons55 (per-
ceptrons or threshold gates), where only
Boolean functions41 can be processed and
output digital results.

• The salient feature of the second genera-
tion is the presence of an activation func-
tion with weighted learning ability and the
fact that analog input and output can be
processed41.

• The introduction of time18 (single action
spiking of the neuron) concept when neu-
rons encode information is a prominent fea-
ture of the third generation of ANNs.

Spiking Neural Networks (SNNs) present
a successful ANN structure belonging to the
second40 and third generations23; 56; 60; 26; 24.
The success of SNNs is due to the fact that
they are both computationally powerful and bi-
ologically plausible models of neuronal process-
ing53; 16; 81; 45; 79. Some successful implementa-
tions of SNN are reported in Ref.42; 57; 20; 22; 80

while a successful implementation in the medical
domain is presented in Ref.25.

Over the past two decades, in parallel with
the development of ANNs, other computational
devices attracted attention. Specifically, Membrane
Computing54 increased significantly its popular-
ity, gaining relevance as a computational paradigm.
Membrane computing is a branch of natural com-
puting which designs computing models, called P
systems, inspired from the structure and the func-
tioning of the biological cells. Most of P systems can
be viewed as a general purpose automaton equiva-
lent to the Turing Machine74. Due to their general
purpose nature, P Systems can be used in a broad

range of real-world applications, such as computer
graphics21, cryptography74 and robot control8; 64.

Membrane computing models can be divided
into three categories on the basis of their structure:

• cell-like P systems, inspired by the intra-
cellular communication54;

• tissue-like P systems, inspired by inter-
cellular communication44;

• neural-like P systems, inspired by the com-
munication among neurons44, just like an
ANN.

Hence, at the conceptual level, neural-like P
systems can be viewed as an intersection between
ANN and Membrane Computing. Although the
conceptual definitions of neural P systems have
been given in Ref44, one of their greatest success
stories leading to practical use is due to the Spik-
ing Neural P Systems (SNPS)35, which integrate
the SNN logic within Membrane Computing. Un-
like the other P systems14; 21; 74 which use multi-
ple symbols to encode the pieces of information re-
quired, SNPS35; 50; 71 usually deal with a unique
symbol, namely spike, that is repeated multiple
times, see also Ref. 49; 34. The name “spike” is due
to the analogy with electrical impulses sent from a
neuron to another one along the synapses. Among
the various membrane computing models, SNPS is
one of the most promising and studied9; 48; 59; 58.
The SNPS consists of a set of neurons placed in the
nodes of a graph and sending signals (spikes) along
synapses (edges of the graph), under the control of
firing and forgetting rules68; 69; 70; 73. One neuron
is designated as the output neuron of the system
and its spikes can be sent out into the environment,
thus producing a different interpretations of the re-
sult, including: 1) the number of spikes sent out into
the environment in total, along the computation; 2)
the number of steps between the first two spikes
sent to the environment; 3) a so-called spike-train,
as the sequence of spikes sent out all along the com-
putation (in every step, 0 or more spikes are sent out
into the environment.).

This paper focuses on SNPS and in particular
on its use for addressing optimization problems.
The first study of solving combinatorial optimiza-
tion problems by means of SNPS was proposed in
Ref.78 where the 0/1 Kanpsack Problem was ad-

June 22, 2020 17:58 output

An adaptive optimization spiking neural P system 3

dressed. In Ref.78 an Extended SNPS (ESNPS) was
obtained by introducing two additional neurons,
the probabilistic selection of evolution rules and the
output (spike train) collection from multiple neu-
rons. In such work, multiple ESNPS are arranged
in parallel, each of them generating a candidate so-
lution. Furthermore, in Ref.78 a Guider algorithm
has been introduced to adjust probabilities of the
spiking rules (by continuous learning generation
by generation). The resulting computational model,
namely Optimization Spiking Neural P System (OS-
NPS), appeared to be promising and displayed a
performance competitive in comparison with that of
six optimization algorithms taken as a reference.

As indicated in Ref.78, one of the main lim-
itations of OSNPS lies in the fact that the learn-
ing rate is constant, while the search may require
a different learning rate in different moments of
the search. Due to this limitation, it was observed
in Ref.78 that the probability variation operated by
the Guider algorithm does not always allow an ef-
fective learning of the family of SNPS. Thus the
performance of the OSNPS is not as good as that
of some modern metaheuristics, especially when a
large number of items is considered in the knap-
sack problem. For the sake of clarity, it must be re-
marked that unlike membrane-inspired evolution-
ary algorithms (MIEAs)32; 38; 76; 77 that combine a
P system framework with metaheuristic algorithms
to solve optimization problems, OSNPS uses only
SNPS to generate the candidate solutions of the
combinatorial optimization problems.

The present paper extends the work of Ref.78

and proposes a novel algorithm, namely Adaptive
Optimization Spiking Neural P System (AOSNPS)
to solve combinatorial problems with binary encod-
ing. More specifically, a novel adaptive learning rate
and adaptive mutation are proposed and integrated
within OSNPS. In addition, the proposed AOSNPS
includes a mutation operator governed by two dy-
namic parameters that estimate the accuracy of the
candidate solution and diversity of probability ma-
trices. The proposed mutation enhances upon the
balance between exploration and exploitation fea-
tures of OSNPS. Finally, the real application of AOS-
NPS to fault section estimation of power systems.
This is the first time to use AOSNPS to solve real
application problems. When the status information

of protective relays and circuit breakers read from a
supervisory control and data acquisition system is
input, AOSNPS can automatically search and out-
put fault sections. Case studies show that AOSNPS
is effective in fault sections estimation of power sys-
tems in different types of fault cases including sin-
gle fault, multiple faults and multiple faults with in-
complete and uncertain information.

The remainder of this study is organized as fol-
lows: Section 2 briefly introduces the used notation,
the basics of SNPS theory used in this article as well
as the OSNPS as in its original implementation78.
Section 3 presents the proposed AOSNPS consisting
adaptive learning rate, adaptive mutation and the
novel guider. The numerical results obtained by the
algorithm proposed when applied to the 0/1 knap-
sack problem are shown in Section 4, while an ap-
plication to power systems, is given in Section 5. Fi-
nally, conclusion and future work are given in Sec-
tion 6.

2. Background: Problem and Optimization
by Spiking Neural P Systems

In this section, we briefly introduce the notation
and analyse the basic concepts of optimization by
SNPS. We address the minimisation/maximisation
of a function f (x) where x = (x1, x2, . . . xm) is a
vector of binary numbers.

The SNPS 35 is an automaton. The distinguish-
ing feature of SNPS is that the sequence of config-
urations can associate a spike train36; 43; 78. If the
output neuron spikes, then we have 1 and otherwise
we have 0. Hence, the spike train can be represented
by the sequence of ones and zeros. Here, we give an
extended definition of SNPS.

2.1. Extended Spiking Neural P System

Formally, an extended spiking neural P system (abbre-
viated as ESNPS), of degree (m, q) with m, q ≥ 1, is
a tuple of the form

Π = (O, σ1, . . . , σm, σm+1, . . . , σm+q, syn, Iout)

where:

(1) O = {a} is the singleton alphabet (a is
called spike);

(2) σi, 1 ≤ i ≤ m + q, is an ordered tern
(ni, Ri, Pi) such that:

June 22, 2020 17:58 output

4 M. Zhu, J. Dong, Q. Yang, et al.

? ni is a natural number.
? Ri, for 1 ≤ i ≤ m, is a finite set of rules of

the types:

(i) E/ac → a; d, where E is a regular expres-
sion over O, c ≥ 1, and d ≥ 0, d is the delay
associated with the rule (spiking rule);

(ii) as → λ, for some s ≥ 1, with the re-
striction that for each rule E/ac → a; d

from the previous type we have as /∈ L(E)

(forgetting rule).

? Rm+1, . . . , Rm+q is a finite set of spiking
rules.
? Pi, for 1 ≤ i ≤ m, is a map from the set Ri

into [0, 1] such that
∑
r∈Ri

Pi(r) = 1.

? Pm+1, . . . , Pq are the identically one func-
tions.

(3) syn ⊆ {(σi, σj) | 1 ≤ i, j ≤ m+ q ∧ i 6= j}.
(4) Iout ⊆ {σ1, . . . , , σm}.

An ESNPS, Π, of degree (m, q), with m, q ≥
1 can be viewed as a set of neurons
{σ1, . . . , σm, σm+1, . . . , σm+q} placed in the nodes
of a directed graph GΠ, where the set syn specifies
the arcs of the graph which are labeled by natu-
ral numbers representing the delays associated with
synapses: Dsyn(σi, σj) will denote the label associ-
ated with the arc (σi, σj). If (σi, σj) ∈ syn then we
say that σi is a pre-synaptic neuron of σj or σj is a
postsynaptic neuron of σi. In these systems there are
two kind of neurons: σ1, . . . , σm are called working
neurons, some of them can also act as output neurons,
whereas σm+1, . . . , σm+q are supplier neurons that
can send spikes to each working neuron. For each
neuron σi, ni is the number of spikes initially con-
tained in that neuron, Ri is a finite set of (spiking
and/or forgetting) rules with probabilities associ-
ated by means of functions Pi.

The semantics of such an ESNPS, Π, is de-
fined as follows. A configuration Ct at a moment t
(a natural number, t ≥ 0) of an ESNPS of degree
(m, q) is a tuple (p1, . . . , pm+q) where pi, 1 ≤ i ≤
m + q, describes the number of spikes present in
the neuron σi at instant t. The initial configuration
of Π, that is, the configuration at moment t = 0, is
(n1, . . . , nm+q), being σi = (ni, Ri, Pi), for 1 ≤ i ≤
m+ q.

A spiking rule E/ac → a; d ∈ Ri is applicable
to a configuration Ct, at the moment t, if the neu-

ron σi contains exactly k ≥ c spikes at instant t and
ak ∈ L(E). By applying such a rule, c spikes are con-
sumed from the neuron σi, it is fired and all postsy-
naptic neurons σj from the neuron σi would receive
p spikes from neuron σi, at step t + Dsyn(i, j) + 1,
that is, if Dsyn(i, j) = 0, then the spikes are received
by such postsynaptic neuron σj immediately, other-
wise the spikes are received after Dsyn(i, j) steps. A
forgetting rule as → λ ∈ Ri is applicable to a config-
uration Ct at the moment t if the neuron σi contains
exactly s spikes at instant t. By applying such a rule,
s spikes are removed from the neuron σi.

In each time unit, if neuron σi is enabled (i.e.,
one of its rules can be used), then one rule from
Ri (and only one) must be applied, chosen non–
deterministically among all possible rules applica-
ble to σi. That is, each neuron processes sequen-
tially its spikes by using, at most, one rule in each
time unit. Let us recall that a spiking rule and a for-
getting rule cannot be simultaneously applied to a
neuron. The rules are used in a maximally parallel
way at the level of the system: at each step, all neu-
rons which can use some rule, must evolve using
one rule.

Using the rules of the system in the way de-
scribed before, a configuration Ct+1 can be reached
from another configuration Ct; such a step is called
a transition step, and we denote it by Ct =⇒
Ct+1. Any (finite or infinite) sequence of transitions
C0 =⇒ C1 =⇒ C2 =⇒ . . . =⇒ Cr, r ∈ N ∪ {∞},
is a computation if the following holds: (a) the first
term of the sequence, C0, is the initial configuration
of the system; (b) for each n, the (n+1)-th term of the
sequence is obtained from the n-th term in one tran-
sition step; and (c) if the sequence is finite (called
halting computation) then the last term Cr, r ∈ N, of
the sequence is called a halting configuration, that is,
a configuration where no rule of the system is appli-
cable to it.

In order to propose a novel algorithm, AOS-
NPS, to solve combinatorial optimimization prob-
lems, a specific ESNPS (where q = 2 and ni = 1),
is considered with the following syntactical restric-
tions:

Π = (O, σ1, . . . , σm, σm+1, σm+2, syn, I0),

where

(1) O = {a} is the singleton alphabet, a is called
spike

June 22, 2020 17:58 output

An adaptive optimization spiking neural P system 5

(2) σ1, . . . , σm are neurons of the form

σi = (1, Ri, Pi).

Further comments on the neurons are

(a) in each neuron σi, there is only 1 initial
spike, i.e. ni = 1, for i = 1, 2, . . . ,m+ 2

(b) Ri = {r1
i , r

2
i } is a set of rules, spiking

r1
i : a → a and forgetting r2

i : a → λ, re-
spectively

(c) Pi = {p1
i , p

2
i } is a finite set of probabili-

ties, where p1
i and p2

i are the selection prob-
abilities of rules r1

i and r2
i , respectively, and

satisfy p1
i+p2

i=1.

(3) The two additional neurons, σm+1 =

σm+2 = (1, a → a), work as a step by step
supplier of spikes to neurons σ1, σ2, . . . , σm.

(4) syn = {(σi, σj)|(i = m+ 2 AND 1 ≤ j ≤
m+ 1 OR (i = m+ 1 AND j = m+ 2)}.

(5) I0 = {1, 2, . . . ,m} is a finite set of out-
put neurons, i.e., the output is a spike train
formed by concatenating the outputs of σ1,
σ2, . . . , σm.

The structure of the specific ESNPS is shown in
Fig. 1.

…

a

a a
m+1 a

a a

a
1

1r
(1

1p):a a

2

1r
(2

1p):a !

1

a
1

2r
(1

2p):a a

2

2r
(2

2p):a !

2

a
1
m

r (1
m

p):a a

2
m

r (2
m

p):a !

m

m+2

A spike train

An OSNP system Figure 1. Logical and functioning scheme of the specific
ESNPS

2.2. Optimization Spiking Neural P System

The OSNPS is composed of multiple parallel ES-
NPSs and a Guider algorithm, that supervises the
family of ESNPSs, as shown in Fig. 2.

ESNPS2 ESNPSH
…ESNPS1

Spike trains

Guider

Rule probabilities

Figure 2. Structure of OSNPS (and AOSNPS)

Each ESNPSi, with 1 ≤ i ≤ H , has the structure
shown in Fig. 1. The Guider algorithm in Fig. 2 is
used to adjust the probabilities Pi of each ESNPSi.
The input of the Guider algorithm is a spike train
Ts, that is a set of H binary strings/candidate so-
lutions of length m (a binary matrix of H × m el-
ements) produced by each ESNPSi. The output of
the Guider algorithm is the rule probability matrix
PR = [p1

ij]H×m (the apex 1 indicates the probability
of the bit to be 1), which is composed of the spiking
rule probabilities of H ESNPSs, i.e.,

PR =


p1

11 p1
12 . . . p1

1m

p1
21 p1

22 . . . p1
2m

...
...

. . .
...

p1
H1 p

1
H2 . . . p

1
Hm

 .

The probabilities are fed back to the ESNPSs
which are updated accordingly.

Input: Spike train Ts, probabilities paj , learning rate ∆, num-
ber of ESNPS H and the current best solution x =
(x1, x2, . . . xm) of lengthm

1: Rearrange Ts as matrix PR

2: i = 1
3: while (i ≤ H) do
4: j=1
5: while (j ≤ m) do
6: if

(
rand() < paj

)
then

7: k1, k2 = ceil (rand() ∗H), k1 6= k2 6= i and correct
xk1

and xk2
if violate the constraint

8: if
(
f
(
xk1

)
> f

(
xk2

))
then

9: xj = x
k1
j

10: else
11: xj = x

k2
j

12: end if
13: if (xj == 1) then
14: p1ij = p1ij + ∆

15: else
16: p1ij = p1ij −∆

17: end if
18: else
19: if (xj == 1) then
20: p1ij = p1ij + ∆

21: else
22: p1ij = p1ij −∆

23: end if
24: end if
25: if (p1ij > 1) then
26: p1ij = p1ij −∆

27: else
28: if (p1ij < 0) then
29: p1ij = p1ij + ∆

30: end if
31: end if
32: j = j + 1
33: end while
34: i = i+ 1
35: end while
Output: Rule probability matrix PR

Figure 3. The Guider algorithm of OSNPS

June 22, 2020 17:58 output

6 M. Zhu, J. Dong, Q. Yang, et al.

Fig. 3 provides the details of the Guider algo-
rithm used in OSNPS 78. The basic idea is that one
current best solution (binary vector)

x = (x1, x2, . . . xm)

is stored in memory and two candidate solutions
xk1 and xk2 are randomly selected, with a certain
probability paj , and compared on the basis of a fit-
ness (objective function) f . If appropriate, the con-
straints are handled.

If xk1 and xk2 are generated, for each design
variable xj , the current solution is perturbed (x in-
herits the design variable of the winning candidate
solution). Then, the probability associated with the
most successful solution is increased by a constant
learning rate ∆. Conversely, the probability associ-
ated with the candidate solution displaying a lower
performance is reduced. If xk1 and xk2 are not gen-
erated, the binary variable of xj is directly used to
affect the probability, see lines 19-24 of the pseu-
docode in Fig. 3. More details on OSNPS can be
found in Ref. 78.

3. Adaptive Optimization Spiking Neural
P System

The proposed AOSNPS employs the same struc-
ture of OSNPS depicted in Fig. 2 but makes use
of a novel Dynamic Guider algorithm to manipu-
late the probability matrix PR. More specifically,
the Guider algorithm contains two novel adaptive
mechanisms: 1) an adaptive learning rate ∆; 2) an
adaptive mutation. The novel mechanisms are de-
scribed in Subsections 3.1 and 3.2, respectively. The
new Dynamic Guider algorithm embedding these
two elements is outlined in Subsection 3.3.

3.1. Adaptive Learning Rate

The learning rate ∆ is the step size of probability ad-
justment for the elements of the probability matrix
PR:

p1
ij = p1

ij + ∆

p1
ij = p1

ij −∆

with 1 ≤ i ≤ H and 1 ≤ j ≤ m. In Ref. 78, ∆

is a random number between 0.005 and 0.02 set at
the beginning of the optimization and kept constant
throughout the OSNPS execution.

We propose here a variable and adaptive learn-
ing rate ∆. In order to better explain the rationale of
the proposed adaptation, let us revisit the role of p1

i

of ESNPS presented in Section ??.
The term p1

i is the selection probability of rule
r1
i while r1

i is the spiking rule in each neuron. If the
value of p1

i is large, the rule r1
i has a high probabil-

ity of execution and the rule r2
i has a low probability

of execution since p1
i + p2

i = 1. If the output neuron
spikes, a 1 is written as a bit of the candidate solu-
tion, otherwise a 0 is written. Thus, if we want to get
1, p1

i should be large (ideally p1
i = 1) and if we want

to get 0, p1
i should be small (ideally p1

i = 0).
This paper proposes an adaptive probability

adjustment step size for each neuron. At each time
unit, the adaptive updating rule of probability is

p1
ij = p1

ij + ∆a
ij

where ∆a
ij (a stands for “adaptive”) is the step size

and is defined as

∆a
ij =

Pb − p1
ij

2
.

∆a
ij is designed to take the middle point of the dis-

tance between the current probability p1
ij and the

ideal probability. The ideal probability Pb = {0, 1}
is the lower or upper bound of the probability of p1

ij

(the pedex b stands for “bound”). For Pb = 1, the
update rule is

p1
ij = p1

ij +
1− p1

ij

2
= 0.5 + 0.5p1

ij

while for Pb = 0 the update rule is

p1
ij = p1

ij +
0− p1

ij

2
= 0.5p1

ij .

Compared with the learning rate ∆ defined in
OSNPS, the adaptive learning rate ∆a

ij proposed in
this paper presents the following advantages.

• ∆a
ij changes for each neuron at each time

unit during the algorithm execution by fol-
lowing the learning needs. If the distance
between the current probability p1

ij and the
ideal probability Pb is big, the learning rate
∆a
ij is big. On the other hand, if the dis-

tance between the current probability p1
ij to

the ideal probability Pb is small, the learn-
ing rate is also small.

June 22, 2020 17:58 output

An adaptive optimization spiking neural P system 7

• The adaptive learning rate allows a quick
achievement of the desired probability. For
example, if we want to get 1 from a neuron,
from an initial probability p1

ij = 0.1 the pro-
posed adaptive learning rate ∆a

ij enables to
reach 0.9 < p1

ij < 1 after four steps whereas
with a constant ∆ over 40 steps are needed.

• The probability of p1
ij does not overflow. In

OSNPS, it may result p1
ij > 0 or p1

ij < 0. In
this case, an extra mechanism is required.
The use of the proposed adaptive learning
rate ensures that the probability overflow
never occurs.

3.2. Adaptive Mutation

The proposed AOSNPS makes also use of an adap-
tive mutation strategy. Two dynamic parameters
Pm1 and Pm2 are defined to characterise and mon-
itor the learning (evolutionary state) of AOSNPS.
The parameter Pm1 is the first mutation probabil-
ity which varies between 0 and 1 and is defined as
follows:

if Gbf (gen) > Gbf (gen− 1) then
Pm1 = 0

end if
if Gbf (gen) = Gbf (gen− 1) then
Pm1 = Pm1 + 1

Nmax

end if

where Gbf (gen) is the best fitness value ever com-
puted at the generation time of the execution and
Gbf (0) is the best fitness at the initialization. The pa-
rameter Nmax determines a stopping criterion: if the
global best fitness does not improve for consecutive
Nmax generations the algorithm stops.

The parameter Pm2 is the second mutation
probability and is defined as follows:

Pm2 =
DPa(gen)

DPa(0)

where DPa (gen) is an aggregated metric represent-
ing the diversity (of probabilities) at the current gen-
eration gen, see 46. This value is calculated as:

DPa (gen) = 2
(H−1)(H−2)

H−1∑
i=1

(
H∑

j=i+1

1
m

m∑
k=1

∣∣∣pgenik − p
gen
jk

∣∣∣) .
The value DPa(0) is the average probability at the
initialization.

The triggering rule for adaptive mutation is de-
fined as

rand1() < Pm1 AND rand2() > Pm2

where rand1() and rand2() are two random num-
bers in the range [0, 1].

Pm1 and Pm2 are two independent dynamic pa-
rameter. Pm1 is used to describe the trend of im-
provement of the optimal solution. Pm2 is used to
describe the diversity of probability sample matrix
between rows in the current generation. Nmax is the
parameter of when the algorithm should stop run-
ning. The value of Nmax affect the standard devia-
tion between the results of multiple runs of AOS-
NPS for the same issue. In order to make the re-
sults of multiple runs more concentrated, we should
choose a larger Nmax. The logic of the mutation
probabilities Pm1 and Pm2 is summarised in the fol-
lowing points.

• If a new current best solution has
been detected at the current generation
(Gbf (gen) > Gbf (gen − 1)), then the muta-
tion is not triggered (Pm1 = 0). Conversely,
if the current best solution has not been
updated (Gbf (gen) = Gbf (gen− 1)), the
probability of triggering the mutation is in-
creased (Pm1 = Pm1 + 1

Nmax
).

• If the diversity DPa(gen) is larger than that
at initialization DPa(0)), the probability for
the mutation to be triggered is low.

• If the current best solution is not updated
for many generations ((Gbf) remains the
same), and the diversity DPa(gen) of the
probability matrix PR is low, the mutation
is performed with a high probability (Pm1

is large, Pm2 is small).

When triggered the mutation of the matrix PR

is performed in the following way:

for i = 1, 2, · · · , H with i 6= Rbestfit
do

for j = 1, 2, · · · ,m do
if rand3() < Pmj then
p1
ij = rand()

end if
end for

end for

where rand3() and rand() are two random numbers

June 22, 2020 17:58 output

8 M. Zhu, J. Dong, Q. Yang, et al.

in the range [0, 1]. The mutation probability Pmj is a
parameter sampled in the range [0, 0.1] at the begin-
ning of the Dynamic Guider algorithm’s execution.
Rbestfit ∈ [1, H] is the row coordinate of the best
candidate solution found at the current generation.
This means that the best candidate solution, in an
elitist fashion, does not participate in the mutation.

Based on the adaptive learning rate and the
adaptive mutation rule, the Dynamic Guider algo-
rithm is an algorithm operating on the learning
probabilities to support the generation of successful
solution for the binary combinatorial problem.

One current best solution x is stored in mem-
ory and modified by crossover with other candidate
solutions. The candidate solutions are generated by
the parallel ESNPSs (one solution by each ESNPSj)
and processed in pairs by the evolutionary Dynamic
Guider algorithm that evaluates and compare their
fitness values. The evaluation of these candidate so-
lutions are used to modify the probability matrix
PR and hence generate solutions with a higher per-
formance. Like for OSNPS, the constraint is handled
by means of the random chromosome repair tech-
nique, see 29; 30; 75.

The evolution of the PR matrix is handled by
two mechanisms: the update of the adaptive learn-
ing rate which happens every time two candidate
solutions are sampled as described in Subsection
3.1, the re-initialisation of the neuron probability
which is triggered only by the satisfaction of the
conditions described in Subsection 3.2.

3.3. The Dynamic Guider Algorithm of
AOSNPS

Hence, we may consider AOSNPS as a co-evolution
where the (binary) candidate solutions of the op-
timization problem evolve with the probabilities
of the neurons in each of the P systems. The
pseudocode of the proposed evolutionary Dynamic
Guider is shown in Fig. 4.

4. Numerical Results: 0/1 knapsack
problem

Given a group of items, each item with its own
weight and price, and a knapsack of limited ca-
pacity, the problem consists of selecting the items
to make the total price of the knapsack as high as
possible without violating its maximum capacity.

If we indicate with m the total number of items
available and we label each item with a number
j = 1, 2, . . . ,m, we can represent the selection of the
items as a binary vector x.

Input: Spike train Ts, probabilities paj , mutation probability Pmj ,
number of ESNPS H and the current best solution x =
(x1, x2, . . . xm) of lengthm

1: Rearrange Ts as matrix PR, initialise gen = 0 and Pm1 = 0 and
then calculateGbf (0) andDPa(0)

2: while (Pm1 ≤ 1) do
3: gen = gen+ 1
4: i = 1
5: while (i ≤ H) do
6: j=1
7: while (j ≤ m) do
8: if (rand () < paj) then
9: k1, k2 = ceil(rand ∗ H), k1 6= k2 6= i and correct xk1

and xk2
if violate the constraint

10: if (f
(
xk1

)
> f

(
xk2

)
) then

11: xj = x
k1
j

12: else
13: xj = x

k2
j

14: end if
{Adaptive Learning Rate}

15: if (xj == 1) then
16: p1ij = 0.5 + 0.5p1ij
17: else
18: p1ij = 0.5p1ij
19: end if
20: else
21: if (xmaxj == 1) then
22: p1ij = 0.5 + 0.5p1ij
23: else
24: p1ij = 0.5p1ij
25: end if
26: end if
27: j = j + 1
28: end while
29: i = i+ 1
30: end while

{Adaptive Mutation}
31: calculateGbf (gen),DPa(gen) andRbestfit
32: if (Gbf (gen) > Gbf (gen− 1)) then
33: Pm1 = 0
34: else
35: Pm1 = Pm1 + 1

Nmax

36: end if
37: Pm2 =

DPa(gen)
DPa(0)

38: if (rand1() < Pm1 AND rand2() > Pm2) then
39: i = 1
40: while (i ≤ H) do
41: if i 6= Rbestfit then
42: j = 1
43: while (j ≤ m) do
44: if rand3() < Pmj then
45: p1ij = rand()

46: end if
47: j = j + 1
48: end while
49: end if
50: i = i+ 1
51: end while
52: end if
53: end while
Output: Rule probability matrix PR

Figure 4. The Dynamic Guider algorithm of AOSNPS

The 0/1 knapsack problem consists of the max-

June 22, 2020 17:58 output

An adaptive optimization spiking neural P system 9

imisation of the function

f (x) =

m∑
j=1

pjxj

subject to
m∑
j=1

ωjxj ≤ C

where pj and ωj are price and weight of the jth item,
respectively and C is the capacity of the knapsack.
The parameters of the problem have been set in
following way. The weights ωj have been sampled
from the interval [1,Ω], with Ω = 50, pj = ωj + 1

2Ω

and the average knapsack capacity C is applied:

C =
1

2

m∑
j=1

ωj .

In order to validate the proposed AOSNPS,
we tested it against the following algorithms de-
signed/used in the literature

• Genetic Quantum algorithm (GQA) 39

• Novel Quantum Evolutionary algorithm
(NQEA) 33

• Optimization Spiking Neural P System (OS-
NPS) 78

For each algorithm we used the recommended pa-
rameter setting used in the original paper. The pro-
posed AOSNPS has been run with H = 50 ESNPS.
Regarding the evolutionary Guider algorithm, the
learning probability paj (j = 1, . . . ,m) uses the same
value used in OSNPS (a random number in the
range [0.05, 0.2]), the mutation probabilities pmj =

0.01 (j = 1, . . . ,m) and Nmax = 500.
The 0/1 knapsack problem has been run in

different scenarios (problem instances), i.e. m =

1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000,

10000. Each algorithm in this paper has been run for
30 independent runs. When the total weight of all
selected items exceeds the capacity C (constraints
violation), we implemented the random chromo-
some repair technique suggested in Ref. 29; 30; 75.

Table 1 displays the numerical results in terms
of mean value µ± standard deviation σ of the knap-
sack cost f (x). The best results for each problem in-
stance are highlighted in bold.

Furthermore, the statistical significance of the
results has been enhanced by the application of the

Wilcoxon rank sum test, see 66. A “+” indicates that
AOSNPS significantly outperforms its competitor, a
“-” indicates that the competitor significantly out-
performs AOSNPS, and a “=” indicates that there is
no significant difference in performance.

Numerical results in Table 1 show that the pro-
posed AOSNPS is very efficient to address the 0/1
knapsack problem since it achieves the best results
in nine cases out of the ten considered. In only one
scenario (with the smallest number of items m =

1000) NQEA achieves slightly better results than
AOSNSP. The effectiveness of the novel Dynamic
Guider algorithm appears from the direct compar-
ison against OSNPS: AOSNPS systematically out-
performs OSNPS.

In order to further strengthen the statistical
analysis of the presented results, we performed the
Holm-Bonferroni 31 procedure for the eight algo-
rithms (NA = 4) and ten problem instances (Np =

10). The rank Rk for k = 1, . . . , NA by assigning, for
each problem instance has been calculated. For each
problem instance, a score NA is assigned to the best
algorithm, a score NA − 1 to the second best, . . ., 1

to the worst algorithm. The ranks Rk are the scores
averaged over all the problem instances. Let us in-
dicate with R0 the ranking of AOSNPS. For the re-
maining NA − 1 algorithm the score zk is calculated
as the values zk have been calculated as:

zk =
Rk −R0√
NA(NA+1)

6Np

.

By means of the zk values, the corresponding cu-
mulative normal distribution values pk have been
calculated, see 19:

pk =
2√
π

∫ ∞
−zk√

2

e−t
2

dt.

These pk values have then been compared with
the corresponding δ/k where δ is the level of confi-
dence, set to 0.05 in this case.

These pk values have then been compared with
the corresponding δ/k where δ is the level of confi-
dence, set to δ = 0.05 in this case. Table 2 displays
the ranks, zk values, pk values, and corresponding
δ/k obtained. Moreover, it is indicated whether the
null-hypothesis (that the two algorithms have indis-
tinguishable performances) is “Rejected”, i.e. the al-
gorithms have statistically different performance, or

June 22, 2020 17:58 output

10 M. Zhu, J. Dong, Q. Yang, et al.

Table 1. Mean value ± standard deviation of the knapsack cost for the algorithms and prob-
lem instances under consideration

m GQA NQEA OSNPS AOSNPS

µ σ W µ σ W µ σ W µ σ
1000 26340.617 162.941 + 29273.757 131.036 = 28089.664 311.094 + 29225.319 186.584
2000 52908.434 208.761 + 58515.548 293.090 + 56150.321 535.740 + 58561.778 385.807
3000 78059.658 276.459 + 85886.637 502.8594 + 82745.029 692.8688 + 86738.048 586.712
4000 103801.413 422.955 + 113690.579 666.608 + 109458.886 724.4787 + 114706.678 831.661
5000 131224.181 342.227 + 142077.755 713.820 + 137927.802 835.4819 + 143601.783 1328.339
6000 157119.187 415.339 + 169516.775 577.702 + 164674.207 730.2888 + 171543.765 1515.563
7000 182669.798 440.894 + 196377.110 873.184 + 191659.447 849.2236 + 200107.477 1218.512
8000 208561.466 322.213 + 223674.462 953.050 + 217577.959 1128.401 + 227193.619 1531.739
9000 233945.639 570.136 + 249931.187 916.934 + 244397.767 1129.060 + 254551.819 1162.772
10000 259881.277 541.028 + 276903.178 1159.924 + 270663.831 769.233 + 282101.492 1774.430

“Accepted” if the distribution of values can be con-
sidered the same (there is no outperformance).

The Holm-Bonferroni procedure in Table 2
shows that AOSNPS achieves the best performance
over all the algorithms taken into account. It can be
observed that AOSNPS achieves the best ranking
and significantly outperforms GQA and OSNPS.

Table 2. Holm-Bonferroni Procedure with
AOSNPS as reference (Rank 3.9000e+00)

Rk zk pk
δ
k Test

NQEA 3.1e+00 -1.3856e+00 1.6586e-01 5.00e-02 Accepted
OSNPS 2.0e+00 -3.2909e+00 9.9869e-04 2.50e-02 Rejected
GQA 1.0e+00 -5.0229e+00 5.0884e-07 1.67e-02 Rejected

4.1. Comparative Analysis of AOSNPS and
OSNPS

In this subsection, we highlight the effectiveness of
the new Dynamic Guider algorithm by comparing
the behaviour of OSNPS and AOSNPS. The analy-
sis involves the following five indicators75.
(1) Gbf : performance trend. This is the objective
function value of the current best solution at each
generation gen.
(2) Dhbw: Hamming distance between the best and
worst binary individuals in a population.

Dhbw =
1

m

m∑
i=1

(xbi ⊕ xwi)

where, xbi and xwi are the ith bits in the best and
worst binary solutions, respectively; m is the num-
ber of bits in a binary solution; the symbol ⊕ repre-
sents the OR operator.
(3) Dhm: average Hamming distance of all binary

individuals in a population.

Dhm =
2

n(n− 1)

n∑
i=1

n∑
j=i+1

1

m

m∑
k=1

(xik ⊕ xjk)

where, xik and xjk are the kth bits in the ith and
jth binary solutions, respectively; m is the number
of bits in a binary solution; n is the number of in-
dividuals in a population; the symbol ⊕ represents
OR operator.
(4) DPbw: distance between the best and worst
probability column vectors in PR corresponding to
the best and worst fitness values in a population, re-
spectively.

DPbw =
1

m

m∑
k=1

∣∣p1
bk − p1

wk

∣∣
where p1

bk and p1
wk are the probabilities associated

with the best and worst.
(5) DPa: average probability distance of all proba-
bility individuals as shown in Subsection 3.2.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
2.6

2.65

2.7

2.75

2.8

2.85

2.9

2.95

3

3.05
x 10

4

Generations

G
b
f

OSNPS

AOSNPS

Figure 5. Performance trend Gbf of OSNPS and AOS-
NPS

Figures 5 - 9 depicts the trends of these five
metrics for m = 1000 items for OSNPS and AOS-
NPS, respectively. The algorithms have been run
with the same starting random initial probability

June 22, 2020 17:58 output

An adaptive optimization spiking neural P system 11

matrices PR50×1000. Both OSNPS and AOSNPS have
been run 8000 generations respectively. Figure 5
shows that AOSNPS outperforms OSNPS through-
out the entire run. Figures 6 and 7 show that AOS-
NPS exhibits better transient convergence:the diver-
sity metrics Dhbw and Dhm of AOSNPS drop more
rapidly than that of OSNPS in the early stages of
the run. However, subsequently AOSNPS achieves
and maintains a better diversity than OSNPS. This
is the result of the joint contributions of the adap-
tive learning rate (the rapid decline of diversity in
early stage is mainly due to the improved learning
efficiency using ∆adaptive

ij) and the adaptive muta-
tion (better diversity obtained in the middle and late
stages is due to the frequent triggering of mutation
rule).

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

Generations

D
h
b
w

OSNPS

AOSNPS

Figure 6. Plot of Hamming distance between the best
and worst binary individuals Dhbw : OSNPS vs AOSNPS

Numerical results of DPbw and DPa in Fig.8 - 9
highlight the better ability of AOSNPS to maintain
the diversity of probability individuals comparing
with OSNPS. This is due to the contribution of the
adaptive mutation. During the entire run of AOS-
NPS (8000 generations), the adaptive mutation was
triggered 1971 times.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

Generations

D
h
m

OSNPS

AOSNPS

Figure 7. Plot of average Hamming distance Dhm: OS-
NPS vs AOSNPS

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Generations

D
P

b
w

OSNPS

AOSNPS

Figure 8. Plot of the distance between the best and worst
probability DPbw : OSNPS vs AOSNPS

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Generations

D
P

a

OSNPS

AOSNPS

Figure 9. Plot of the average probability distance DPa:
OSNPS vs AOSNPS

Fig.10 shows the histogram of the mutation

June 22, 2020 17:58 output

12 M. Zhu, J. Dong, Q. Yang, et al.

triggering during the run. At the beginning of the
algorithm execution, the mutation was not enabled
because the optimal solution improved quickly. In
the middle and at the late stages of the run, the mu-
tation is often enabled to enhance upon a current
best solution with a high performance.

0 1000 2000 3000 4000 5000 6000 7000 8000
0

50

100

150

200

250

300

Generations

T
im

e
s
 o

f
m

u
ta

ti
o

n

Figure 10. The histogram of the mutation triggering

In order to better display the behavior of adap-
tive mutation, Fig.11 displays the interval genera-
tions, i.e. the number of generations gen between
two consecutive triggered mutations. When the in-
terval generation is one, then the mutation has
occurred for two consecutive generations. At this
time, the global optimal solution may have not
been improved for many generations (Pm1 is large),
and the difference between the populations is small
(Pm2 is small), which could correspond to a con-
vergence to a suboptimal solution. In this situa-
tion, mutations are needed to explore possible new
promising search directions. If the interval genera-
tion of mutation is large, either AOSNPS is likely to
have recently detected a new global optimal solu-
tion (Pm1 is reset to zero) or the difference between
the populations is large (Pm2 is large).

0 500 1000 1500 2000
0

20

40

60

80

100

120

140

Times of mutation

In
te

rv
a

l
g

e
n

e
ra

ti
o

n
s

Figure 11. The interval generations between two adja-
cent mutations triggered

Figure 12. IEEE 39 bus power system

5. AOSNPS for Power System Fault
Diagnosis

Power system fault diagnosis is the identification
of location and causes of a fault on a power sys-
tem. In this subsection, AOSNPS is applied to
solve this fault diagnosis problem. We considered
the power system represented in Fig. 12, see Ref.
63. The power system contains 39 buses, 45 lines
and 99 Circuit breakers. 39 buses and 45 lines are
B1, ..., B39, and, L1−7, ..., L29−39, 99 Circuit break-
ers are CB(1)−7, ..., L(39)−29, where, CB(1)−7 rep-
resents the breaker such that L1−7 is near the B1

June 22, 2020 17:58 output

An adaptive optimization spiking neural P system 13

side. For instance, line L3−4 has three types of
protective relays including main protective relay
L(3)−4m and L3−(4)m, first backup protective relay
L(3)−4p and L3−(4)p,and second backup protective
relay L(3)−4s, L3−(4)s, L4−(5)s and L4−(8)s.

The operational rules of the protective relays of
buses and lines are described in Ref.63 as follows.
1) Protective relays of buses. If the main protective
relays of a bus operate, all breakers connected to the
bus are tripped.
2) Protective relays of lines. If the main protective
relays of a line operate, all breakers connected to the
line are tripped. Likewise, when the main protective
relays of a bus fail to operate, the first backup pro-
tective relays operate to trip all breaker connected
to the line. When adjacent regions of a line fail and
their main protective relay and first backup relay
fail to operate, the second backup relay of a line op-
erates.

Six fault cases in the IEEE 39 bus system and
IEEE 118 bus system have been considered: case 1
is a single fault, case 2 is multiple faults, case 3 and
case 4 are multiple faults with incompleteness and
uncertainty in the IEEE 39 node electric power sys-
tem. Case 5 is multiple faults and case 6 is multiple
faults with incompleteness and uncertainty in the
IEEE 118 node electric power system6 .The network
data for the four cases are listed in Table 3.

In order to identify a fault, the engineer is usu-
ally informed about the real status of protective re-
lays and circuit breakers. We represent this piece as
information as two binary vectors r and c for relays
and circuit breakers, respectively

r = (r1, r2, . . . rNr)

c = (c1, c2, . . . cNc)

where for every value of i, 1) ri = 1 and ri = 0 repre-
sent the operation and non-operation of the protec-
tive relay i; 2) ci = 1 and ci = 0 represent the oper-
ation (the circuit breakers trips) and non-operation
of the circuit breaker. Let us now define the binary
vector s,

s = (s1, s2, . . . , sn)

where si represents the status of section: si =1 and
si =0 represent the fault status and normal status of
section i, respectively.

On the basis of these pieces of information, the
expected values of the protective relays and circuit

breakers
re = (re1, re2, . . . , reNr)

ce = (ce1, ce2, . . . , ceNc)

are represented as functions of r and s and com-
puted as shown in Ref. 65. We used AOSNPS to op-
timise the following objective function62

e (s) =

Nr∑
i=1

|ri − rei (s)|+
Nc∑
j=1

|cj − cej (s, r)|

Table 4 displays the results of the fault diag-
nosis estimation obtained by AOSNPS and com-
pare them with those obtained by the ad-hoc expert
based methods presented in Ref. 61 and 72. It can be
observed that for case 1 the three meathods reach
the same results. Regarding case 2, the estimation
result of AOSNPS is the same as 72, but is different
to 72. In case 3, case 4, case5 and case 6, we may ob-
serve that the results of AOSNPS are different from
those in 61 and 72. However, our results agree with
those achieved by a more recent study that consid-
ers only complex scenarios, see Ref.67.

6. Conclusions

This paper proposes a novel Adaptive Spiking Neu-
ral P System, indicated as AOSNPS, for solving the
0/1 knapsack problem. The proposed method uses
multiple neural P systems, each of them generat-
ing a candidate solution and a Dynamic Guider al-
gorithm that supervises the search. The proposed
scheme includes two novel adaptive mechanisms
within the Dynamic Guider algorithm: an adaptive
learning rate and an adaptive mutation based on the
estimation of the diversity of the sampling rules.

Numerical results demonstrate that thanks to
their adaptive learning rate and adaptive mutation,
the proposed AOSNPS overcomes the diversity loss
limitation of its predecessor OSNPS. The novel
adaptive mechanism enhances upon the behaviour
of the Dynamic Guider algorithm: the search opera-
tors, through the probabilities of the spiking neural
P system, react to the temporary diversity loss of the
population by suggesting fresh search directions.
The proposed AOSNPS outperforms two popular
metaheuristics and OSNPS on the 0/1 knapsack
problem in all the scenarios considered. Further-
more, the application of AOSNPS to a power dis-
tribution problem shows that AOSNPS behaves like

June 22, 2020 17:58 output

14 M. Zhu, J. Dong, Q. Yang, et al.

Table 3. Status information about four cases

case protective relays breakers

1 L(18)−19moperated,L18−(19)p operated CB(18)−19 operated,CB18−(19) operated

L18−(19)m refused to operated

L(18)−19m operated, L18−(19)m operated CB(18)−19 operated,CB17−(19) operated

2 L(17)−19m operated, L19−(23)s operated CB19−(23) operated

L(17)−19m operated, L19−(23)s operated CB18−(19) refused to operate

L(18)−19m operated, L18−(19)m operated CB(18)−19operated, CB18−(19) operated

3 B19m operated, L(17)−19s operated CB(17)−19 operated, CB19−(23) operated

L19−(23)m misoperation CB17−(19) refused to operated

L(11)−12m operated, L11−(12)m operated CB(11)−12 operated, CB12−(13) operated

L12−(13)m operated, L(18)−19p operated CB(17)−19 operated, CB17−(19) operated

4 L18−(19)p operated,L(12)−13m misoperation CB11−(12) refused to operated

L(18)−19m refused to operated

L18−(19)m refused to operated

B83m operated,L(19)−20m operated CB(9)−10 operated,CB7−(8) operated

5 L19−(20)p operated,L(21)−22p operated CB(11)−12 operated,CB(19)−20 operated

L21−(22)p operated,L(9)−10p misoperation CB19−(20) operated,CB(21)−22 operated

CB21−(22) operated

CB9−(10) refused to operated

B85m operated,L(3)−4m operated CB(3)−4 operated,CB3−(4) operated,

6 B86m misoperation,L3−(4)p operated CB(5)−6 operated,CB(7)−10 operated,

L7−(16)m misoperation CB(13)−14 operated,CB15−(16) operated,

L3−(4)m refused to operated CB(15)−16 refused to operated

CB(1)−2 refused to operated

Table 4. Comparisons between AOSNPS and two other methods for power grid fault detection

case candidate sections The results in Ref.61 The results in Ref.72 AOSNPS

1 L18−19 L18−19 L18−19 L18−19

2 B19, L17−19, L18−19, L19−23 L17−19,L18−19 L18−19 L18−19

3 B19, L17−19, L18−19, L19−23 B19, L17−19, L18−19 B19, L17−19, L18−19 B19, L18−19

4 B12, L11−12, L12−13, L17−19 B12, L12−13, L17−19 B12, L11−12, L17−19 L11−12, L17−19

5 B83, L9−10, L19−20 ,L21−22 B83,L9−10,L19−20,L21−22 B83,L19−20,L21−22 B83,L19−20,L21−22

6 B85, B86, L3−4, L1−2,L7−16 B85, B86, L3−4,L7−16 B85, B86, L3−4, B85, L3−4

an artificial intelligence element able to correctly lo-
cate electrical faults.

Acknowledgments

This work was supported the National Natural

June 22, 2020 17:58 output

An adaptive optimization spiking neural P system 15

Science Foundation of China (61972324, 61672437,
61702428), the Sichuan Science and Technology
Program (2017FZ0010, 2018GZ0185, 2018GZ0086,
20YYJC2596), New Generation Artificial Intelli-
gence Science and Technology Major Project of
Sichuan Province (2018GZDZX0043) and Artificial
Intelligence Key Laboratory of Sichuan Province
(2019RYJ06).

Bibliography

1. H. Adeli and A. Panakkat, A probabilistic neural net-
work for earthquake magnitude prediction, Neural
Networks 22(7) (2009) 1018–1024.

2. H. Adeli and H. S. Park, Optimization of space struc-
tures by neural dynamics, Neural Networks 8(5) (1995)
769–781.

3. F. Ahmadkhanlou and H. Adeli, Optimum cost de-
sign of reinforced concrete slabs using neural dynam-
ics model, Engineering Applications of Artificial Intelli-
gence 1(1) (2005) 65–72.

4. M. Ahmadlou and H. Adeli, Enhanced probabilistic
neural network with local decision circles: A robust
classifier, Integrated Computer-Aided Engineering 17(3)
(2010) 197–210.

5. M. Atencia, G. Joya and F. Sandoval, Dynamical anal-
ysis of continuous higher-order hopfield networks
for combinatorial optimization, Neural Computation
17(8) (2005) 1802–1819.

6. T. Bi, Z. Yan, F. Wen, Y. Ni, F. Wu and Q. Yang,
P systems-based computing polynomials with inte-
ger coefficients: Design and formal verification, Power
System Technology 25(11) (2001) 27–37.

7. C. M. Bishop, Neural Networks for Pattern Recognition
(Oxford, U.K.:Oxford University, 1995).

8. C. Buiu, C. Vasile and O. Arsene, Development of
membrane controllers for mobile robots, Information
Sciences 187(1) (2012) 33–51.

9. F. G. C. Cabarle, H. N. Adorna, M. Jiang and X. Zeng,
Spiking neural P systems with scheduled synapses,
IEEE Transactions on Nanobioscience 16(8) (2017) 792–
801.

10. Z. Cen, J. Wei and R. Jiang, A gray-box neural
network-based model identification and fault estima-
tion scheme for nonlinear dynamic systems, Interna-
tional Journal of Neural Systems 23(6) (2013) 497–383.

11. T. K. Chau, S. Yu, T. Fernando, H. H. Iu and M. Small,
A load-forecasting-based adaptive parameter opti-
mization strategy of statcom using anns for enhance-
ment of lfod in power systems, IEEE Transactions on
Industrial Informatics 14(6) (2018) 2463–2472.

12. L. Cheng, Z. Hou, Y. Lin, M. Tan, W. Zhang and F. Wu,
Recurrent neural network for non-smooth convex op-
timization problems with application to the identifi-
cation of genetic regulatory networks, IEEE Transac-
tions on Neural Networks 25(2) (2011) 714–726.

13. A. Cichocki and R. Unbehauen, Neural networks for

optimization and signal processing, John Wiley and
Sons 74(1) (1992) 245–250.

14. G. Ciobanu, M. J. Pérez-Jiménez and G. Păun (eds.),
Applications of Membrane ComputingNatural Com-
puting Series, Natural Computing Series (Springer,
2006).

15. D. Ciresan, U. Meier and J. Schmidhuber, Multi-
column deep neural networks for image classifica-
tion, Computer Vision and Pattern Recognition 175(10)
(2012) 3642–3649.

16. T. S. Clawson, S. Ferrari, S. B. Fuller and R. J. Wood,
Spiking neural network (SNN) control of a flapping
insect-scale robot, 55th IEEE Conference on Decision
and Control, CDC 2016, Las Vegas, NV, USA, December
12-14, 2016, 2016, pp. 3381–3388.

17. S. Ding, H. Li, C. Su, J. Yu and F. Jin, Evolutionary ar-
tificial neural networks: a review, Artificial Intellience
Review 39(3) (2013) 251–260.

18. I. Fiete, W. Senn, C. Wang and R. Hahnloser, Spike-
time-dependent plasticity and heterosynaptic compe-
tition organize networks to produce long scale-free
sequences of neural activity, Neuron 65(4) (2010) 563–
576.

19. R. A. Fisher, The Design of Experiments, ninth edn. 1971
(1935).

20. J. Friedrich, R. Urbanczik and W. Senn, Code-specific
learning rules improve action selection by popula-
tions of spiking neurons, Int. J. Neural Syst. 24(5)
(2014).

21. P. Frisco, M. Gheorghe and M. J. Pérez-Jiménez (eds.),
Applications of Membrane Computing in Systems and
Synthetic BiologyEmergence, Complexity and Com-
putation, Emergence, Complexity and Computation
(Springer, 2014).

22. F. Galán-Prado, A. Morán, J. Font, M. Roca and J. L.
Rosselló, Compact hardware synthesis of stochas-
tic spiking neural networks, Int. J. Neural Syst. 29(8)
(2019) 1950004:1–1950004:13.

23. S. Ghosh-Dastidar and H. Adeli, A new supervised
learning algorithm for multiple spiking neural net-
works with application in epilepsy and seizure de-
tection, Neural Networks 22(10) (2009) 1419–1431.

24. S. Ghosh-Dastidar and H. Adeli, Third generation
neural networks: Spiking neural networks, Advances
in Computational Intelligence, ed. S. E. Yu W., Advances
in Intelligent and Soft Computing 116 (Springer, 2009).

25. S. Ghosh-Dastidar and H. Adeli, Improved spiking
neural networks for EEG classification and epilepsy
and seizure detection, Integr. Comput. Aided Eng. 14(3)
(2007) 187–212.

26. S. Ghosh-Dastidar and H. Adeli, Spiking neural net-
works, Int. J. Neural Syst. 19(4) (2009) 295–308.

27. S. Ghosh-Dastidar, H. Adeli and N. Dadmehr, Mixed-
band wavelet-chaos-neural network methodology
for epilepsy and epileptic seizure detection, IEEE
Transactions on Biomedical Engineering 54(9) (2007)
1545–1551.

28. S. Ghosh-Dastidar, H. Adeli and N. Dadmehr, Prin-

June 22, 2020 17:58 output

16 M. Zhu, J. Dong, Q. Yang, et al.

cipal component analysis-enhanced cosine radial ba-
sis function neural network for robust epilepsy and
seizure detection, IEEE Transactions on Biomedical En-
gineering 55(2) (2008) 512–518.

29. K. H. Han and J. H. Kim, Quantum-inspired evolu-
tionary algorithm for a class of combinatorial opti-
mization, IEEE Transactions on Evolutionary Computa-
tion 6(6) (2002) 580–593.

30. K. H. Han and J. H. Kim, Quantum-inspired evolu-
tionary algorithms with a new termination criterion,
hepsilon gate, and two-phase scheme, IEEE Transac-
tions on Evolutionary Computation 8(2) (2004) 156–169.

31. S. Holm, A simple sequentially rejective multiple test
procedure, Scandinavian Journal of Statistics 6(2) (1979)
65–70.

32. L. Huang, X. He, N. Wang and Y. Xie, P systems based
multi-objective optimization algorithm, Progress in
Natural Science 17(4) (2007) 458–465.

33. Hui Gao, Guanghui Xu and Zheren Wang, A novel
quantum evolutionary algorithm and its application,
2006 6th World Congress on Intelligent Control and Au-
tomation, 1June 2006, pp. 3638–3642.

34. M. Ionescu, G. Puaun, M. J. Pérez-Jiménez and
A. Rodrı́guez-Patón, Spiking neural P systems with
several types of spikes, Int. J. Comput. Commun. Con-
trol 6(4) (2011) 647–655.

35. M. Ionescu, G. Păun and T. Yokomori, Spiking neu-
ral P systems, Fundamenta Informaticae 71(2-3) (2006)
279–308.

36. Y. Jiang, Y. Su and F. Luo, An improved univer-
sal spiking neural P system with generalized use of
rules, Journal of Membrane Computing 1(4) (2019) 270–
278.

37. N. Kasabov, K. Dhoble, N. Nuntalid and G. Indiveri,
Dynamic evolving spiking neural networks for on-
line spatio-and spectro-temporal pattern recognition,
Neural Networks 41(5) (2013) 188–201.

38. M. Kociecki and H. Adeli, Two-phase genetic algo-
rithm for size optimization of free form steel space-
frame roof structures, Journal of Constructional Steel
Research 90(9) (2013) 283–296.

39. Kuk-Hyun Han and Jong-Hwan Kim, Genetic quan-
tum algorithm and its application to combinato-
rial optimization problem, Proceedings of the 2000
Congress on Evolutionary Computation. CEC00 (Cat.
No.00TH8512), 2July 2000, pp. 1354–1360 vol.2.

40. W. Maass, Lower bounds for the computational
power of networks of spiking neurons, Neural Com-
putation 8(1) (1996) 1–40.

41. W. Maass, Networks of spiking neurons: the third
generation of neural network models, Neural Net-
works 10(9) (1997) 1659–1671.

42. L. Maguire, T. McGinnity, B. Glackin, A. Ghani, A. Be-
latreche and J. Harkin, Challenges for large-scale im-
plementations of spiking neural networks on fpgas,
Neurocomputing 71(1) (2007) 13 – 29, Dedicated Hard-
ware Architectures for Intelligent Systems Advances
on Neural Networks for Speech and Audio Process-

ing.
43. V. Manca, Metabolic computing, Journal of Membrane

Computing 1(3) (2019) 223–232.
44. C. Martı́n-Vide, G. Păun, J. Pazos and A. Rodrı́guez-

Patón, Tissue p systems, Theoretical Computer Science
296(2) (2003) 295 – 326, Machines, Computations and
Universality.

45. P. Mazumder, D. Hu, I. E. Ebong, X. Zhang, Z. Xu and
S. Ferrari, Digital implementation of a virtual insect
trained by spike-timing dependent plasticity, Integra-
tion 54 (2016) 109–117.

46. F. Neri, V. Tirronen, T. Karkkainen and T. Rossi, Fit-
ness diversity based adaptation in multimeme algo-
rithms:a comparative study, 2007 IEEE Congress on
Evolutionary Computation, 2007, pp. 2374–2381.

47. A. Ortiz, J. Munilla, J. M. Górriz and J. Ramı́rez, En-
sembles of deep learning architectures for the early
diagnosis of the alzheimer’s disease, Int. J. Neural
Syst. 26(7) (2016) 1650025:1–1650025:23.

48. L. Pan, G. Păun, G. Zhang and F. Neri, Spiking neural
p systems with communication on request, Interna-
tional Journal of neural systems 27(08) (2017).

49. L. Pan and G. Puaun, Spiking neural P systems
with anti-spikes, Int. J. Comput. Commun. Control 4(3)
(2009) 273–282.

50. L. Pan, T. Wu, Y. Su and A. V. Vasilakos, Cell-like spik-
ing neural p systems with request rules, IEEE Trans-
actions on Nanobioscience 16(6) (2017) 513–522.

51. A. Panakkat and H. Adeli, Neural network models
for earthquake magnitude prediction using multiple
seismicity indicators, International Journal of Neural
Systems 17(1) (2007) 13–33.

52. A. Panakkat and H. Adeli, Recurrent neural network
for approximate earthquake time and location predic-
tion using multiple seismicity indicators, Computer-
Aided Civil and Infrastructure Engineering 24(4) (2009)
280–292.

53. S. Park, N. G. Laxpati, C. Gutekunst, M. J. Connolly,
J. Tung, K. Berglund, B. Mahmoudi and R. E. Gross, A
machine learning approach to characterize the mod-
ulation of the hippocampal rhythms via optogenetic
stimulation of the medial septum, Int. J. Neural Syst.
29(10) (2019) 1950020:1–1950020:21.

54. G. Păun, Computing with membranes, Journal of
Computer and System Sciences 61(1) (2000) 108–143.

55. W. Pitts and W. McCulloch, A logical calculus of the
ideas immanent in nervous activity, Bull. Math. Bio-
phys 5 (1943) 115–133.

56. F. Ponulak and A. Kasinski, Introduction to spik-
ing neural networks: information processing, learn-
ing and applications, Acta Neurobiologiae Experimen-
talis 71(4) (2011) 409–433.

57. J. L. Rosselló, V. Canals, A. Morro and A. Oliver,
Hardware implementation of stochastic spiking neu-
ral networks, Int. J. Neural Syst. 22(4) (2012).

58. T. Song, A. Rodrı́guez-Patón, P. Zheng and X. Zeng,
Spiking neural P systems with colored spikes, IEEE
Transactions on Cognitive and Development Systems

June 22, 2020 17:58 output

An adaptive optimization spiking neural P system 17

10(4) (2018) 1106–1115.
59. T. Song, X. Zeng,

P. Zheng, M. Jiang and A. Rodrı́guez-Patón, A paral-
lel workflow pattern modelling using spiking neural
p systems with colored spikes, IEEE Transactions on
Nanobioscience 17(4) (2018) 474–484.

60. S. Stefan, K. Nikola and D.-P. Michael, On the prob-
abilistic optimization of spiking neural networks, In-
ternational Journal of Neural Systems 20(6) (2010) 481–
500.

61. J. Sun, S. Qin and Y. Song, Fault diagnosis of electric
power systems based on fuzzy petri nets, IEEE Trans-
actions on Power Systems 19(4) (2004) 2053–2059.

62. T. Wang, S. Zeng, G. Zhang, M. J. Pérez-Jiménez and
J. Wang, Fault section estimation of power systems
with optimization spiking neural P systems, Roma-
nian Journal of Information Science and Technology 9(6)
(2014) 786–799.

63. T. Wang, G. Zhang, J. Zhao, Z. He, J. Wang and M. J.
Pérez-Jiménez, Fault diagnosis of electric power sys-
tems based on fuzzy reasoning spiking neural P sys-
tems, IEEE Transactions on Power Systems 30(3) (2015)
1182–1194.

64. X. Wang, G. Zhang, F. Neri, T. Jiang, J. Zhao, M. Gheo-
rghe, F. Ipate and R. Lefticaru, Design and implemen-
tation of membrane controllers for trajectory tracking
of nonholonomic wheeled mobile robots, Integrated
Computer Aided Engineering 23(1) (2015) 15–30.

65. F. Wen, Y. Qian, L. T. Z. Han, J. Shi and H. Zhang, A
tabu search based approach to fault section estima-
tion and state identification of unobserved protective
relays in power systems using information from pro-
tective relays and circuit breakers, Proceedings of the
CSEE 13(5) (1998) 1000–6753.

66. F. Wilcoxon, Individual comparisons by ranking
methods, Biometrics Bulletin 1(6) (1945) 80–83.

67. K. Wu, F. Wen, Y. Xue, H. Zhou and X. Li, Fault di-
agnosis model of time-delay constrained weighted
fuzzy petri nets based on multi-source information,
Automation of electric power system 37(24) (2013) 43–53.

68. T. Wu, Y. Wang, S. Jiang, Y. Su and X. Shi, Spiking neu-
ral P systems with rules on synapses and anti-spikes,
Theoretical Computer Science 16(8) (2017) 888–895.

69. T. Wu, F.-D. Bilbie, A. Păun, L. Pan and F. Neri, Sim-
plified and yet turing universal spiking neural p sys-
tems with communication on request, International
Journal of Neural Systems 28(8) (2018).

70. T. Wu, A. Păun, Z. Zhang and L. Pan, Spiking neu-
ral P systems with polarizations, IEEE Transactions
on Neural Networks and Learning Systems 29(8) (2018)
3349–3360.

71. T. Wu, Z. Zhang, G. Păun and L. Pan, Cell-like spik-
ing neural p systems, Theoretical Computer Science 623
(2016) 180–189.

72. J. Yang and Z. He, Power system fault diagnosis ap-
proach based on time sequence fuzzy petri net, Au-
tomation of Electric Power Systems 35(15) (2011) 46–51.

73. X. Zeng, L. Pan and M. J. Pérez-Jiménez, Small uni-
versal simple spiking neural p systems with weights,
Science China Information Sciences 57(9) (2014) 1–11.

74. G. Zhang, M. J. Pérez-Jiménez and M. Gheo-
rghe, Real-life Applications with Membrane Comput-
ingEmergence, Complexity and Computation, Emer-
gence, Complexity and Computation (Springer,
2017).

75. G. Zhang, J. Cheng and M. Gheorghe, Dynamic be-
havior analysis of membrane-inspired evolutionary
algorithms, International Journal of Computers, Commu-
nications and Control 9(2) (2014) 227–242.

76. G. Zhang, J. Cheng, M. Gheorghe and Q. Meng, A hy-
brid approach based on differential evolution and tis-
sue membrane systems for solving constrained man-
ufacturing parameter optimization problems, Applied
Soft Computing 13(3) (2013) 1528–1542.

77. G. Zhang, M. Gheorghe, L. Pan and M. J. Pérez-
Jiménez, Evolutionary membrane computing: A
comprehensive survey and new results, Information
Sciences 279 (2014) 528–551.

78. G. Zhang, H. Rong, F. Neri and M. J. Pérez-Jiménez,
An optimization spiking neural P system for approxi-
mately solving combinatorial optimization problems,
International Journal of Neural Systems 24(5) (2014)
1440006:01–16.

79. X. Zhang, G. Foderaro, C. Henriquez and S. Ferrari,
A scalable weight-free learning algorithm for reg-
ulatory control of cell activity in spiking neuronal
networks, Int. J. Neural Syst. 28(2) (2018) 1750015:1–
1750015:20.

80. X. Zhang, G. Foderaro, C. S. Henriquez, A. M. J.
VanDongen and S. Ferrari, A radial basis function
spike model for indirect learning via integrate-and-
fire sampling and reconstruction techniques, Adv. Ar-
tificial Neural Systems 2012 (2012) 713581:1–713581:16.

81. X. Zhang, Z. Xu, C. Henriquez and S. Ferrari, Spike-
based indirect training of a spiking neural network-
controlled virtual insect, Proceedings of the 52nd IEEE
Conference on Decision and Control, CDC 2013, Decem-
ber 10-13, 2013, Firenze, Italy, 2013, pp. 6798–6805.

82. Y. Zhang, G. Zhou, J. Jin, X. Wang and A. Cichocki,
Frequency recognition in ssvep-based BCI using mul-
tiset canonical correlation analysis, Int. J. Neural Syst.
24(4) (2014).

	Introduction
	Background: Problem and Optimization by Spiking Neural P Systems
	Extended Spiking Neural P System
	Optimization Spiking Neural P System

	Adaptive Optimization Spiking Neural P System
	Adaptive Learning Rate
	Adaptive Mutation
	The Dynamic Guider Algorithm of AOSNPS

	Numerical Results: 0/1 knapsack problem
	Comparative Analysis of AOSNPS and OSNPS

	AOSNPS for Power System Fault Diagnosis
	Conclusions

