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Abstract. This paper introduces a calibration procedure for the identification of the geometrical 

parameters of a reconfigurable Gough-Stewart parallel manipulator. By using the proposed method, 

the geometry of a general Gough-Stewart platform can be evaluated through the measurement of 

the distance between couples of points on the base and mobile platform, repeated for a given set of 

different poses of the manipulator. The mathematical modelling of the problem is described and a 

numeric algorithm for an efficient solution to the problem is proposed. Furthermore, an application 

of the proposed method is discussed with a numerical example, and the behaviour of the calibration 

procedure is analysed as a function of the number of acquisitions and the number of poses. 
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Nomenclature 

Var Description Var Description 

B Jacobian matrix of readings wrt pose oi Offset of the ith limb (minimum distance between Fi and Mi) 

C Calibration matrix p Parameter vector to calibrate 

ej Reading error evaluated as difference between rj and ρj R Rotation matrix of the mobile platform wrt the base platform 

emax Maximum admitted calibration error rj Distance between Sj and Tj as acquired by the jth sensor 

Fi Centre point of the ith joint on the base platform rj Position vector associated to rj 

fi Absolute position vector of point Fi Sj Location of the jth distance sensor on the mobile platform 

H Centre point of the mobile platform si Position vector of point Si  

h Absolute position vector of point H S Jacobian matrix of limb lengths wrt pose 

i Limb index Tj Location of the jth measurement target on the base platform 

j Sensor index ti Absolute position vector of point Ti 

k Pose index ui Unit vector in the direction of the ith limb 

li Stroke of the linear motor of the ith limb  vj Unit vector in the direction of the jth distance acquisition 

li Limb vector of the ith limb, from Fi to Mi x First position coordinate of point H (along X-axis) 

M Jacobian matrix of limb lengths wrt parameters mj and fj y Second position coordinate of point H (along Y-axis) 

Mi Centre point of the ith joint on the mobile platform z Third position coordinate of point H (along Z-axis) 

mi Position vector of point Fi in the mobile platform frame ρj Distance between Sj and Tj as estimated from kinematics 

N Jacobian matrix of readings wrt parameters sj and tj α First orientation coordinate of point H (around X-axis) 

np Number of poses β Second orientation coordinate of point H (around Y-axis) 

nr Number of sensors γ Third orientation coordinate of point H (around Z-axis) 

1 Introduction 

Parallel robots are closed-loop mechanisms that are characterized by high stiffness, payload 

capability and repeatability [1]. However, the knowledge of their geometrical parameters is needed to 

obtain a good accuracy for precision tasks, such as machining. Position control requires the location of 

the centres of the joints and the offsets of the links. Estimates of these parameters are usually available, 

but deviations due to manufacturing and assembly tolerances can alter significantly their real values. 
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Furthermore, the estimation of some parameters might not be available at all. Thus, the identification 

of the geometry of a parallel robot is essential to its proper functioning.  

In his book, Merlet [1] identifies three main calibration methods for parallel kinematic machines: 

external calibrations, which are based on measurements with external devices; constrained calibrations, 

which analyse the motion of the robot in a constrained configuration; auto-calibrations, that only rely 

on the internal sensors of the robot. These methods have been successfully used in the last decades, as 

proved by the wide literature available [1]. Historically, interest in parallel robot calibration rose in the 

1990s with the increasingly common usage of the Gough-Stewart platform in industry [2] and the 

invention of the Delta Robot [3]. Both self-calibration and external calibration methods can be found: 

in [4], for example, an implicit-loop method is proposed to calibrate a Gough-Stewart platform with 

Inverse Kinematics through internal sensors on the spherical and universal joint of one of the parallel 

limbs; in [5], a constrained calibration is described. Another constrained calibration method is 

introduced in [6], who proposed a self-calibration of a Gough-Stewart manipulator without external 

sensors. The same authors also proposed a calibration procedure with two inclinometers in [7]. In [8], 

a calibration with a redundant leg is presented. 

While most of the works of the 1990s are focused on practical calibration methods, in the early 2000s 

several papers on calibration modelling were published. The research in [9] presents a method to 

determine all the identifiable parameters of parallel robots, again with a focus on the Gough-Stewart 

platform. A complete description of the Gough-Steward platform is also given in [10]. The new decade 

was also characterized by the rise of new technologies, such as vision-based metrology. While most of 

the methods of the 1990s focus on reducing the number of sensors or simplifying the data acquisition 

phase, most of the calibration techniques in the 2000s are based either on laser trackers [11-12] or 

cameras [13-17]. Research on alternative procedures, however, went on, as reported in [18-21]. The 

most recent works on parallel robot calibration are very wide in scope, with papers on mechanism 

synthesis and design [22-23], calibration methods [24-25], non-geometric calibration [26], application 

to innovative designs [27-30] and error models [31-34]. 

Calibration methods for the Gough-Stewart manipulator usually assume a fixed configuration, where 

an estimate is available for the parameters and only small errors due to manufacturing and assembly 

tolerances need to be evaluated. Thus, most of the standard calibration methods fail to converge when 

some of the parameters are unknown or show a large deviation from the initial estimated value. In [33], 

an innovative hexapod design is presented as based on the Gough-Stewart architecture with a 

reconfigurable geometry of the base platform. Since the position of the fixed joints of the machine can 

change from installation to installation, an onboard calibration procedure with external sensors (three 

double ball-bars) is manually performed before each operation in order to identify the robot geometry. 

A further evolution of the design in [33] is described in [34], which introduces a camera-based self-

calibration method to identify the position of the fixed joints on the ground. The method is detailed for 

a three-camera vision system with a previous calibration of the other geometrical parameters through 

cameras, laser trackers and additional sensors. The calibration methods in [33-34] are tailored for their 

specific applications, by modelling a Gough-Stewart mechanism with reconfigurable base platform and 

the specific distance sensor that are selected for the application. Thus, they cannot be used in a general 

configuration that is characterized by a different kind of distance sensors or by a reconfigurable 

geometry of the mobile platform (in addition to a reconfigurable fixed platform). 

To overcome this limitation, this paper expands the mathematical model introduced in [34] with a 

general approach for the identification of the geometry of a reconfigurable Gough-Stewart parallel 

manipulator with no a-priori knowledge of the location of any passive joint (including the joints on the 

mobile platform). The proposed calibration procedure requires distance sensors to measure the distance 

between a point of the moving platform and a target on the base platform. The calibration problem is 

defined for a general setup, which does not rely on the kind and number of sensors and can be adapted 

to a wide range of applications. First, the geometry of the problem is described, and the kinematics of 

the Gough-Stewart platform are detailed. Then, the algorithm for the geometrical identification is 

explained. Finally, a numerical example is reported in order to validate the proposed method and to 

analyse the influence of the calibration parameters on the results.   
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2 Mechanism description 

The Gough-Stewart mechanism, often called hexapod, is based on a 6-UPS parallel architecture with 

six identical limbs of varying length, which are controlled by linear motors. The limbs are connected to 

the moving platform with universal joints and to the base platform through spherical joints. With 

reference to Fig. 1, in this paper the following nomenclature is used to describe the geometry of the 

Gough-Stewart manipulator: 

• The location of the centre of the joints on the base platform is defined by point Fi, for i = 1…6, while 

the corresponding joint on the moving platform is defined by point Mi.  

• The position of each joint on the base platform is expressed by position vector fi, while the relative 

position of each joint on the moving platform with respect to centre point H is expressed by position 

vector mi.  

• The location of point H can be expressed by position vector h (x y z) and orientation (α β γ), by 

assuming the rotation matrix R of the moving platform being composed by a rotation by γ around 

the Z-axis first, then by α  around the X-axis and finally by β around the Y-axis.  

• Each limb is modelled as a rigid link with length equal to the sum of a fixed offset oi and a variable 

length controlled by the motor, which is measured by the motor encoder as reading li. 

• Limb vector li, going from Fi to Mi, can be written as (li + oi) ui, where ui is a unit vector in the 

direction of the ith limb. 

 

Fig. 1. Kinematic scheme of a Gough-Stewart platform. 

With reference to Fig. 1, the following parameters are used to define the geometry of the calibration 

system: 

• The location of the jth distance sensor on the moving platform is defined by point Sj. The 

corresponding measurement target on the base platform is point Tj.  

• The position of each target on the base platform is expressed by position vector ti, while the relative 

position of each sensor on the moving platform with respect to centre point H is expressed by 

position vector si.  

• Each sensor can acquire the distance between point Sj and point Tj, which is equal to sensor reading 

rj, with an associated reading vector rj, equal to rj vj. 

• A total of nr acquisitions can be obtained for each pose of the Gough-Steward platform. Each 

acquisition is defined by index j. 

• The total number of poses used in a calibration is expressed by np, while each pose is defined by 

index k.  

In order to define a calibration procedure, the inverse kinematic problem (IKP) of the hexapod is 

mathematically defined by writing loop-closure equations for the ith limb as:  
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𝒇𝒊 + 𝒍𝒊 = 𝒉 + 𝑹𝒎𝒊 (2.1) 

The solution of inverse kinematics requires an expression for the ith limb length as a function of the 

position of the moving platform, given by h and R. Thus, Eq. 2.1 can be rewritten as 

(𝑜𝑖 + 𝑙𝑖)
2 = (𝒉 + 𝑹𝒎𝒊 − 𝒇𝒊)

𝑇 ∙ (𝒉 + 𝑹𝒎𝒊 − 𝒇𝒊) (2.2) 

When the pose of the moving platform is known, the inverse kinematic formulation can be used to 

evaluate a theoretical reading for the jth distance sensor. In particular, Eq. 2.2 can be written to express 

a reading of the jth distance sensor as a function of the pose, as 

𝑟𝑗
2 = (𝒉 + 𝑹𝒔𝒋 − 𝒕𝒋)

𝑇
∙ (𝒉 + 𝑹𝒔𝒋 − 𝒕𝒋) (2.3) 

Even if the inverse kinematics of the hexapod are easy to express in closed form, the forward 

kinematic problem (FKP) leads to multiple solutions and is usually evaluated in a discrete way [1]. In 

this paper, a simple iterative procedure based on the Newton-Raphson method with the steps in Fig. 2 

is used to solve forward kinematics. 

 

Fig. 2. Algorithm for the solution of forward kinematics. 

The inputs for the algorithm in Fig. 2 are the parameters of the manipulator (position of the mobile 

and fixed joints, offsets of the limbs) and leg displacements. The algorithm starts by defining a tentative 

pose of the moving platform. With this pose, the inverse kinematic problem is used to evaluate a 

theoretical limb displacement. The error between the theoretical limb displacement and the input one is 

evaluated, and a correction of the pose is estimated by using matrix S, which is the 6x6 matrix of the 

partial derivatives of the leg length with respect to the pose, given by 

𝑺 =

[
 
 
 
 𝒖𝟏

𝑻 𝒖𝟏
𝑻 ∙

𝜕𝑹

𝜕𝛼
∙ 𝒎𝟏 𝒖𝟏

𝑻 ∙
𝜕𝑹

𝜕𝛽
∙ 𝒎𝟏 𝒖𝟏

𝑻 ∙
𝜕𝑹

𝜕𝛾
∙ 𝒎𝟏

⋮ ⋮ ⋮ ⋮

𝒖𝟔
𝑻 𝒖𝟔

𝑻 ∙
𝜕𝑹

𝜕𝛼
∙ 𝒎𝟔 𝒖𝟔

𝑻 ∙
𝜕𝑹

𝜕𝛽
∙ 𝒎𝟔 𝒖𝟔

𝑻 ∙
𝜕𝑹

𝜕𝛾
∙ 𝒎𝟔]

 
 
 
 

 (2.4) 

Matrix S can be used to relate a small displacement in limb length to a small displacement of the 

pose, as 

(

 
 
 

∆𝑙1
∆𝑙2
∆𝑙3
∆𝑙4
∆𝑙5
∆𝑙6)

 
 
 

= 𝑺

(

 
 
 

∆𝑥
∆𝑦
∆𝑧
∆𝛼
∆𝛽
∆𝛾)

 
 
 

 (2.5) 



5 

and it is used in the algorithm in Fig. 1 as inverse of S to evaluate the pose correction from the error in 

limb displacement. The derivation of Eq. (2.5) can be found in Appendix A. When the maximum error 

obtained in the iterative process is lower than the desired accuracy emax, the solution is found. 

3 Calibration procedure 

This section presents the mathematical modelling of a calibration procedure that identifies the 

geometry of a reconfigurable Gough-Stewart platform, which is characterized by a variable position of 

the joints of the fixed and mobile platform, defined by vectors fi and mi. The calibration is achieved by 

measuring the distance between points of the moving platform and targets on the base platform, which 

can be acquired by any kind of distance sensor.   

By assuming perfect passive joints, a general Gough-Stewart platform is characterized by 42 

identifiable parameters, namely the xyz coordinates of the mobile joints (18) and fixed joints (18) and 

the limb offsets (6). However, a priori estimates are available for the full set of parameters. In a 

reconfigurable platform, a priori knowledge can be used only for a small subset of 6 parameters, 

corresponding to the limb offsets, while the others are unknown. Furthermore, the parameters of the 

calibration system require identification too. To compensate errors due to sensor positioning and 

assembly, the xyz coordinates of sensors (3nr) and of measurement targets (3nr) can be calibrated, for a 

total of 6nr additional parameters. Thus, the number of parameters to be calibrated is equal to 42 + 6nr 

if the offsets are included in the calibration, or to 36 + 6nr for a simplified model that does not include 

them. For each pose of the moving platform, 6 + nr measurements can be obtained, respectively by the 

encoders of the linear motors and the distance sensors. By acquiring data in np different poses, it is 

possible to increase the number of samples available, thus improving the calibration results. The 

constraint functions derive from the kinematic model of the robot in Eqs. 2.1-3, and relate the acquired 

measurements to the calibrated parameters. In particular, for a given pose k, a theoretical reading ρ of 

the jth sensor can be evaluated as a function of the pose by using Eq. 2.3 as 

𝜌𝑗,𝑘
2 = (𝒉𝒌 + 𝑹𝒌𝒔𝒋 − 𝒕𝒋)

𝑇
∙ (𝒉𝒌 + 𝑹𝒌𝒔𝒋 − 𝒕𝒋) (3.1) 

This theoretical value can be compared to the real one, which is acquired through the jth sensor in 

pose k, to obtain error e, which is defined as 

𝑒𝑗,𝑘 = 𝑟𝑗,𝑘 − 𝜌𝑗,𝑘 (3.2) 

In order to calibrate the robot, the influence of both pose and calibration parameters on the reading 

must be studied by differentiating Eq. 3.1. With an approach similar to the FKP solution one in the 

previous section, matrix Bj,k can be defined as the matrix of the partial derivatives of the reading with 

respect to the pose, and matrix Nj,k as the matrix of the partial derivatives of the reading with respect to 

parameters sj and tj. In particular, matrix Bj,k is a 1x6 matrix that expresses the following relation: 

∆𝑟𝑗,𝑘 = 𝑩𝒋,𝒌

(

 
 
 

∆𝑥𝑘

∆𝑦𝑘

∆𝑧𝑘

∆𝛼𝑘

∆𝛽𝑘

∆𝛾𝑘)

 
 
 

 (3.3) 

By differentiating Eq. 3.1, Bj,k is obtained as a 1x6 matrix given by 

𝑩𝒋,𝒌 = [𝒗𝒋,𝒌
𝑻 𝒗𝒋,𝒌

𝑻 ∙
𝜕𝑹𝒌

𝜕𝛼
∙ 𝒎𝒋 𝒗𝒋,𝒌

𝑻 ∙
𝜕𝑹𝒌

𝜕𝛽
∙ 𝒎𝒋 𝒗𝒋,𝒌

𝑻 ∙
𝜕𝑹𝒌

𝜕𝛾
∙ 𝒎𝒋] (3.4) 

Matrix Nj,k expresses the following relation:  

∆𝑟𝑗,𝑘 = 𝑵𝒋,𝒌 (
∆𝒕𝒋

∆𝒔𝒋
) (3.5) 

By differentiating Eq. 3.1, Nj,k is obtained as a 1x6 matrix given by 

𝑵𝒋,𝒌 = [𝒗𝒋,𝒌
𝑻 −𝒗𝒋,𝒌

𝑻 𝑹𝒌] (3.6) 

Equations 3.3-6 established a relation between a small variation of the reading of a sensor and a small 

variation in pose and calibration parameters. However, to perform a full calibration, the relation between 

the pose and the robot parameters must be defined. By using inverse kinematics, it is possible to evaluate 

matrix S of Eq. 2.4 for the current pose and reading, to express 
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(

 
 
 
 

∆𝑙1,𝑘

∆𝑙2,𝑘

∆𝑙3,𝑘

∆𝑙4,𝑘

∆𝑙5,𝑘

∆𝑙6,𝑘)

 
 
 
 

= 𝑺𝒋,𝒌

(

 
 
 

∆𝑥𝑘

∆𝑦𝑘

∆𝑧𝑘

∆𝛼𝑘

∆𝛽𝑘

∆𝛾𝑘)

 
 
 

 (3.7) 

where Sj,k is a 6x6 matrix given by 

𝑺𝒋,𝒌

=

[
 
 
 
 𝒖𝟏,𝒌

𝑻 𝒖𝟏,𝒌
𝑻 ∙

𝜕𝑹𝒌

𝜕𝛼
∙ (𝒎𝟏 − 𝒎𝒋) 𝒖𝟏

𝑻 ∙
𝜕𝑹𝒌

𝜕𝛽
∙ (𝒎𝟏 − 𝒎𝒋) 𝒖𝟏

𝑻 ∙
𝜕𝑹𝒌

𝜕𝛾
∙ (𝒎𝟏 − 𝒎𝒋)

⋮ ⋮ ⋮ ⋮

𝒖𝟔,𝒌
𝑻 𝒖𝟔,𝒌

𝑻 ∙
𝜕𝑹𝒌

𝜕𝛼
∙ (𝒎𝟔 − 𝒎𝒋) 𝒖𝟔

𝑻 ∙
𝜕𝑹𝒌

𝜕𝛽
∙ (𝒎𝟔 − 𝒎𝒋) 𝒖𝟔

𝑻 ∙
𝜕𝑹𝒌

𝜕𝛾
∙ (𝒎𝟔 − 𝒎𝒋)]

 
 
 
 

 
(3.8) 

As explained in Appendix A, matrix Mk is derived from Eq. (2.2) as the 6x36 matrix of the partial 

derivatives of the limb lengths with respect to parameters mj and fj, which expresses 

(

 
 
 
 

∆𝑙1,𝑘

∆𝑙2,𝑘

∆𝑙3,𝑘

∆𝑙4,𝑘

∆𝑙5,𝑘

∆𝑙6,𝑘)

 
 
 
 

= 𝑴𝒌

(

 
 

∆𝒇𝟏

∆𝒎𝟏

⋮

∆𝒇𝟔

∆𝒎𝟔)

 
 

 (3.9) 

and is given by 

𝑴𝒌 = [

𝑴𝟏,𝒌 𝟎 𝟎

𝟎 ⋱ 𝟎
𝟎 𝟎 𝑴𝟔,𝒌

]  𝑤𝑖𝑡ℎ 𝑴𝒊,𝒌 = [𝒖𝟏,𝒌
𝑻 −𝒖𝟏,𝒌

𝑻 𝑹𝒌] (3.10) 

By substituting Eq. 3.9 in Eq. 3.7, and then the results in Eq. 3.3, a linearized relation between the 

reading and the parameters can be written as 

∆𝑟𝑗,𝑘 = [(𝑩𝒋,𝒌 ∙ 𝑺𝒋,𝒌
−𝟏 ∙ 𝑴𝒌) 𝑵𝒋,𝒌]

(

 
 
 
 
 

∆𝒇𝟏

∆𝒎𝟏

⋮

∆𝒇𝟔

∆𝒎𝟔

∆𝒕𝒋

∆𝒔𝒋 )

 
 
 
 
 

 (3.11) 

Equation 3.11 can be expressed in a compact form as 

∆𝑟𝑗,𝑘 = 𝑪𝒋,𝒌∆𝒑𝒋 (3.12) 

where Cj,k is the 1x42 calibration matrix relative to the jth measurement in the kth pose, and Δpj is a 

reduced parameter vector, with the robot parameters and the calibration parameters relative to the jth 

measurement only. By using Eq. 3.12, it is possible to compute a correction in the robot parameters due 

to a reading error as in Eq. 3.2. This error can be minimized through an iterative procedure, as in Fig. 

3, to identify the value of parameters to be calibrated.  

The procedure described in Fig. 3 is characterized by the acquisition of a single measurement rj for 

each pose of the robot. For the iterative process to converge, however, the number of constrain function 

must be greater than the number of parameters we want to calibrate. Since for each measurement in 

each pose a single constrain function can be written, as shown in Eq. 3.12, the number of constraint 

functions is equal to nr∙np, while the number of parameters is equal to 36 + 6nr. Therefore, the number 

of poses and sensors must be chosen to satisfy 

𝑛𝑟(𝑛𝑝 − 6) > 36 (3.13) 

In addition to this, the larger nr and np are, the faster the algorithm converges. Therefore, a system with 

multiple sensors can be calibrated in a more efficient way. 
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Fig. 3. Algorithm for the identification of the parameters to calibrate. 

Thus, the problem formulation introduced in this section for the jth sensor can be expanded for a 

general number of acquisitions. First of all, Eq. 3.5 can be rewritten as 

𝑒𝑗,𝑘 = [𝟎𝟏×𝟔 ⋯ 𝑵𝒋,𝒌 ⋯ 𝟎𝟏×𝟔]

(

 
 
 
 
 
 

∆𝒕𝟏

∆𝒔𝟏

⋮

∆𝒕𝒋

∆𝒔𝒋

⋮

∆𝒕𝒏𝒓

∆𝒔𝒏𝒓)

 
 
 
 
 
 

 =𝑵𝒋,𝒌
⋆ ∆𝒑𝑠𝑒𝑛𝑠𝑜𝑟𝑠 (3.14) 

to include a general number of sensors. A variation of the reading of the jth sensor can still be related 

only to a variation of corresponding points Tj and Sj, but the expanded matrix of Eq. 3.14 can be used 

to assemble a calibration matrix for pose k by rewriting Eq. 3.12 as 

𝒆𝒌 = (

𝑒1,𝑘

⋮
𝑒𝑛𝑟,𝑘

) = [ 

(𝑩𝟏,𝒌 ∙ 𝑺𝟏,𝒌
−𝟏 ∙ 𝑴𝒌) 𝑵𝟏,𝒌

⋆

⋮ ⋮
(𝑩𝒏𝒓,𝒌 ∙ 𝑺𝒏𝒓,𝒌

−𝟏 ∙ 𝑴𝒌) 𝑵𝒏𝒓,𝒌
⋆

]

(

 
 
 
 
 
 
 
 

∆𝒇𝟏

∆𝒎𝟏

⋮

∆𝒇𝟔

∆𝒎𝟔

∆𝒕𝟏

∆𝒔𝟏

⋮

∆𝒕𝒏𝒓

∆𝒔𝒏𝒓)

 
 
 
 
 
 
 
 

= 𝑪𝒌∆𝒑 (3.15) 

where ek is a vector that collects the error of all the acquisitions in pose k, and Ck is the relative 

nrx(36+6nr) calibration matrix, which is assembled from matrices Cj,k. Equation 3.15 can be then 

expanded to a general number of poses, as 

𝒆 = (

𝒆𝟏

⋮
𝒆𝒏𝒑

) = [

𝑪𝟏

⋮
𝑪𝒏𝒑

]∆𝒑 = 𝑪∆𝒑 (3.16) 

where e is a vector that collects the error of each acquisition in each pose, and C is the relative 

(np∙nr)x(36+6nr) calibration matrix. In conclusion, the calibration problem can be stated as an 

optimization problem to find the minimum of the error function e of Eq. 3.15, which is solved by 

following the procedure outlined in Fig. 3. 
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4 Calibration in unknown environments 

The previous section assumes a known coordinate system for the identification of the position of the 

joints of the base platform. However, when a reconfigurable hexapod is set up in an unknown 

environment, it is possible to have no known external geometrical feature to define a coordinate system. 

Nevertheless, a convention can be established to calibrate the system even in absence of external 

references. An XYZ frame can be defined by constraining 6 degrees of freedom of the reconfigurable 

foot joints. These degrees of freedom can be: 

• X position of base platform joint Fi; 

• Y position of base platform joint Fi; 

• Z position of base platform joint Fi; 

• Y position of another base platform joint Fj (i ≠ j); 

• Z position of another base platform joint Fj (i ≠ j); 

• Z position of a third base platform joint Fk (i ≠ z; j ≠ z); 

As illustrated in Fig. 4, when the value of all the fixed degrees of freedom is set to 0, it is possible to 

summarize the conditions as: 

• Origin of the reference coordinate frame in point Fi; 

• X-axis passing through points Fi and Fj; 

• Z-axis passing through point Fi; 

• Z-axis direction perpendicular to the plane defined by Fi, Fj and Fk; 

• Y-axis passing through point Fi; 

• Y-axis direction perpendicular to the plane defined by X-axis and Z-axis; 

• Right hand rule for axis orientation. 

By using this guideline, it is possible to univocally define a reference coordinate system to calibrate 

a Gough-Stewart mechanism even in an unknown environment. This reference system can then be used 

to calibrate and identify the geometry of the fixed base and the position of the measuring targets. 

 

Fig. 4. Definition of a reference coordinate system. 

5 Experimental validation 

In this section, the proposed calibration procedure is applied to the Free-Hex robot, a reconfigurable 

Gough-Stewart machining tool, in order to identify the position of its passive joints. Free-Hex, as 

explained in [33], is a parallel machine tool that is characterized by a mobile platform with fixed 
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geometry and a reconfigurable base platform, with loose magnetic feet at the end of each limb. Since 

the magnetic feet are positioned before any machining operation in an unknown configuration, a full 

calibration of the system is needed for proper functioning. A prototype of Free-Hex is shown in Fig. 5. 

The best available measurement of the geometry of the system, in Table 1, has been used as reference 

to validate and evaluate the proposed procedure. The reference geometry has been identified through 

previous external calibrations with a combination of double-ball bars (1μm accuracy) and laser trackers 

(25μm accuracy), and it is here used as a reference to evaluate the performance of the proposed 

procedure. The manipulator is equipped with encoders for the linear motors and three double ball-bars 

as distance sensors, as shown in Fig. 6, that acquire data over 240 calibration poses. To enable the 

comparison of the proposed calibration to the reference geometry, the reference coordinate frame has 

been defined through the calibration frame as shown in Fig. 6 and explained in [33]. The initial geometry 

for the iterative solution estimates the values of all the parameters, as shown in Table 2. 

Table 1.   Reference geometry for the numerical example. 

Point  X [mm]  Y [mm] Z [mm] Point  X [mm]  Y [mm] Z [mm] 

F1 -120.470 -71.189 28.396 M1 -20.607 -92.760 212.680 

F2 -175.001 50.055 27.435 M2 -90.611 28.564 212.656 

F3 -11.976 165.859 28.634 M3 -70.064 64.182 212.664 

F4 123.013 127.391 28.980 M4 70.047 64.136 212.693 

F5 143.868 -51.709 29.528 M5 90.599 28.546 212.685 

F6 52.025 -155.265 29.146 M6 20.525 -92.762 212.683 

T1 0.010 -79.863 15.877 S1 0.000 -40.006 121.436 

T2 -69.142 39.814 16.147 S2 -34.646 20.003 121.896 

T3 69.097 39.869 16.014 S3 34.718 20.016 121.835 

 

 

Fig. 5. Free-Hex robot prototype. 
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Fig. 6. Frame and double ball-bars for the calibration of Free-Hex. 

The calibration procedure for the reported test acquires data from 241 calibration poses, generated 

by recording the initial pose (1 pose), then extending and contracting each linear motor over 10 different 

steps while all the other motors are fixed (20 poses per motor, 120 poses in total), and finally repeating 

the entire sequence a second time (120 poses). More than 15 different calibration tests were successfully 

run, and one of them is here reported as example.  

A first partial calibration has been performed by including the location of the passive joints of the 

base platform as parameters. The procedure converges to a solution in 15 iterations and 23 sec (running 

the calibration code in MATLAB on a high-spec laptop), as shown in Fig. 7a, with a tolerance on Δp 

equal to 10-6 mm and a maximum estimated error equal to 0.015 mm. The results are shown in Table 3. 

When compared to the reference geometry of Table 1, the average correction is 0.70 mm, with an 

average relative correction of 0.42% and a maximum relative correction of 0.50%. These values have 

been calculated as the mean of the norm of the position vector error of each calibrated point.  

A second partial calibration has been performed by including the location of all the passive joints as 

parameters. The procedure converges to a solution in 47 iterations and 29 sec, as reported in Fig. 7b, 

with a tolerance on Δp equal to 10-6 mm and a maximum estimated error equal to 0.013 mm. The results 

are shown in Table 4. When compared to the reference geometry of Table 1, the average correction is 

equal to 1.94 mm, with an average relative correction of 1.03% and a maximum relative correction of 

1.63%. 

 Finally, a full calibration has been performed to identify both robot geometry and calibration 

parameters (sensor positioning). The procedure converges to a solution in 75 iterations and 35 sec with 

convergence in 35 sec and results in Table 5. When compared to the reference geometry of Table 1, the 

average correction is equal to 1.92 mm, with an average relative correction of 1.04%. Even if the 

average values are comparable to the partial tests, the maximum relative correction is higher at 2.81%. 

The second calibration script has been also run for 100 different initial conditions, characterized by 

a different layout of the passive joints with a maximum displacement from the reference geometry of 

200 mm. The procedure always converges to the same solution, unless two or more joints start from an 

identical position, for which the forward kinematic solver fails. The maximum number of iterations to 

convergence observed for the example is 90. Furthermore, the calibration procedure has been tested 

with a subset of poses as input, in order to evaluate the influence of np on calibration quality. A smaller 

number of poses does not increase the number of iterations to convergence, with 30 to 90 iterations 

needed for convergence with different subsets. However, divergence issues have been observed for 

subsets with less than 90 poses. Furthermore, the mean and maximum error with respect to the reference 

geometry of Table 1 is larger for a smaller number of poses, as reported in Fig. 8. The trend, however, 
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is not linear, with some subsets performing better than others despite having a smaller number of poses. 

Thus, as a general guideline, a larger set of poses yields better results, but it is possible to observe a 

sensitivity to which poses are selected, and not only to their number. Therefore, the calibration motion 

should be optimized for the manipulator under analysis by choosing relevant poses. 

 

         

Fig. 7. Convergence graph of the calibration algorithm: a) first calibration (18 parameters, fixed joints);  

b) second calibration (36 parameters, fixed and mobile joints) 

 

Fig. 8. Influence of number of poses on mean and maximum error. 

Table 2.   Initial geometry for the calibration procedure. 

Point  X [mm]  Y [mm] Z [mm] Point  X [mm]  Y [mm] Z [mm] 

F1 -105.2505 -88.479 0.000 M1 -20.607 -92.760 212.680 

F2 -129.2505 -46.910 0.000 M2 -90.611 28.564 212.656 

F3 -24.000 135.3893 0.000 M3 -70.064 64.182 212.664 

F4 24.000 135.3893 0.000 M4 70.047 64.136 212.693 

F5 129.2505 -46.910 0.000 M5 90.599 28.546 212.685 

F6 105.2505 -88.479 0.000 M6 20.525 -92.762 212.683 

T1 0.010 -79.863 15.877 S1 0.000 -40.006 121.436 

T2 -69.142 39.814 16.147 S2 -34.646 20.003 121.896 

T3 69.097 39.869 16.014 S3 34.718 20.016 121.835 
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Table 3.   Results of the first calibration (18 parameters, fixed joints). 

Point  X [mm]  Y [mm] Z [mm] Point  X [mm]  Y [mm] Z [mm] 

F1 -120.029 -71.235 28.889 M1 -20.607 -92.760 212.680 

F2 -174.696 49.790 28.213 M2 -90.611 28.564 212.656 

F3 -11.447 165.322 28.470 M3 -70.064 64.182 212.664 

F4 123.188 127.433 28.228 M4 70.047 64.136 212.693 

F5 143.872 -51.736 28.749 M5 90.599 28.546 212.685 

F6 52.132 -155.129 28.863 M6 20.525 -92.762 212.683 

T1 0.010 -79.863 15.877 S1 0.000 -40.006 121.436 

T2 -69.142 39.814 16.147 S2 -34.646 20.003 121.896 

T3 69.097 39.869 16.014 S3 34.718 20.016 121.835 

Table 4.   Results of the second calibration (36 parameters, fixed and mobile joints). 

Point  X [mm]  Y [mm] Z [mm] Point  X [mm]  Y [mm] Z [mm] 

F1 -119.904 -72.276 27.501 M1 -19.372 -92.985 212.449 

F2 -176.916 47.949 27.440 M2 -90.772 27.273 212.640 

F3 -13.767 165.013 28.798 M3 -71.226 62.709 213.867 

F4 122.748 129.756 28.477 M4 69.609 65.254 213.066 

F5 144.640 -50.000 27.809 M5 90.514 30.207 213.272 

F6 54.256 -155.611 28.110 M6 22.083 -92.131 212.713 

T1 0.010 -79.863 15.877 S1 0.000 -40.006 121.436 

T2 -69.142 39.814 16.147 S2 -34.646 20.003 121.896 

T3 69.097 39.869 16.014 S3 34.718 20.016 121.835 

Table 5.   Results of the third calibration (54 parameters, fixed and mobile joints, sensors). 

Point  X [mm]  Y [mm] Z [mm] Point  X [mm]  Y [mm] Z [mm] 

F1 -119.416 -72.726 26.896 M1 -18.798 -94.586 210.974 

F2 -176.416 47.651 28.977 M2 -90.109 25.752 213.334 

F3 -13.020 165.271 31.369 M3 -70.336 61.596 215.210 

F4 122.791 129.868 29.170 M4 70.169 64.043 213.420 

F5 144.648 -50.399 25.424 M5 90.916 28.549 211.778 

F6 54.111 -156.338 25.174 M6 22.325 -94.007 211.074 

T1 0.053 -79.813 15.863 S1 -0.126 -40.138 121.375 

T2 -69.123 39.808 16.183 S2 -34.633 20.050 121.927 

T3 69.109 39.824 15.989 S3 34.686 20.036 121.867 

 

 

6 Conclusions 

This paper proposed a numeric calibration method for reconfigurable Gough-Stewart manipulators 

that are characterized by a variable geometry of base and moving platforms. The calibration algorithm 

expands previous models with a general approach for the geometrical identification with no a-priori 

knowledge of the location of any passive joint (including the joints on the mobile platform), by using 

three or more distance measurements from the base to the moving platform acquired for several different 

poses. The proposed approach is introduced with its mathematical formulation in a general form to be 

independent from the kind and number of sensors. A convention for the definition of a reference 

coordinate system is presented in case of unknown external environment. Finally, a numerical example 

on a reconfigurable Gough-Stewart platform is reported. The tests validate the proposed algorithm with 

calibration results that are comparable to the reference values, with an average correction of 0.42% for 

18 calibration parameters, 1.03% for 36 parameters and 1.04% for 54 parameters. 
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Appendix A 

The derivative with respect to time of Eq. (2.2) can be written as 
𝜕

𝜕𝑡
(𝑜𝑖 + 𝑙𝑖)

2 =
𝜕

𝜕𝑡
[(𝒉 + 𝑹𝒎𝒊 − 𝒇𝒊)

𝑇 ∙ (𝒉 + 𝑹𝒎𝒊 − 𝒇𝒊)] (A.1) 

Expanding this equation, it is possible to obtain 

2𝑙𝑖𝑙�̇� = 2(𝒉 + 𝑹𝒎𝒊 − 𝒇𝒊)
𝑇 ∙ [

𝜕

𝜕𝑡
(𝒉 + 𝑹𝒎𝒊 − 𝒇𝒊)] (A.2) 

2𝑙𝑖𝑙�̇� = 2(𝒉 + 𝑹𝒎𝒊 − 𝒇𝒊)
𝑇 [

𝜕𝒉

𝜕𝑡
+

𝜕𝑹

𝜕𝑡
𝒎𝒊 + 𝑹

𝜕𝒎𝒊

𝜕𝑡
−

𝜕𝒇𝒊

𝜕𝑡
] (A.3) 

The limb unit vector can be defined as 

𝒖𝒊
𝑻 =

𝒍𝒊
𝑙𝑖

=
(𝒉 + 𝑹𝒎𝒊 − 𝒇𝒊)

𝑇

𝑙𝑖
 (A.4) 

Thus, Eq. (A.3) can be expressed as 

𝑙�̇� = 𝒖𝒊
𝑻 [

𝜕𝒉

𝜕𝑡
+

𝜕𝑹

𝜕𝑡
𝒎𝒊 + 𝑹

𝜕𝒎𝒊

𝜕𝑡
−

𝜕𝒇𝒊

𝜕𝑡
] (A.5) 

In order to derive Eq. (2.5), it is assumed that the geometry of the robot does not change during 

motion. This condition is expressed by 
𝜕𝒎𝒊

𝜕𝑡
= 𝟎; 

𝜕𝒇𝒊

𝜕𝑡
= 𝟎 (A.6) 

When condition (A.6) is applied to (A.5), Eq. (A.5) becomes 

𝑙�̇� = 𝒖𝒊
𝑻 [

𝜕𝒉

𝜕𝑡
+

𝜕𝑹

𝜕𝑡
𝒎𝒊] (A.7) 

Equation (A.7) can be expanded as 

𝑙�̇� = 𝒖𝒊
𝑻 [

𝜕𝒉

𝜕𝑥
�̇� +

𝜕𝒉

𝜕𝑦
�̇� +

𝜕𝒉

𝜕𝑧
�̇�  + (

𝜕𝑹

𝜕𝛼
�̇� +

𝜕𝑹

𝜕𝛽
�̇� +

𝜕𝑹

𝜕𝛾
�̇�)𝒎𝒊] (A.8) 

When Eq. (A.8) is written for limbs 1 to 6, it leads to the virtual displacement notation expressed by 

Eqs. (2.4) and (2.5).  

It is possible to obtain Eq. (3.9) by applying a different condition to Eq. (A.5). In order to estimate 

the variation of limb lengths from a variation of geometrical parameters, it is possible to assume a fixed 

pose of the robot. This assumption is given by 
𝜕𝒉

𝜕𝑡
= 𝟎;

𝜕𝑹

𝜕𝑡
= 𝟎 (A.9) 

Thus, Eq. (A.5) can be rewritten for the given case as 

∆𝑙𝑖 = 𝒖𝒊
𝑻[∆𝒇𝒊 − 𝑹∆𝒎𝒊], (A.10) 

which leads to Eq. (3.9). 

Since the procedure follows a linear approximation with the assumption of small parameter variation, 

it is possible to study the dependency of limb length on position and geometry independently. The 

resulting pose error is then obtained as a combination of the two, as expressed in (3.11). A direct 

derivation of the total differential of Eq. (2.2) yields the same result without decoupling the system and 

can be obtained by expanding Eq. (A.5) without applying conditions (A.6) or (A.9). 
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