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The conditional mutual information (CMI) I(A : C|B) quantifies the amount of correlations shared between
A and C given B. It therefore functions as a more general quantifier of bipartite correlations in multipartite
scenarios, playing an important role in the theory of quantum Markov chains. In this paper we carry out a
detailed study on the behavior of the CMI in non-equilibrium steady-states (NESS) of a quantum chain placed
between two baths at different temperatures. These results are used to shed light on the mechanisms behind
ballistic and diffusive transport regimes and how they affect correlations between different parts of a chain. We
carry our study for the specific case of a 1D bosonic chain subject to local Lindblad dissipators at the boundaries.
In addition, the chain is also subject to self-consistent reservoirs at each site, which are used to tune the transport
between ballistic and diffusive. As a result, we find that the CMI is independent of the chain size L in the ballistic
regime, but decays algebraically with L in the diffusive case. Finally, we also show how this scaling can be used
to discuss the notion of local thermalization in non-equilibrium steady-states.

I. INTRODUCTION

When a system is coupled to two reservoirs kept at different
temperatures, it eventually reaches a non-equilibrium steady-
state (NESS), characterized by the existence of a heat current
flowing from the hot to the cold bath. Substantial effort has
been dedicated over the past decades in furthering our gen-
eral understanding of NESSs. For instance, important insights
have been gained on the microscopic mechanisms responsible
for the emergence of Fourier’s law [1–13], the development of
steady-state fluctuation theorems [14–18] and the description
of NESSs supporting the transport of more general types of
excitations, such as magnetization currents [9–11, 19–24] and
even radiation squeezing [25, 26].

Informational aspects, however, have been much less ex-
plored. Excitations traveling through a chain also carry infor-
mation [27, 28], so that currents ultimately change the way
different parts of a chain become correlated. A thorough un-
derstanding of how correlations between different part of the
system behave in the NESS could provide valuable informa-
tion on the multipartite structure of non-equilibrium states.
Studies on this topic, however, are still scarce [29–33], de-
spite already being within reach of platforms such as ultra-
cold atoms [34], trapped ions [35] and opto-mechanical sys-
tems [25, 36].

One of the key questions in studies of the NESS, is what are
the ingredients required to produce different kinds of transport
regimes. Integrable systems usually tend to NESSs with a
ballistic heat flow, where the heat current J is independent of
the system size L. Non-integrable systems, on the other hand,
tend in general to have currents scaling as J ∼ 1/Lα, where
α is an exponent that has the value α = 1 in the diffusive
case [37, 38]. It is then natural to enquire how the correlations
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between parts of a chain behave in different transport regimes.
Correlations between distant parts of a chain can be neatly

quantified using the Conditional Mutual Information (CMI)
I(A : C|B), which measures the amount of information shared
between A and C given B [39–43]. This type of quantifier is
relevant when one is interested in understanding the correla-
tions between distant parts of the chain and how these are af-
fected by a partition in the middle. In this paper we carry out
a detailed study on the behavior of the CMI in the NESS of a
one-dimensional bosonic chain subject to local Lindblad baths
at the boundaries [8–11, 13, 44] (Fig. 1(a)). In order to intro-
duce diffusiveness, we also add a set of self-consistent reser-
voirs [2] that function as an additional noise source (Fig. 1(b)).

Central to our approach is the fact that self-consistent reser-
voirs preserve Gaussianity and therefore allow us to use tools
from Gaussian Quantum Information [45–47]. This allow us
to study chains with arbitrary size and therefore find, in detail,
how the CMI scales with all parameters in the system. As an
application, we connect our results with a recent theorem by
Kato and Brandão on [41] the thermalization of approximate
quantum Markov chains. We show that, from knowledge of
the CMI, one can show that diffusive chains tend to be locally
thermal, whereas the same cannot be said for the ballistic case.

This paper is divided as follows. In Sec. II we introduce the
CMI, discuss its basic features and argue why it is a relevant
quantifier for the case of NESSs. In Sec. III we then introduce
the main model we are going to study, as well as the solution
for the NESS. The results are then presented in Sec. IV and
the conclusions in Sec. V. We also include several appendices
discussing solution methods and other technical aspects.

II. CONDITIONAL MUTUAL INFORMATION

Consider a quantum chain with L sites and prepared in a
certain state ρS, where S = {1, . . . , L} denotes the correspond-
ing set of sites. The reduced density matrix of a given subset
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FIG. 1. (a) A boundary-driven one-dimensional quantum chain sub-
ject to two baths at each end. (b) By including additional noise
sources within the chain, here implemented using the idea of self-
consistent reservoirs, it is possible to tune the flow from ballistic to
diffusive.

A ⊂ S is defined as ρA = trS/A ρS , where S/A stands for the
partial trace over all sites that are not in the set A. The total
amount of information shared between two disconnected sub-
sets A and B of S, can be quantified by the mutual information
(MI) [48]

I(A : B) = S (ρA) + S (ρB) − S (ρAB) ≥ 0, (1)

where S (ρ) = − tr(ρ ln ρ) is the von Neumann entropy. This
quantity measures the amount of information (quantum and
classical) contained in the global state ρAB, but absent in the
marginalized state ρA ⊗ ρB. If ρAB is a pure state (which is
seldom the case for NESSs), this reduces to twice the entan-
glement entropy.

The MI can also be extended to the multipartite scenario.
For instance, the quantity

I(A : B :C) = S (ρA) + S (ρB) + S (ρB) − S (ρABC) ≥ 0, (2)

measures the total amount of information that is contained in
ρABC , but which is absent in the marginalized state ρA⊗ρB⊗ρC .
Carrying this logic all the way towards a single site, one finds
the so-called total correlations (TC) [49]

T =

L∑
i=1

S (ρi) − S (ρS) ≥ 0, (3)

where ρi is the reduced density matrix of site i. This quantity
is useful in understanding correlations from a global perspec-
tive, without reference to the geometry of the lattice or any
partitioning.

When the chain S is split into a bipartition of the form
A = {1, . . . , k} and B = {k + 1, . . . , L}, the MI (1) will fully
capture the information shared between A and B. However,
when one wishes to study disconnected bipartitions, a sub-
tlety arises. Consider for instance a tripartition ABC, where
A = {1, . . . , k}, B = {k+1, . . . , k+b} and C = {k+b+1, . . . , L}.
While the correlations between A and C can also be quanti-
fied by the MI (1), this information will in general depend on
the amount of knowledge one has about B. This is a conse-
quence of the fact that part of the correlations between A and

(a)

(b)

(c) A CB
I(AB:C)

A CB
I(B:C)

A CB
I(A:C|B)

FIG. 2. The chain rule (5) connecting the MI (1) and the CMI (4).

C could be solely due to the lack of information about B that
both share. To account for this one introduces the Conditional
Mutual Information (CMI) [50, 51]

I(A :C|B) = S (ρAB) + S (ρBC) − S (ρABC) − S (ρB) ≥ 0. (4)

It quantifies the amount of correlations shared between A and
C, given B. Knowledge on how I(A :C|B) depends on the size
b = |B| of the middle partition will therefore provide informa-
tion on how B degrades the correlations between A and C. We
also mention in passing that the non-negativity of the CMI is
a consequence of the famous strong sub-additivity inequality
[52], which is perhaps the most important property of the von
Neumann entropy.

The connection between the CMI (4) and the MI (1) can
be established by means of the so-called chain rule [51] (see
Fig. 2):

I(A :C|B) = I(AB :C) − I(B :C). (5)

This formula clarifies the meaning of the CMI as representing
the information shared between AB and C, subtracted from
that part which refers to correlations that already exist be-
tween B and C. Of course, an equivalent formula also holds
with a partition the other way around.

We now move on to study these concepts within the specific
context of an exactly soluble model for a NESS, which will
allow us to study the MI and CMI for arbitrary chain sizes.

III. BOUNDARY-DRIVEN BOSONIC CHAIN UNDER
SELF-CONSISTENT RESERVOIRS

A. The model

We consider a system with L bosonic modes ai, with the
same frequency ω and interacting according to the Hamilto-
nian

H = ω

L∑
i=1

a†i ai + iλ
L−1∑
i=1

(a†i ai+1 − aia
†

i+1), (6)
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where λ is a constant and the phase was chosen merely for
simplicity. In addition, the system is also subject to two reser-
voirs at each end, which we choose to model by the Lindblad
master equation

dρ
dt

= −i[H, ρ] + D1(ρ) + DL(ρ), (7)

where the Di are taken to be local Lindblad dissipators of the
form

Di(ρ) = (Ni + 1)D[ai] + NiD[a†i ], (8)

where D[L] = LρL† − 1
2 {L

†L, ρ} and Ni is the local Bose-
Einstein thermal distribution. Further details about this model,
including some tools from Gaussian open quantum systems,
are discussed in Appendices A and B.

The NESS of Eq. (7) can be found analytically and is known
to present a ballistic heat flow [1, 8, 9, 53]. Diffusive transport
in general requires anharmonic interactions, which can sel-
dom be treated analytically. Instead, a customary approach to
induce diffusivity is to add additional energy-conserving noise
sources within the chain [2, 8, 12, 13, 54–56]. The typical
dephasing noise used for this purpose, however, does not pre-
serve Gaussianity. This, as discussed below, is essential in or-
der to compute entropic quantities. Instead, we approach the
problem here using the concept of self-consistent reservoirs
[2] (called Büttiker probes in the quantum transport commu-
nity). For a comparison with other dephasing noises, see Ap-
pendix C). The idea consists in adding L additional thermal
reservoirs D̃i(ρ), one at each site, of the same form as Eq. (8),
but with temperatures chosen so as to match the local occupa-
tion number in the NESS, Ñi = 〈a†i ai〉 (Fig. 1(b)). This ensures
that no current flows to the auxiliary reservoirs, but only to the
physical baths at the end-points.

Thus, instead of Eq. (7), we consider the NESS produced
by the master equation,

dρ
dt

= −i[H, ρ] + γD1(ρ) + γDL(ρ) + Γ

L∑
i=1

D̃i(ρ). (9)

Here γ is the coupling to the physical baths, whereas Γ is the
coupling to the self-consistent (auxiliary) baths. Hence Γ can
also be interpreted as an additional noise source responsible
for changing the flow from ballistic to diffusive. The NESS of
this model can be computed using a variation of the method
used in Refs. [8–11, 13]. We shall leave the specific details to
Appendix C and focus here only on the main results. In Ap-
pendix D we also show that it is straightforward to modify this
model to introduce squeezing in the reservoirs, which can be
used as a tool for introducing quantum features in the NESS.
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FIG. 3. Occupation profile 〈a†i ai〉 as a function of the site number i.
(a) Ballistic case (Γ = 0) for different values of λ. (b) Diffusive case,
with λ = 1 and different values of Γ. Other parameters are L = 10,
γ = 1, N1 = 2 and NL = 1.

B. Properties of the NESS

The occupation numbers in the NESS, for the inner sites
i = 2, . . . , L − 1, reads

〈a†i ai〉 =
N1 + NL

2
+

1
2

γ(N1 − NL)
4λ2 + γ2 + γΓ(L − 1)

Γ(L − 2i + 1)

+
1
2

γ2(N1 − NL)
4λ2 + γ2 + γΓ(L − 1)

(δi,1 − δi,L). (10)

For Γ ≡ 0, we obtain a flat profile typical of a ballistic behav-
ior,

〈a†i ai〉 =
N1 + NL

2
+

1
2
γ2(N1 − NL)

4λ2 + γ2 (δi,1 − δi,L). (11)

This is illustrated in Fig. 3(a) for different values of λ. Con-
versely, for any Γ , 0 and L sufficiently large, the profile ap-
proaches a linear interpolation between the bath-induced oc-
cupations N1 and NL,

〈a†i ai〉 '
(L − i)N1 + (i − 1)NL

L − 1
+

γ

2Γ

(N1 − NL)
L − 1

(δi,1 − δi,L).
(12)

This is shown in Fig. 3(b) for different values of Γ. It es-
sentially interpolates linearly between N1 and NL, except for
small end-point corrections.

The only non-zero correlation in the system is between
nearest-neighbors and reads

〈a†i ai+1〉 =
γλ

4λ2 + γ2 + γΓ(L − 1)
(NL − N1). (13)

This correlator determines the particle current [8, 9]

J = λ〈a†i ai+1 + a†i+1ai〉

=
2γλ2

4λ2 + γ2 + γΓ(L − 1)
(NL − N1). (14)

Thus, we see that if Γ ≡ 0 we get a ballistic current,

J =
2γλ2

4λ2 + γ2 (NL − N1), (15)
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which is independent of L. Conversely, for any Γ , 0, in the
limit of large L we get a diffusive behavior

J '
2λ2

Γ

(NL − N1)
L

∼
1
L
. (16)

A scaling of this form, with J inversely proportional to L, is
the hallmark of Fourier’s law.

C. Calculation of the von Neumann entropy

Due to the Gaussianity of the model, the state of the system
is fully determined by the Covariance Matrix (CM). This will
provide us with a simple method to compute the von Neumann
entropies in terms only of symplectic eigenvalues [45, 47, 57]
The CM of L modes is defined as the 2L × 2L matrix

Θi, j =
1
2
〈{Xi, X

†

j }〉, (17)

where X = (a1, a
†

1, . . . , aL, a
†

L) and we have assumed the first
moments are zero for simplicity. CMs are usually written
in terms of quadrature operators [46, 47]. The structure in
Eq. (17), however, turns out to be quite convenient for the
problem at hand since it allows us to readily separate the CM
in terms of two components,

Ci, j = 〈a†jai〉, (18)

Bi, j = 〈aia j〉, (19)

which are both L × L. The relation between Θ and C, B can
then be written rather elegantly as

Θ =
I2L

2
+C⊗(σ+σ−)+CT⊗(σ−σ+)+B⊗σ+ +B∗⊗σ−, (20)

where σi are the usual Pauli matrices. In the NESS of Eq. (9),
the matrix B is zero, whereas C is tridiagonal, with entries
given by Eqs. (10) and (13).

The von Neumann entropy for a Gaussian state can be di-
rectly computed from the symplectic eigenvalues of Θ, which
are defined as

{νk} = eigs+(2ΣΘ), (21)

where Σ = IL ⊗σz is the symplectic form related to our choice
of structure for Θ. Here, eigs+ means selecting only the posi-
tive eigenvalues. The von Neumann entropy is then given by
[45, 47]

S (ρ) =

L∑
k=1

{
νk + 1

2
ln

(
νk + 1

2

)
−

(νk − 1)
2

ln
(
νk − 1

2

)}
. (22)

The same approach is used for considering any reduced den-
sity matrices, which is also convenient since the reduced den-
sity matrix of a Gaussian state is also Gaussian and therefore
has a CM which is simply obtained by dropping from Θ the
elements one wishes to trace over.

IV. RESULTS

A. Mutual Information and Total Correlations

We begin our analysis by computing the mutual informa-
tion I(A : B) [Eq. (1)] for a symmetric bipartition at L/2. The
results as a function of L, for different values of Γ, are shown
in Fig. 4(a). As can be seen, I(A : B) is independent of L in
the ballistic case (Γ = 0), but scales as I(A : B) ∼ 1/L2 in
the diffusive case. In Fig. 4(b) we present for comparison the
total correlations [Eq. (3)]. For ballistic transport the TC is an
extensive quantity, scaling as T ∼ L. Conversely, for diffu-
sive transport we find T ∼ 1/L. This decay of the amount of
correlations as one approaches the thermodynamic limit was
also found in Ref. [58] for 2-particle entanglement.
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FIG. 4. (a) Log-log plot of the Mutual Information (MI) I(A : B)
[Eq. (1)] between two halves of the chain as a function of L, for
different values of the self-consistent noise Γ. (b) Same but for the
total correlations T [Eq. (3)]. The curve for Γ = 1 was multiplied by
10−3 to improve visibility. In all curves we set N1 = 2, NL = 1 and
γ = λ = 1.

B. Conditional Mutual Information

Next we turn to the CMI, which is summarized in Fig. 5.
We focus on symmetric tripartitions ABC with b = |B| sites
in the middle. As illustrated in Fig. 5(a), we find that in both
regimes the CMI decays exponentially with b, as I(A : C|B) =

1/Rb, where R is a constant that depends non-trivially on all
parameters of the model. The dependence of the CMI on L
is shown in Fig. 5(b) for b = 1 and in Fig. 5(c) for multiple
values of b. We find that for ballistic transport the CMI is
independent of L, whereas for diffusive transport it scales as
I(A : C|B) ∼ 1/L2b+2.

From these numerical simulations we therefore propose the
following scaling law for the CMI:

I(A : C|B) =
u

(v + ΓL)2b+2 , (23)

where u and v are constants. The behavior also holds for
b = 0, in which case one recovers the MI in Eq. (1). The
appearance of L in the diffusive case has a dramatic conse-
quence, as it implies that the correlations between even neigh-
boring pats tends to zero in the thermodynamic limit when
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FIG. 5. Conditional mutual information (CMI) I(A : C|B) [Eq. (4)]
for a symmetric tripartition with the middle block having size b = |B|.
(a) Log of the CMI as a function of b, for both the ballistic case
(Γ = 0, solid lines) and diffusive case (Γ = 0.1, dashed lines), with
different values of N1 and fixed L = 40 and NL = 1. In both cases the
CMI behaves as I(A : C|B) ∼ 1/Rb, where R > 1 is a constant that
depends on the temperature gradient. (b) Log-log plot of the CMI as
a function of L for b = 1. If Γ = 0 then I(A : C|B) is independent
of L, whereas for Γ , 0 we get I(A : C|B) ∼ 1/L4. (c) Log-log
plot of the CMI vs. L for different values of b with N1 = 15, NL = 1
and Γ = 0.1. For large L the CMI scales as I(A : C|B) ∼ 1/L2b+2.
(d) Finite size scaling, Eq. (23), for two different values of N1, with
NL = 1 and multiple values of Γ, L and b. In all curves we set
γ = λ = 1.

diffusivity is present. To confirm this scaling law behavior we
present in Fig. 5(d) plots of I−1/(2b+2) vs. ΓL for different val-
ues of Γ, L and b. According to Eq. (23), this should lead
to a fully collapsed straight line, which is precisely what is
observed.

Eq. (23) provides a full characterization of the information
sharing for the bosonic model (9). It shows that the informa-
tion sharing is exponentially suppressed by the size b of the
middle partition, for both ballistic and diffusive cases. How-
ever, in the diffusive case, this suppression is greatly enhanced
by a factor depending on the size L of the chain. Unfortu-
nately, it is not possible to state whether such a scaling be-
havior is universal. It will quite likely be true for fermionic
chains, in view of their similarity with the present model (c.f.
Ref. [58]). There are rare situations, however, which could
serve as counterexamples. One, for instance, is the spin helix
model studied in Ref. [59], where in certain cases the NESS
may be in a product state, despite having a non-zero current.
Another example is the Fibonacci quasi-periodic model [60],
which is a fully non-interacting free-fermion or free-boson
model which, nonetheless, can present any kind of transport
(from ballistic, to super-diffusive, diffusive and sub-diffusive)
depending on the disorder strength. These examples point to
the fact that diffusive transport can be obtained from entirely

different steady-states. The structure of the CMI found here
should therefore not be expected to be universal. In addition,
one also has to deal with the issue that in general, the NESS of
many-body boundary-driven systems having diffusive trans-
port is unknown, as there are no exactly soluble models and
only a handful can be treated using tensor-network or related
numerical methods. Notwithstanding these drawbacks, how-
ever, we still feel that the results reported in this paper are
meaningful, as the characterization of specific models is the
first step towards a more general theoretical framework.

C. Local equilibration

As first put forth in Ref. [30], the behavior of the CMI can
also shed light on questions concerning the Hilbert space ten-
sor structure of the NESS and local equilibration. Motivated
by this, we now show that the scaling rule (23) for the ballis-
tic and diffusive scenarios can give precise information about
how close the NESS is from local equilibrium. To accomplish
this, we make use of a recently proved theorem by Kato and
Brandão [41]. Let Ik denote the CMI with a tripartition at po-
sition k and only 1 site in the middle. The authors have shown
that if Ik < ε for all k, then there exists a local Hamiltonian
H =

∑
i hi,i+1, acting only on sites i, i + 1, such that

S
(
ρS

∣∣∣∣∣∣∣∣∣∣ e−H

tr e−H

)
< εL, (24)

where S (ρ||σ) = tr(ρ ln ρ − ρ lnσ) is the quantum relative
entropy. This means that states with vanishingly small Ik
tend to be locally thermal (which includes the possibility of a
site-dependent temperature, which we have incorporated into
hi,i+1).

Based on Eq. (23), with b = 1, we see that in the ballistic
case Ik ∼ L0, so that the NESS will in general be far from
local equilibrium. However, in the diffusive case Ik ∼ 1/L4

so that Eq. (24) scales as 1/L3. Hence, we see that in the dif-
fusive case the NESS tends to a locally thermal state in the
thermodynamic limit. This agrees with our macroscopic intu-
ition that even though a system may be out of equilibrium it is
still in a local equilibrium state, but with a position-dependent
temperature. This result therefore provides a direct applica-
tion for the CMI in understanding local properties of NESSs.

V. CONCLUSIONS

In this paper we have put forth a detailed study on the be-
havior of the conditional mutual information in an exactly sol-
uble NESS. Our main result is summarized in Eq. (23). It
shows that even in the ballistic case, the CMI decays exponen-
tially with the separation b between partitions A and C. More-
over, in the diffusive case it also decays algebraically with
the total size L of the chain, hence vanishing in the thermo-
dynamic limit. We also showed how this type of knowledge
may find applications in studies of local thermalization of non-
equilibrium states, a topic which touches at the heart of many
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discussions in many-body and statistical physics. From our
studies, several natural questions emerge. The most basic is
the universality and/or typicality of the scaling (23). Another
interesting question is how these results would be affected by
anomalous diffusion (that is, in which J ∼ 1/Lα for some
exponent α). By understanding what changes this would in-
troduce in the scaling law (23), one could address the question
of what is the critical value of α for which local equilibration
breaks down.
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Appendix A: Lyapunov equation

The steady-state of Gaussian bosonic problems can be stud-
ied by solving the Lyapunov equation for the covariance ma-
trix. Here we shall consider a slightly more general scenario
as that treated in the main text. In particular, we wish to show
how to write down equations in which the environments also
contain squeezing, as this could be useful for studying the in-
terplay between classical and quantum information.

We therefore begin by discussing the following model:

dρ
dt

= −i[H, ρ] +

L∑
i=1

Di(ρ), (A1)

where H is given in Eq. (6) and Di(ρ) represent local squeezed thermal baths, defined by

Di(ρ) = γi(Ni + 1)
[
aiρa†i −

1
2
{a†i ai, ρ}

]
+ γiNi

[
a†i ρai −

1
2
{aia

†

i , ρ}
]

(A2)

−γiMi

[
a†i ρa†i −

1
2
{a†i a†i , ρ}

]
− γiM∗i

[
aiρai −

1
2
{aiai, ρ}

]
.

Here Ni and Mi are constants that can be associated to the
thermal fluctuations and the degree of squeezing according to

Ni + 1/2 = (n̄i + 1/2) cosh(2ri), Mi = (n̄i + 1/2)eiθi sinh(2ri),
(A3)

where n̄i is the local Bose-Einstein occupation and zi = rieiθi

is the local squeezing value. In the main text we have worked
with zi = 0 so that Mi = 0 and Ni = n̄i. Additional discussions
on the use of Gaussian techniques to solve this model can also
be found in Ref. [61].

The dynamics of the CM under the master equation (A1)
can be written as a Lyapunov equation:

dΘ

dt
=WΘ + ΘW† + F , (A4)

where

W = W ⊗ I2, (A5)

with

Wi, j = −
γi

2
δi, j + iωδi j + λ(δi+1, j − δi, j+1) (A6)

and

F = diag(F1, 0, . . . , 0, FL), (A7)

with

Fi = γi

Ni + 1/2 Mi

Mi Ni + 1/2

 . (A8)

Instead of dealing with the full Lyapunov equation (A4), we
can use the fact that the Hamiltonian does not spontaneously
generate squeezing to factor the evolution into two parts, re-
lated to the reduced covariance matrices C and B in Eqs. (18)
and (19). Using this tensor structure in Eq. (A5) allows us to
write to separate equations for C and B:

dC
dt

= WC + CW† + FN , (A9)

dB
dt

= WB + BW† + FM , (A10)

where

FN = diag(γ1N1, . . . , γLNL), (A11)

FM = diag(γ1M1, . . . , γLNL). (A12)

Note how the two equations (A9) and (A10) are now struc-
turally identical, which is a consequence of a convenient
choice of parameters in the master equation.
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The NESS is then obtained by setting the right-hand side of
Eqs. (A9) and (A10) to zero; viz.,

WC + CW† + FN = 0, (A13)

WB + BW† + FM = 0. (A14)

If there is no squeezing in all environments, zi = 0, then
FM = 0 and we therefore obtain B = 0. This is the situa-
tion considered in the main text.

Appendix B: Local vs. Global master equations

In this section we clarify the physical interpretation of the
master equation (A1) used in the main text. There is a long-
standing discussion on the precise meaning of the boundary
driven (local) Lindblad dissipators used in Eq. (A2). As is
well known, microscopic derivations of the Lindblad equa-
tion will lead to global dissipators which act non-locally on
the system. Hence, the local forms used in Eq. (A2) are often
taken as phenomenological descriptions. However, global dis-
sipators are also known to have serious deficiencies [62]. Re-
cently, some of us [63] have compared the local and global ap-
proaches with exact solutions based on the quantum Langevin
equations, for the case of two harmonic oscillators. It was
found that the local approach of Eq. (A2) can actually outper-
form the global approach depending on the parameters of the
model.

Consequently, two important questions naturally emerge.
The first is what is the precise meaning of the parameters n̄1
and n̄L in Eq. (A3). The results in Ref. [63] show that, within
certain parameter ranges, it is possible to attribute to n̄i a func-
tion of the temperature of the reservoirs as

n̄i =
1

eω/Ti − 1
, (B1)

where ω is the frequency of oscillation of the local modes.
Thus, within certain parameters it is correct to say that n̄1 − n̄L
represents a gradient of temperature. However, within other
parameter ranges this may not be as precise. For this rea-
son we avoided introducing the precise notion of temperature
and, instead, interpreted n̄1 − n̄L as a gradient of the boundary
drives.

The second question concerns the meaning of the current J
appearing in Eq. (14) By construction, it represents the current
of particles, as it is derived from a continuity equation of the
local occupation number

d〈a†i ai〉

dt
= Ji−1,i − Ji,i+1, i = 2, . . . , L − 1. (B2)

Similar schemes could be developed to describe a current of
energy. However, recently some of us have shown that there
is also an alternative interpretation in terms of the method of
repeated interactions [64]. This method can be used to gener-
ate local master equations from a physically consistent model
[65, 66] where the environment is described by the sequential
interactions with a series of “environmental units”,, which are

then discarded after each stroke. As we have shown, within
this framework it is possible to reconcile local master equa-
tions with thermodynamics by identifying a work cost asso-
ciated with turning the interactions with the units on and off.
Once this work term is identified, it turns out (for the specific
case of a bosonic chain) that the current (14) will also corre-
spond to the heat current to the baths, up to a constantω. Thus,
to summarize, if one interprets the master equation (A1) as
stemming from the method of repeated interactions, the cur-
rent J represents both the particle and heat currents. If not,
then J is to be interpreted solely as the current of particles.

Appendix C: Self-consistent reservoirs

We now focus on Eq. (A13). Analogous results can be
stated for Eq. (A14) by simply replacing Ni with Mi. We first
consider the ballistic model, in which γ1 = γL = γ and γi = 0
otherwise. The matrices W and FN then become

W =



−γ/2 λ 0 0 0 . . . 0 0

−λ 0 λ 0 0 . . . 0 0

0 −λ 0 λ 0 . . . 0 0

...
...

...
...
...
. . . 0 0

0 0 0 0 0 . . . 0 λ

0 0 0 0 0 . . . −λ −γ/2


,

and

FN = γdiag(N1, 0, . . . , 0,NL).

We next add the self-consistent reservoirs. This means we
should add to Eq. (A13) the additional terms

WC + CW† + FN − ΓC + F̃N = 0 (C1)

where Γ is the coupling constant to the self-consistent reser-
voirs and

F̃N = Γdiag(Ñ1, Ñ2, . . . , ÑL−1, ÑL).

Here Ñi are the thermal occupations of the self-consistent
reservoirs, which are chosen as

Ñi = 〈a†i ai〉 = Ci,i.

Thus, Eq. (C1) can be written as

WC + CW† + FN − Γ∆(C) = 0, (C2)

where ∆(C) is the operation of removing all diagonals from
C:

∆(C) = C − diag(C1,1,C2,2, . . . ,CL,L).

Eq. (C2) is now formally identical to the model studied
in Refs. [8, 11], which instead of using self-consistent baths,
used dephasing baths of the form

K(ρ) =
Γ

2

L∑
i=1

[
a†i aiρa†i ai −

1
2
{(a†i ai)2, ρ}

]
, (C3)
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Even though both models lead to the same equation for the
covariances, it turns out that the steady-states themselves are
different. The reason is that the dephasing model (C3) does
not preserve Gaussianity since the Lindblad generators are
quadratic, instead of linear, in the creation and annihilation
operators. Consequently, the NESS of the self-consistent

reservoirs is Gaussian, but that of the dephasing model is not.
This will be further discussed in the next section. We also
mention that the self-consistent model can be readily extended
for the case of squeezing, whereas the dephasing model can-
not, since a dissipator such as (C3) preserves the number of
particles, but does not preserve the level of squeezing.

The solution of Eq. (C2) is then identical to that studied in Ref. [8, 11]. The matrix C is tridiagonal, of the form

C =



A1 x 0 0 0 . . . 0 0

x A2 x 0 0 . . . 0 0

0 x A3 x 0 . . . 0 0

...
...

...
...
...
. . . 0 0

0 0 0 0 0 . . . 0 x

0 0 0 0 0 . . . x AL


, (C4)

where Ai = 〈a†i ai〉 is given in Eq. (10) and x = 〈a†i ai+1〉 is given in Eq. (13).

Appendix D: General NESS covariance matrix with squeezing

If we introduce squeezing in the reservoirs, then Eq. (A14) will give a non-trivial solution for S . This solution is identical to
that for C, with Ni replaced by Mi. Thus, in the NESS with squeezing, S would also be tridiagonal, with

Ri := 〈aiai〉 = =
M1 + ML

2
+

1
2

γ(M1 − ML)
4λ2 + γ2 + γΓ(L − 1)

Γ(L − 2i + 1) +
1
2

γ2(M1 − ML)
4λ2 + γ2 + γΓ(L − 1)

(δi,1 − δi,L), (D1)

y := 〈aiai+1〉 =
γλ

4λ2 + γ2 + γΓ(L − 1)
(ML − M1). (D2)

From C and S we can then reconstruct the full CM Θ using Eq. (20). We then find that Θ will be block tridiagonal, of the form

Θ =



Q1 Z 0 0 0 . . . 0 0

Z Q2 Z 0 0 . . . 0 0

0 Z Q3 Z 0 . . . 0 0

...
...

...
...
...
. . . 0 0

0 0 0 0 0 . . . 0 Z

0 0 0 0 0 . . . Z QL


, (D3)

where

Qi =

Ai + 1/2 Ri

R∗i Ai + 1/2

 , Z =

 x y

y∗ x

 . (D4)
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