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Abstract. Approaches to the verification of multi-agent systems are typically
based on games or transition systems defined in terms of states and actions. How-
ever such approaches often ignore a key aspect of multi-agent systems, namely
that the agents’ actions require (and sometimes produce) resources. We survey
previous work on the verification of multi-agent systems that takes resources into
account, extending substantially a survey from 2016 [9].

1 Introduction

A multi-agent system (MAS) is a system that is composed of multiple interacting
agents. An agent is an autonomous entity that has the ability to collect information,
reason about it, and perform actions in pursuit of its goals or on behalf of others. Exam-
ples of agents are controllers for satellites, non-driver transport systems such as UAVs,
smart manufacturing cells, smart energy grids, and nodes in sensor networks.

Many distributed hardware and software systems can be naturally modelled as multi-
agent systems. Such systems are often extremely complex, and the interaction between
the components and their environment can lead to undesired behaviours that are difficult
to predict in advance. With the increasing use of autonomous agents in safety critical
systems, there is a growing need to verify that their behaviour conforms to the desired
system specification, and over the last decade verification of multi-agent systems has
become a thriving research area [35].

A key approach to the verification of MAS is model checking. Model checking
involves checking whether a model of the system satisfies a temporal logic formula cor-
responding to some aspect of the system specification. In a model-checking approach to
the verification of multi-agent systems, a MAS is represented by a finite state transition
system.3 A state transition system consists of a set of states and transitions between
them. Intuitively, each state of a MAS corresponds to a tuple of states of the agents
and of the environment, and each transition corresponds to actions performed by the
agents. Each state is labelled with atomic propositions that are true in that state. A

3 There is work on model-checking infinite state transition systems, see, for example, [18], but
in this paper we concentrate on the finite case.



standard assumption is that each state in the system has at least one outgoing transi-
tion (if a state is a deadlock state in the original MAS, we can model this by adding a
transition to itself by some null action and labelling it with a ‘deadlock’ proposition).
Properties of the system to be verified are expressed in an appropriate temporal logic
L. The model-checking problem for L is, given a state transition system M (and pos-
sibly a state s) and an L formula φ, check whether φ is true in M (at state s, or on
all paths from s, etc.). For example, Linear Time Temporal Logic (LTL) can express
properties of infinite runs through the system using a unary operator ‘in the next state’
© (©φ means that on this path, the next state satisfies φ) and a binary operator ‘un-
til’ U (φUψ means that on this path, ψ holds after finitely many steps, and before that,
φ holds in every state). Using these operators, one can define operators such as ♦ (in
some state on this path) and � (in every state on this path) and specify properties of
interest of the system, such as deadlock never happens (�¬d) or every request is even-
tually answered (�(r → ♦a)). In model checking MAS, such temporal logics are often
extended with additional modalities capturing the knowledge of agents, or the strategic
ability of groups of agents. Model checking has the advantage that it is a fully automated
technique, which facilitates its use in the MAS development process.4 A wide range of
approaches to model-checking MAS have been proposed in the literature, ranging from
the adaptation of standard model-checking tools, e.g., [20, 21] to the development of
special-purpose model checkers for multi-agent systems, e.g., [41, 33].

In many multi-agent systems, agents are resource-bounded, in the sense that they
require resources in order to act. Actions require time to complete and typically re-
quire additional resources depending on the application domain, for example energy or
money. For many applications, the availability or otherwise of resources is critical to
the properties to be verified: a multi-agent system may have very different behaviours
depending on the resource endowment of the agents that comprise it. For example, an
agent with insufficient energy may be unable to complete a task in the time assumed by
a team plan if it has to recharge its battery before performing the task.

In this paper we survey state of the art in the emerging field of logics for verification
of resource-bounded agents, and highlight a number of challenges that must be over-
come to allow practical verification of resource-bounded MAS. We argue that recent
work on the complexity of model-checking for logics of strategic ability with resources
offers the possibility of significant progress in the field, new verification approaches and
tools, and the ability to verify the properties of a large, important class of autonomous
system that were previously out of reach.

The remainder of the paper is organised as follows. In Section 2, we introduce some
necessary background material on weighted games. Reachability in weighted games
can be seen as a verification technique in its own right; however, it is included here as a
source of technical results relevant for strategic resource logics. In this section, we also
introduce the syntax and semantics of strategy logics (without resources) that are the
underlying formalism for resource logics. In Section 3 we briefly survey recent work in
resource logics and study two logics, RB±ATL and RB±ATL∗, in greater detail. We
conclude in Section 4 with a summary of results and open problems.

4 Another strand of work focusses on theorem proving, e.g., [44], but such approaches typically
require user interaction to guide the search for a proof.



2 Background

In this section, we recall relevant definitions and results for energy games, vector addi-
tion systems with states, and the logics of strategic ability ATL and ATL∗.

We first introduce some notational conventions. In what follows, we use the usual
point-wise notation for vector comparison and addition. In particular, (b1, . . . , bn) ≤
(d1, . . . , dn) iff bi ≤ di ∀i ∈ {1, . . . , n}, (b1, . . . , bn) = (d1, . . . , dn) iff bi = di
∀ i ∈ {1, . . . , n}, and (b1, . . . , bn) + (d1, . . . , dn) = (b1 + d1, . . . , bn + dn) and
(b1, . . . , bn) − (d1, . . . , dn) = (b1 − d1, . . . , bn − dn). We define (b1, . . . , bn) <
(d1, . . . , dn) as (b1, . . . , bn) ≤ (d1, . . . , dn) and (b1, . . . , bn) 6= (d1, . . . , dn). Given
a function f returning a vector, we denote by fi the function that returns the i-th com-
ponent of the vector returned by f . We use bold letters to denote vectors.

Given a set S, the set of finite sequences of elements from S is denoted by S+. For a
sequence λ = s1 . . . sk ∈ S+, we use the notation λ[i] = si for i ≤ k, λ[i, j] = si . . . sj
∀ 1 ≤ i ≤ j ≤ k, and |λ| = k for the length of λ.

2.1 Energy Games and Vector Addition Systems with States

Distributed systems that produce and consume resources have been modelled using a
variety of approaches, including Petri nets, energy games and vector addition systems
with states. In this section, we briefly recall some results from these areas relevant
to resource logics and model checking resource-bounded MAS. We will first briefly
introduce a version of energy games before introducing a variant of alternating vector
addition systems with states (AVASS). We focus on the reachability and non-termination
problems for AVASS, as these are the most relevant for the results on resource logics in
Section 3.

Energy Games Energy games [28] are games between two players, played on multi-
weighted game graphs.

Definition 1. A multi-weighted game graph of dimension r is a tuple (S, r,R) where
S is the set of vertices, R ⊆ S × Zr × S is a finite set of edges labelled by a vector of
integers of length r called a weight. Each vertex has at least one outgoing edge. The set
of vertices is partitioned into two sets, Player 1 vertices S1 and Player 2 vertices S2.

The dimension is the number of resource types, where resource types can be, e.g., en-
ergy, memory or some other kind of capacity, time, money, etc. The vertices can be
thought of as states, and edges as transitions between states with associated costs and
rewards for each resource type. The weight of an edge describes how the corresponding
transition affects the resource amounts. Note that, in the graph, there are no resource
vectors associated with the vertices, so that the structure can be finitely represented.
However we can talk about configurations which are pairs (s,v) where s is a vertex
and v a vector of resources: intuitively, v is the resource amounts available in s in this
configuration. A path is a finite sequence of configurations (s1,v1), . . . , (sn,vn), such
that for each j with 1 ≤ j ≤ n there is an edge (sj ,vj+1 − vj , sj+1). A play from
vertex s is an infinite sequence of configurations ρ = (s,v), . . . , such that every finite



prefix is a path. A strategy for a player i is a function Fi taking as input a path ρ · (s,v)
ending in Player i vertex s and returning an edge Fi(ρ · (s,v)) of the form (s,u, s′)
fromE. A play ρ = (s1,v1), . . . , (sj ,vj) . . . is consistent with a strategy Fp for Player
p if whenever sj is in Sp, then Fp(ρ[1, j]) = (sj ,vj+1 − vj , sj+1).

Definition 2. Given a multi-weighted graph (S, r,R), an initial vertex s, and a vector
b ∈ Nr, a play ρ from s is winning for Player 1 in the energy game on (S, r,R) with
initial credit b if for all configurations ρ[j] = (sj ,vj), vj ≥ 0. Otherwise, Player 2
wins the play. Player 1 wins the energy game on (S, r,R) from s with initial credit b
if there exists a winning strategy F1 for Player 1, that is, a strategy such that for all
strategies F2 of Player 2, the play consistent with both strategies is winning for Player
1.

Intuitively, starting in state s with initial credit (resource allocation) b, Player 1 can
play forever without any resource amount dropping below 0. Clearly, the higher the
initial credit, the better for Player 1; if Player 1 has a winning strategy for (s,b), and
b ≤ b′, then Player 1 has a winning strategy from (s,b′).

Definition 3. The following problem is the existence of a winning strategy for Player 1
with known initial credit.

Input: A multi-weighted graph (S,R, r), an initial state s ∈ S and an initial credit b.
Question: Does Player 1 have a winning strategy in the corresponding energy game?

An energy game with unknown initial credit starting in s is won by Player 1 iff for
some initial credit, Player 1 has a winning strategy.

Definition 4. The following problem is the existence of a winning strategy for Player 1
with unknown initial credit.

Input: A multi-weighted graph (S,R, r) and an initial state s ∈ S.
Question: Does Player 1 have a winning strategy in the corresponding energy game

for some initial credit b?

Both problems (existence of a winning strategy for known and unknown initial
credit) were first shown to be decidable in [22]. In [37] both problems were shown
to be decidable in 2EXPTIME (polynomial in the size of the graph, double exponen-
tial in the dimension r). In [37] it was also shown that the set of all Pareto optimal
(non-dominated) initial credits for which Player 1 has a winning strategy is computable
in time doubly exponential in the dimension and pseudo-polynomial in the number of
states and edges.

There are many versions of energy games: with only unit costs, with only one re-
source type, with imperfect information. A version with finite strategies was studied in
[28] and shown to be decidable and in coNP.



Alternating Vector Addition Systems with State An alternating vector addition sys-
tem with state (AVASS) can be used as a setting for various two player games. There are
many different versions of AVASS and decision problems for them. The game semantics
for AVASS presented below was introduced in [38].

Definition 5. An alternating vector addition system with states (AVASS) is a tuple A =
(S, r,R1, R2), where S is a finite set of states, r is the dimension (number of resource
types), R1 ⊆ S × Zr × S and R2 ⊆ S3.

Intuitively, R1 edges correspond to Player 1 moves, and R2 triples (s, s1, s2) cor-
respond to Player 2 choices of where to move from the state s, to s1 or to s2. Note that
unlike in energy games, the setting is asymmetric in that only Player 1 moves change re-
source amounts. A path of configurations is defined the same way as for energy games:
in a configuration (s,b), if the next move is (s,v, s′) ∈ R1, then the next configuration
is (s′,b+ v); if the next move is (s, s1, s2) ∈ R2, then, depending on the choice made
by Player 2, the next configuration is either (s1,b) or (s2,b).

The following problem is essentially the same as the existence of a winning strategy
for Player 1 in an energy game with known initial credit:

Definition 6. The following problem is the known initial credit non-termination prob-
lem for AVASS:

Input: An AVASS A = (S, r,R1, R2), an initial state s ∈ S and an initial credit b.
Question: Does Player 1 have a strategy such that every play consistent with this

strategy is infinite and all resource amounts in configurations on the path are non-
negative?

This problem was shown to be decidable and in (r − 1)-EXPTIME in [22], 2EXP-
TIME hard in [30], and in 2EXPTIME in [37]. The unknown initial credit version of the
problem is also 2EXPTIME-complete [37]. The set of all Pareto optimal initial credits
for which Player 1 has a winning strategy can be computed in 2EXPTIME [37].

Another problem which has been studied in the AVASS literature is state reachabil-
ity. The state reachability problem is whether Player 1 has a strategy to reach a particular
state while ensuring resource amounts remain non-negative (as opposed to reachability
of a particular configuration (s′,v), which is undecidable, [40]). The state reachability
problem for energy games is undecidable [2].

Definition 7. The following problem is the known initial credit state reachability prob-
lem for AVASS:

Input: An AVASS A = (S, r,R1, R2), an initial state s ∈ S, an initial credit b and
state s′ ∈ S.

Question: Does Player 1 have a strategy such that every path generated by this strat-
egy eventually reaches a configuration where the state is s′, and until that configu-
ration, all resource amounts on the path are non-negative?

This problem was shown to be decidable in [43], and to be 2EXPTIME-complete in
[30]. In the same paper, the state reachability problem with unknown initial credit was
also shown to be 2EXPTIME-complete. The set of all Pareto optimal initial credits for
which Player 1 has a winning strategy can be computed in 2EXPTIME [37].



Parity Games on AVASS Another kind of games on AVASS is parity games. Let
A = (S, r,R1, R2) be an AVASS. A colouring col is defined as a map S → {0, . . . , k}
for some k ≥ 1.

Definition 8. The parity game problem for AVASS is as follows:

Input: An AVASS A, an initial state s ∈ A, an initial credit b ∈ Nr and a colouring
col : S → {0, . . . , k}

Question: Does Player 1 have a strategy in (s,b) such that every play consistent with
this strategy is infinite, resource amounts in configurations on the path are non-
negative, and on every play the maximal colour that appears infinitely often is even?

The parity game problem for alternating VASS is decidable. This was shown in [5]
to be a consequence of Corollary 2 in [1] which states the decidability of parity games
for single-sided VASS. A single-sided VASS is an AVASS where the set of states is
partitioned into S1 and S2, R1 transitions start from states in S1, R2 transitions start
from states in S2, and there is at most one R2 transition from each S2 state.

2.2 Strategy Logics

In this section, we briefly recall some key results for the strategy logics Alternating
Time Temporal Logic (ATL) [16] and the more expressive ATL∗ that are the underlying
formalisms for many of the resource logics discussed in Section 3.

Alternating Time Temporal Logic ATL generalises other temporal logics such as
Computation Tree Logic (CTL) [29] (which can be seen as a one-agent ATL) by intro-
ducing a notion of strategic ability. ATL allows us to express properties relating to the
strategic abilities of a coalition or set of agents regardless of what the other agents in
the system do.

ATL is interpreted over concurrent game structures. A concurrent game structure is
a transition system in which edges correspond to a tuple of actions performed simulta-
neously by all the agents (see below and Figure 1 for an example).

Definition 9. A concurrent game structure (CGS) is a tuple M = (Agt, S,Π, π, Act,
d, δ) where:

– Agt is a non-empty finite set of n agents,
– S is a non-empty finite set of states;
– Π is a finite set of propositional variables and π : Π → ℘(S) is a truth assignment

which associates each proposition in Π with a subset of states where it is true;
– Act is a non-empty set of actions
– d : S × Agt → ℘(Act) \ {∅} is a function which assigns to each s ∈ S a non-

empty set of actions available to each agent a ∈ Agt. We denote joint actions by
all agents in Agt available at s by D(s) = d(s, a1)× · · · × d(s, an);

– δ : S × Act|Agt| → S is a partial function that maps every s ∈ S and joint action
σ ∈ D(s) to a state resulting from executing σ in s.



Given a CGS M and a state s ∈ S, a joint action by a coalition A ⊆ Agt is a
tuple σ = (σa)a∈A (where σa is the action that agent a executes as part of σ, the ath
component of σ) such that σa ∈ d(s, a). The set of all joint actions for A at state s is
denoted by DA(s).

Given a joint action byAgt σ ∈ D(s), σA (a projection of σ onA) denotes the joint
action executed by A as part of σ: σA = (σa)a∈A. The set of all possible outcomes of
a joint action σ ∈ DA(s) at state s is:

out(s, σ) = {s′ ∈ S | ∃σ′ ∈ D(s) : σ = σ′A ∧ s′ = δ(s, σ′)}

Depending on the variant of ATL, a strategy is a choice of actions which either only
depends on the current state (memoryless strategy) or on the finite history of the current
state (perfect recall strategy). In this survey, we concentrate mainly on perfect recall
strategies. A strategy for a coalition A ⊆ Agt in a CGS M is a mapping FA : S+ →
Act|A| such that, for every λ ∈ S+, FA(λ) ∈ DA(λ[|λ|]). A computation (infinite path)
λ is consistent with a strategy FA iff, for all i, λ[i + 1] ∈ out(λ[i], FA(λ[1, i])). We
denote by out(s, FA) the set of all computations λ starting from s that are consistent
with FA.

The language of ATL contains atomic propositions, boolean connectives ¬,∧, etc.
and modalities 〈〈A〉〉©, 〈〈A〉〉� and 〈〈A〉〉U for each subset A of the set of all agents
Agt (or coalition, in ATL terms), which express the strategic ability of the coalition A.
〈〈A〉〉©φmeans that the coalition of agentsA has a choice of actions such that, regardless
of what the other agents in the system do, φ will hold in the next state. 〈〈A〉〉�φ means
that coalitionA has a strategy to keep φ true forever, regardless of what the other agents
do. Finally, 〈〈A〉〉φU ψ means that A has a strategy to ensure that after finitely many
steps ψ holds, and in all the states before that, φ holds.

Given a CGS M and a state s of M , the truth of an ATL formula φ with respect to
M and s is defined inductively on the structure of φ as follows:

– M, s |= p iff s ∈ π(p);
– M, s |= ¬φ iff M, s 6|= φ;
– M, s |= φ ∨ ψ iff M, s |= φ or M, s |= ψ;
– M, s |= 〈〈A〉〉©φ iff ∃ strategy FA such that for all λ ∈ out(s, FA), M,λ[2] |= φ;
– M, s |= 〈〈A〉〉φU ψ iff ∃ strategy FA such that for all λ ∈ out(s, FA), ∃i such that
M,λ[i] |= ψ and M,λ[j] |= φ for all j ∈ {1, . . . , i− 1};

– M, s |= 〈〈A〉〉�φ iff ∃ strategy FA such that for all λ ∈ out(s, FA), for all i,
M,λ[i] |= φ.

Example Figure 1 illustrates a simple ATL model of a system with two agents, 1 and
2, and actions α, β, γ and idle. Action tuples on the edges show the actions of each
agent, for example, in the transition from state sI to s, agent 1 performs action α and
agent 2 performs idle. In this system, in state sI , agent 1 has a (memoryless) strategy to
enforce that p holds eventually in the future no matter what agent 2 does, which can be
expressed in ATL as 〈〈{1}〉〉>U p. Similarly, in sI agent 1 has a memoryless strategy to
keep ¬p true forever, so 〈〈{1}〉〉�¬p holds in sI .

Definition 10. The following problem is the model checking problem for ATL:



sI s s'

p

⟨idle, idle⟩

⟨idle, idle⟩

⟨idle, idle⟩

⟨α, idle⟩

⟨idle, β⟩

⟨γ, idle⟩

⟨γ, β⟩

Fig. 1: Example of a state transition system.

Input: A CGS M , a formula φ of ATL, and a state s ∈M .
Question: Does it hold that M, s |= φ?

The model-checking problem for ATL can be solved in time polynomial in the size
of the transition system and the property [16], and there exist model-checking tools for
ATL, for example, MOCHA [17] and MCMAS [41].

ATL∗ ATL∗ is strictly more expressive than ATL in allowing arbitrary combinations
of temporal modalities and booleans after the coalition modalities. The syntax of ATL∗

includes two kinds of formulas, state formulas φ and path formulas γ. Formulas of
ATL∗ are defined by the following syntax:

φ ::= p | ¬φ | φ ∨ φ | 〈〈A〉〉γ

γ ::= φ | ¬γ | γ ∨ γ | ©γ | γ U γ | �γ

where p ∈ Π is a proposition and A ⊆ Agt.
The language of ATL∗ is interpreted on the same CGS as ATL. However, there are

two satisfaction relations, |=s for state formulas, and |=p for path formulas:

– M, s |=s p iff s ∈ π(p);
– M, s |=s ¬φ iff M, s 6|=s φ;
– M, s |=s φ ∨ ψ iff M, s |=s φ or M, s |=s ψ;
– M, s |=s 〈〈Ab〉〉γ iff exists a strategy FA such that for all λ ∈ out(s, FA), M,λ |=p
γ;
M,λ |=p φ iff M,λ[1] |=s φ (for state formulas φ)

– M,λ |=p ©γ iff M,λ[2,∞) |=p γ
– M,λ |=p γ1Uγ2 iff ∃k such that M,λ[k,∞) |= γ2 and M,λ[j,∞) |= γ1 for all
j ∈ {1, . . . , k − 1}.

– M,λ |=p �γ iff for all j M, λ[j,∞) |=p γ.

Definition 11. The following problem is the model checking problem for ATL∗:



Input: A CGS M , a state formula φ of ATL∗, and a state s in M .
Question: Does it hold that M, s |=s φ?

The complexity of the model checking problem for ATL∗ is 2EXPTIME-complete
[16].

3 Resource Logics

In order to model multi-agent systems where the actions of agents produce and consume
resources, it is necessary to modify strategy logics in two ways. The first modification
is to add resource annotations to the actions in the transition system: for each individual
action and each resource type, we need to specify how many units of this resource type
the action produces or consumes. For example, suppose that there are two resource
types, r1 and r2 (e.g., energy and money). Then we can specify that action α in Figure
1 produces two units of r1 and consumes one unit of r2, action β consumes one unit of
r1 and produces one unit of r2, action γ consumes five units of r1, and action idle does
not produce or consume any resources. Clearly, this makes the transition system of a
CGS resemble multi-weighted graphs or AVASS introduced in Section 2.1.

The second modification is to extend the logical language so that we can express
properties related to resources. For example, we may want to express a property that a
group of agents A can eventually reach a state satisfying φ or can maintain the truth of
ψ forever, provided that they have available n1 units of resource type r1 and n2 units of
resource type r2. Such statements about coalitional ability under resource bounds can
be expressed in an extension of ATL where coalitional modalities are annotated with a
resource bound on the strategies available to the coalition. We call logics where every
action is associated the resources it produces and/or consumes and where the syntax
allows the resource requirements of agents to be expressed, resource logics.

To illustrate the properties resource logics allow us to express, consider the model in
Figure 1 with the production and consumption of resources by actions specified above.
In this setting, we can verify if agent 1 can eventually enforce p provided that it has
one unit of r2 in state sI , or whether the coalition of agents {1, 2} can achieve p under
this resource bound by working together. There are surprisingly many different ways of
measuring costs of strategies and deciding which actions are executable by the agents
given the resources available to them, but under at least one possible semantics, the
answer to the first question is no and to the second one yes, but the latter requires a
perfect recall strategy (the two agents should loop between states sI and s until they
produce a sufficient amount of resource r1, and then execute actions corresponding to
the 〈γ, idle〉 transition from s to s′).

Clearly, the model-checking problem for temporal logics is a special case of the
model-checking problem for the corresponding resource logics. The question is, how
much harder does the model-checking problem become when resources are added?

3.1 Overview of Resource Logics

In this section, we briefly review the historical development of resource logics, and
introduce some resource logics in more detail. We focus on expressiveness and model-



checking complexity, as these features determine the suitability of a particular logic for
practical verification.

Consumption of Resources Early work on resource logics considered only consump-
tion of resources (i.e., no action produces resources), and initial results were encourag-
ing.

One of the first logics capable of expressing resource requirements of agents was a
version of Coalition Logic (CL),5 called Resource-Bounded Coalition Logic (RBCL),
where actions only consume (and don’t produce) resources. RBCL was introduced in
[3] with the primary motivation of modelling systems of resource-bounded reasoners
(with three resource types: time, space, and communication cost), however the frame-
work is sufficiently general to model any kind of action. The model-checking problem
for this logic was shown to be decidable in [11] in polynomial time in the transition
system and the property, and exponential in the number of resource types.

A resource-bounded version of ATL, RB-ATL, where again actions only consume
(and not produce) resources was introduced in [4]. It was also shown that the model-
checking problem for this logic is decidable in time polynomial in the size of the tran-
sition system and exponential in the number of resource types. (For a single resource
type, e.g., energy, the model-checking problem is no harder than for ATL.) Its syntax is
the same as RB±ATL given in Section 3.2 below, but in the semantics no actions pro-
duce resources. Probabilistic RB-ATL was introduced in [42] and its model checking
problem shown to be decidable in EXPTIME.

Practical work on model-checking standard computer science transition systems
(not multi-agent systems) with resources also falls in the category of consumption-
only systems, for example the probabilistic model-checking of systems with numerical
resources in the PRISM model-checker [39] assumes costs monotonically increasing
with time.

Bounded Production and Undecidability in the Unbounded Setting However, when
resource production is considered in addition to consumption, the situation changes. In
a separate strand of work, a range of different formalisms for reasoning about resources
was introduced in [25, 23]. In those formalisms, both consumption and production of
resources was considered. In [24] it was shown that the problem of halting on empty
input for two-counter automata [36] can be reduced to the model-checking problem for
several of their resource logics. Since the halting problem for two-counter automata is
undecidable, the model-checking problem for a variety of resource logic with produc-
tion of resources is undecidable. The reduction uses two resource types (to represent the
values of the two counters) and either one or two agents depending on the version of the
logic (whether the agents have perfect recall, whether the formula talking about coali-
tion A can also specify resource availability for remaining agents, and whether nested
operators ‘remember’ initial allocation of resources or can be evaluated independently
of such initial allocation).

5 CL is a fragment of ATL with only the next time 〈〈A〉〉© modality.



The only decidable cases considered in [23] are an extension of CTL with resources
(essentially one-agent ATL) and a version where on every path only a fixed finite
amount of resources can be produced. In [23], the models satisfying this property are
called bounded, and the authors note that RBCL and RB-ATL are logics over a special
kind of bounded models (where no resources are produced at all). Other decidability re-
sults for bounded resource logics have also been reported in the literature. For example,
[31] define a decidable logic, PRB-ATL (Priced Resource-Bounded ATL), where the
total amount of resources in the system has a fixed bound. The model-checking algo-
rithm for PRB-ATL requires time polynomial in the size of the model and exponential
in the number of resource types and the resource bound on the system. In [32] an EXP-
TIME lower bound in the number of resource types for the PRB-ATL model-checking
problem is shown.

A general logic over systems with numerical constraints called QATL∗ was intro-
duced in [26]. In that paper, more undecidability results for the model-checking problem
of QATL∗ and its fragments were shown. For example, QATL (Quantitative ATL) is un-
decidable even if no nestings of coalition modalities is allowed. The main proposals for
restoring decidability to the model-checking problem for QATL in [26] are removing
negative payoffs (similar to removing resource production) and also introducing memo-
ryless strategies. Shared resources were considered in [27]; most of the cases considered
there have undecidable model-checking (apart from the case of a single shared resource,
which has decidable model-checking).

In summary, one approach to decidable model checking in the presence of resource
production is to bound the amount of resources produced globally in the model. For
some systems of resource-bounded agents, this is a reasonable restriction. For exam-
ple, agents that need energy to function and are able to charge their battery, can never
‘produce’ more energy than the capacity of their battery. This is a typical bounded sys-
tem. A special case of bounded systems, where model checking is even more tractable,
are systems where one of the resources is always consumed by any action. A typical
example of such a resource is time. Several resource logics with diminishing resource
were investigated in [10] and shown to have a PSPACE or EXPSPACE model checking
procedure (while the corresponding logic without diminishing resource sometimes has
undecidable model checking).

In the next couple of sections, we report results for resource logics with unbounded
production of resources and a decidable model checking problem.

3.2 RB±ATL

In [12] a version of ATL, RB±ATL, was introduced where actions both produce and
consume resources. The models of the logic do not impose bounds on the overall pro-
duction of resources, and the agents have perfect recall. The syntax of RB±ATL is very
similar to that of ATL, but coalition modalities have superscripts which represent re-
source allocation to agents. Instead of stating the existence of some strategy, they state
the existence of a strategy such that every computation generated by following this
strategy consumes at most the given amount of resources. Coming back to the exam-
ple, the property that agent 1 can eventually enforce p provided that it has one unit of
r2 can be expressed as 〈〈{1}(0,1)〉〉>U p. Here, (0, 1) is the allocation of 0 units of r1



and 1 unit of r2 to coalition {1}. In RB±ATL, resource allocation is only shown for
the proponent agents, {1} in this case. Versions of resource logic where opponents are
also resource-bounded all have an undecidable model-checking problem, see [23]. It is
also possible to consider individual allocations of resources to agents in the proponent
coalition, which would affect complexity results below for one resource type.

Formally, the syntax of RB±ATL is defined relative to the following sets: Agt =
{a1, . . . , an} is a set of n agents, Res = {res1, . . . , resr} is a set of r resource
types, Π is a set of propositions, and B = Nr is a set of resource bounds. Formulas
of RB±ATL are defined by the following syntax:

φ, ψ ::= p | ¬φ | φ ∨ ψ | 〈〈Ab〉〉©φ | 〈〈Ab〉〉φU ψ | 〈〈Ab〉〉�φ

where p ∈ Π is a proposition,A ⊆ Agt, and b ∈ B is a resource bound. Here, 〈〈Ab〉〉©φ
means that a coalition A can ensure that the next state satisfies φ under resource bound
b. 〈〈Ab〉〉φU ψ means that A has a strategy to enforce ψ while maintaining the truth
of φ, and the cost of this strategy is at most b. Finally, 〈〈Ab〉〉�φ means that A has a
strategy to maintain ψ forever, and the cost of this strategy is at most b.

The language is interpreted on resource-bounded concurrent game structures.

Definition 12. A resource-bounded concurrent game structure (RB-CGS) is a tuple
M = (Agt, Res, S,Π, π, Act, d, c, δ) where:

– Agt, S,Π, π, Act, d, δ are as in Definition 9;
– Res is a non-empty finite set of r resource types,
– c : S × Act → Zr is a partial function which maps a state s and an action
σ to a vector of integers, where the integer in position i indicates consumption
or production of resource ri by the action (here, we assume negative value for
consumption and positive value for production for consistency with AVASS, unlike
in [12]).

A strategy for a set of agents A is a function FA : S+ → ActA such that FA(λ) ∈
DA([λ[|λ|]). Given a bound b ∈ B, a computation λ ∈ out(s, FA) is b-consistent iff
for every i,

b+Σic(FA(λ[1, i])) ≥ 0

In other words, if agents start with allocation b, the amount of resources any of the
agents have on the computation is never negative for any resource type.

A strategy FA is b-consistent in s, if all computations in out(s, FA) are b-consistent.
Given a RB-CGS M and a state s of M , the truth of an RB±ATL formula φ with

respect to M and s is defined inductively on the structure of φ as follows:

– M, s |= p iff s ∈ π(p);
– M, s |= ¬φ iff M, s 6|= φ;
– M, s |= φ ∨ ψ iff M, s |= φ or M, s |= ψ;
– M, s |= 〈〈Ab〉〉©φ iff ∃ b-consistent strategy FA such that for all λ ∈ out(s, FA),
M,λ[2] |= φ;

– M, s |= 〈〈Ab〉〉φU ψ iff ∃ b-consistent strategy FA such that for all λ ∈ out(s, FA),
∃i such that M,λ[i] |= ψ and M,λ[j] |= φ for all j ∈ {1, . . . , i− 1}.



– M, s |= 〈〈Ab〉〉�φ iff ∃ b-conststent strategy FA such that for all λ ∈ out(s, FA),
for all i, M,λ[i] |= φ.

Definition 13. The following problem is the model checking problem for RB±ATL:

Input: A RB-CGS M , a formula φ of RB±ATL, and a state s ∈M .
Question: Does it hold that M, s |= φ?

The model-checking problem for RB±ATL is decidable. The existence of a de-
cidable resource logic with unbounded production was surprising, as it was the first
indication that it is possible to automatically verify properties of this important class
of resource-bounded multi-agent systems. In [12], decidability of the model-checking
problem was shown by producing a direct model checking algorithm and arguing that
it terminates due to the fact that in any sequence of elements from Nr, eventually two
elements are comparable in ≤ (well-quasi ordering of Nr).

3.3 Correspondence between Games on AVASS and RB±ATL Semantics

There are clear similarities between RB±ATL semantics and decidable problems for
AVASS and energy games. In [5] these similarities were made precise, and the model
checking problem for RB±ATL was shown to be polynomial in the size of the model
and the formula, and double exponential in the number of resource types, by reducing
the model checking to decision problems on AVASS. We will briefly recapitulate the
correspondence here.

For the purposes of making the correspondence easier to state, the definitions of
AVASS and the state reachability problem were generalised as follows, without affect-
ing the complexity of decision problems ([5], Lemma 7):

– instead of R2 ⊆ S3, elements in R2 can be tuples of any length n ≥ 2 (but R2 is
finite);

– the input to the reachability problem is a set of goal states S′ ⊆ S (instead of a
singleton set {s′}).

This generalisation of AVASS makes it easier to transfer complexity results from AVASS
to resource logics, since the transition systems that form the models of resource logics
may have more than binary branching, and reachability refers to properties (sets of
states) rather singleton states. Here, we will refer to this generalisation as generalised
AVASS.

Next we briefly elaborate on the concrete reduction of RB±ATL model-checking
problem to decision problems on generalised AVASS. Assume that we are designing a
state labelling model checking algorithm for RB±ATL, where given a formula φ and
a model, we label each state with subformulas of φ true in that state, in the increasing
order of complexity of subformulas. Clearly, there is no problem with doing this for
propositional variables and for boolean combinations of earlier encountered formulas,
and in fact also for the next state operators. The only difficulty is formulas of the form
〈〈Ab〉〉ψ1 U ψ2 or 〈〈Ab〉〉�ψ. Intuitively, we need to build a different AVASS for every
state in the model and every subformula of this form, and then solve a reachability



or non-termination problem for them. We describe next how we build this generalised
AVASS.

Given an RB-CGS M = (Agt, Res, S,Π, π, Act, d, c, δ), a distinguished state s∗

(where we want to evaluate the formula) and a coalition A ⊆ Agt (from the main coali-
tion modality in the formula), the corresponding generalised AVASS G = (SG, rG,
RG1 , RG2 ) is constructed as follows. The set of states of G is defined as follows:

SG = {s∗} ∪ {(s′, α) | s′ ∈ S, α ∈ DA(s
′)} ∪ {(σ, s′′) | s′′ ∈ S, σ ∈ D(s′′)}.

Obviously, rG = Res. Transitions are defined as follows:

RG1 = {(s∗, cost(s∗, α), (s∗, α)) | α ∈ DA(s
∗)} ∪ {((σ, s′), costA(s′, σ), (s′, α)) |

(σ, s′) ∈ SG, α ∈ DA(s
′)}

RG2 = {((s′, α), (σ1, s1), . . . , (σk, sk)) | σi ∈ D(s′), α = σiA, s
i = δ(s′, σi)}

Note that the size of G is polynomial in M . When evaluating a subformula of the
form 〈〈Ab〉〉�ψ, the strategy witnessing the truth of the formula has to visit only states
satisfying ψ. Since the complexity of ψ is less than the complexity of 〈〈Ab〉〉�ψ, we can
assume that we know which states in M satisfy ψ. To compute the generalised AVASS
where a winning strategy for non-termination exists iff 〈〈Ab〉〉�ψ is true, we remove
from SG all states where the state component of the pair does not satisfy ψ. We denote
the resulting generalised AVASS Gψ . Similarly, to make sure that a strategy to reach
a ψ2 state always goes only through ψ1 states before reaching ψ2, we remove from G
all states that satisfy neither ψ1 nor ψ2. We denote the resulting generalised AVASS
Gψ1,ψ2 .

In [5], Lemmas 2-6 and Theorem 1 demonstrate that M, s∗ |= 〈〈Ab〉〉ψ1 U ψ2 if,
and only if, there is a winning strategy for Player 1 in a reachability game in the corre-
sponding generalised AVASS Gψ1,ψ2 with initial credit b and target the set of ψ2 states,
and M, s∗ |= 〈〈Ab〉〉�ψ if, and only if, there is a winning strategy for Player 1 in a non-
termination game in the the corresponding generalised AVASS Gψ with initial credit
b.

3.4 RB±ATL∗

RB±ATL∗ is a more expressive logic than RB±ATL, and was introduced in [5].
As is the case with ATL∗, the syntax of RB±ATL∗ includes state formulas φ and

path formulas γ. Formulas of RB±ATL∗ are defined by the following syntax

φ ::= p | ¬φ | φ ∨ φ | 〈〈Ab〉〉γ

γ ::= φ | ¬γ | γ ∨ γ | ©γ | γ U γ | �γ |

where p ∈ Π is a proposition, A ⊆ Agt, and b ∈ B is a resource bound.
The language of RB±ATL∗ is interpreted on the same RB-CGS as RB±ATL. The

truth definition is identical to that of ATL∗, apart from the following clause:

– M, s |=s 〈〈Ab〉〉γ iff ∃ b-consistent strategy FA such that for all λ ∈ out(s, FA),
M,λ |=p γ;



Definition 14. The following problem is the model checking problem for RB±ATL∗:

Input: A RB-CGS M , a state formula φ of RB±ATL∗, and a state s ∈M .
Question: Does it hold that M, s |=s φ?

Surprisingly, even without idle actions, which seem to make the difference between
decidable and undecidable model-checking for some resource logics (see Section 3.2),
the model checking problem for RB±ATL∗ is decidable [5] by reduction to parity
games on single sided VASS [1]. Moreover, it is decidable in 2EXPTIME, that is, has
the same complexity as RB±ATL.

In [19], several fragments of RB±ATL and RB±ATL∗ of the form RB±ATL (n, r)
and RB±ATL∗ (n, r), where the logic is parameterised by the number n of agents and
the number r of resource types were studied.6 In particular, RB±ATL (1, 1) was shown
to be PTIME-complete, and RB±ATL∗ (1, 1) PSPACE-complete (see Table 1).

3.5 Other Resource Logics with Decidable Model-Checking

RAL is a very expressive resource logic with undecidable model-checking problem
introduced in [23]. In [6], a new syntactic fragment FRAL of RAL with a decid-
able model-checking problem was identified. FRAL restricts the occurrences of coali-
tional modalities on the left of Until formulas. On the other hand, it allows nested
modalities to refer to resource allocation at the time of evaluation, rather than always
considering a fresh resource allocation, as in RB±ATL. For example, the formula
〈〈Ab〉〉φU 〈〈A↓〉〉ψ1 U ψ2 says that, given resource allocation b, coalition A can always
reach a state (maintaining φ) where, with the remaining resources, it can reach ψ2 while
maintaining ψ1. In [6] the boundary between decidability and undecidability was also
investigated, and the availability of an ‘idle’ action (i.e., if the semantics requires that
in every state each agent has an action that does not produce or consume resources) was
shown to be critical: model checking FRAL is decidable in the presence of idle actions,
and is not decidable otherwise.

Although model-checking of ATL with perfect recall and uniform strategies is un-
decidable, if uniformity is replaced with a weaker notion, for example, if it is defined
in terms of distributed knowledge, model checking becomes decidable [34]. A similar
result hold for RB±ATSEL, a version of RB±ATL with syntactic epistemic knowledge
and a weaker notion of uniformity [8].

4 Summary and Future Challenges

In Table 1 we summarise the complexity results for the resource logics with a decidable
model checking problem discussed in Section 3. In the table, the ‘Idle’ column indicates
whether the semantics for a logic requires that in every state each agent has an action
that produces and consumes no resources. New results not appearing in the previous
survey [9] are highlighted in bold.

The results for (fragments of) RB±ATL and RB±ATL∗ offer the possibility of sig-
nificant progress in the verification of resource-bounded multi-agent systems. However
many challenges remain for future research. Below we list three of the most important.

6 Note that RB±ATL (n, 1) was referred to in [14] as 1-RB±ATL.



Logic Resource Idle Complexity of
Production Model-Checking

RBCL no yes in EXPTIME (PTIME in model) [3]
RB-ATL no yes in EXPTIME (PTIME in model) [4]

PRB-ATL bounded yes EXPTIME-c [32]
RB±ATL yes yes 2EXPTIME-c [5]

RB±ATL (n, 1) yes yes in PSPACE [14]
RB±ATL (1, 1) yes yes PTIME-c [19]

FRAL yes yes ?
RB±ATSEL yes yes ?
RB±ATL∗ yes no 2EXPTIME-c [5]

RB±ATL∗ (n, 1) yes no EXPSPACE-c [5]
RB±ATL∗ (1, 1) yes yes PSPACE-c [5, 19]

Table 1: Resource logics with decidable model-checking problem

Understanding the Sources of Undecidability Developing a better understanding of
the sources of decidability and undecidability (beyond boundedness) will be critical to
future progress. As observed in [23], subtle differences in truth conditions for resource
logics result in the difference between decidability and undecidability of the model
checking problem. Some work in this direction is reported in [6, 7, 5].

Logics with Lower Complexity It is useful to discover sources of undecidability and
how to construct expressive logics for which the model-checking problem is decidable.
However, it is even more important to be able to develop logics, or fragments of existing
logics such as RB±ATL, that are sufficiently expressive for practical problems, and
where the model-checking problem has tractable complexity. Only then will we be able
to implement practical model-checking tools for systems of resource-bounded agents.

Practical Tools Although model checking algorithms have been proposed for several
of the logics surveyed, work on implementation is only beginning. We aim to develop
practical model-checking tools for verifying resource-bounded MAS by extending the
MCMAS model checker [41] to allow the modelling of multi-agent systems in which
agents can both consume and produce resources. Work on symbolic encoding of RB-
ATL model-checking is reported in [15] and work on symbolic encoding of RB±ATL
model-checking is reported in [13].

Addressing these challenges will allow practical model-checking of resource logics
and significant advances in multi-agent system verification.

Acknowledgements The authors thank Stéphane Demri for helpful discussions.
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