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A B S T R A C T 

This paper presents a hierarchical two-layer home energy management system to reduce daily household energy costs and 

maximize photovoltaic self-consumption. The upper layer comprises a model predictive controller which 

optimizes household energy usage using a mixed-integer linear programming optimization; the lower layer 

comprises a rule-based real-time controller, to determine the optimal power settings of the home battery 

storage system. The optimization process also includes load shifting and battery degradation costs. The 

upper layer determines the operating schedule for shiftable domestic appliances and the profile for energy 

storage for the next 24 hours. This profile is then passed to the lower energy management layer, which 

compensates for the effects of forecast uncertainties and sample time resolution. The effectiveness of the 

proposed home energy management system is demonstrated by comparing its performance with a single-

layer management system. For the same battery size, using the hierarchical two-layer home energy 

management system can achieve annual household energy payment reduction of 27.8% and photovoltaic 

self-consumption of 91.1% compared to using a single layer home energy management system. The results 

show the capability of the hierarchical home energy management system to reduce household utility bills 

and maximize photovoltaic self-consumption. Experimental studies on a laboratory-based house 

emulation rig demonstrate the feasibility of the proposed home energy management system. 
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1. Introduction  

Home Energy Management Systems (HEMS) are now being considered as an effective method to 

reduce home electricity bills and ensure a significant drop in peak energy demand by controlling household 



distributed energy resources and shiftable home appliances [1]. The integration of HEMS with Home 

Battery Storage Systems (HBSS), Demand-Side Management (DSM) techniques and real-time-pricing 

schemes is receiving much attention in the research literature [2]. There is an increasing trend towards 

encouraging local consumption of energy generated from renewable energy resources (RES) at the lowest 

levels of the grid to reduce the export of surplus to the main grid [3]. This includes integrating energy 

storage systems into homes to use surplus photovoltaic (PV) energy or low cost (off-peak) utility energy 

at peak-tariff times [4].  

Many researchers have focused on optimizing home energy management using approaches such as 

optimal controllers or real-time decision-making controllers. Using optimal controllers, researchers 

presented home energy management as an optimization problem with multiple variables and multiple 

constraints, where the variables are both discrete and continuous [5]. The authors in [6] used Mixed Integer 

Linear Programming (MILP) optimization to determine the optimal operation of a home with a home 

battery, a PV system, and an electric vehicle (EV). To study dynamic pricing and peak power limiting 

based on a DSM strategy, a MILP model of the HEMS was established in [7] with an EV and a HBSS. 

Although the authors claim a 15 minute sample time for the MILP optimization process, all the results 

presented have a 1 hour sample time. 

A MILP model of a HEMS, as well as an Artificial Neural Network (ANN) for forecasting of residential 

loads, is described in [8]. The energy management system (EMS) and ANN forecasting model used a 

sample time of 1 hour for the forecasted home load profiles, which cannot be considered as a real 

indication of the home’s true load profile. [9] developed an optimization strategy to efficiently consider 

price-based demand response techniques for HEMS; a versatile convex programming framework was 

constructed for the management of various home appliances. Another energy management scheme which 

integrates RES, electrical battery storage, and vehicle to grid was proposed in [10]. The authors claim 

accurate results but run the algorithm only once every day and use a time slot of 1 hour for management 

which leads to inaccurate results due to uncertainty of the RES and load demand. To tackle the problem 

of uncertainty with the forecasted energy consumption/generation and update key parameters, researchers 

have used model predictive control (MPC) to modify and update uncertain parameters and external 

variabilities for energy management studies [11]. 

 

 

 

 



NOMENCLATURE 

Eactual(𝑡) Actual stored energy in the battery at 

a time interval t (kWh). 

Prateappl(i) Rated electrical power of appliance 

‘i’ (kW)  

 EMPC  Stored energy profile for the next 24 

hour, obtained from the model 

predictive control layer (kWh). 

Tcycle(i) Time needed to complete a full 

operating cycle for appliance ‘i’ (h) 

Emaximum  Mmaximum limit for the energy 

stored in the battery (kWh). 

бstartup(i, t) Binary variable to indicate when the 

appliance has started. 

𝑪𝒉𝒐𝒎𝒆  Daily household electrical energy 

costs (£). 

PGCP(t) Electrical power at the grid 

connection point at a time interval t 

(kW). A positive value means that 

the home is importing power from 

the supply utility (grid) while a 

negative value means exporting 

power to the supply utility. 

𝑪𝒉𝒐𝒎𝒆 𝒃𝒖𝒚 Cost of the electrical energy 

purchased from the main utility per 

day (£). 

Phomeload
(t) Household electrical load demand 

at a time interval t (kW). 

𝑪𝒉𝒐𝒎𝒆 𝒔𝒆𝒍𝒍 Cost of the exported electrical energy 

to the main utility per day (£). 

PPV gen(t) Electrical power generated by the 

household PV system at a time 

interval t (kW). 

𝑪𝒔𝒄 Daily standing charge cost (i.e. 

£0.24) 

Psh appl(i, t) Electric power drawn by the 

controllable (shiftable) home 

appliance ‘i’ at a time interval t 

∆𝑻 Sample time (h)  PHBSS(t) Electric power charged/discharged 

by the HBSS at a time interval t 

(kW), where a negative value 

means that the HBSS is charging, 

and a positive value means that the 

HBSS is discharging. 

𝑻𝑹𝒃𝒖𝒚(𝒕) Electricity purchase tariff at a time 

interval t (£/kWh). 

E(t) ,  

E(t − 1) 

Stored energy in the HBSS at a time 

interval t and t-1 respectively 

(kWh). 



𝑻𝑹𝒔𝒆𝒍𝒍(𝒕) Selling electricity tariff at a time 

interval t (£/kWh). 

ηd , ηc Battery discharging and charging 

efficiencies respectively (%). 

𝜼𝑪𝒐𝒏𝒗 Efficiency of the power converter 

(%). 

Bcapacity Capacity of the battery (kWh).  

𝑺𝑶𝑪(𝒕) Battery state of charge at a time 

interval t (%). 

PHBSS
disch(t) HBSS discharge power at a time 

interval t (kW) 

𝑷𝑯𝑩𝑺𝑺 𝒓𝒂𝒕𝒊𝒏𝒈 Maximum HBSS charge/discharge 

power at time interval t (kW). 

PHBSS
charg(t) HBSS charge power at a time 

interval t (kW) 

𝑺𝑶𝑪𝒎𝒂𝒙   HBSS state of charge maximum limit 

(%) (i.e. 90%) 

бdisch(t),  

бcharg(t) 

Binary variables used to ensure that 

the HBSS power flows in one 

direction only at each sample time 

(i.e. only charging or discharging).  

 𝑺𝑶𝑪𝒎𝒊𝒏 HBSS state of charge minimum limit 

(%) (i.e. 20%) 

CHBSSd
 The battery degradation cost (£) 

𝑪𝑪𝒃𝒂𝒕 The capital cost of the HBSS (£) бappl(i, t) binary status of the shiftable 

appliance ‘i’ at time interval t.  

∆𝑳  Lifetime degradation of the battery  Tmax wait(i) Maximum waiting time for 

appliance i  to start (h) 

𝑵𝒄𝒚𝒄𝒍𝒆 Number of life cycles of the HBSS Tstartsignal(i) Time at which the HEMS receives 

an ON switch signal for appliance i 

(h) 

 

  Most Energy Management Systems (EMS) reported in the literature are based on optimal controllers 

[12]. Loads and energy resources must be predicted in advance, making the effectiveness of optimal 

approaches dependent mainly on the accuracy of the prediction models. Computation times can also be 

significantly longer for these optimal EMS, particularly when using many constraints and shorter sample 

times. When the behavior of the system cannot be captured by the prediction models or cannot be 

implemented in real-time, controllers with real-time decision-making capabilities are used. These can be 

based on instantaneous power measurements rather than prediction profiles as in [13] or on rules (“rule-

based” control) as in  [14]. For these types of EMS, the aim is usually to reduce energy costs by efficient 

use of a battery and maximizing the use of renewable energy to satisfy local demand, while maintaining 

the reliability of the electrical system. They do not require a detailed model of the system and can respond 

quickly to changes in the system. However, they are not guaranteed to be optimal and this can lead to 

inefficient energy usage due to lack of oversight.     [15] proposed an EMS for optimal battery operation 



for electricity distribution grids in the presence of RES. The EMS was used to maximize the utilization of 

the distributed RES and prevent reverse power flow in the distribution transformer. [16] developed a 

control strategy for optimal use of a battery storage system in order to integrate the dispatchable 

intermittent RES. The study suggested a rule-based control scheme as the solution to the optimal control 

problem defined without violating any battery operating constraints such as state of charge (SOC) limits, 

discharging/ charging current limits and lifetime. Using a rule-based controller which controls the battery, 

[16] takes into account only the current situation without considering any future changes in the system 

and this may lead to impaired system performance. 

Most of the EMS introduced in the literature have neglected the economic effects on the system 

behaviour when there are uncertainties in the forecasts [17], or they operate with long sample times [18], 

or have assumed no degradation costs for battery operation [19]. The impact of load shifting with a battery 

system has also not been properly addressed [20]. 

This paper presents a hierarchical two-layer HEMS which combines the use of an optimization layer 

and a control layer and highlights the differences between the ideal scheme and real operation with a user-

interactive control algorithm. System optimization and real-time control are combined. The hierarchical 

HEMS minimizes household energy costs,  maximizes PV self-consumption and minimizes the system 

dependence on external forecasting packages whilst also taking into account the battery degradation costs 

and the opportunity for load shifting. The hierarchical HEMS consists of two layers: (a) The upper layer 

(Model Predictive Control (MPC) layer) and, (b) The lower layer (Real-Time Controller (RTC) layer). 

The upper layer comprises an MPC which optimizes household energy usage using a Mixed Integer Linear 

Programming (MILP) optimization. The lower layer consists of an RTC which controls the Home Battery 

Storage System (HBSS) while minimizing the energy wastage (local generation exported to the supply 

utility) that results from forecasting uncertainties and sample time resolution. 

The following points summarize the main contribution of this work: 

▪ The hierarchical two-layer HEMS represents an optimization-based real-time interactive algorithm that 

minimizes the household energy costs and energy wastage, maximizes PV self-consumption while 

taking into account the battery degradation costs and the use of load shifting. The degradation cost 

model of the battery was developed to accurately reflect the explicit battery degradation process and 

its effect on the daily and annual energy costs. 

▪ The upper layer (MPC) focuses on the energy scheduling to ensure the best economic use of electrical 

energy in the home. The lower layer (RTC) compensates for the effect of forecast uncertainties and the 

long sample time of the upper layer to guarantee lower household energy costs and minimize energy 

wastage. It also minimizes the RES power fluctuations and smooths the fluctuations of the electric 



power exchange at the point of common coupling with the utility which benefits both the householders 

and external grid. It updates the upper layer with any disturbances that appear by providing regular 

feedback. 

▪ The hierarchical HEMS enables the battery to be controlled in real-time, using the RTC, under the 

supervision of an MPC. Therefore, it responds to any changes in the system (i.e. changing of loads and 

PV generation) that happen over a short time, which helps in minimizing the daily energy wastage and 

compensating for RES power fluctuations. 

▪ The two-layer HEMS is considered an improvement over HEMS reported in the literature, as it 

compensates for the effect of forecast uncertainties, compared to [10], and the effect of sample time 

resolution compared to [21] while minimizing the computational requirements. 

In the context of comparing this paper with other publications that considered hierarchical multi-layer 

EMSs, this paper actively eliminates the impacts of uncertainty in a timely manner and provides a cost 

effective real-time corrective action, after the occurrence of uncertainty. This is compared to the approach 

reported in [22] which used corrective methods based on new optimization calculations in the lower layer. 

[22]  requires time consuming computations, may fail to calculate desired set points in time after the 

occurrence of an unpredicted incident, and requires a longer computation time for systems with higher 

numbers of uncertainties. [23] uses very short-term forecasting in the lower control layer, which makes 

the system highly susceptible to uncertainties in the prediction of household consumption and RES and 

minimizes the RES self-consumption ratio. The proposed hierarchical two-layer HEMS is more suitable 

for homes with a large number of controllable devices (i.e. shiftable loads, controllable loads) and RES, 

compared to [24] which uses an economic load dispatch at the lower control level: this needs more 

computation time and may fail to obtain the optimal solution for a large number of units and constraints. 

Compared with approaches to HEMS such as [25] (which only considers the day-ahead scheduling of 

home energy resources) and [26] (which ignores the uncertainties associated with the operation of the 

system), the novelty of the proposed HEMS relies on combining the following points: (a) system 

coordination of both the day-ahead scheduling and the actual operating stages to appropriately consider 

the influence of uncertainty in RES and consumption. (b) The use of a HBSS control in both the day-ahead 

and the actual operation stages. (c) The system links the multiple controllable household appliances with 

the real-time control of the HBSS to maximize the self-consumption of the RES and compensates for 

uncertainties. (d) It is computationally efficient by using RTC in the lower control layer, therefore enabling 

the approach to longer control windows where point prediction is not applicable. (e) It considers demand 

response flexibility of household appliances – other approaches e.g. [27] do not.  

The rest of the paper is arranged as follows: Section II introduces the hierarchical two-layer HEMS. 

Section III presents the formulation of the MILP-optimization problem and includes the HBSS model, the 



battery degradation model and the modelling of the shiftable load. Section IV presents the case study used 

in this paper. Section V shows the single-layer HEMS including performance analysis and the 

experimental results. Section VI presents the results obtained using the hierarchical two-layer HEMS. 

Finally, conclusions are presented from this work. 

 

2. Hierarchical Home Energy Management System 

2.1 The Model Predictive Controller layer (upper layer) 

The upper layer of the HEMS comprises an MPC, as shown in Fig 1., which optimizes household 

energy usage. The authors employ a MILP optimization process incorporated with an MPC framework, 

since the forecast uncertainty can be potentially compensated with a feedback mechanism. The MILP 

optimization problem is formulated to minimize the daily home household energy costs, maximize the PV 

self-consumption and minimize energy wastage.  

The MPC performs an operation optimization process at each time step for a finite control horizon of 

the home microgrid to optimize its operation in relation to specified criteria. At each time step (t), a finite 

horizon optimal control sequence is computed, and an optimal solution is obtained for this period of time. 

However, only the first step of these control actions is applied. At the next time step (t+1), new 

measurements of the variables are requested, and with these updates, the optimal control settings are 

recalculated for the following periods. The main advantage of the MPC is that it optimizes the system for 

the current sample while keeping account of future changes that will happen.  

The upper layer (MPC) focuses on the energy scheduling and ensures the best economic use of 

electrical energy in the home. Every sample time, the upper layer (1) requests the forecasted household 

consumption and PV generation profiles for the next 24 hours. It also requests the real-time measurements 

of the state of charge of the HBSS to update the control model, (2) A MILP optimization process is 

performed to determine the 24-hour profiles with 15-minute resolution for (a) the stored energy, required 

for optimal battery operation, i.e. this profile is sent to the lower energy management layer (RTC layer), 

(b) appliance scheduling. The appliance scheduling profiles are used to control the shiftable appliances, 

i.e. these profiles are sent directly from the MPC layer to the specific appliances. These steps are repeated 

every 15 minutes using a rolling horizon approach to update the input variables and obtain new updated 

settings. These settings will guarantee the best economic use of electrical energy in the home. 

2.2 The Real-Time Controller Layer (lower layer) 

The lower layer consists of a RTC, which determines the optimal power settings of the HBSS in real-

time every one minute using (a) the stored energy profile for the next 24 hours EMPC(𝑡) (i.e. obtained from 



the upper energy management layer), and (b) a rule-based algorithm.  Fig. 2. shows the rule-based 

operating algorithm for the RTC. The lower layer (RTC) (a) compensates for the effect of forecast 

uncertainties and the long sample time of the upper layer to guarantee lower household energy costs and 

less energy wastage, (b) minimizes the RES power fluctuations, (c) smooths the fluctuations of the electric 

power exchanges at the point of common coupling with the utility, and (d) updates the upper layer with 

any disturbance that may appear by sending feedback every one minute. The lower layer also sends 

feedback to update the upper layer with the actual SOC of the HBSS. The upper layer uses this feedback 

to update the initial SOC of the battery, which is essential to perform the subsequent optimization process 

(new energy scheduling).  

 

Fig. 1. Hierarchical scheme of the two-layer home energy management system including both the 

upper and the lower management layers. 

3. System modelling and formulation of the MILP-optimization problem  

The minimization of the daily household energy costs is formulated as a MILP optimization problem. 

The general mathematical formulation of the MILP problem is presented in [28]. The daily household 

energy cost, “Cℎ𝑜𝑚𝑒”, which needs to be minimized, can be formulated in terms of payments and incomes. 

The payments include the cost of electricity purchased from the utility, the battery degradation cost and 

the standing charge, see equations (1) and (2). The incomes are the revenue from the energy exported to 

the utility, i.e. the excess electricity from the PV generation after charging the HBSS and satisfying the 

home demands, see equations (1) and (3).  
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Fig. 2. Flowchart of the rule-based control algorithm for the real-time controller. 

Cℎ𝑜𝑚𝑒 = Cℎ𝑜𝑚𝑒_𝑏𝑢𝑦 + 𝐶ℎ𝑜𝑚𝑒_𝑠𝑒𝑙𝑙 + 𝐶𝐻𝐵𝑆𝑆𝑑
 + C𝑠𝑐               (1) 

Cℎ𝑜𝑚𝑒𝑏𝑢𝑦
= ∑ ∆T × TRbuy(t) × PGCP(t)   

T

𝑡𝑜

   , PGCP(t) > 0    (2) 

Chome_sell = ∑ ∆T × TRsell(t) × PGCP(t)

T

to

      , PGCP(t) < 0     (3) 

where 𝐶ℎ𝑜𝑚𝑒 is the daily cost of household electrical energy (£). 𝐶ℎ𝑜𝑚𝑒_𝑏𝑢𝑦  is the cost of the electrical 

energy purchased from the utility per day (£). 𝐶ℎ𝑜𝑚𝑒_𝑠𝑒𝑙𝑙 is the cost of the exported electrical energy to the 

utility per day (£). CHBSSd
 is the daily battery degradation cost (£). C𝑠𝑐 is the daily standing charge cost 

(i.e. 24 pence per day). ∆𝑇 is the sample time (hours). PGCP(t) is the electrical power measured at the grid 

connection point (kW) at a time interval t; a positive value means that the home is importing power from 

the utility while a negative value means exporting power to the utility. 𝑇𝑅𝑏𝑢𝑦(𝑡) is the electricity purchase 

tariff at a time interval t (£/kWh). 𝑇𝑅𝑠𝑒𝑙𝑙(𝑡) is the electricity sale tariff at a time interval t (£/kWh). 

The total active power balance equation of the home is represented by (4). 



P𝐺𝐶𝑃(t) + PHBSS(𝑡) =   Pℎ𝑜𝑚𝑒𝑙𝑜𝑎𝑑
(𝑡) + Psh appl(i, t) − PPVgen

(𝑡)  

(4) 

where PHBSS(𝑡) is electric power discharged/charged by the HBSS at a time interval t (kW), where a 

positive value means that the HBSS is discharging, and a negative value means that the HBSS is 

charging.𝑃ℎ𝑜𝑚𝑒_𝑙𝑜𝑎𝑑 (𝑡) is the household electrical load demand at a time interval t (kW). 𝑃𝑠ℎ 𝑎𝑝𝑝𝑙(𝑖, 𝑡) is 

the electric power drawn by the controllable (shiftable) home appliance ‘i’ at a time interval t (kW). 

𝑃𝑃𝑉_𝑔𝑒𝑛(𝑡) is the electrical power generated by the household PV system at a time interval t (kW). 

3.1. Modelling of the Home Battery Storage System  

The model of the HBSS is represented as follows. 

The stored energy in the battery, every sample time, can be formulated as (5). 

𝐸(𝑡) =   𝐸(𝑡 − 1) −  
∆T × 𝑃𝐻𝐵𝑆𝑆

𝑑𝑖𝑠𝑐ℎ(𝑡)

𝜂d
− ∆T × 𝜂c × 𝑃𝐻𝐵𝑆𝑆

𝑐ℎ𝑎𝑟𝑔(𝑡)                                              (5) 

where 𝐸(𝑡) and 𝐸(𝑡 − 1) are the stored energy (kWh) in the HBSS at a time interval t and t-1 respectively. 

𝑃𝐻𝐵𝑆𝑆
𝑑𝑖𝑠𝑐ℎ(𝑡)  and 𝑃𝐻𝐵𝑆𝑆

𝑐ℎ𝑎𝑟𝑔(𝑡)  are respectively the HBSS discharge and charge powers at a time 

interval t (kW). 𝑃𝐻𝐵𝑆𝑆
𝑑𝑖𝑠𝑐ℎ(𝑡) is always a positive value while 𝑃𝐻𝐵𝑆𝑆

𝑐ℎ𝑎𝑟𝑔(𝑡) is always a negative value. 

ηd , ηc are the battery discharging and charging efficiencies respectively (%). These are assumed to be 

constant values, neglecting the variation of the efficiency for different values of charging or discharging 

power. 

The status of the stored energy of a battery every sample time is defined as state of charge (SOC), see 

(6): 

SOC(t) =
E(t)

Bcapacity
× 100                               (6) 

where BCapacity  is the capacity of the battery (kWh). 

Minimum and maximum SOC level constraints (7), are used to avoid overcharging or deep discharging 

the HBSS, as this can significantly reduce the battery lifetime [29]. This constraint is recommended by 

the IEEE [30] and is critical to the HBSS operation. The SOC limits of the lithium-ion battery, considered 

in this research, are restricted to a range between 20 and 90 % of the nominal battery capacity. 

SOCmin ≤ SOC(t) ≤  𝑆𝑂𝐶max                              (7) 

where 𝑆𝑂𝐶𝑚𝑎𝑥 and  𝑆𝑂𝐶𝑚𝑖𝑛 are the maximum and minimum allowable SOC limit (%). 



The model of the battery power converter is represented by (8). The battery power converter acts as an 

interface between the battery and the HEMS and is used to control the battery. 

PHBSS(t) =  𝑃𝐻𝐵𝑆𝑆
𝑑𝑖𝑠𝑐ℎ(𝑡) × 𝜂Conv +  

𝑃𝐻𝐵𝑆𝑆
𝑐ℎ𝑎𝑟𝑔(𝑡)

𝜂Conv
        (8) 

where 𝑃𝐻𝐵𝑆𝑆(𝑡) is the charged/discharged electrical power from the HBSS at a time interval t (kW), where 

a negative value means the HBSS is charging, while a positive value means the HBSS is discharging. 

𝜂𝐶𝑜𝑛𝑣  is the efficiency of the power converter (%). The efficiency of the power converter is assumed 

constant in this research. 

The HBSS power output constraint (9), reflects the operating limits of the HBSS and defines the 

maximum power that can be discharged/charged by the HBSS.  

−PHBSS rating ≤ PHBSS(t) ≤  PHBSS rating                         (9) 

 where PHBSS rating  is the rated (maximum allowable) HBSS charge/discharge power (kW) (i.e. rated 

converter power). 

Two binary variables б𝑑𝑖𝑠𝑐ℎ(𝑡) and б𝑐ℎ𝑎𝑟𝑔(𝑡)are introduced to create a link restriction to ensure the 

battery is not charged and discharged at the same time, i.e. battery power flows in one direction at any 

given time, see (10-12): 

б𝑑𝑖𝑠𝑐ℎ(𝑡) + б𝑐ℎ𝑎𝑟𝑔(𝑡) ≤ 1                                  (10) 

б𝑑𝑖𝑠𝑐ℎ(𝑡) =  {   
1      , PHBSS(t) > 0                           

0      , PHBSS(t) ≤ 0                            
     (11) 

б𝑐ℎ𝑎𝑟𝑔(𝑡) =  {   
1      , PHBSS(t) < 0                          

0      , PHBSS(t) ≥ 0                           
      (12) 

where б𝑑𝑖𝑠𝑐ℎ(𝑡) equals 1 if the battery is discharging and equals 0 otherwise. б𝑐ℎ𝑎𝑟𝑔(𝑡) equals 1 if the 

battery is charging and 0 otherwise. 

Constraints (13, 14) are used to create a link between the battery power and the binary variables 

бdisch(t) and бcharg(t). 

𝑃𝐻𝐵𝑆𝑆
𝑑𝑖𝑠𝑐ℎ(𝑡) ≤ б𝑑𝑖𝑠𝑐ℎ(𝑡) × PHBSS rating                         (13) 

𝑃𝐻𝐵𝑆𝑆
𝑐ℎ𝑎𝑟𝑔(𝑡) ≥ б𝑐ℎ𝑎𝑟𝑔(𝑡) × −PHBSS rating                      (14) 

The HBSS model feeds into the power calculations of the MILP optimization problem, i.e. PHBSS(𝑡) in 

eq. (4), and the constraints (7, 9-14) are considered as MILP optimization constraints.  



3.2.Battery degradation model 

In order to simultaneously optimize energy cost and battery lifetime, estimated equivalent costs of 

battery degradation are defined in terms of battery lifetime reduction. [31] divided the battery degradation 

cost into three parts: SOC related degradation, temperature related degradation, and the depth of discharge 

(DOD) related degradation. The temperature related degradation is caused by the fluctuations in charging 

power or discharging power. It is negligible for the HBSS since their discharging/charging current and 

voltage are usually stable. The DOD related degradation is considered the capacity fade resulting from the 

daily minimum SOC level achieved during battery operation [32]. The manufacturers of the batteries 

quantify the life of the battery (i.e. the number of cycles until the end of life) as a function of the DOD. 

The lifetime throughput can be calculated using the information available in the battery specification sheet 

[33]. For home battery storage, the HEMS keeps the DOD (i.e. minimum SOC level) of the battery within 

certain limits to maximize the lifetime of the battery. The SOC related degradation is considered as a 

function of the daily number of the charging and discharging cycles. 

 In this research, the daily cost of battery degradation (𝐶𝐻𝐵𝑆𝑆𝑑
) due to DOD and the number of charging 

and discharging cycles is defined as (15) [34]  .  

𝐶𝐻𝐵𝑆𝑆𝑑
=   CCbat ×

∆L

𝑁𝑐𝑦𝑐𝑙𝑒
                                     (15) 

where CHBSSd
 is the battery degradation cost (£). CCbat  is the capital cost of the battery (£). ∆L is the 

lifetime degradation. Ncycle is the number of life cycles undergone by the battery.  

(15) has been formulated into a linear equation (16) by using (5) and (8). 

𝐶𝐻𝐵𝑆𝑆𝑑
=   ∑

CCbat × 𝜂Conv × 𝜂c × ∆T × 𝑃𝐻𝐵𝑆𝑆
𝑐ℎ𝑎𝑟𝑔(𝑡)

2 × Ncycle

T

𝑡𝑜

+  
CCbat × ∆T × 𝑃𝐻𝐵𝑆𝑆

𝑑𝑖𝑠𝑐ℎ(𝑡)

𝜂Conv × 𝜂d × 2 × Ncycle
                  (16) 

The battery degradation model is used in the cost function equation (1) to account for the battery 

degradation costs into the optimization problem. 

3.3.Shiftable appliances modelling 

In this section, the modelling of the shiftable home appliances is presented. Operation of some home 

appliances, such as washing machines, dishwashers, dryers, etc. can be shifted in time to avoid operating 

them at peak tariff periods. The upper layer of the HEMS determines the best scheduling of the home 

appliances to achieve lower energy costs for householders. It is assumed that the user sends a switch ON 

signal to the HEMS to enable the start of an appliance ‘i’. The HEMS receives the ON switch signal, for 

appliance ‘i’, and schedule for its operation as soon as possible. The HEMS could shift the appliance from 



operating at the peak-tariff period to operate at an off-peak tariff period to minimize the household energy 

costs, or to operate when there is excess PV generation to maximize PV-self consumption. The time which 

passes between the receiving of ON switch signal and actual operation of the appliance is called the 

waiting time. The maximum allowable waiting time can be adjusted by householders based on their 

requirements, i.e. zero waiting time means the immediate start of the device when a switch ON signal is 

received by the HEMS. If no choice is made it is assumed to be 4 hours to keep a high comfort level for 

householders. Equation (17) defines the waiting time constraints for each appliance ‘i’. 

∆𝑇 × ∑  𝑙𝑜𝑔𝑖𝑐 𝑁𝑂𝑡(б𝑎𝑝𝑝𝑙(𝑖, 𝑡)

24

𝑇𝑠𝑡𝑎𝑟𝑡𝑠𝑖𝑔𝑛𝑎𝑙(𝑖)

)  ≤   Tmax wait(𝑖)    (17) 

where Tmax wait(i)  is the maximum waiting time of appliance ‘i’ (h) (i.e. defined by the users). 

𝑇𝑠𝑡𝑎𝑟𝑡𝑠𝑖𝑔𝑛𝑎𝑙 (𝑖) is the time at which the HEMS receives an ON switch signal for appliance ‘i’ (h). ∆𝑇 is 

the sample time (hour).  

б𝑎𝑝𝑝𝑙(𝑖, 𝑡) is a binary variable represents the operation status of a shiftable appliance ‘i’ at time interval 

‘t’,  see (18). 

   б𝑎𝑝𝑝𝑙(𝑖, 𝑡) =  {   
 1    , 𝑖𝑓 𝑂𝑁                           

   0   , 𝑖𝑓  OFF                            
        (18) 

A new binary variable б𝑠𝑡𝑎𝑟𝑡𝑢𝑝(𝑖, 𝑡)  is introduced to indicate the starting up of an appliance ‘i’ 

(i.e. б𝑠𝑡𝑎𝑟𝑡𝑢𝑝(𝑖, 𝑡) equals 1 when the status of an appliance ‘i’ has changed from OFF to ON and equal 0 

otherwise), see (19). 

б𝑎𝑝𝑝𝑙 (𝑖, 𝑡 + 1) − б𝑎𝑝𝑝𝑙(𝑖, 𝑡) − б𝑠𝑡𝑎𝑟𝑡𝑢𝑝(𝑖, 𝑡) ≤ 0         (19)  

Constraint (20) is used to keep the appliance ‘i’ in continuous operation for the complete operation 

cycle without being switched OFF. 

∆𝑇 × ∑  б𝑎𝑝𝑝𝑙(𝑖, 𝑡)24
𝑇𝑠𝑡𝑎𝑟𝑡𝑠𝑖𝑔𝑛𝑎𝑙(𝑖) =    Tcycle(𝑖)                 (20)  

where Tcycle(𝑖) is the time needed (h), for an appliance ‘i’, to complete a full operating cycle. 

To avoid starting any appliance without a request from the user, and also to ensure the appliance is 

switched OFF after completing its operating cycle, the appliance status б𝑎𝑝𝑝𝑙(𝑖, 𝑡)  is set to 0 before the 

HEMS receives the start signal for appliance ‘i’ and after finishing the operating cycle.  

  б𝐚𝐩𝐩𝐥(𝐢, 𝐭) = 𝟎          𝐓𝐬𝐭𝐚𝐫𝐭𝐬𝐢𝐠𝐧𝐚𝐥(𝐢) > 𝐭 ,   𝐭 > 𝐓𝐞𝐧𝐝     (𝟐𝟏) 



Finally, the power drawn by shiftable home appliance ‘i’ at any time period can be represented by (22). 

Psh appl(i, t) = Prateappl(i) × б𝑎𝑝𝑝𝑙(𝑖, 𝑡)               (22)  

where Prateappl(i) is the rated electrical power of appliance ‘i’ (kW).  

The shiftable appliances models feed into the power calculations of the MILP optimization problem, 

i.e. Psh appl(i, t)in eq. (4), and the constraints (17-21) are considered as MILP optimization constraints.  

4. Case study 

The case study used in this paper is for a UK based house which includes, besides the common home 

appliances, a rooftop PV system and a HBSS. Also, the house is connected to the grid to import any further 

required energy and export any excess PV energy (i.e. after satisfying the household load demands and 

charging the HBSS). The household load profiles used in this paper are based on actual measurements for 

a load demand of a house located in the UK [35]. This data is for one year and of one minute resolution. 

The annual electricity consumption of the house studied was 4104 kWh, which is close to the UK average 

of 4200 kWh for medium type users [36]. This data was combined with a real PV generation profile of a 

3.8 kW rooftop PV located in the UK [37]. The data is for 12 months with a resolution of one minute. The 

PV generation profiles were scaled down to be equivalent to the PV generation of 1.4 kW peak system, 

which was assumed to be suitable for the home under study.  

The electricity tariff schemes used in this research are (a) Time of Use (TOU) tariff scheme for the 

purchased electric energy from the utility, and (b) fixed feed-in tariff scheme for exporting electricity to 

the utility. The TOU purchasing tariff values, shown in Table 1, are obtained from the Green Energy 

Company, UK [38]. A standing charge of 24 pence per day is also considered as a part of the TOU tariff 

scheme to pay for Distribution Network Operator (DNO) costs. A fixed feed-in tariff value of 3.79 

pence/kWh has been used in this research. This value is obtained from the Ofgem website for feed-in 

tariffs in the UK [39]. Similar tariffs are available in other countries [40]. 

Table 1.  

Unit cost values for TOU purchasing tariff scheme at each time period. 

Time (h) Unit cost (pence/kwh) 

23:00  to 06:00  4.99 

06:00 to 16:00 11.99 

16:00 to 19:00 24.99 

19:00 to 23:00 11.99 



The size of the battery has been selected using the model presented in [41] for calculating the optimal 

size of an energy storage system. The size of the battery is selected to minimize the annual household 

energy costs (investment and operational costs) and maximize the PV self-consumption. The investment 

cost is the initial cost of the HBSS (the battery and the power converter), while the operational costs are 

the daily household energy costs shown in equations (1-3). The following values have been used for the 

battery sizing model: (a) battery energy rating investment cost of £135/kWh [42], and (b) power rating 

investment cost of £130/kW [43]. The installation cost of the HBSS is assumed to be £500. The nearest 

available commercial size of the battery and the power converter has been selected using the results 

obtained from this model. Table 2 shows the parameters of the home battery storage system [44], and the 

battery power converter [45] used in this research. 

Table 2. 

Parameters of the home battery storage system and the battery power convereter used in this study. 

Battery capacity 

(Bcapacity) 

6.4 kWh Converter rated power 

(𝑃𝐻𝐵𝑆𝑆 𝑟𝑎𝑡𝑖𝑛𝑔)  

±2.5 kW 

Battery efficiency (𝜂d, 

𝜂c) 

95.3 % Converter efficiency 

(𝜂Conv) 

96.7 % 

SOCmin 20 % 𝑆𝑂𝐶max 90 % 

Capital cost of the 

battery (CCbat)  

£ 1230  Number of life cycles of 

the battery (Ncycle)  

5000 

Next day load demand and PV generation forecasting are essential for the operation of the MPC layer. 

The MPC layer needs the household consumption profile and PV generation profile for the next 24 hours 

to perform the optimization process. There are several forecasting methods that could be used to forecast 

the household consumption and the PV generation for the next day [46]. 

 In this research, the forecasted household consumption profile for the next day is assumed to be the 

same as the previous week, same day household consumption profile (L-PWSD); while the forecasted PV 

generation profile for the next day is assumed to be the same as the previous day PV generation profile 

(PV-PD). Using the historical data for household consumption and PV generation minimizes the 

dependence on external communication technologies (i.e. no need for complex forecasting packages that 

require additional meteorological data), which makes this control hierarchy a reasonable solution for 

remote areas which suffer from a poor communication network.  

To assess the performance of the hierarchical HEMS, three performance indicators have been used: 



▪ Household energy costs: The actual household energy costs are calculated by solving equations (1). 

▪ PV self-consumption ratio: The PV self-consumption ratio is used to measure the amount of PV 

energy consumed in the home by direct consumption or by storing in the HBSS to be used later. This 

ratio is calculated by dividing the generated PV energy consumed inside the home by the total generated 

PV energy.  

▪ Energy wastage ratio: Energy wastage ratio is calculated by dividing the total energy exported to the 

grid by the total PV energy generated. The wastage energy is the unwanted feed-in energy to the utility 

resulting from (a) inaccurate power settings of the HBSS due to forecasting errors or sample time 

accuracy, and/or (b) poor estimation of the required overnight charging level of the battery which 

results from errors in forecasting the next day’s energy profile. This may result in the battery incorrectly 

being fully charged such that excess PV energy cannot be stored. When the energy wastage ratio equals 

0%, no lost energy will be observed. As this value increases, more energy wastage will be observed, 

which therefore leads to more household energy costs and poorer system performance. The wastage 

energy should be saved in the battery to be used at the correct time instead of being fed into the utility 

for no or low reward.  

5. The performance of the single-layer HEMS 

First, the performance of the HEMS was tested using only the single MPC layer. Single-layer HEMS 

is the most popular approach to battery control in the literature. This experiment is implemented to 

measure the performance of the single-layer HEMS (i.e. using only the MPC layer) in a real environment 

using a real HBSS.  

5.1. Laboratory-Based Smart Home Rig Architecture  

The single-layer HEMS was tested experimentally in a real-time environment for one day at the 

University of Nottingham’s FlexElec Laboratory, using the “Smart Home Rig” (SHR) shown in Fig. 3. 

and Fig. 4 



 

Fig. 3. Architecture of the smart home rig, used in the experiment, at the FlexElec Laboratory, 

University of Nottingham. 
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Fig. 4. Connection diagram of the smart home rig at the FlexElec Laboratory, University of 

Nottingham. 

This SHR includes: 

▪ HBSS: consists of a 6.4 kWh BYD lithium-ion battery pack [44], and a 2.5 kW SMA bidirectional 

power converter [45]. 

▪ 1.4 kW peak PV panels connected to a 3.68 kW SMA power converter and connected to the SHR 

switchboard [47]. 

▪ 5.6 kW ZSAC electronic AC load emulator [48], which received the digital daily load demand profile 

from LabVIEW software, and converted it to actual current absorbed from one of the appliance 

connection sockets in the SHR. A NI compact Rio controller [49] and LabVIEW software are used to 

move the digital load profiles from the database to the electronic AC load emulator as a control signal. 



▪ A 1.3 kW resistive load with timer circuit, has been used to represent the washing machine operation. 

This load acts as a shiftable home appliance. 

▪ A 3 phase smart meter and is used to measure the PV generation power, load demand, and the power 

at the grid connection point [50].  

▪ A Raspberry Pi used the Modbus protocol to transmit the measured data from the smart meter to the 

HEMS, and to transmit the measured SOC of the battery to the HEMS regularly. Also, the Raspberry 

Pi is used to transmit the optimal battery power settings, obtained from the HEMS, to the battery’s 

power converter.  

▪ A PC: Core i3-7100 CPU, 3.91 GHz was used to run a MATLAB software, which in turn ran the HEMS 

and performed the MILP optimization process. 

 

The software development packages used in this experiment are: (a) MATLAB - used to run the HEMS 

including performing the MILP optimization process, and (b) LABVIEW - used as a graphical user 

interface GUI tool to control the electronic AC load emulator. 

5.2. Experimental Procedure 

The MPC single-layer HEMS was implemented experimentally in real-time such that at each sample 

time (i.e. two minutes in this experiment): (1) The forecasted household consumption profile, as well as 

the forecasted PV generation profile for the next 24 hours is obtained from the historical data. (2) The 

values of the actual SOC level of the HBSS are measured from the battery power converter, and sent to 

the HEMS using the Raspberry Pi, (3) the MILP optimization process is performed using a MATLAB 

script. The computational time of the MILP-optimization process, using a two minute sample time, is 

found to be 104 s. (4) The appliance scheduling profiles obtained, for the next 24 hours, (i.e. ON/OFF 

status of the shiftable appliances) are sent to each appliance. (5) The HBSS optimal power setting obtained 

for the next sample time only (t+1), obtained from the MILP optimization process, is sent to the battery 

power converter using the Raspberry Pi. Using the single-layer HEMS, the HEMS controls the HBSS 

directly, without using the lower RTC layer, by sending the optimal battery power settings, obtained from 

the MILP-based optimization process, directly to the battery power converter. (6) The previous steps are 

repeated every sampling time to update the appliance scheduling and the HBSS optimal power setting. 

Using a short sample time for MPC operation enables the single-layer HEMS to respond to any changes 

in the system (i.e. changing of loads, PV generation, and battery SOC level). This is achieved by scanning 

the input data and updating battery settings, using a two minute sample time, which achieves better results. 

Using a longer sampling time will lead to more daily energy costs and more energy wastage. Selecting a 

proper sample time will be discussed further in section 5.4.  



5.3. Results 

Fig. 5. shows the operation of the house rig, using the single-layer HEMS, for one day. Fig. 5.a and 

Fig. 5.b show that the HEMS feeds the household demands at the peak-time hours (from 16:00 to 19:00) 

using the HBSS instead of importing energy from the utility during the peak tariff period (i.e. when the 

tariff value is 24.99 pence/kWh). The unwanted imported and/or exported power spikes that are observed 

in Fig. 5.b (+ve and -ve values of the black profiles start from 07:00) result due to inaccurate forecasting 

for the load demand and/or PV generation, time delay between the spike occurring and the HBSS reacting, 

and the battery is limited to 2.5 kW, so cannot cover spikes greater than that. These spikes are the main 

reason for energy wastage. The daily energy wastage ratio, due to these spikes, is calculated to be 26.98%. 

This value is not a good value since one quarter of the generated PV energy is exported to the utility with 

low reward. This energy should instead be stored in the HBSS to be used at the correct time. 

It is observed from Fig. 5.d that the HEMS charges the HBSS during the night up to 66% and not up to 

its maximum limit (i.e. 90%) because it is the optimal overnight charging level. The optimal overnight 

charging is adjusted to enable the battery to be topped-up by the forecasted surplus PV generation during 

the following day, and at the same time, feed the forecasted load demand during the morning period (i.e. 

aim not to purchase energy from the main utility from 6:00 to 10:00). The daily household energy cost for 

this day, using the single-layer HEMS, is £0.837, i.e. this cost comprises the daily cost of energy 

imported/exported from the utility, the daily battery degradation cost and the daily standing charge (1). 

 



Fig. 5. Experimental house rig results using the single-layer HEMS for one day, (a) the optimal power 

settings delivered to the HBSS (a positive value means that the HBSS is discharging, while a negative 

value means that the HBSS is charging), (b) the actual power measured at the grid connection point (a 

positive value means the house is importing power from the utility, and a negative value means 

exporting), and the corresponding TOU tariff, (c) the actual household demand and PV generation for 

the current day, (d) the daily actual state of charge of the HBSS. 

The last state point of each horizon in the MPC (i.e. the last point of the SOC of the HBSS) is kept free 

(i.e. no constraint is set on the state of charge of the battery at the end of the day) to give more flexibility 

to the MPC to take actions. For example, if there were to be a constraint on the last point of the SOC of 

the HBSS, on some days the HEMS would be forced to export energy to the utility (at no or low revenue) 

to keep the SOC of the battery at the end of the day within the set limit. Also, if the actual PV generation 

was more than the predicted PV generation, the MPC would not store the excess PV energy in the HBSS 

and instead would export it to the utility (at no or low revenue) to keep the SOC of the battery at the end 

of the day as constrained. This actually decreases the PV self-consumption ratio and does not ensure the 

best economic use of electrical energy in the home. 

For the shiftable loads (i.e. washing machine in this experiment), it is assumed that the user requested 

to operate the washing machine at 16:30. The single-layer HEMS shifted the washing machine to operate 

at 20:30 (mid-peak tariff period) instead of 16:30 (peak tariff period) to reduce the cost of the energy 

imported from the utility. This is clear from Fig. 6. The single-layer HEMS has not shifted the washing 

machine to operate at 23:00 (i.e. off-peak tariff period), because the maximum waiting time for each 

appliance is four hours.  

 

Fig. 6. Daily operating schedule of the washing machine, (a) the requested and the actual operating time 

of the shiftable washing machine, (b) the actual household power consumption after the operation of the 

washing machine at 20:30.  



5.4. The effect of sample time 

Selecting an appropriate sample time is important for the operation of the MPC layer. For example, 

selecting a 60 minute sample time means that the HBSS optimal power settings obtained from the MILP 

optimization process will remain constant for 60 minutes. Consequently, any change in load demand 

and/or PV generation during this 60 minute period will be compensated from the utility grid based on the 

balance equation of the total active power in the home (4), which may affect the overall energy costs. On 

the other hand, when selecting a two minutes sample time for the MPC layer operation, the MPC will be 

able to respond to small changes in load demand and PV generation by updating the HBSS power settings 

every two minutes in a way that works for minimizing the overall energy costs and minimize energy 

wastage. 

 Fig. 7. shows the effect of using a 60 minute sample time versus a 2 minute sample time for MPC 

operation. The actual load demand and PV generation has been used for prediction in this particular test 

to study the effect of sampling time only without the effect of forecasting errors. It is clear from Fig. 7.a 

that when using a 60 minute sample time for MPC operation, the HBSS power settings (red settings) 

obtained remain fixed for 60 minutes. Consequently, the changes in load demand and PV generation are 

compensated from the utility as shown in Fig. 7.b (red line). Using a 60 minute sample time leads to 

purchasing energy from the utility at peak-tariff period (i.e. from 16:45 to 17:30 and from 18:00 to 18:15) 

at a high cost. Also, excess PV energy is exported to the grid during the period 17:30 to 18:00. This 

unwanted exported energy could be stored in the HBSS to be used later instead of selling it at a low price.  

When using a two minute sample time, Fig. 6.a shows that the MPC layer updates the HBSS power 

settings (blue line) every two minutes to respond to load and PV generation changes (i.e. Fig. 6.c) to avoid 

buying or selling energy from/to the utility at wrong periods as shown in Fig. 6.b (blue line).  

Table 3 shows the effect of using different sample times, for MPC operation, on the daily household 

energy costs and the daily energy wastage ratio. The forecasted demand and PV generation profiles used 

in this table are 100% accurate (i.e. zero forecasting error) to clearly study the effect of sample time only. 

 

 



 

Fig. 7. MPC operation for a sample time of 2 minutes and 60 minutes, (a) The HBSS optimal power 

settings in case of using a 60 minute (red settings) and in case of using a 2 minute (blue settings), (b) 

the resultant power at the grid–connection point in case of using a 60 minutes sample time (red settings) 

and in case of using a 2 minute (blue settings), (c) load demand and PV generation profile of a 2 minute 

sample time. 

Table 3.  

Daily household energy costs, daily energy wastage ratio and MILP computation time under different 

sample times 

Sample time resolution 

(minutes) 

60  30 12 4 2 

Household energy costs (£) 0.815 0.751 0.739 0.639 0.578 

Energy wastage ratio (%) 44.68 35.9  30.43  12.85 0.5 

Computation time of the 

MILP optimization (s) 

5.16 6.31 7.53 16.3 104 

 



It is obvious from table 3 that if a shorter sample time is used, lower household energy costs and a 

lower energy wastage ratio are achieved. However, more computation time is needed for the MPC 

optimization process. It can be seen from Table 3 that the computation time would increase exponentially 

as a shorter sample time is used. This is a drawback of the optimization method, not a drawback of the 

single-layer HEMS. As the sample time resolution increases (i.e. shorter sample time), the number of 

sample points in the optimization process increases, which needs a more powerful computing platform 

and larger memory, and of course more computational time as the number of optimal points increases. For 

example, if the sample time is 15 minutes, the number of sample points in the optimization process is 96 

(for a 24 hour control horizon) multiplied by the number of variables, e.g. HBSS charging/discharging 

profile, load profile, PV profile, shiftable appliance’s control profile, etc. However, if the sample time is 

two minutes, the number of points for a 24 hour optimization process is 720, which is then multiplied by 

the number of variables. Selecting another optimization method such as a Genetic Algorithm or Particle 

Swarm Optimization may affect the computation results. 

Using short sample times for MPC operation may conflict at some points with the computational time 

of the optimization process. For example, if a one minute sample time is used, and a rolling step of one 

minute is assumed for MPC operation, the MPC will take 5.62 minutes to perform the optimization process 

only (i.e. more computation time than the rolling step assumed), which makes it unfeasible to use this 

sample time. Also, the computation time of the optimization process may be longer if a more complicated 

system with more constraints and variables is used. Also, using a short sample time (e.g. two minutes) 

may not be suitable for transient situations, since a very short sample time is needed to respond to changes 

in the system which can happen in seconds or milliseconds. 

On the other hand, using a very short sample time (i.e. less than one minute) assumes using a special 

processing platform that computes the optimization process in less than one minute, will force the 

controller to respond to each change (fluctuations) that the renewable PV generation or load can have. 

This lead to unsmooth controller actions and may affect the HBSS lifetime since charging and discharging 

the HBSS, for example every one second, will expose the battery to high stress in operation.  

6. The performance of the hierarchical two-layer HEMS 

The main drawback of using a single-layer HEMS, observed from the previous experiment, are (a) the 

single-layer HEMS is greatly affected by the sample time resolution (i.e. using a shorter sample time 

enables the HEMS to respond faster to the changes in load demand and PV generation, but may conflict 

with the computation time of the optimization process). On the other hand, using a longer sample time 

makes the response of the HEMS to changes in the system slower, which affects the overall energy costs 

and reduction of energy wastage. (b) The single-layer HEMS is greatly affected by the forecasting 



uncertainties since the forecasting errors directly lead to inaccurate HBSS power settings and the unwanted 

imported and/or exported power spikes, that are observed in Fig. 5.b. (c) The single-layer HEMS is 

affected by the lag of the measurements. 

Using a two-layer HEMS will compensate for these drawbacks: (a) the upper layer (MPC layer) will 

use a longer sample time (i.e. 15 minutes) to avoid computation problems. (b) Instead of directly 

controlling the HBSS using the MPC layer, which is greatly affected by forecasting errors, sampling time 

and delay of signals, the MPC layer will determine the stored energy profile for the next 24 hours and pass 

it to the lower layer (RTC layer). The RTC layer will determine the optimal power settings of the HBSS 

in real-time, every one minute, using the stored energy profile for the next 24 hours (i.e. obtained from the 

MPC layer) and a rule-based algorithm. (c) The RTC layer will minimize the energy wastage which results 

from forecasting errors and sample time, minimize the RES power fluctuations, smooth the fluctuations 

of the electric power exchanges at the point of common coupling with the grid, through determining the 

optimal power settings for the HBSS in real-time while taking into account the limits of the required 

energy stored in the HBSS every sample time period (i.e. obtained from the upper MPC layer). 

6.1. Test Procedure 

The two-layer HEMS is tested as follows: every sample time (i.e. 15 minutes in this case):  

(a) In the upper layer (MPC layer), (1) the forecasted household consumption profile, as well as the 

forecasted PV generation profile for the next 24 hours, is obtained from the historical data, (2) the values 

of the actual SOC level of the HBSS are measured from the battery power converter, (3) the MILP 

optimization process is performed using a MATLAB script, (3) the stored energy profile for the next 24 

hours (i.e. the profile uses 15 minute sample time), required for optimal battery operation, is obtained 

and passed to the RTC layer, (4) the appliance scheduling (i.e. ON/OFF status) obtained for the next 24 

hours is sent to each appliance, (5) the previous steps are repeated every 15 minutes.  

(b) In the lower layer (RTC layer), The RTC uses the stored energy profile of the HBSS (obtained 

from MPC layer) in addition to the operating algorithm defined in Fig. 2. to control the battery in real-

time every one minute.  

6.2. Results 

As shown in Fig. 8., the two-layer HEMS managed to control the HBSS in a way to realise the same 

achievements obtained using the single-layer HEMS in addition to preventing the power spikes that result 

from forecasting uncertainties, as shown in Fig. 8b. (i.e. compared to results shown in Fig. 5b. using single-

layer HEMS). Eliminating power spikes leads to minimize the energy wastage and the overall energy 

costs. It is also observed that the generated PV energy has been consumed locally in the home instead of 

being exported to the utility, see Fig. 8.b. From 00:00 to 06:00, during the off-peak tariff period, more 



energy has been imported from the utility at a low price (i.e. 4.99 pence/ kWh) to charge the HBSS and 

cover the household demands. The HBSS is charged from both the imported energy from the utility (during 

off-peak tariff time) and the surplus PV generation, which is clearly shown in Fig. 8.a. and Fig. 8.d. The 

daily household energy costs, using the two-layer HEMS, is £0.604 while the energy wastage ratio is 

0.18%. The results showed that the daily energy wastage ratio decreased from 26.98%, in case of using 

single layer HEMS, to 0.18% using the two-layer HEMS – a very significant improvement. 

 

 

Fig. 8. House rig results using the two-layer HEMS for one day (a) the optimal power settings 

delivered to the HBSS (a positive value means that the HBSS is discharging, while a negative value 

means that the HBSS is charging), (b) actual power measured at the grid connection point (a positive 

value means the house is importing power from the utility, and a negative value means exporting) 

and the corresponding TOU tariff period, (c) the actual household power demand and PV generation 

for the current day using a 1 minute sample time, (d) the daily actual state of charge (SOC) of the 

HBSS. 

Table 4 shows the annual simulation results for the case study presented using the two-layer HEMS 

and the single-layer HEMS. The results show that using the two-layer HEMS achieves lower annual 

household energy costs compared to using the single-layer HEMS (i.e. a household payment reduction of 

up to 27.8 % per annum compared to using a single-layer HEMS). The annual PV self-consumption 



increased from 78.8% to 91.1 % after using the two-layer HEMS. Also, the two-layer HEMS managed to 

minimize the annual energy wastage to 8.9%, compared to 21.2% using single-layer HEMS. The reason 

for not achieving 100% annual PV self-consumption, using the two-layer HEMS, is the selected battery 

size. The size of the battery is selected to minimize the annual household costs, i.e. investment and 

operational costs, and hence, using a larger battery size to capture all the surplus PV generation, to achieve 

100% PV self-consumption, may increase the annual household costs and reduce the return on investment. 

Table 4.  Annual household energy costs, annual energy wastage ratio, annual PV self-consumption 

ratio, and annual forecasting errors using the two-layer HEMS versus using single-layer HEMS. 

 Single-layer HEMS Two-layer HEMS 

Annual household energy costs £ 305.5 £ 220.4 

Annual energy wastage ratio 21.2 % 8.9 % 

Annual PV self-consumption  78.8 % 91.1 % 

Annual forecasting error for the household 

consumption using L-PWSD forecasting 

method 

34.3 % MAPE 28.27 % MAPE 

Annual forecasting error for the PV 

generation using  PV-PD forecasting method 

25.4 % MAPE 20.39 % MAPE 

The limitations of the proposed hierarchical two-layer HEMS are: (a) it needs additional control devices 

(loops) to use it in the isolated microgrid systems, i.e. the HBSS should operate in “grid forming” mode 

when in an isolated microgrid, compared to operating in “grid following” mode in the grid connected 

mode. (b) If the response time of the battery to the real-time controller’s settings is not fast, the 

performance may be affected.   

7. Conclusion 

The hierarchical two-layer home energy management system, presented in this paper, managed to 

reduce the daily household energy costs, maximize photovoltaic self-consumption and minimize energy 

wastage compared to using single-layer home energy management system. The management system is 

tested using a model for a home microgrid system, in which all the constraints that may affect the daily 

operation are taken into account. The degradation cost model of battery is developed to accurately reflect 

the explicit battery degradation process and its effect on the daily and annual energy costs. The 

effectiveness of the proposed home energy management system structure is demonstrated by comparing 

the obtained results with those from a single-layer system. 

The results show that, for the same battery size, using the two-layer home energy management system 

can achieve a photovoltaic self-consumption of up to 91.1% per annum, compared to using single layer 



home energy management system which achieves 78.8% only. The two-layer home energy management 

system achieves a household payment reduction of up to 27.8% per annum, compared to using single-

layer home energy management system. The proposed home energy management system took into account 

the possibility of load shifting to achieve a greater reduction in household costs by shifting the loads from 

operating at peak-tariff periods to operate at off-peak tariff periods.  

The results obtained show the importance of selecting a shorter sample time and its effect on the 

performance of the single-layer home energy management system. Using a short sample time (e.g. two 

minute sample time), for the operation of the single-layer home energy management system, achieves a 

29% reduction in the daily household operation costs and a significant reduction in the ratio of RES energy 

exported to the grid (from 44.68% to 0.5%), compared to using a long sample time of 60 minutes.  

The results obtained show that using the two-layer home energy management system to control the 

home battery storage system through first defining the battery energy stored profile, for the next 24 hour, 

and then allowing the real-time controller to control the battery in real-time achieved better results 

compared to directly controlling the battery using the single-layer home energy management system. 

Using the two-layer home energy management system compensates for uncertainty in energy forecasting 

as well as the sample time resolution. The two-layer management strategy used a real-time controller to 

respond to the changes in the load and generation that occur at a short sample time, therefore guarantee 

better performance and more reduction in costs for the householders. 

Using the historical data for household consumption and photovoltaic generation to forecast the next 

day’s load demand and photovoltaic generation profiles minimizes the dependence on external 

communication technologies (i.e. no need for complex forecasting packages that require additional 

meteorological data), which makes this control hierarchy a reasonable solution for remote areas which 

suffer from a poor communication network.  

It should be noted that even though the energy management system presented in this paper has been 

evaluated for a UK domestic residence, the techniques proposed are applicable to households in other 

countries. 
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