
Distributional Comparative Statics

Martin Kaae Jensen∗†

October 2016

Abstract

Distributional comparative statics is the study of how individual decisions and equilibrium out-
comes vary with changes in the distribution of economic parameters (income, wealth,productivity,
information, etc.). This paper develops new tools to address such issues and illustrates their use-
fulness in applications. The central development is a condition called quasi-concave differences
which implies concavity of the policy function in optimization problems without imposing dif-
ferentiability or quasi-concavity conditions. The general take-away is that many distributional
questions in economics which cannot be solved by direct calculations or the implicit function
theorem, can be addressed easily with this paper’s methods. Several applications demonstrate
this: the paper shows how increased uncertainty affects the set of equilibria in Bayesian games;
it shows how increased dispersion of productivities affects output in the model of Melitz (2003);
and it generalizes Carroll and Kimball (1996)’s result on concave consumption functions to the
Aiyagari (1994) setting with borrowing constraints.

Keywords: Distributional comparative statics, concave policy functions, income distribution,
inequality, uncertainty, heterogenous firms, Bayesian games, dynamic stochastic general equilib-
rium models, arg max correspondence.

JEL Classification Codes: C61, D80, D90, E20, I30.

∗Department of Economics, University of Leicester. (e-mail: mj182@le.ac.uk)
†I would like to thank the managing editor Marco Ottaviani, four anonymous referees, Jean-Pierre Drugeon, Charles

Rahal, Alex Rigos, Kevin Reffett, Colin Rowat, Jaideep Roy, John Quah, Muhamet Yildiz, the participants in my 2015 PhD
course on comparative statics at the Paris School of Economics, and especially Daron Acemoglu and Chris Wallace
for suggestions and comments that have influenced this paper substantially. Also thanks to participants at the 2012
European Workshop on General Equilibrium Theory in Exeter and seminar participants at Arizona State University,
Humboldt University of Berlin, Paris School of Economics, University of Leicester, University of Zurich, and University
of Warwick. All remaining errors are my responsibility.



1 Introduction

Distributional comparative statics (DCS) studies how changes in exogenous distributions affect

endogenous distributions in models with optimizing agents. Examples of DCS questions are the

following:

• Consider a monetary policy committee (MPC) that sets the interest rate by minimizing a

standard loss function, as in Kydland and Prescott (1977). The public knows the MPC’s ob-

jective but the MPC has private information about how the interest rate affects output and

inflation. How does the accuracy of the public’s beliefs about the MPC’s private signal (the

exogenous distribution) affect the public’s interest rate expectations (the endogenous dis-

tribution)?

• The incomplete markets model of Aiyagari (1994) features a population of consumers with

heterogenous incomes who make consumption and savings decisions subject to borrow-

ing constraints. At any moment in time, labor incomes differ due to inequality in endow-

ments/productivities and the distribution of these is exogenous. Under what conditions on

consumers’ preferences does a Lorenz decrease in inequality reduce welfare according to a

concave and increasing social welfare criterion? Under what conditions will a decrease in

inequality raise per-capita savings?

• In the international trade model of Melitz (2003) a continuum of firms have different pro-

ductivities. Does increased dispersion in productivity increase or reduce total output? I.e.,

are there increasing or decreasing returns to diversity?

• In Bayesian games, the obvious DCS question is how less precise private signals affect the

Bayesian equilibria, including the actions’ means and variability. In an arms race with in-

complete information, countries may be uncertain about arms’ effectiveness and oppo-

nents’ intentions — and the degree of uncertainty is likely to change over time. Does in-

creased uncertainty lead to disarmament or to escalation in the Bayesian equilibrium? In

more general Bayesian games, how does the precision of private signals affect mean and

variability of Bayesian equilibrium actions?

As explained in Section 2 and illustrated repeatedly throughout this paper, concavity or convex-

ity of the functions that map exogenous variables into endogenous ones (the policy functions)

is the key to answering such questions whenever the distributions change in the sense of mean-

preserving spreads, second-order stochastic, Lorenz, generalized Lorenz dominance, among other

ways.1 We may therefore focus our attention on concavity/convexity of these policy functions pro-

vided we know under what conditions on the primitives of the model they will be concave or con-

vex. The main contribution of this paper is a theorem that shows that if a payoff function satisfies

1This observation dates back to Atkinson (1970) who shows that in standard models of savings behavior, dominating
shifts in Lorenz curves reduce or increase aggregate savings according to whether the savings function is concave or
convex.
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a condition called quasi-concave differences, then the policy function — and more generally, the

policy correspondence — will be concave. The condition implies concavity of the policy function

whether or not payoff functions are differentiable, concave, or even quasi-concave. This advances

the literature in several ways.

First, the result enables us to deal with distributional issues in a number of models which we

previously could not handle. Thus in the model of Aiyagari (1994) mentioned above, any attempt

at using the implicit function theorem fails because the value function is not smooth (Section 2.2).

In the trade setting of Melitz (2003), existing methods fail when production sets are not convex

(Section 3.3), and so on.

Second, the isolation of the critical condition for DCS allows us to disentangle the fundamen-

tal economic conditions from unnecessary technical conditions. As this paper’s applications il-

lustrate again and again, this can improve our economic understanding substantially. Readers

familiar with monotone methods (e.g. Topkis (1978), Milgrom and Shannon (1994), Quah (2007))

and with so-called robust comparative statics more generally (e.g. Milgrom and Roberts (1994),

Acemoglu and Jensen (2015)) will immediately spot the parallel: when one obtains a result under

certain sufficient conditions and those conditions are a mixture of critical economic conditions

and unnecessary technical conditions, economic intuition is lost because one is unable to sepa-

rate the two (Milgrom and Roberts (1994), p.442-443).2 In contrast, this paper’s results allow us

to deal with changing distributions in full generality and see precisely under which conditions a

specific conclusion holds.

Third, quasi-concave differences is easy to verify in applications. When functional forms are

differentiable, it can be characterized explicitly via derivatives and is especially easy to work with.3

The alternative is “brute force”, i.e., to repeatedly apply the implicit function theorem on the first-

order/Euler conditions. Often this leads to extremely cumbersome calculations. Whether brute

force works or not, the tools developed here are usually much simpler to apply (“brute force” is

discussed in detail in Section 2).

The paper begins in Section 2 by further motivating and exemplifying the DCS agenda. Sec-

ond 2 also previews the paper’s main results without going into too much technical detail. The

paper then turns to quasi-concave differences, discusses the intuitive content of the definition,

and shows — first in the simplest possible setting (Section 3.1), then under more general condi-

tions (Section 3.2)— that quasi-concave differences implies concavity of the policy function in an

optimization problem. An appendix treats the issue under yet more general conditions where the

decision vector is allowed to live in an arbitrary topological vector lattice (Appendix C). Section 3.3

contains a practitioner’s guide to the results and a fully worked-through example. Section 4 then

tackles DCS in Bayesian games, and Section 5 derives general conditions for concavity of policy

functions in stochastic dynamic programming problems. As a concrete application, Section 5 ex-

2Monotone methods have an important role to play in DCS (see Section 2.1), but they are rarely sufficient on their
own. In particular, one cannot simply parameterize the exogenous distribution and then apply monotone methods (or
the implicit function theorem).

3Operationally, the conditions for quasi-concave differences in the differentiable case are on an equal footing with,
say, concavity, or supermodularity/increasing differences which can be established, respectively, via the Hessian crite-
rion and the cross-partial derivatives test of Topkis (1978).
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tends Carroll and Kimball (1996) to the setting with borrowing constraints (Aiyagari (1994)). That

result plays an important role for various distributional comparative statics questions in macroe-

conomics (Huggett (2004), Acemoglu and Jensen (2015)) and is also essential for analyzing in-

equality in settings where consumers may be credit constrained.

2 Preview and Motivation

This section previews the paper’s results and explains the role of convex and concave policy func-

tions for distributional comparative statics (DCS). The section also discusses several set-ups in

which existing methods are unable to address DCS questions.

2.1 Forecasting Monetary Policy

A monetary policy committee (MPC) meets to set the rate of interest x ∈ X ⊆R. As in Kydland and

Prescott (1977), the MPC has a loss function L (y − y ∗,π−π∗) where y denotes output, π denotes

inflation, and stars denote natural/target levels. The central bank controls output and inflation

via the interest rate, y = y (x , z ) and π = π(x , z ) where z ∈ Z ⊆ R is a parameter that represents

the MPC’s private information about the Lucas supply curve.4 z may be thought of as the MPC’s

estimation of future inflation, or it could reflect private information about the specific functional

form of the Lucas supply curve. The MPC’s objective is thus to maximize u (x , z ) = −L (y (x , z )−
y ∗,π(x , z )−π∗)with respect to x .

A forecaster must predict the MPC’s interest rate decision. She knows its objective u but only

has beliefs about z represented by a probability measure µ on Z . This implies a forecast with

distribution

µx (A) =µ{z ∈ Z : g (z ) ∈ A},(1)

where A is any Borel set in X and g : Z → X is the MPC’s policy function,

g (z ) = arg max
x∈X

u (x , z ).5(2)

So if the forecaster is asked how likely the MPC is to set the interest rate in the interval be-

tween 0.5 and 0.6 %, she will answer “with probability µx ([0.5, 0.6])” where µx ([0.5, 0.6]) ∈ [0, 1].
Her “headline” forecast will be the mean of µx . And so on.

Consider now a shift in the forecaster’s beliefs µ. For example, she might become more uncer-

tain about the MPC’s private signal (a mean-preserving spread to µ) because the MPC decides to

reveal less of its private information to the public. The interesting economic question is then how

4 A Lucas supply curve (LSC) describes the positive relationship between output y and inflationπ for a given natural
level of output and inflation expectations (see e.g. Heijdra (2009), Chapter 9). When the MPC controls y and π via
the interest rate, it thus moves the economy up and down the Lucas supply curve. Note that we could have equally
assumed that the central bank directly chooses inflation and output/unemployment as in Kydland and Prescott (1977).
We would then calculated the interest rate that would accomplish these goals by means of the LSC. The reason for the
focus on interest rates will become clear when the forecaster is introduced next.

5We assume here that the MPC is able to agree on a single decision (existence and uniqueness).
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the distribution of the forecast µx changes in response. And most importantly, whether the head-

line forecast which investors and home buyers base their decisions on will increase or decrease.

This paper’s main result (Theorem 1) immediately allows us to conclude that if u satisfies a con-

dition called quasi-concave differences (Definition 2 in Section 3), then the headline forecast will

decrease. Quasi-concave differences says, roughly, that for any δ > 0 close to zero, the difference

between u (x , z ) and u (x −δ, z ), u (x , z )−u (x −δ, z ), must be quasi-concave. If−u satisfies this, u

exhibits quasi-convex differences and the headline forecast will instead increase. And this is true

whether or not the objective is concave or even quasi-concave. The conditions are particularly

easy to check when u is differentiable in x since then a key Lemma (Lemma 1) tells us that u ex-

hibits quasi-concave differences if and only if the partial derivative Dx u (x , z ) is quasi-concave. If

we specialize to an expected utility objective (think of z̄ as core inflation which is public informa-

tion and has distribution η),

u (x , z ) =

∫

U (x , z̄ , z )η(z̄ ),(3)

then it is easy to see that a sufficient condition for Dx u (x , z ) to be quasi-concave is that Dx U (x , z̄ , z )
is concave in (x , z ) for almost every z̄ ∈ Z .6 Economically, concavity of Dx U is equivalent to con-

vexity of the MPC’s marginal loss function Dx L . A convex marginal loss function obtains if the

marginal loss is relatively constant or rises slowly when output and inflation are close to their tar-

get levels, and rises more rapidly when output and inflation are farther away from the targets.7 So

if the MPC’s adversity to an additional rate hike increases at an ever stronger rate the farther the

MPC is from its targets, we should expect less information transmission to reduce mean forecasts.8

Now, increased uncertainty (mean preserving spreads) is just one type of belief shift that is of

economic interest. The following Definition collects all of the stochastic orders considered in this

paper (for an in-debt treatment see e.g. Shaked and Shanthikumar (2007)).

Definition 1 (Stochastic Orders) Let µ and µ̃ be two distributions on the same measurable space

(Z ,B (Z )).9 Also, let f : Z →R be a function for which the following expression is well-defined,

∫

f (z )µ̃(d z )≥
∫

f (z )µ(d z ) .(4)

Then:

• µ̃ first-order stochastically dominates µ if (4) holds for any increasing function f .

• µ̃ is a mean-preserving spread of µ if (4) holds for any convex function f .

• µ̃ is a mean-preserving contraction of µ if (4) holds for any concave function f .10

6The details of everything being postulated here can be found in Section 3.1.
7Note that, strictly speaking, this interpretation requires that the Lucas supply curve is linear in x and z (i.e., the

functions y (x , z ) andπ(x , z ) are linear). With non-linear relationships, the interest rate pass-through enters the picture
and complicates matters. The topic of interpretation will occupy a large part of Section 3.1.

8For the related literature on central bank communication see e.g. Myatt and Wallace (2014) and references therein.
9HereB (Z ) denotes the Borel algebra of Z .

10Note that µ̃ is a mean-preserving contraction of µ if and only if µ is a mean-preserving spread of µ̃.
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• µ̃ second-order stochastically dominates µ if (4) holds for any concave and increasing func-

tion f .

• µ̃ dominatesµ in the convex-increasing order if (4) holds for any convex and increasing func-

tion f .

Interesting economic examples abound in each case. For example, a second-order stochastic

dominance increase could be due to an external event such as a more favorable public forecast of

inflation or a drop in the price of oil. The relationship between such belief shifts and the forecast’s

distribution is simply a matter of inserting (1)-(2) into (4) and verify the condition of each bullet

point in Definition 4. In each case, one immediately finds that the policy function g determines

the outcome. This leads to the following Observations.11 Note that by an “increase inµ”, we mean

that µ is replaced with a distribution µ̃ that dominates µ in the given stochastic order. Similarly

for a “decrease in µ” and a “mean preserving spread to µ” where µ̃ is dominated by µ and µ̃ is a

mean preserving spread of µ, respectively.

Observation 1. If g is increasing, any first-order stochastic dominance increase in µwill lead to a

first-order stochastic dominance increase in µx .

Observation 2. If g is concave, any mean-preserving spread to µ will lead to a second-order

stochastic dominance decrease in µx .

Observation 3. If g is concave and increasing, any second-order stochastic dominance increase

in µwill lead to a second-order stochastic dominance increase in µx .

Observation 4. If g is convex, any mean-preserving spread to µ will lead to a convex-increasing

order increase in µx .

Observation 5. If g is convex and increasing, any convex-increasing order increase in µ will lead

to a convex-increasing order increase in µx .

Observation 1 tells us that if the MPC’s policy function g is increasing, then a first-order stochas-

tic dominance increase in the forecaster’s beliefs µ implies a first-order stochastic dominance in-

crease in the forecast’s distributionµx . To show that g is increasing, one applies the implicit func-

tion theorem (IFT) or monotone methods. By the IFT, this is the case if g ′(z ) ≥ 0 in equation (6)

below. Using instead monotone methods, the same conclusion follows if u exhibits increasing dif-

ferences (Topkis (1978)) or satisfies the single-crossing property (Milgrom and Shannon (1994)).

So existing results fully enable us to deal with first-order stochastic dominance. And to be sure,

the literature is full of instances of this argument.12

11To be sure, there is nothing deep or difficult about these observations. They are as mentioned basically just restate-
ments of the definitions. Nonetheless, detailed proofs are provided in Appendix A.

12For example, the property that first-order stochastic dominance of beliefs implies first-order stochastic dominance
of (predicted) actions is the basic criteria for a Bayesian game to exhibit strategic complementarities, and Van Zandt and
Vives (2007) provide multiple examples where they use monotone methods to verify that policy functions are increasing.
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When we consider mean-preserving spreads (Observation 2) or second-order stochastic dom-

inance (Observation 3), it is seen that g being increasing is not enough anymore. We must know

whether g is concave to derive the effect on µx . Moreover, for the cases covered by Observations

4-5 we must know whether g is convex. This paper’s results thus allow us to deal also with Ob-

servations 2-4. To the best of the author’s knowledge, the only alternative is repeated use of the

implicit function theorem (IFT). It is instructive to compare that approach to this paper’s.

If U is sufficiently smooth, concavity of u is assumed, differentiation under the integral sign is

allowed, and the solution is interior for all z ∈ Z , the following first-order condition is necessary

and sufficient for an optimum

(Dx u (x , z ) =)

∫

z̄∈Z̄

Dx U (x , z̄ , z )η(z̄ ) = 0.(5)

If the second derivative never equals zero (strict concavity of u (·, z )), the IFT determines x as

a function of z , x = g (z )where

g ′(z ) =−
�∫

z̄∈Z̄

D 2
x x U (g (z ), z̄ , z )η(z̄ )

�−1∫

z̄∈Z̄

D 2
x z U (g (z ), z̄ , z )η(z̄ ).(6)

Note that monotone comparative statics is about the sign of g ′, and as Milgrom and Shannon

(1994) convincingly argue, the IFT approach is not ideal for many applications. When the ques-

tion is concavity of g , the situation is worse since we must determine g ′′ and so need to apply

the IFT one more time. Specifically, we differentiate the right-hand-side of (6) with respect to z

and substitute in for g ′(z ). The resulting expression is rather daunting and of no particular impor-

tance to us. It contains a mixture of integrals of second and third derivatives and in contrast to the

condition we arrived at using this paper’s results above, it may or may not be possible to establish

any useful and intuitively transparent condition for g ′′ ≤ 0 (concavity) from such an expression.13

More substantially, in order to apply the IFT twice, a host of unnecessary technical assumptions

must be imposed — so even when the IFT provides sufficient conditions for concavity of g , these

will not be the most general conditions. As Milgrom and Roberts (1994) and Acemoglu and Jensen

(2013, 2015) discuss in detail, this lack of “robustness” generally makes it impossible to disentangle

the fundamental economic conditions that drive one’s results from superfluous technical assump-

tions (again see also Milgrom and Shannon (1994), keeping in mind that the situation is worse here

because we need to apply the IFT twice). In the current application, use of the IFT requires for ex-

ample that the MPC’s objective is strictly concave — which imposes spurious cross-restrictions on

the loss function and the Lucas supply curve. If u is not strictly concave, or if it is not at least thrice

differentiable the IFT is never applicable. We now turn to a particularly egregious instance of this.

2.2 Income Allocation Models

In the monetary policy committee example of the previous subsection, the implicit function the-

orem (IFT) does at least provide a conclusion under suitable technical assumptions. We now turn

13Note that the problem in part is that concavity of u simultaneously imposes conditions on second partial deriva-
tives which leads to “entanglement” as discussed in the Introduction and further discussed momentarily. With multi-
dimensional decision variables as explored in Appendix C, the IFT becomes excessively complicated and is rarely useful.
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to an application from macroeconomics where the differentiability requirements of the IFT con-

founds any attempt to use it to establish concavity of the policy function. So here this paper’s

results provide the only known way to deal with the economic issues raised.

Consider a stochastic income allocation model with value function v and Bellman equation

v (x , z ) =maxy ∈Γ (x ,z ) ũ
�

(1+ r )x +w z − y
�

+β
∫

v (y , z ′)η(d z ′).(7)

Γ (x , z ) = {y ∈ R : −b ≤ y ≤ (1 + r )x + w z } is admissible savings given past savings x and

labor productivity z which follows an i.i.d. process with distribution η. As usual r denotes the

interest rate, and w the wage rate. The formulation where labor productivity is random follows

Aiyagari (1994), but the discussion below — and indeed all of this paper’s results — apply equally

to the cases where the interest rate r is random or where both labor income and the interest rate

are random (Carroll and Kimball (1996)). When b < +∞, we have a borrowing constraint and

potential market incompleteness (Aiyagari (1994), see also Acemoglu and Jensen (2015)).

Let g ((1+ r )x +w z ) = arg maxy ∈Γ (x ,z ) ũ
�

(1+ r )x +w z − y
�

+β
∫

v (y , z ′)η(d z ′) denote the sav-

ings function, and c ((1+ r )x +w z ) = (1+ r )x +w z − g ((1+ r )x +w z ) the consumption function.

These are, without further elaboration, assumed to be well-defined. Clearly, the savings function

is convex if and only if the consumption function is concave.

Following Carroll and Kimball (1996), say that ũ belongs to the Hyperbolic Absolute Risk Aver-

sion (HARA) class if (ũ ′′′ · ũ ′)/(ũ ′′)2 = k for a constant k ∈R. Carroll and Kimball (1996) prove that

if ũ belongs to the HARA class, then the consumption function is concave if there is no borrowing

constraint (b =+∞) and if the period utility function has a positive third derivative (precautionary

savings). The proof of Carroll and Kimball (1996) relies on Euler equations and repeated applica-

tion of the IFT. In particular, it is necessary that the value function v is at least thrice differentiable.

This is unproblematic if the borrowing constraint is inactive, but if b <+∞, then the value func-

tion will not be thrice differentiable at any point where the borrowing constraint binds (Huggett

(2004), p.773).14

As we shall see in Section 5, this paper’s results allow for a simple and direct proof of the con-

cavity of the consumption function which does not rely on Euler equations and does not require

differentiability of the value function. In particular, it is shown that the consumption function

will be concave for the general HARA class with or without borrowing constraints.15 Furthermore,

the HARA class “pops out” endogenously from an application of our general results — there is

no guesswork involved, and no ingenuity is required (contrast with the mathematical ingenuity

of Carroll and Kimball (1996)). Note that this added simplicity when it comes to finding suitable

sufficient conditions parallels the discussion of sufficient conditions for g ′′(z ) ≤ 0 that followed

equation (6) in the previous subsection. In fact, the additional ease-of-use makes this paper’s

results so effective in the stochastic dynamic programming setting that little effort is required to

14See also Carroll and Kimball (2001) who address the concavity question in a framework with borrowing constraints
in two special cases of the general HARA class (CRRA and CARA utility). Another contribution worth mentioning is
Suen (2015) whose approach is entirely different and very powerful (the current paper and Suen (2015) were written
independently of each other).

15As explained on page 25, the type of boundary condition imposed in the current paper does not rule out binding
borrowing constraints.
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prove a result on the convexity/concavity of policy functions for stochastic dynamic programming

problems at the level of generality of the text book treatment of Stokey and Lucas (1989). Thus we

are able in Section 5 to address not just the previous income allocation problem but nearly any

stochastic dynamic model one can think of applying in macroeconomics and other fields.

3 Concave Policy Functions

Motivated by the previous section, we now present the paper’s main results on the concavity and

convexity of policy functions. The first subsection considers the simplest case of an objective with

a one-dimensional decision variable, a fixed constraint set, and a unique optimizer. This simplic-

ity allows us to focus on the new concepts’ economic interpretation. In the second subsection, all

of these restrictions are relaxed. The last subsection contains a user’s guide to the results.

3.1 A Simple Case

Let u : X ×Z → R be a payoff function where x ∈ X ⊆ R is a decision variable and z ∈ Z a vector

of parameters. It is assumed that X is convex and that Z is a convex subset of a real vector space.

Assume also that the associated decision problem maxx∈X u (x , z ) has a unique solution for all

z ∈ Z .16 We may then define the policy function g : Z → X

g (z ) = arg max
x∈X

u (x , z ).(8)

The model of Section 2.1 fits into this framework with g (z ) being the MPC’s interest rate deci-

sion given its private information z . The purpose this section is to show that the policy function

will be concave if the following condition holds.

Definition 2 (Quasi-Concave Differences) A function u : X ×Z → R exhibits quasi-concave dif-

ferences if for all δ > 0 in a neighborhood of 0, u (x , z )−u (x −δ, z ) is quasi-concave in (x , z ) ∈ {x ∈
X : x −δ ∈ X }×Z .

If −u exhibits quasi-concave differences, u exhibits quasi-convex differences. Quasi-convex

differences will be shown to imply that g is convex. Note the close relationship between quasi-

concave differences and Topkis (1978)’s notion of increasing differences.17 Quasi-concave differ-

ences is particularly easy to verify for differentiable objectives.

Lemma 1 (Differentiability Criterion) Assume that u : X ×T →R is differentiable in x ∈ X ⊆R.

Then u exhibits quasi-concave differences if and only if the partial derivative Dx u (x , z ) is quasi-

concave in (x , z ) ∈ X ×Z .

16For example, we have such a policy function if X is compact and u is upper semi-continuous and strictly quasi-
concave in x . The relationship between strict quasi-concavity and this Section’s main condition (quasi-concave differ-
ences) is discussed at the end of the section.

17In the current real vector space set-up, u exhibits increasing differences in x and z if and only if u (x , z )−u (x −δ, z )
is (coordinatewise) increasing in z for all x ∈ X and δ > 0 with x −δ ∈ X (Topkis (1978)).
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Proof. Appendix B.

As an illustration, consider the MPC’s expected utility objective (3) from Section 2.1 with u

continuously differentiable. We then have,

Dx u (x , z ) =

∫

z̄∈Z̄

Dx U (x , z̄ , z )η(z̄ ).

Since integration preserves concavity, it immediately follows from Lemma 1 that u exhibits

quasi-concave differences if Dx U (x , z̄ , z ) is concave in (x , z ) for a.e. z̄ .18

What is the economic interpretation of quasi-concave differences? To answer this question,

consider a simple two-period, non-stochastic version of the income allocation model of Section

2.2. A consumer obtains utility ũ (x , y ) from consumption today x ≥ 0 and consumption tomor-

row y ≥ 0. She receives income z today which she can either consume straight away or save for

consumption tomorrow. The budget constraint is consequently x + 1
1+r y ≤ z where r is the rate

of interest she earns on her savings. When ũ is monotonically increasing in both arguments, and

a boundary condition is imposed so that constraints can be ignored, this situation reduces to a

one-dimensional decision problem with the structure of (8) by taking u (x , z ) = ũ (x , (1+ r )(z − x ))
and writing g (z ) = arg maxx≥0 u (x , z ). In particular, X =R+ and g (z ) is current consumption given

income z (so the graph of g is current consumption’s Engel curve). When the utility function ũ is

differentiable, u will be differentiable in x and we may plot an iso-marginal utility diagram, i.e., a

diagram that depicts the iso-marginal utility curves I M U (c )≡ {(z , x ) ∈ Z ×X : Dx u (x , z ) = c } for

c ∈R. See Figure 1.

The IMU-diagram may be interpreted as follows. Since u (x , z ) = ũ (x , (1+r )(z−x )), the marginal

utility Dx u (x , z )measures the gain from substituting one unit of consumption tomorrow for 1+ r

units of consumption today. Since there is a trade-off involved, this gain may be positive, nega-

tive, or zero as illustrated by the IMU curves in Figure 1 (when marginal utility equals zero, current

consumption is optimal given income and so the curve I M U (0) is current consumption’s Engel

curve). Different points on an IMU curve tell us that the gain remains the same whether she is poor

and consumes little today, or rich and consumes more. How much more consumption is required

for the gain to remain the same, is precisely what quasi-concave and quasi-convex differences

place conditions on: quasi-concave differences is equivalent to Dx u (x , z ) being quasi-concave

(Lemma 1). That Dx u (x , z ) is quasi-concave in turn means that the “better marginal utility (MU)

sets” {(x , z ) ∈ X × Z : Dx u (x , z ) ≥ c } are convex. See Figure 1 where the convex better MU sets

account for the flattening IMU curves. That IMU curves flatten out tells us that as the consumer

becomes wealthier, ever more modest increases in current consumption are needed to maintain

a constant gain from substituting 1+r units today for 1 unit tomorrow. In the quasi-convex differ-

ences case, the IMU curves instead become steeper and steeper, hence ever larger consumption

boosts are required for the gain not to change.

18For more general conditions on Dx U (x , z̄ , z ) that imply quasi-concavity of Dx u (x , z ), see Quah and Strulovici
(2012).
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Figure 1: The zero IMU curve is current con-
sumption’s Engel curve.

Figure 2: The upper zero IMU curve is
current consumption’s Engel curve.

Iso-Marginal Utility diagrams

Imagine now that the consumer receives an additional unit of income. Moreover, imagine that

she spends a proportion of this on current consumption which precisely equals the proportion she

spent on current consumption before. Then she will not be increasing current consumption “ever

more modestly” and the marginal utility must consequently fall. To avoid this she must spend less

on consumption today — hence when IMU curves flatten out, she must be spending a smaller

proportion of the additional income on current consumption than the proportion she spent on

it before.19 Behaviorally, flattening IMU curves means that current consumption becomes less

and less effective in satisfying her needs as income increases: when income is low it is critical

for her but she “tires” of it as consumption increases with income. This is of course a familiar

phenomenon to all of us, and it applies not only as a realistic description of current versus future

consumption (for most of us), but to a wide variety of physical goods. A good whose demand elas-

ticity lies between 0 and 1 is called a necessity good (Varian (1992), p.117). The textbook example is

potatoes; but if u exhibits quasi-concave differences then consumption today is a necessity good

too.20 So the previous interpretation of quasi-concave differences may be viewed as an interpreta-

19The same point can be made by instead considering the income margin,i.e., the increase in current consumption
associated with the last dollar received before the additional income. Graphically, this means that we pick a point on an
IMU curve and move to the right along the IMU curve’s tangent, in particular the proportion spent at the margin equals
the slope of the IMU curve. Since the curve flattens (convexity), the tangent will lie above the initial point and so if the
consumer follows the proportion at the margin before the income increase, she moves “above” the IMU curve and her
marginal utility must fall. Since the proportion at the margin decreases with income under quasi-concave differences,
it follows in particular that she spends a larger proportion of any additional income on consumption tomorrow than
the proportion she spent on it before receiving the additional income.

20When c (0) = 0, a concave consumption function implies that the good is a necessity good as seen by taking y = 0 in
concavity’s (differentiable) definition c (y ) ≤ c (z ) + c ′(z )(y − z ). But as this definition of concavity also shows, there is
in general no firm relationship between elasticities and concavity of a policy function. It is thus deliberate that quasi-
concave differences is not interpreted via elasticities in this section.
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tion at the preference/utility level of what a necessity good is (in contrast, the standard definition

is at the observable level of demand functions).

The conclusion that under quasi-concave differences, the decision variable becomes a less and

less effective means of increasing the agent’s payoff as the exogenous parameter z increases, is the

key to understanding quasi-concave differences in general. Once we understand this it is easy to

see why the MPC of Section 2.1 has a concave policy function when the marginal loss function is

convex. To make this crystal clear imagine that the Lucas supply curve is given by y = a1−a2 x+a2z

andπ= b1−b2 x where all constants are positive.21 In words, an increase in z is expansive without

being inflationary and an interest rate increase moves the economy towards the origin of the Lucas

supply curve. In this situation, counter-cyclical monetary policy (increasing x when z increases)

is much like a “necessity good”: At first, i.e., when z increases from a low level, increasing the in-

terest rate will both shift y and π towards targets (assuming that we begin above those targets)

and so is a highly effective means of increasing the MPC’s payoff. But as z keeps growing, decreas-

ing efficiency kicks in because increasing x to force output back towards target simultaneously

forces inflation further and further below target. This results in an increasing marginal payoff loss

because the marginal loss function is convex.

Now, in each of the previous cases the policy function is increasing (in addition to being con-

cave). But convexity of the better MU sets also captures concavity of g when g is not increasing.

If we instead consider a decreasing policy function (e.g., an inferior good), the interpretation is

the same although the language changes slightly. IMU curves now become steeper corresponding

to a decision variable that becomes increasingly ineffective at increasing the agent’s payoff as the

exogenous parameter z increases. As is clear, convexity of the better MU sets remains the criti-

cal feature behind a concave policy function. Similarly for non-monotonic functions where the

previous terminologies can only be applied locally, but convexity of the better MU sets once again

drives concavity.22

All of the above is straight-forward once we see it in an IMU diagram. What is perhaps not as

obvious is that quasi-concavity (or concavity) of u has nothing to do with the story. In Figure 1

the zero IMU’s better set (denoted I M U (+)) is the entire set below the zero IMU. To be sure, this

means that the payoff/utility function is quasi-concave in x since for fixed z it tells us that u (x , z )
is first increasing and then decreasing in x . But consider now Figure 2 where for fixed z , u (x , z )
is first decreasing, then increasing, and then again decreasing in x ; and so u is not quasi-concave

in x . Since the better MU sets are convex, u exhibits quasi-concave differences. The zero IMU

“curve” is now a correspondence consisting of two zero IMU curves. Since u (x , z ) is decreasing in

x below the lower curve and increasing above it, any point on the lower zero-IMU curve is a local

minimum. The upper zero IMU curve thus depicts the maxima so, just as in Figure 1, concavity of

21For this reduced form specification to make sense, target/natural levels must obviously be fixed as must any expec-
tation not captured by z . See also footnote 4 for more details on the Lucas supply curve.

22With quasi-convex differences the interpretation is in each instances reversed. Think of giving part of income to
charity. Concave better IMU sets (quasi-convex differences) then means that as your income increases, you need to
give progressively more of your current income to experience the same “warm glow” (utility gain). Presumably this
would be because you need to feel you are making a sufficient sacrifice to get the same marginal utility effect, and you
therefore have to progressively give more as a proportion of income for the sacrifice to keep its bite.
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the consumption function is seen to obtain. Again, the reason is that the better MU sets are convex

(quasi-concave differences) although now I M U (+) is the lens between the I M U (0) curves and not

everything below I M U (0) as in the quasi-concave setting of Figure 1.

To sum up, quasi-concave differences implies concavity of policy functions whether or not the

policy function is monotone and regardless of any concavity or quasi-concavity assumptions. In

this light, this Section’s main result (Theorem 1 below) will come as no surprise to the reader. In

fact, the proof below is just a formalization of the previous graphical argument that avoids us-

ing differentiability. There is only one complication related to solutions g (z ) touching the lower

boundary of X , i.e., solutions such that g (z ′) = inf X for some z ′ ∈ Z . In fact, such solutions will

ruin any hope of obtaining a concave policy function for reasons that are easily seen graphically.

Figure 3: Concavity is destroyed when the policy function touches the lower boundary inf X = 0.

In Figure 3, we see a policy function which at z’ touches the lower boundary inf X = 0 of the

constraint set X =R+, and stays at this lower boundary point as z is further increased. It is evident

that the resulting policy function will not be concave, even though it is concave for z ≤ z’. As

discussed at length in the working paper version of this paper (Jensen (2012)), this observation is

robust: concave policy functions and lower boundary optimizers cannot coexist save for some very

pathological cases. Of course, there is no problem if the optimization problem is unconstrained

below, i.e., if inf X =−∞. Nor is there a problem if we focus on the part of Z where the optimizer

is interior (witness Figure 3 where we do have concavity when z is below z’).

Theorem 1 (Concavity of the Policy Function) Let Z be a convex subset of a real vector space,

and X ⊆ R a convex subset of the reals. Assume that the decision problem maxx∈X u (x , z ) has a

unique solution g (z ) = arg maxx∈X u (x , z ) > inf X for all z ∈ Z . Then if u : X × Z → R exhibits

quasi-concave differences, g : Z → X is concave.

Proof. To simplify notation we set inf X = 0 throughout. Pick arbitrary z1, z2 ∈ Z and λ ∈ [0, 1].
Let x1 = g (z1) and x2 = g (z2) be the optimal decisions and define xλ = λx1 + (1−λ)x2 and zλ =
λz1 + (1−λ)z2. Note that if {0} ∈ arg maxx∈[0,xλ] u (x , zλ), then we necessarily have that g (zλ) ≥ xλ
because 0 is not optimal by assumption. Since g (zλ) ≥ xλ⇔ λg (z1) + (1−λ)g (z2) = xλ ≤ g (zλ) =
g (λz1 + (1−λ)z2), this is the same as saying that g is concave. We are now going to show that if

{0} 6∈ arg maxx∈[0,xλ] u (x , zλ), then

xλ ∈ arg max
x∈[0,xλ]

u (x , zλ) .(9)
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Since (9) immediately implies that arg maxx∈X u (x , zλ) = g (zλ) ≥ xλ, which means that g is con-

cave, Theorem 1 follows. Assume, by way of contradiction, that x ∗ < xλ, where x ∗ is the largest

point in [0, xλ] that maximizes u (x , zλ). Since 0 is not optimal, x ∗ > 0 and so we may choose

a δ > 0 sufficient small so that x ∗ − δ > 0 and x ∗ + δ < xλ. Because x1, x2 > 0, and therefore

u (x1, z1)≥ u (x1−δ, z1) and u (x2, z2)≥ u (x2−δ, z2), quasi-concave differences implies that:

u (xλ, zλ)−u (xλ−δ, zλ)≥min{u (x1, z1)−u (x1−δ, z1), u (x2, z2)−u (x2−δ, z2)} ≥ 0 .(10)

Since x ∗ is optimal,

u (x ∗, zλ)−u (x ∗−δ, zλ)≥ 0 .(11)

And since x ∗ is the largest such optimal point in [0, xλ] and x ∗+δ < xλ,

u (x ∗+δ, zλ)−u (x ∗, zλ)< 0 .(12)

Because u exhibits quasi-concave differences, u (x , zλ)−u (x −δ, zλ) is quasi-concave in x for

any δ sufficiently close to zero. It follows therefore from (11)-(12) that,

u (xλ, zλ)−u (xλ−δ, zλ)< 0 .(13)

But this contradicts (10).

Corollary 1 (Convexity of the Policy Function) Let Z be a convex subset of a real vector space,

and X ⊆ R a convex subset of the reals. Assume that the decision problem maxx∈X u (x , z ) has a

unique solution g (z ) = arg maxx∈X u (x , z ) < sup X for all z ∈ Z . Then if u : X × Z → R exhibits

quasi-convex differences, g : Z → X is convex.

Proof. Let−X ≡ {−x ∈R : x ∈ X }. Apply Theorem 1 to the optimization problem maxx̃∈−X u (−x̃ , z )
and use that the policy function of this problem is concave if and only if g is convex.

We end this section with a discussion of the relationship between (strict) quasi-concavity of

u (·, z ) and quasi-concave differences.23 To simplify, focus is on the smooth case (but the conclu-

sions are true in general as the reader may easily verify). u (x , z ) is strictly quasi-concave in x if

and only if the partial derivative Dx u (x , z ) is strictly positive on (inf X , x ∗) and strictly negative on

(x ∗, sup X ) (here x ∗ may equal the infimum or supremum of X , i.e., the function may be mono-

tone). By Lemma 1 follows that if u exhibits quasi-concave differences then Dx u (x , z ) is quasi-

concave in x . Hence Dx u (x , z ) is increasing on (inf X , x̃ ) and decreasing on (x̃ , sup X ) for some x̃

(again x̃ may be equal to the supremum or infimum in which case the first partial derivative will

be monotone). Comparing the respective conditions on Dx u (x , z ) it is clear that there can be no

direct relationship between (strict) quasi-concavity of the objective function and quasi-concave

differences: Quasi-concave differences is fully compatible with u (·, z ) being first decreasing, then

increasing, and then decreasing again (see Figure 2). Hence quasi-concave differences does not

23This discussion is included on the request by a referee.
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imply quasi-concavity. On the other hand, a function whose first derivative is always positive but

first strictly decreases and then strictly increases will be strictly quasi-concave but cannot exhibit

quasi-concave differences. The one similarity I am aware of between the conditions relates to the

structure of the set of optimizers. A quasi-concave function always has a convex set of maximizers.

If Dx u (x , z ) is quasi-concave in x and the infimum inf X is not a maximizer as assumed in Theo-

rem 1, one similarly sees that the set of maximizers must be convex (this is very easy to see in the

smooth case, but it is true in general). If we define strictly quasi-concave differences as in Defini-

tion 1 by replacing the word quasi-concave with strictly quasi-concave, it will follow by the same

line of reasoning that there can be at most one maximizer. This strict version of quasi-concave

differences thus parallel’s strict quasi-concavity in securing a unique optimizer — but as was just

explained the conditions are logically independent of each other (neither implies the other).

3.2 The General Case

In applications such as the income allocation model of Section 2.2, it is too restrictive to assume

that the constraint set X is fixed. Further, one may face decision problems with multiple solu-

tions unless strict quasi-concavity in x or some similar condition holds. We then face the general

decision problem

G (z ) = arg max
x∈Γ (z )

u (x , z ).(14)

Here Γ : Z → 2X is the constraint correspondence and G : Z → 2X is the policy correspondence.

A policy function is now a selection from G , i.e., a function g : Z → X with g (z ) ∈ G (z ) for all

z ∈ Z . The assumption of a one-dimensional decision variable X ⊆R is maintained to keep things

simple. Appendix C deals with the general case where X is a subset of a topological vector lattice.

For (14), the result of Topkis (1978) tells us that if u exhibits increasing differences and Γ is an

ascending correspondence, then G is ascending. The precise definition of an ascending corre-

spondence is not important for us here; it suffices to say that it naturally extends the notion that

a function is increasing to a correspondence. As it turns out, the conclusion of Theorem 1 gen-

eralizes in a very similar manner. The only question is how to extend concavity/convexity from a

function to a correspondence in a suitable way for our results.24

Definition 3 (Concave Correspondences) A correspondence Γ : Z → 2X is concave if for all z1, z2 ∈
Z , x1 ∈ Γ (z1), x2 ∈ Γ (z2), and λ ∈ [0, 1], there exists x ∈ Γ (λz1+ (1−λ)z2)with x ≥λx1+ (1−λ)x2.

For illustrations, see Figures 1-2 where the sets I M U (+) depict graphs of concave correspon-

dences. In parallel with concave/convex functions, Γ : Z → 2X is said to be convex if −Γ : Z → 2−X

is concave where −Γ (z ) ≡ {−x ∈ R : x ∈ Γ (z )}. Definition 3 naturally generalizes concavity of a

function to a correspondence. In particular, one immediately sees that if Γ is single-valued, then

it is concave if and only if the function it defines is concave (and similarly, Γ is convex if and only

if the function it defines is convex). Recall that a correspondence Γ : Z → 2X has a convex graph

24The following definition can be found in Kuroiwa (1996) who also offers an extensive discussion of set-valued
convexity. Lemma 2 below appears to be new, however.
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if {(x , z ) ∈ X ×Z : x ∈ Γ (z )} is a convex subset of X ×Z . Convexity of a correspondence’s graph is

a much stronger requirement than concavity and convexity of Γ . In fact, a correspondence with

a convex graph is both concave and convex.25 Furthermore, if Γ has a convex graph, it also has

convex values, i.e., Γ (z )must be a convex subset of X for all z ∈ Z . In contrast, convex values is

not implied by either concavity or convexity and so will have to be assumed directly when needed

(as it will be below).

The following result sheds further light on the definition. It tells us that concavity and con-

vexity of a correspondence is intimately tied to concavity and convexity of extremum selections

(when they exist). For most applications, this result is also enough to establish that a given con-

straint correspondence is concave or convex since it covers inequality constraints where Γ (z ) =
{x ∈ X : γ(z )≤ x ≤ γ(z )}.

Lemma 2 (Extremum Selection Criteria) If Γ : Z → 2X admits a greatest selection, γ(z )≡ supΓ (z )
∈ Γ (z ) for all z ∈ Z , then Γ is concave if and only if γ : Z → X is a concave function. Likewise, if

Γ admits a least selection γ(z ) ≡ infΓ (z ) ∈ Γ (z ) all z ∈ Z , Γ is convex if and only if γ is a convex

function.

Proof. Only the concave case is proved. Since Γ is concave, we will for any z1, z2 ∈ Z , and λ ∈ [0, 1]
have an x ∈ Γ (λz1+(1−λ)z2)with x ≥λγ(z1)+(1−λ)γ(z2). Since γ(λz1+(1−λ)z2)≥ x , γ is concave.

To prove the converse, pick z1, z2 ∈ Z and x1 ∈ Γ (z1), x2 ∈ Γ (z2). Since the greatest selection is

concave, x = γ(λz1+(1−λ)z2)≥λγ(z1)+ (1−λ)γ(z2)≥λx1+(1−λ)x2. Since x ∈ Γ (λz1+(1−λ)z2),
Γ is concave.

Often one is able to spot a concave correspondence immediately from this Lemma. For ex-

ample, we see that the union of the zero IMU curves in Figure 2 is the graph of a concave corre-

spondence where the lower zero IMU is the least selection and the upper zero IMO the greatest

selection. Lemma 2 also shows exactly how concavity and convexity relates to other known con-

vexity concepts for correspondences. In a diagram with z on the first axis and x on the second axis,

draw the graph of a concave function γ. Now extend this graph to the graph of a correspondence Γ

by drawing freely anything at or below the graph of γ. Then the resulting correspondence is con-

cave by Lemma 2. So in Figure 2 we could draw anything below the upper zero IMU and would still

have a concave correspondence. As an aside, it is evident from these Figures that convex values as

well as a convex graph are not implied — and it is equally evident that a convex graph implies that

the correspondence is both concave and convex (these facts were discussed in a more technical

manner a moment ago).

Theorem 2 (Concavity of the Policy Correspondence) Let Z be a convex subset of a real vector

space, and X ⊆R a convex subset of the reals. Assume that the decision problem maxx∈Γ (z ) u (x , z )
has solution G (z ) = arg maxx∈Γ (z ) u (x , z ) 6= ; for all z ∈ Z and that the infimum of Γ (z ) is never

optimal, x ∈G (z )⇒ x > infΓ (z ). Then if u : X ×Z → R exhibits quasi-concave differences and Γ

is concave and has convex values, G : Z → 2X is concave.

25To see this, simply pick x =λx1+ (1−λ)x2 ∈ Γ (λz1+ (1−λ)z2) in Definition 3.
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Proof. Pick any z1, z2 ∈ Z , x1 ∈ G (z1), and x2 ∈ G (z2). Setting xλ = λx1 + (1 − λ)x2, and zλ =
λz1+(1−λ)z2, we must show that there exists x̂ ∈G (zλ)with x̂ ≥ xλ. As in the proof of Theorem 1,

we use quasi-concave differences to conclude that u (xλ, zλ)−u (xλ−δ, zλ)≥ 0 for any sufficiently

small δ > 0. We are clearly done if there does not exist x ∈ Γ (zλ) with x < xλ. So assume that such

an x exists. By concavity of Γ , there also exists x̃ ∈ Γ (zλ) with x̃ ≥ xλ. Since Γ has convex values

therefore [x , x̃ ] ⊆ Γ (zλ). Since xλ ∈ [x , x̃ ] and infΓ (zλ) cannot be optimal, we may now proceed

precisely as in the proof of Theorem 1 and use quasi-concavity of u (x , zλ)− u (x − δ, zλ) in x to

show that there must exist a x̂ ∈ Γ (zλ)with x̂ ≥ xλ.

Corollary 2 (Convexity of the Policy Correspondence) Let Z be a convex subset of a real vector

space, and X ⊆R a convex subset of the reals. Assume that the decision problem maxx∈Γ (z ) u (x , z )
has solution G (z ) = arg maxx∈Γ (z ) u (x , z ) 6= ; for all z ∈ Z and that the supremum of Γ (z ) is never

optimal, x ∈G (z )⇒ x < supΓ (z ). Then if u : X ×Z →R exhibits quasi-convex differences and Γ is

convex and has convex values, G : Z → 2X is convex.

Proof. Let −Γ (z ) ≡ {−x ∈ R : x ∈ Γ (z )}. Apply Theorem 2 to the optimization problem

maxx̃∈−Γ (z ) u (−x̃ , z ) and use that the policy correspondence of this problem is concave if and only

if G is convex.

If the conditions of Theorem 2 hold and the policy correspondence is single-valued G = {g },
then g must be a concave function by Lemma 2. Hence Theorem 1 is a special case of Theorem

2. From Lemma 2 also follows that when u is upper semi-continuous and Γ has compact values

so that G has a greatest selection, this greatest selection must be concave.26 Finally, note that just

like in the theory of monotone comparative statics (Topkis (1978), Milgrom and Shannon (1994)),

these observations are valid without assuming that the objective function is quasi-concave in the

decision variable.

3.3 A User’s Guide and the Model of Melitz (2003)

This subsection provides a practitioners’ guide to Theorems 1 and 2. We begin by noting an im-

mediate consequence of Lemma 1:

Lemma 3 (Quasi-Concave Differences for Thrice Differentiable Functions) A thrice differentiable

function u : X ×Z →Rwhere X , Z ⊆R exhibits quasi-concave differences if and only if

2D 2
x x u (x , z )D 2

x z u (x , z )D 3
x x z u (x , z )≥ [D 2

x x u (x , z )]2D 3
x z z u (x , z ) + [D 2

x z u (x , z )]2D 3
x x x u (x , z ).(15)

Proof. (15) is the non-negative bordered Hessian criterion for quasi-concavity of Dx u (x , z ) (see

e.g. Mas-Colell et al (1995), pp.938-939). By Lemma 1, this is equivalent to u (x , z ) exhibiting quasi-

concave differences.

26Note that it is unreasonable to expect the least selection to be concave also. In fact, this would not characterize any
reasonable concavity-type condition for a correspondence (in the case of a correspondence with a convex graph, for
example, the greatest selection is concave and the least selection is convex).
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What is nice about condition (15) is that when the payoff function is smooth, it makes the

verification of quasi-concave differences completely tractable.

We next show in a step-by-step manner how one goes about using the results of the previous

pages. In particular, we will be using (15). While the step-by-step structure of the argument is

entirely general, we focus for concreteness on a well known model from the international trade

literature due to Melitz (2003).

Each firm in a continuum [0, 1] chooses output x ≥ 0 in order to maximize profits. A firm

with cost parameter z > 0, can produce x units of the output by employing l = z x + f workers

where f > 0 is a fixed overhead (Melitz (2003), p.1699).27 The frequency distribution of the cost

parameter z across the firms isηz . With revenue function R , a firm with cost parameter z chooses

x ≥ 0 in order to maximize

u (x , z ) =R (x )− z x − f .(16)

Let G (z ) = arg maxx≥0[R (x ) − z x − f ] denote the optimal output(s) given z . To show that G is

concave or convex, we may apply Theorem 1 or the more general Theorem 2. For Theorem 1,

R (x )− z x − f must be strictly quasi-concave or satisfy some other condition that guarantees that

firms have a unique optimal output level, G (z ) = {g (z )}. As one easily verifies, (15) holds if and

only if

R ′′′ ≤ 0.(17)

So by Theorem 1, if the revenue function has a non-positive third derivative and optimizers

are unique, the policy function g is concave on z ∈ {z ∈ Z : g (z ) > 0}, i.e., when attention is

restricted to the set of active firms. It follows from Observation 2 on page 5 that aggregate output
∫

[0,1] g (z ) ηz (d z ) decreases when firms become more diverse (a mean preserving spread to the

distribution ηz ). Such “decreasing returns to diversity” is easily understood in light of (17) which

says that the marginal revenue function is concave. A concave marginal revenue function tells

us that if we consider two firms that produce x1 and x2, respectively, and the firms have different

productivities z1 6= z2, then the average of their marginal revenues (R ′(x1)+R ′(x2))/2 will be lower

than the marginal revenue of a firm which produces the average output (x1 + x2)/2 and has the

average productivity (z1+ z2)/2. In particular, when x1 and x2 are optimal for the respective firms

and the marginal revenues therefore equal zero, the marginal revenue of the average productivity

firm will be positive, and it is therefore optimal for it to produce more than the average (x1+x2)/2.

Putting these observations together, we see that if production is spread across diverse firms, then

total output is lower than if production takes place among an equal number of more similar firms.

For an extensive discussion of concave marginal revenue functions in the theory of production,

the reader is referred to Leahy and Whited (1996).

By appealing to Observations 1-5 on page 5 one can further go on to predict how the distri-

bution of the firms’ outputs changes when ηz is subjected to mean-preserving spreads or other

stochastic order changes. For example, the distribution of the outputs of a more diverse set of firms

will be second-order stochastically dominated by the distribution of outputs of a less diverse set

27In terms of Melitz’ notation, z is the inverse of the firm’s productivity level ϕ.
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of firms when (17) holds (this is again by Observation 2). If u exhibits quasi-convex differences

(reverse the inequality (15) yielding the condition R ′′′ ≥ 0), we instead get a convex policy func-

tion by Corollary 1; there is “increasing returns to diversity”, and all of the previous conclusions

are reversed.

The limitations of Theorem 1 are evident in the current situation since monopolistically com-

petitive firms’ objectives will often not be strictly quasi-concave or even quasi-concave and so

uniqueness of the optimizer is difficult to ensure in general. One can then instead use Theorem

2. Assuming only that solutions exist (so that G is well-defined), we can conclude that G is a con-

cave correspondence when the revenue function R has a non-positive third derivative. Hence the

greatest selection from the policy correspondence will be a concave function (Lemma 2), and the

maximum aggregate output decreases with a mean-preserving spread to ηz .28

4 Bayesian Games

The purpose of this section is to use Theorem 1 to deal with increased uncertainty in Bayesian

games. In Section 2.1, the central bank (the MPC) was the only agent who made a decision, and

that decision was not influenced by the other agent’s action (the forecast). The increase in uncer-

tainty on the other hand, affected only the forecaster (by assumption the MPC knew its private

signal). In reality, central banks take other agents’ responses into account when setting interest

rates — and those agents will be aware of this and take that into account. So, any increase in

uncertainty spills over between the agents. Such considerations naturally lead us to study distri-

butional comparative statics in Bayesian games.

A Bayesian game consists of a set of playersI = {1, . . . , I }, taken here to be finite, where player

i ∈ I receives a private signal zi ∈ Zi ⊆ R drawn from a distribution µzi
on (Zi ,B (Zi )).29 Agents

maximize their objectives and a Bayesian equilibrium is just a Nash equilibrium of the resulting

game (defined precisely in a moment). The question we ask is this: How will the set of equilibria

be affected if one or more signal distributions µzi
are subjected to mean-preserving spreads or

second-order stochastic dominance shifts? If i = 1 is the MPC and z1 represents the MPC’s assess-

ment of the Lucas supply curve, we are back in the setting of Section 2.1 except that we now allow

for the game-theoretic interaction between the MPC and the other agents in the economy.

Assuming that private signals are independently distributed, an optimal strategy is a measur-

able mapping g i : Zi → X i such that for almost every zi ∈ Zi ,

g i (zi ) ∈ arg max
xi∈X i

∫

z−i∈Z−i

Ui (xi , g−i (z−i ), zi )µz−i
(d z−i ) .(18)

Here X i ⊆R is agent i ’s action set and g−i = (g j ) j 6=i are the strategies of the opponents.

28If R is assumed to be strictly concave so that R ′′ < 0, we might alternatively have applied the implicit function
theorem (IFT) to the first-order condition R ′(x )−z = 0. This yields x = g (z )where Dz g =R ′′. The IFT is particularly easy
to use in this case, and we immediately see that (17) once again ensures concavity of g (this is because Dz g decreasing
precisely means that g is concave). Note, however, that Theorem 2 (and also Theorem 1) applies to many situations
which the IFT is unable to address.

29B (·) denotes the Borel subsets of a given set.
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Assumption 1 For every i , the optimal strategy g i exists and is unique.

This assumption is satisfied if X i is compact and Ui (xi , x−i , zi ) is strictly concave in xi (risk

aversion), and continuous in (xi , x−i , zi ). If uniqueness is not assumed, we could instead use The-

orem 2 but we favor here simplicity over generality. Note that what we here call an optimal strategy

is very closely related to policy functions (specifically, g i : Zi → X i is a policy function when it sat-

isfies (18) for all zi ∈ Zi ).

A Bayesian equilibrium is a strategy profile g ∗ = (g ∗1 , . . . , g ∗I ) such that for each player i , g ∗i : Zi →
X i is an optimal strategy given the opponents’ strategies g ∗−i : Z−i → X−i . The optimal distribution

of an agent i is the measure on (X i ,B (X i )) given by:

µxi
(A) =µzi

{zi ∈ Zi : g i (zi ) ∈ A} , A ∈B (X i )(19)

For given opponents’ strategies the decision problem in (18) coincides with the MPC’s objec-

tive in Section 2.1. In particular, we know how changes in µzi
affect the optimal distribution of

the player µxi
when g i is concave or convex (see Observations 1-5 on page 5). Combining with

Theorem 1 we immediately get:

Lemma 4 Consider a player i ∈I and let Assumption 1 be satisfied.

1. If
∫

z−i∈Z−i
Ui (xi , g−i (z−i ), zi )µz−i

(d z−i ) exhibits quasi-concave differences in xi and zi , and

no element on the lower boundary of X i (inf X i ) is optimal, then a mean-preserving spread

toµzi
will lead to a second-order stochastic dominance decrease in the optimal distribution

µxi
.

2. If
∫

z−i∈Z−i
Ui (xi , g−i (z−i ), zi )µz−i

(d z−i ) exhibits quasi-convex differences in xi and zi , and no

element on the upper boundary of X i (sup X i ) is optimal, then a mean-preserving spread to

µzi
will lead to a convex-increasing order increase in the optimal distribution µxi

.

As we saw in Section 3.1, the conditions of Lemma 4 are easy to verify if Ui is differentiable in xi

(see also the main Theorem below which provides sufficient conditions in the differentiable case).

Note that whether increased uncertainty increases or reduces mean actions depends on whether

the payoff function exhibits quasi-convex or quasi-concave differences. But in either case, the

optimal distributions will be more variable which will spill over to the other players and make

everybody’s game environments more uncertain. To deal with this, we need the following straight-

forward generalization of a result found in Rothschild and Stiglitz (1971).30

Lemma 5 Let Assumption 1 be satisfied and let g i (zi ,µx−i
) = arg maxxi∈X i

∫

Ui (xi , x−i , zi )µx−i
(d x−i ).

Then for j 6= i :

30Rothschild and Stiglitz (1971) consider mean-preserving spreads in the differentiable case. If Ui is differentiable in
xi , the main condition of Lemma 5 is equivalent to the concavity of Dxi

Ui (xi , x−i , ·) which exactly is the assumption of
Rothschild and Stiglitz (1971). See also Athey (2002) for related results. It is by combining such (known) results with
this paper’s new results that we are able to make progress on DCS in Bayesian games.
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1. If Ui (x̃i , x−i , zi ) −Ui (xi , x−i , zi ) is concave in x j for all x̃i ≥ xi , then g i (zi ,µx−i ,− j
, µ̃x j
) ≤

g i (zi ,µx−i
)whenever µ̃x j

is a mean-preserving spread of µx j
.

2. IfUi (x̃i , x−i , zi )−Ui (xi , x−i , zi ) is concave and increasing in x j for all x̃i ≥ xi , then g i (zi ,µx−i
)≤

g i (zi ,µx−i ,− j
, µ̃x j
)whenever µ̃x j

second-order stochastically dominates µx j
.

If in these statements concavity in x j is replaced with convexity, the first conclusion changes to:

g i (zi ,µx−i ,− j
, µ̃x j
) ≥ g i (zi ,µx−i

) whenever µ̃ j is a mean-preserving spread of µx j
; and the second

conclusion changes to g i (zi ,µx−i
) ≤ g i (zi ,µx−i ,− j

, µ̃x j
) whenever µ̃x j

dominates µx j
in the convex-

increasing order.

Proof. Statement 1 is a direct application of Topkis’ theorem (Topkis (1978)) which in the situa-

tion with a one-dimensional decision variable and unique optimizers says that the optimal de-

cision will be non-decreasing [non-increasing] in parameters if the objective exhibits increasing

differences [decreasing differences]. The conclusion thus follows from the fact that
∫

Ui (xi , x−i , zi )
µx−i
(d x−i ) exhibits decreasing differences in xi (with the usual order) and µx j

(with the mean-

preserving spread order �c x ) if and only if the assumption of the statement holds. Also by Top-

kis’ theorem, if Ui (x̃i , x−i , zi )−Ui (xi , x−i , zi ) is increasing in x j for j 6= i and for all x̃i ≥ xi , then

µ̃x j
�s t µx j

⇒ g i (zi ,µx−i ,− j
, µ̃x j
) ≥ g i (zi ,µx−i

) (here �s t denotes the first-order stochastic domi-

nance order). From this and Statement 1 follows Statement 2 because it is always possible to split

a second order stochastic dominance increase �c v i into a mean preserving contraction �c v fol-

lowed by a first order stochastic dominance increase (Formally, if µ̃x j
�c v i µx j

, then there exists a

distribution µ̂x j
such that µ̃x j

�s t µ̂x j
�c v µx j

). The convex case is proved by a similar argument

and is omitted.

For given distributions of private signals µz = (µz1
, . . . ,µzI

) let Φ(µz ) denote the set of equilib-

rium distributions, i.e., the set of optimal distributions µx = (µx1
, . . . ,µxI

) where µxi
are given in

(19) with g i = g ∗i and (g ∗1 , . . . , g ∗I ) is one of the (possibly many) Bayesian equilibria. Fix a given

stochastic order� on the probability space of optimal distributions and consider a shift in the dis-

tribution of private signals fromµz to µ̃z . In the Theorem below,�will be either the second-order

stochastic dominance order or the convex-increasing order; and the shift from µz til µ̃z will be a

mean-preserving spread. The set of equilibrium distributions then increases in the order � if

∀µx ∈Φ(µz ) ∃µ̃x ∈Φ(µ̃z )with µ̃x �µx and ∀µ̃x ∈Φ(µ̃z ) ∃µx ∈Φ(µz )with µ̃x �µx(20)

If the order � is reversed in (20), the set of equilibrium distributions decreases. If Φ(µz ) and

Φ(µ̃z ) have least and greatest elements, then (20) implies that the least element of Φ(µz ) will be

smaller than the least element of Φ(µ̃z ) and the greatest element of Φ(µz ) will be smaller than the

least element of Φ(µ̃z ) (Smithson (1971), Theorem 1.7). In particular, if the equilibria are unique

and we therefore have a functionφ such that Φ(µz ) = {φ(µx )} and Φ(µ̃z ) = {φ(µ̃x )}, we getφ(µz )�
φ(µ̃z )which simply means that the functionφ is increasing.
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Theorem 3 (Mean Preserving Spreads in Bayesian Games) Consider a Bayesian game as descri-

bed above and let µz = (µzi
)i∈I and µ̃z = (µ̃zi

)i∈I be two distributions of private signals.31

1. Suppose all assumptions of Lemma 4.1 are satisfied and Ui (x̃i , x−i , zi )−Ui (xi , x−i , zi ) is in-

creasing and concave in x−i for all x̃i ≥ xi . If µ̃zi
is a mean-preserving spread of µzi

for any

subset of the players, then the set of equilibrium distributions decreases in the second-order

stochastic dominance order (in particular the agents’ mean actions decrease).

2. Suppose all assumptions of Lemma 4.2 are satisfied and Ui (x̃i , x−i , zi )−Ui (xi , x−i , zi ) is in-

creasing and convex in x−i for all x̃i ≥ xi . If µ̃zi
is a mean-preserving spread of µzi

for

any subset of the players, then the set of equilibrium distributions increases in the convex-

increasing order (in particular the agents’ mean actions increase).

If Ui is differentiable in xi , all of these assumptions are satisfied if Dxi
Ui (xi , x−i , zi ) is increasing

in x−i and either concave in (xi , zi ) and x−i [case 1] or convex in (xi , zi ) and x−i [case 2].

Proof. As in previous proofs, let �c v i denote the concave-increasing (second-order stochastic

dominance) order and �s t denote the first-order stochastic dominance order. Recast the game in

terms of optimal distributions: Agent i ’s problem is to find a measurable function g i which for a.e.

zi ∈ Zi maximizes
∫

x−i∈X−i
Ui (xi , x−i , zi )µx−i

(d x−i ). The policy function xi = g i (zi ,µx−i
)determines

µxi
(A) =µzi

{zi ∈ Zi : g i (zi ,µx−i
) ∈ A} (A ∈B (X i )). An equilibrium is a vectorµ∗x = (µ

∗
x1

, . . . ,µ∗xI
) such

that for all i ∈ I : µ∗xi
(A) = µzi

{zi ∈ Zi : g i (zi ,µ∗x−i
) ∈ A} , all A ∈B (X i ). Letting fi (µx−i

,µzi
) denote

agent i ’s optimal distribution given µx−i
and µzi

, an equilibrium is a fixed point of f = ( f1, . . . , fI ).
By 2 of Lemma 5 and Observation 1 on page 5, µ̃x j

�c v i µx j
⇒ fi (µx−i ,− j

, µ̃x j
,µzi
) �s t fi (µx−i

,µzi
)

for all j 6= i . Since first-order stochastic dominance implies second-order stochastic dominance,

fi (µx−i ,− j
, µ̃x j

,µzi
) �s t fi (µx−i

,µzi
)⇒ fi (µx−i ,− j

, µ̃x j
,µzi
) �c v i fi (µx−i

,µzi
). It follows that the map-

ping f is monotone when µx ’s underlying probability space is equipped with the product order

�I
c v i . Again with the order �c v i on optimal distributions, it follows from Lemma 4 that each fi is

decreasing in µzi
with the convex (mean-preserving spread) order on µzi

’s underlying probability

space. f will also be continuous (it is a composition of continuous functions) and so the theo-

rem’s conclusions follow directly from Theorem 3 in Acemoglu and Jensen (2015) (the conditions

of that Theorem are immediately satisfied when f is viewed as a correspondence). For the sec-

ond statement of the theorem the argument is precisely the same except that one now equips the

set of optimal distributions with the convex-increasing order and notes that fi is monotone when

the private distributions µzi
’s underlying probability spaces are equipped with the mean preserv-

ing spread order. The differentiability conditions presented at the end of the theorem follow from

Lemma 1.

Note that under the assumptions of Theorem 3, the game is supermodular. Under the addi-

tional conditions of the following corollary, the game is monotone (i.e., a Bayesian game of strate-

gic complementarities, see Van Zandt and Vives (2007)). The proof follows along the same lines as

the proof of Theorem 3 and is omitted.

31In the following statements, it is to be understood that any distribution µzi
that is not replaced with a mean-

preserving spread µ̃zi
is kept fixed.
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Corollary 3 (Second-Order Stochastic Dominance Changes) If in addition to the assumptions of

Theorem 3, it is assumed that Ui (x̃i , x−i , zi )−Ui (xi , x−i , zi ) is increasing in zi , then if µ̃zi
second-

order stochastically dominates µzi
for any subset of the players, the set of equilibria decreases in

the second-order stochastic dominance order in case 1. In case 2., the set of equilibria increases in

the convex-increasing order when µ̃zi
dominatesµzi

in the convex-increasing order for any subset

of the players.

There are many interesting applications of Theorem 3, ranging from auction theory to the Di-

amond search model. Here we will consider two applications in turn beginning with the Bayesian

extension of the model from Section 2.1.

4.1 Forecasting Monetary Policy (Continued)

In Section 2.1, z̄ in the expected utility formulation (3) was interpreted as an additional exogenous

variable (the oil price for example). That formulation was chosen deliberately because it also cov-

ers Bayesian games where z̄ is now instead the private signal z2 of a second agent (“the public”):

u1(x1, z1) =

∫

U1(x1, g2(z2), z1)µz2
(d z2).(21)

z1 is the MPC’s private signal, and −U1 its loss function. As discussed in Section 2.1, the loss

function incorporates the MPC’s assessment of the Lucas supply curve which depends on the

MPC’s private signal z1 but now also depends on what the public does, g2(z2). What the public

does is, in turn, uncertain to the MPC since it depends on the public’s private signal z2. We already

discussed both the conditions for and interpretation of u1 exhibiting quasi-concave differences in

Sections 2.1 and 3.1. What is new is the condition in Lemma 5. Taking here condition 2. in Lemma

5, the intuition is straight-forward: if we think of x2 as a measure of economic activity, condition

2 says that the MPC’s marginal payoff is increasing and concave in x2. Equivalently, the marginal

loss is decreasing and convex in x2 which means that higher activity lowers the marginal loss as-

sociated with raising the interest rate, but decreasingly so as the level of activity increases (the loss

function is convex in x2). This makes a lot of sense economically. All else equal, higher activity

makes interest increases less painful in the eyes of an MPC, but this effect is bound to diminish as

the economy progressively overheats.

Leaving a detailed “story” for future work, we may now add the public (agent i = 2), or we

could add more than a single agent and extend (21) accordingly. We then ensure that the public’s

objective function exhibits quasi-concave differences. For example, the public might be thought

of as generating economic activity, and a concave policy function would mean that investments,

etc., are decreasing at a steepening rate in the rate of interest. Adding the conditions of Lemma

5, we may then apply Theorem 3. This result tells us that if uncertainty increases (either for the

central bank or the public) then in the Bayesian equilibrium both the interest rate and the activity

variable decrease in the sense of second-order stochastic dominance. So if uncertainty increases

for exogenous reasons, mean activity as well as the mean interest rate decrease, and both of these

variables will fluctuate more.
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4.2 The Bayesian Arms Race Model

In a Bayesian version of the classical arms race game from the field of conflict resolution (see e.g.

Milgrom and Roberts (1990), p.1272), we ask here whether increased uncertainty about arms’ ef-

fectiveness and opponents’ intentions leads to an intensification of the arms race or not.

There are two countries, i = 1, 2, with identical state payoff functions ui (xi , x−i , zi ) = B (xi −
x−i − zi )− c xi . B is a strictly concave function and c > 0 a constant cost parameter. zi is a ran-

dom variable that reflects the relative effectiveness of the arms — real or imagined (for example

a domestic media frenzy might correspond to a mean-preserving spread to zi ).32 Assuming that

B is sufficiently smooth, we can use the conditions at the end of Theorem 3. By strict concavity,

Dxi
u (xi , x−i , zi ) = B ′(xi − x−i + zi )− c is increasing in x−i , and the question is therefore whether it

is also either convex or concave in (xi , zi ) and in x−i . Obviously, this depends entirely on whether

B ′ is convex or concave, i.e., on whether the third derivative of B is positive or negative. In the

convex case (positive third derivative), the countries’ policy functions are convex. Hence greater

uncertainty will increase the affected country’s (or countries’) expected stock of arms as well as the

variability (Lemma 4, which specifically says that given the other country’s strategy, greater uncer-

tainty will lead to a convex-increasing shift in the optimal distribution). The increased variability

of the affected country’s stock of arms will lead to a more uncertain environment for the other

country and make it accumulate more arms (Lemma 5). This escalation continues until an equi-

librium is reached with higher mean stocks of arms and greater uncertainty about the exact size

of the arsenals (Theorem 3).33 Note that a positive third derivative means that the countries are

“prudent” (Kimball (1990)) — a well-understood behavioral trait that also plays a key role in other

settings such as in income allocation problems (Carroll and Kimball (1996)). Of course, prudence,

which in the words of Kimball (1990) (p.54) is “the propensity to prepare and forearm oneself in

the face of uncertainty”, has rather more beneficial consequences in income allocation models

than it does in arms races. It is therefore not uniformly good news that experimental evidence

seems to suggest that most people are prudent (Nussair et al (2011)). But of course, prudence

may be situation-dependent or imprudent politicians may be elected. In this case B will have a

negative third derivative, and the countries’ policy functions will be concave so that greater un-

certainty lowers the mean stock of arms in equilibrium. Note however, that according to Theorem

3, the variability will still increase, so whether decision makers are prudent or not, the risk of ex-

ceptionally high stocks of arms and the negative consequences in case of war still increases when

the environment becomes more uncertain.

5 Stochastic Dynamic Programming

This section uses Theorem 2 to study the topic introduced in Section 2.2, namely the concav-

ity/convexity of policy functions in stochastic dynamic programming problems. In income al-

32A myriad of other specifications would of course be possible, for example costs could instead be random. This
section’s results may be applied for any such specification.

33Note that since the conditions of Corollary 3 are satisfied, these conclusions are valid not just for mean-preserving
spreads but for second-order stochastic dominance decreases more generally.
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location problems, the relationship between earning risk and wealth accumulation is guided by

whether the consumption function is concave or convex (Huggett (2004)). And in macroeco-

nomics, it determines the effect of increased individual uncertainty on aggregate market outcomes

in large dynamic economies (Acemoglu and Jensen (2015)) an example of which is the Aiyagari-

model mentioned in Section 2.2 and returned to below.

The treatment and notation follows Chapter 9 of Stokey and Lucas (1989). The dynamic pro-

gramming problem is,

max E0[
∑∞

t=0β
t u (xt , xt+1, zt )]

s.t.

�

xt+1 ∈ Γ (xt , zt ) , t = 0, 1, 2, . . .
where (x0, z0)� 0 are given.

(22)

In comparison with Stokey and Lucas (1989), two structural restrictions are made to simplify

the exposition (but the results easily generalize, see Remarks 1-2 at the end of this section): first,

the zt ’s are assumed to be i.i.d. with distribution µz ; second, only the one-dimensional case is

considered, i.e., it is assumed that xt ∈ X ⊆ R and zt ∈ Z ⊆ R. We also maintain the standard

assumption of a concave objective even though our general results in fact do not even require

quasi-concavity (Remark 3 discusses this further).

Both X and Z are assumed to be convex sets equipped with their Borelσ-algebras.34 The value

function v : X ×Z →R of (22) is,

v (x , z ) = sup
y ∈Γ (x ,z )

�

u
�

x , y , z
�

+β

∫

v (y , z ′)µz (d z ′)

�

.(23)

The following assumptions are from Stokey and Lucas (1989), Chapter 9.

Assumption 2 Γ : X ×Z → 2X is non-empty, compact-valued, continuous, and has a convex graph,

i.e., for all x , x̃ ∈ X , z ∈ Z , and all λ ∈ [0, 1]: λy +(1−λ) ỹ ∈ Γ (λx +(1−λ)x̃ , z )whenever y ∈ Γ (x , z )
and ỹ ∈ Γ (x̃ , z ).

Assumption 3 u : X ×X ×Z →R is bounded and continuous, andβ ∈ (0, 1). Furthermore, u (x , y , z )
is concave in (x , y ) and strictly concave in y .

Note that Assumption 2 in particular requires Γ to have a convex graph. As discussed in the first

paragraph after Definition 3, this implies that Γ is a concave as well as a convex correspondence (cf.

the conditions of Theorem 2). Under Assumptions 2-3, the value function v = v (x , z ) is uniquely

determined, continuous, and concave in x . Furthermore, the policy function g : X ×Z → X is the

well-defined and continuous function

g (x , z ) = arg sup
y ∈Γ (x ,z )

�

u
�

x , y , z
�

+β

∫

v (y , z ′)µz (d z ′)

�

.(24)

34For our result on the policy function g (x , z )’s convexity in x , it may alternatively be assumed that Z is a countable
set equipped with theσ-algebra consisting of all subsets of Z (see Stokey and Lucas (1989), Assumption 9.5.a.).
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Theorem 4 (Convex Policy Functions in Dynamic Stochastic Programming Problems) Consider

the stochastic dynamic programming problem (22) under Assumptions 2-3 and let g : X ×Z → X

denote the policy function (24). Assume that u (x , y , z ) is differentiable and satisfies the follow-

ing upper boundary condition: limy n↑supΓ (x ,z )Dy u (x , y n , z ) = −∞ (or in some other way ensure

that supΓ (x , z ) will never be optimal given (x , z )). Then the policy function g is convex in x if

Dx u (x , y , z ) is non-decreasing in y and there exists a k ≥ 0 such that 1
1−k [−Dy u (x , y , z )]1−k is con-

cave in (x , y ) and 1
1−k [Dx u (x , y , z )]1−k is convex in (x , y ).35 If in addition Γ (x , ·) is a convex corre-

spondence and 1
1−k [−Dy u (x , y , z )]1−k is concave in (y , z ), then the policy function g will also be

convex in z .

Proof. See Appendix D.

Theorem 4 has a host of applications in macroeconomics. For example, it is applied in Ace-

moglu and Jensen (2015) to study how increased uncertainty affects the equilibria in large dynamic

economies.

5.1 Income Allocation Models (Continued)

Recall the income allocation model from Section 2.2 whose Bellman equation corresponding to

(23) is

v (x , z ) =maxy ∈Γ (x ,z ) ũ
�

(1+ r )x +w z − y
�

+β
∫

v (y , z ′)η(d z ′).(25)

Alternatively, we may express this in the form of (22),

max E0[
∑∞

t=0β
t ũ ((1+ r )xt +w zt − xt+1)]

s.t.

�

xt+1 ∈ Γ (xt , zt ) , t = 0, 1, 2, . . .
where (x0, z0)� 0 are given.

(26)

Since xt is savings at date t , the policy function g ((1+ r )x +w z ) is the savings function and

the consumption function is

c ((1+ r )x +w z ) = (1+ r )x +w z − g ((1+ r )x +w z ).(27)

In terms of this section’s general notation we have u (x , y , z ) = ũ
�

(1+ r )x +w z − y
�

. It is easy to

verify (and well known) that Assumptions 2-3 are satisfied. Under a standard boundary condition

on ũ , we will never have g ((1+ r )x +w z ) = supΓ (x , z ), i.e., the consumer will not choose zero

consumption at any date.

We have Dy u (x , y , z ) =−ũ ′((1+ r )x +w z − y ) and Dx u (x , y , z ) = r ũ ′((1+ r )x +w z − y ). Dx u

is strictly increasing in y since ũ is strictly concave. By Theorem 4, the savings function is convex

(the consumption function is concave) if 1
1−k [ũ

′((1+r )x +w z − y )]1−k is concave and 1
1−k [r ũ ′((1+

r )x +w z − y )]1−k is convex in (x , y ). When the Hessian determinants of Dx u and Dy u exist — i.e.,

when ũ is thrice differentiable as in Carroll and Kimball (1996) — they both equal zero, and it is

then straightforward to verify that the previous conditions on ũ will hold if and only if

ũ ′ũ ′′′

(ũ ′′)2
= k ≥ 0.(28)

35In the limit case k = 1, 1
1−k [ f (x )]

1−k is by convention equal to log( f (x )).
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Thus we find the condition that ũ must be of the HARA-form introduced in Section 2.2. That ũ

is of the HARA-form is also assumed by Carroll and Kimball (1996) who establish concavity of the

consumption function when there are no borrowing limits. One easily verifies that the condition

for convexity in z (last sentence of Theorem 4) is also satisfied when ũ is of the HARA-form. Thus

we have generalized the result of Carroll and Kimball (1996) to the incomplete markets setting with

borrowing constraints.

5.2 Inequality and the Lorenz Curve

We finish this section with a brief look at relationship between income inequality and concavity

of consumption functions. Let Wi = (1+r )xi +w zi denote income of agent i at a given moment in

time and consider a continuum of agents i ∈ [0, 1]with identical preferences but possibly different

incomes. Each individual thus consumes c (Wi ). Letting ηW denote the frequency distribution of

income, per-capita/mean consumption is then

∫

c (Wi )ηW (d Wi ) .

From Atkinson (1970) we know that mean-preserving spreads toηW are equivalent to increases

in inequality in the sense of Lorenz dominance (Atkinson (1970), p. 246-247). When u is in the

HARA class and the consumption function therefore concave, it follows from Jensen’s inequal-

ity that a Lorenz increase in inequality implies lower per-capita consumption. But the Observa-

tions on page 5 allow us to go considerably further. Firstly, since the consumption function c is

also increasing under standard conditions, the previous statement extends to generalized Lorenz

dominance by Observation 3 on page 5.36 Of more novelty, we can go beyond considerations of

consumption per-capita. For example, by Observation 2, a Lorenz increase in inequality will lead

to a second-order stochastic dominance decrease in the distribution of consumption. So we can

conclude not only that the mean will decrease, but also that social welfare will decrease under any

inequality adverse social welfare objective, i.e., any social welfare objective that is increasing and

concave in individual consumption levels (again see Atkinson (1970)). So we are able to study the

relationship between the inequality of opportunities as embodied in Lorenz dominance and the

inequality of outcomes as evaluated by a social welfare criterion.

6 Conclusion

This paper contributes to distributional comparative statics (DCS), i.e., to the study of how changes

in exogenous distributions affect endogenous distributions in economic models. Most DCS ques-

tions can be answered if suitable policy functions are either concave or convex. In the main the-

oretical contribution of the paper (Theorem 1), it is shown that concavity of the policy function

hinges on an intuitive as well as easily verifiable condition on the primitives of a model, namely

36The generalized Lorenz curve is constructed by scaling up the Lorenz curve by the distribution’s mean and is equiv-
alent to second-order stochastic dominance shifts, see e.g. Dorfman (1979).
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quasi-concave differences. That observation parallels Topkis’ theorem (Topkis (1978)) which en-

sures that the policy function is increasing (strategic complementarity) when the objective func-

tion exhibits increasing differences. Theorem 2, as well as Theorem 5 in Appendix C, extends the

result to policy correspondences (multiple optimizers) and multi-dimensional action sets.

Several areas of application were discussed including uncertainty comparative statics, inter-

national trade models of heterogenous firms (Melitz (2003)), the macroeconomic modeling of

inequality, the issue of forecasting monetary policy, and stochastic dynamic programming. In all

of these, the concavity of suitably defined policy functions turns out to drive the conclusions, ul-

timately owing to Observations 1-5 in Section 2.1 (page 5) and the fact that Lorenz dominance

is equivalent to mean-preserving spreads and generalized Lorenz dominance is equivalent to de-

creases in second-order stochastic dominance (see the end of Section 5). As a concrete illustration

of uncertainty comparative statics, a Bayesian arms race is studied and it is found that “prudence”

(Kimball (1990)) determines whether mean stocks of arms increase or decrease when uncertainty

goes up — but in all cases, a more uncertain environment also leads to greater uncertainty about

the scale of destruction in the event of a war. The stochastic dynamic programming results are

illustrated by generalizing a result due to Carroll and Kimball (1996) to allow for borrowing con-

straints. These results play a key role for distributional comparative statics in dynamic stochastic

general equilibrium (DSGE) models — a theme taken up in Acemoglu and Jensen (2015) who study,

for example, how increased uncertainty about future earnings prospects affects output per worker

in the Aiyagari (1994) model.

7 Appendices

A Proof of Observations 1-5 in Section 2.1

The distribution µx is the image measure of µ under g . Hence
∫

f (x )µx (d x ) =
∫

f (g (z ))µ(d z )
for any function f : X → R such that the integrals are well-defined. Each claim thus amounts to

saying that for classes of functions F and Fx , if
∫

h (z )µ̃(d z ) ≥
∫

h (z )µ(d z ) for all h ∈ F , then
∫

f (g (z ))µ̃(d z )≥
∫

f (g (z ))µ(d z ) for all f ∈Fx . In the case of Observation 1,F andFx both equal

the class of increasing functions and the claim follows from the fact that f ◦ g is increasing when

both f and g are increasing. For Observation 2,F is the class of convex functions andFx the class

of decreasing, convex functions, and the claim follows because f ◦ g is convex when g is concave

and f is convex and decreasing. For Observation 3, both F and Fx equal the class of increas-

ing, concave functions and the conclusion follows because f ◦ g is increasing and concave when

both f and g are increasing and concave. Observations 4-5 are proved by the same arguments as

Observations 2-3 and may be omitted.

B Proof of Lemma 1

To facilitate the results on multi-dimensional strategy sets in Appendix C, the general case where

X ⊆ Rn is considered. We thus prove that if u is differentiable in x , it will exhibit quasi-concave
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differences if and only if Dx j
u (x , z ) is quasi-concave in (x , z ) for all j = 1, . . . , n (evidently, Lemma

1 is a special case of this statement).

“⇒”: Since Dx j
u (x , z ) = limδ→0

u (x+δε j ,z )−u (x ,z )
δ where ε j denotes the j ’th unit vector, and

quasi-convexity is preserved under pointwise limits (Johansen (1972)), each partial derivative

Dx j
u (x , z ) is quasi-convex at (x , z ) when u exhibits quasi-convex differences at (x , z ). “⇐”: This

direction is not easy. The idea is to prove the contrapositive by contradiction (note that since

quasi-convexity is not preserved under integration, we cannot use the fundamental theorem of

calculus). So we assume that u does not exhibit quasi-convex differences, that each partial deriva-

tive Dx j
u (x , z ) is quasi-convex, and then derive a contradiction. Forα ∈ [0, 1] set xα ≡αx0+(1−α)x1

and zα = αz0 + (1− α)z1. Say that u exhibits quasi-convex differences in the direction η > 0 at

(x0, z0,α) if for all δn > 0 in some neighborhood of 0:

u (xα+δnη, zα)−u (xα, zα)≤max{u (x0+δnη, z0)−u (x0, z0), u (x1+δnη, z1)−u (x1, z1)}(29)

It is easy to see that if u exhibits quasi-convex differences (on all of X ×Z ), then it exhibits quasi-

convex differences in all directions η > 0 at all (x , z ,α) ∈ X × Y × [0, 1]. Let ε j denote the j ’th

unit vector (a vector with 1 in the j ’th coordinate and zeroes everywhere else). Since a function is

quasi-convex in all directions if and only if it is quasi-convex in all unit/coordinate directions ε j ,

we may (as always) restrict attention to the directions of the coordinates in the previous statement.

Hence if u does not exhibit quasi-convex differences, there will exist a coordinate direction ε j ,

(x0, z0), (x1, z1) ∈ X ×Y , α̂ ∈ [0, 1] and a sequence δn ↓ 0 such that for all n :

u (xα̂+δnε j , zα̂)−u (xα̂, zα̂)>max{u (x0+δnε j , z0)−u (x0, z0), u (x1+δnε j , z1)−u (x1, z1)}(30)

Note that we necessarily have α̂ ∈ (0, 1) when the previous inequality holds. Intuitively, the

inequality says that there exists a point (xα, zα) on the line segment between (x0, z0) and (x1, z1) at

which u (·+δnε j , ·)− u (·, ·) takes a strictly higher value than at any of the endpoints. Now, divide

through (30) with δn and take limits:

Dx j
u (xα̂, zα̂)≥max{Dx j

u (x0, z0), Dx j
u (x1, z1)}

Since Dx j
u (·, ·) is quasi-convex, it follows that: Dx j

u (xα̂, zα̂) =max{Dx j
u (x0, z0), Dx j

u (x1, z1)}.
Assume without loss of generality that Dx j

u (x0, z0) ≥ Dx j
u (x1, z1). Since Dx j

u (x0, z0) is quasi-

convex and 0 < α̂ < 1, it follows that either (i) Dx j
u (x0, z0) = Dx j

u (xα, zα) for all α ∈ [0, α̂] or (ii)

Dx j
u (x1, z1) = Dx j

u (xα, zα) for all α ∈ [α̂, 1] (or both).37 Consider case (i) (the proof in case (ii)

is similar). When (i) holds, u ’s restriction to the line segment between (x0, z0) and (xα̂, zα̂) must

necessarily be of the form: u (x , z ) = c x j + g (x− j , z ) where cn = Dxn
u (x0, z0) (a constant) and x− j

37A quasi-convex function’s restriction to a convex segment as the one considered here can always be split into two
segments, one which is non-increasing and one which is non-decreasing (and in the present situation, there must first
be non-increasing segment since the function’s value weakly decreases between the endpoints). On the convex line
segment between (x0, z0) and (x1, z1) we have in the present situation that the function begins at Dx j

u (x0, z0), again
takes the value Dx j

u (x0, z0) at (xα, zα) and then moves to a weakly lower value Dx j
u (x1, z1) at the end-point (x1, z1). It

follows that if Dx j
u (·, ·) is not constant on the first interval (corresponding toα ∈ [0,α]) it must strictly decrease and then

strictly increase on this interval, which implies that Dx j
u (·, ·) is constant on the second of the two intervals.
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denotes all coordinates of x except for the j ’th one (remember that j is the positive coordinate of

e j ). But then u (xα̂+δnε j , zα̂)−u (xα̂, zα̂) = u (x0+δnε j , z0)−u (x0, z0) = cδnε j which implies that:

u (xα̂+δnε j , zα̂)−u (xα̂, zα̂)≤max{u (x0+δnε j , z0)−u (x0, z0), u (x1+δnε j , z1)−u (x1, z1)}(31)

Comparing (31) with (30) we have a contradiction, and the proof is complete.

C Multi-dimensional Decision Variables

This appendix treats concavity of the policy correspondence in the case where the decision vector

is allowed to live in an arbitrary ordered topological vector lattice V , x ∈ X ⊆ V . Note that in this

setting, the order mentioned in Definition 3 is the order inherited from V . So if V =RN with the

usual Euclidean order, the theorem below implies that each coordinate correspondence Gn : Z →
2X n ⊆ 2R is concave in the sense discussed in detail in Section 3.2.

The multi-dimensional setting forces us to make some additional assumptions. In comparison

with Theorem 2, X must be a lattice, u must be supermodular in the decision vector, and Γ must

be upper semi-lattice valued as well as order convex valued rather than merely convex valued.38

Finally, the boundary conditions must be suitably generalized as we turn to first. It should be noted

that all of these assumptions automatically are satisfied when X is one-dimensional. Hence the

result to follow encompasses Theorem 2.

First, the basic definitions. Say that a point x ∈ Γ (z ) lies on the upper [lower] boundary of Γ (z )
if there does not exist an x ′ ∈ Γ (z )with x ′� x (x ′� x ). The upper boundary is denoted by B(Γ (z ))
and the lower boundary is denoted by B(Γ (z )). What we are going to require in the theorem below

is precisely as in Theorem 2 except that the infimum is replaced with the lower boundary.

Next, X must be a lattice, i.e., if x and x ′ lie in X so do their infimum x ∧x ′ and supremum x ∨
x ′. If X ⊆Rn with the usual Euclidean/coordinatewise order, the infimum (supremum) is simply

the coordinatewise minimum (maximum). Assuming that X is a lattice is actually a very weak

additional requirement in the present framework because it is the constraint correspondence Γ

that determines the feasible set. It is the next assumption that really has “bite”. A lower semi-

lattice [upper semi-lattice] is a subset A ⊂ X with the property that if x , x ′ ∈ A then the infimum

x ∧ x ′ [supremum x ∨ x ′] also lies in A. Either is of course weaker than being a lattice. The lower

or upper semi-lattice is order-convex if a , b ∈ A, and a ≤ a ′ ≤ b imply a ′ ∈ A (in words, if the set

contains an ordered pair of elements, it contains the entire order interval between these elements).

Note that order-convexity is stronger than convexity in general, although the two coincide in the

one-dimensional case. A budget set is an order-convex lower semi-lattice (it is not a lattice), and

a firm’s input requirement set is an order-convex upper semi-lattice (but again not a lattice). As

these examples indicate, the fact that we avoid assuming that Γ ’s values are sublattices of X greatly

expands the scope of the theorem below.

Finally, u must be supermodular in the decision variables. The well-known definition is as

follows.
38Note that this once again precisely parallels monotone comparative statics. In that setting supermodularity and

lattice-type assumptions are also unnecessary/trivially satisfied in the one-dimensional case but must be imposed in
multiple dimensions.
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Definition 4 (Topkis (1978)) The objective function u : X ×Z → R is supermodular in x if u (x ∨
x ′, z ) +u (x ∧ x ′, z )≥ u (x , z ) +u (x ′, z ) for all x , x ′ ∈ X and for all z ∈ Z . If u is twice differentiable

in x and X ⊆ Rn , it is supermodular in x if and only if the Hessian matrix D 2
x x u (x , z ) ∈ Rn×n has

non-negative off-diagonal elements (for all x and z ).

We are now ready to state and prove the main result with multi-dimensional action sets. Note

that as in Theorems 1-2, the boundary condition is trivially satisfied if the optimization problem

is unrestricted or attention is restricted to interior solutions.

Theorem 5 (Concavity of the Policy Correspondence, Multidimensional Case) Let Z be a convex

subset of a real vector space and X a convex lattice. Define the policy correspondence G (z ) =
arg supx∈Γ (z ) u (x , z ) where u : X ×Z → R is supermodular in x and Γ : Z → 2X has order-convex

values. Assume that G (z ) is non-empty and compact for all z ∈ Z . Then:

1. The policy correspondence G is concave if u : X ×Z →R exhibits quasi-concave differences,

Γ is concave and upper semi-lattice valued, and x ∈G (z )⇒ x 6∈B(Γ (z )) for all z ∈ Z .

2. The policy correspondence G is convex if u : X ×Z →R exhibits quasi-convex differences,

Γ is convex and lower semi-lattice valued, and x ∈G (z )⇒ x 6∈B(Γ (z )) for all z ∈ Z .

Proof of Theorem 5. The convex case 2. is proved (the proof of the concave case is similar).

Pick z1, z2 ∈ Z , x1 ∈G (z1), and x2 ∈G (z2). Exactly as in the proof of Theorem 1, we can use quasi-

convex differences to conclude that for someδ� 0, u (xα, zα)≥ u (xα+δ, zα) for allα ∈ [0, 1]. Hence

by quasi-concavity of u in x , u (x , zα) is non-increasing for x ≥ xα. We wish to show that for all α

there exists x̂ ∈G (zα)with x̂ ≤ xα. Pick any x ∈G (zα). It is first shown that

x ∧ xα ∈ Γ (zα) .(32)

Since Γ has convex values, there exists some x̃ ∈ Γ (zα) with x̃ ≤ xα. We have x ∈ Γ (zα) (since

x ∈ G (zα)) and so since Γ ’s values are lower semi-lattices, x ∧ x̃ ∈ Γ (zα). But x ∧ x̃ ≤ x ∧ xα ≤ x ,

hence x ∧ xα ∈ Γ (zα) because Γ has order-convex values. That was what we wanted to show. Next

use supermodularity of u (·, t ) and the fact that u (·, zα) is non-increasing for x ≥ xα (implies that

u (xα, zα)≥ u (x ∨ xα, zα)) to conclude that:

u (x , zα)−u (x ∧ xα, zα)≤ u (x ∨ xα, zα)−u (xα, zα)≤ 0(33)

(32)-(33) imply that x ∧ xα ∈G (zα). But since clearly x ∧ xα ≤ xα this completes the proof.

D Proof of Theorem 4

The value and policy functions will equal the pointwise limits of the sequences (v n )∞n=0 and (g n )∞n=0

determined by:

v n+1(x , z ) = sup
y ∈Γ (x ,z )

�

u
�

x , y , z
�

+β

∫

v n (y , z ′)µz (d z ′)

�

, and(34)
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g n (x , z ) = arg sup
y ∈Γ (x ,z )

�

u
�

x , y , z
�

+β

∫

v n (y , z ′)µz (d z ′)

�

.(35)

Under the Theorem’s conditions, v n is concave in x for all n . Since a concave function is ab-

solutely continuous, v n will be absolutely continuous in x for all n . The following result presents

conditions under which an absolutely continuous function is quasi-concave. It generalizes the

sufficiency part of Lemma 1.

Lemma 6 Assume that u : X ×Z →R is absolutely continuous in x ∈ X , i.e., assume that u (x , z ) =
α(a , z ) +

∫ x

a
p (τ, z ) dτ for a Lebesgue integrable function p : X ×Z → R (here a = inf X and α is

a function that does not depend on x ). Then u exhibits quasi-convex differences [quasi-concave

differences] if p (x , z ) is quasi-convex [quasi-concave].

Proof. The statement can be verified by going through the proof of Lemma 1 and everywhere

replace u ’s derivative with p .

Next we need a result on how to ensure that the sum of two functions exhibits quasi-concave

or quasi-convex differences.

Lemma 7 Let u be of the form u (x , z ) = f (x , z ) + h (−x , z ) where f , h : X × Z → R are differen-

tiable with Dx f (x , z ) = f ′x (x , z )≥ 0 and Dx h (x , z ) =−h ′x (−x , z )≤ 0. Then u exhibits quasi-convex

differences on the subset {(x , z ) ∈ X ×Z : Dx u (x , z )≤ 0} if there exists a k ≥ 0 such that 1
1−k [ f

′
x ]

1−k

is convex and 1
1−k [h

′
x ]

1−k is concave.39 If instead 1
1−k [ f

′
x ]

1−k is concave and 1
1−k [h

′
x ]

1−k is convex,

then u exhibits quasi-concave differences on the subset {(x , z ) ∈ X ×Z : Dx u (x , z )≥ 0}.

Proof. In the online appendix (Jensen (2015), Lemma 3).

From now on, call a function f : X → R k -convex [k -concave] if 1
1−k [ f (x )]

1−k is convex [con-

cave] where, as previously mentioned, the case k = 1 is taken to mean log-convex [log-concave]
by convention.40

Lemma 8 Given z , let a denote the least point at which v n (·, z ) is defined. Assume that

−Dy u (x , y , z ) is k -concave in (x , y ) [k -concave in (y , z )], and that v n (y , z ) =
∫ y

a
p n (τ, z ) dτwhere

p n (·, z ) is k -convex. Then g n (x , z ) is convex in x [convex in z ].

Proof. This is a direct application Theorem 2’s corollary (Corollary 2) to the optimization problem

in (35). We consider here only the convexity of g n in x (the exact same argument implies convex-

ity in z under the Lemma’s square-bracketed assumption). Except for quasi-convex differences

in (x , y ), all the assumptions of Corollary 2 are clearly satisfied (in particular, Γ is a convex corre-

spondence as mentioned immediately after Assumption 3). To see that quasi-convex differences

39In the limit case k = 1, 1
1−k [ f

′
x ]

1−k is by convention equal to log( f ′x ) (similarly for h ′x ).
40Quite a bit can be said about such functions, but since this is mainly a mathematical distraction from the point of

view of this paper, further investigation has been relegated to the online appendix.
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holds, we use Lemma 6 and must thus verify that,

Dy u (x , y , z ) +β

∫

p n (y , z ′)µz (d z ′),(36)

is quasi-convex in (x , y ) on the relevant set which, allowing for solutions at lower boundary points

is A ≡ {(x , y ) ∈ X 2 : Dy u (x , y , z ) + β
∫

Dy v n (y , z ′)µz (d z ′) ≤ 0}. To see that this holds, first use

that k -convexity is preserved under integration (Jensen (2015), Lemma 2) to conclude that when

p n (y , z ′) is k -convex in y , β
∫

p n (y , z ′)µz (d z ′) is k -convex in y . Then use Lemma 7.

To finish the proof we need just one last technical result.

Lemma 9 Assume that Dx u (x , y , z ) is k -convex in (x , y )and non-decreasing in y and that g n (x , z )
is convex in x . Then v n+1(x , z ) =

∫ x

a
p n+1(τ, z ) dτwhere p n+1(·, z ) is k -convex.

Proof. Since v n+1 is absolutely continuous, we can (abusing notation slightly) write it as: v n+1(x , z )
=
∫ x

a
Dx v n+1(τ, z ) dτ. In particular, Dx v n+1(x , z ) exists almost everywhere and when it exists

Dx v n+1(x , z ) = Dx u (x , g n (x , z ), z ) by the envelope theorem. k -convexity of p n+1(x , z ) ≡
Dx u (x , g n (x , z ), z ) in x now follows immediately from the fact that k -convexity is preserved under

convex, increasing transformations (Jensen (2015), Lemma 1).

To prove that g is convex, consider the value and policy function iterations (34)-(35). Start

with any value function v 0 such that v 0(y , z ) =
∫ y

a
p 0(τ, z ) dτ where p 0(·, z ) is k -convex. Then by

Lemma 8, g 0 is convex. Hence by Lemma 9, v 1(y , z ) =
∫ y

a
p 1(τ, z ) dτ where p 1(·, z ) is k -convex.

Repeating the argument, g 1 is convex and v 2(y , z ) =
∫ y

a
p 2(τ, z ) dτ where p 2(·, z ) is k -convex.

And so on ad infinitum. The pointwise limit of a sequence of convex function is convex, hence

g (·, z ) = limn→∞ g n (·, z ) is convex. The same argument applies for convexity in z , concluding the

proof of Theorem 4.

Remark 1 (General Markov Processes) The previous proof goes through without any modifica-

tions if zt is allowed to be a general Markov process, i.e., if the functional equation (23) is replaced

with:

v (x , z ) = sup
y ∈Γ (x ,z )

[u
�

x , y , z
�

+β

∫

v (y , z ′)Q (z , d z ′)] ,(37)

where Q is zt ’s transition function. Indeed, the previous proof goes through line-by-line if we

instead begin with the functional equation (37).

Remark 2 (Multidimensional Strategy Sets) The proof also easily extends to the case where X

and Z are multidimensional (a case treated in the Appendix). The only modification needed is

in the proof of Lemma 8 where now Theorem 5 in the appendix is needed to conclude that g n

is convex, in place of Theorem 2. Thus Theorem 4 extends to the multidimensional case if we

in addition assume that u is supermodular in y , that Γ ’s values are lower semi-lattices, and that

optimizers stay away from the upper boundary.41

41In particular, the objective function in (35) is supermodular in y when u is supermodular in y because supermod-
ularity/increasing differences is preserved under integration (Topkis (1998), Theorem 2.7.6.) and v n (y , z ′) is therefore
supermodular in y for all n .
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Remark 3 (Dispensing with Concavity Assumptions) The results of this section can be extended

to cases where the objective function is not concave in (x , y ) and/or is not strictly concave in y

(see Assumption 3). What is critical for the proof is that the value function is absolutely continu-

ous so that Lemma 6 can be applied. Of course, absolute continuity of the value function can be

established under weak direct conditions (see e.g. Milgrom and Segal (2002)) instead of being de-

rived as a consequence of concavity as done above. Instead of a convex policy function one then

gets a convex policy correspondence.
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