
1

A Comprehensive Study of the Efficiency of
Type-Reduction Algorithms

Chao Chen, Member, IEEE, Dongrui Wu, Senior Member, IEEE, Jonathan M. Garibaldi, Senior Member, IEEE,
Robert I. John, Senior Member, IEEE, Jamie Twycross, and Jerry M. Mendel, Life Fellow, IEEE

Abstract—Improving the efficiency of type-reduction algo-
rithms continues to attract research interest. Recently, there
have been some new type-reduction approaches claiming that
they are more efficient than the well-known algorithms such as
the enhanced Karnik-Mendel (EKM) and the enhanced iterative
algorithm with stopping condition (EIASC). In a previous paper,
we found that the computational efficiency of an algorithm is
closely related to the platform, and how it is implemented.
In computer science, the dependence on languages is usually
avoided by focusing on the complexity of algorithms (using
big O notation). In this paper, the main contribution is the
proposal of two novel type-reduction algorithms. Also, for the
first time, a comprehensive study on both existing and new
type-reduction approaches is made based on both algorithm
complexity and practical computational time under a variety
of programming languages. Based on the results, suggestions
are given for the preferred algorithms in different scenarios
depending on implementation platform and application context.

Index Terms—centroid, type-reduction, interval type-2 (IT2)
fuzzy set, Karnik-Mendel (KM) algorithm, enhanced KM (EKM)
algorithm, enhanced iterative algorithm with stop condition
(EIASC), direct approach (DA), non-derivative based direct
approach (DAND), COSTRWSR, simplified COSTRWSR (SC).

I. INTRODUCTION

DURING the past few years, there has been a steady
increase of interest in developing type-2 fuzzy logic sys-

tems, and in particular interval type-2 fuzzy logic systems [1].
Interval type-2 fuzzy logic systems have been demonstrated to
have better abilities to handle uncertainties than their type-1
counterparts in many applications [2, 3, 4, 5, 6, 7, 8]. How-
ever, the high computational cost of type-reduction algorithms
makes it more expensive to deploy interval type-2 systems,
especially for certain cost-sensitive real-world applications.

C. Chen, J. M. Garibaldi, R. John and J. Twycross are with the Laboratory
for Uncertainty in Data and Decision Making (LUCID), the Intelligent
Modelling and Analysis (IMA) and the Automated Scheduling Optimisation
and Planning (ASAP) Research Groups, School of Computer Science, Uni-
versity of Nottingham, Nottingham, Jubilee Campus, NG8 1BB UK e-mail:
{chao.chen, jon.garibaldi, robert.john, jamie.twycross}@nottingham.ac.uk.

D. Wu is with the Ministry of Education Key Laboratory of Image
Processing and Intelligent Control, School of Artificial Intelligence and
Automation, Huazhong University of Science and Technology, Wuhan, China.
Email: drwu@hust.edu.cn.

J.M. Mendel is with the Ming Hsieh Department of Electrical Engineering,
University of Southern California, Los Angeles, CA, USA. He is also with the
College of Artificial Intelligence, Tianjin Normal University, Tianjin, China.
Email: mendel@sipi.usc.edu.

This research was partly supported by the University of Nottingham, the
National Natural Science Foundation of China (61873321), and the 111
Project on Computational Intelligence and Intelligent Control under Grant
B18024.

Manuscript received *** **, 2019; revised *** **, 2019; accepted *** **,
2019. Date of publication *** **, 2019; date of current version*** **, 2019.

There have been a lot of type-reduction approaches pro-
posed in the literature [9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21]. While some of the recent work on type-reduction
approaches is based on continuous algorithms or general type-
2 fuzzy systems [22, 23], this paper focuses on discrete
type-reduction approaches which are based on computing the
centroid of an interval type-2 fuzzy set. The Karnik-Mendel
(KM) algorithm is an iterative approach to determine the
switch points when computing the centroids of IT2 fuzzy sets
[9]. Type-reduction based on the KM algorithm is usually
computationally intensive. Many attempts have been made to
improve the efficiency of the KM algorithm. For example, the
enhanced KM (EKM) algorithms have better initialisations,
which “on average ... can save about two iterations” [11]. They
have been the most well-known algorithms for type-reductions,
and are still being widely used. Another well-known algorithm
is the enhanced iterative algorithm with stopping condition
(EIASC) which was proposed in [13]. The EIASC algorithm
was reported to be superior to the KM and EKM algorithms
when N , the number of discrete points in the universe of
discourse for an IT2 fuzzy set, is small (e.g. N < 100).

Both EKM and EIASC are iterative based algorithms. A
direct approach (DA) for determining the switch points in
the KM Algorithm was introduced in [16]. It was shown
by simulations in the R programming language that DA
clearly outperformed other algorithms regardless of the shapes
of fuzzy sets. An optimised version of the DA algorithm,
termed the DA* algorithm, was later introduced in [20]. A
recent algorithm called center of sets type reducer without
sorting requirement (COSTRWSR) was proposed in [17]. As
highlighted in the name, this algorithm does not utilise sorting
which is required by the other above algorithms. It was
illustrated in [17] that COSTRWSR is more efficient than six
other enhanced variants of the Karnik–Mendel algorithm.

Almost all of the above algorithms were proposed by
claiming better performance based on only time comparisons.
It has been mentioned in [20] that the computational efficiency
of an algorithm is closely related to the platform, and how
it is implemented. In computer science, the dependence on
languages is usually avoided by focusing on the complexity
of algorithms (using big O notation).

In this paper, as a continuation of our previous work
in [16] and [20], two novel type-reduction approaches are
proposed. Also, a comprehensive study is made based on
both algorithm complexity and practical computational time
in order to give explicit recommendations on type-reduction
algorithms. The rest of the paper is organised as follows: Sec-

2

tion II summarises four existing related algorithms; Section III
presents two new algorithms; and Section IV compares the
algorithm complexity and the practical running time efficiency
of the well-known algorithms described in this paper; After a
brief discussion in Section V, we draw our conclusions in
Section VI.

II. EXISTING RELATED ALGORITHMS

In this section, we briefly summarise related existing algo-
rithms to establish terminology and notation.

Let an IT2 fuzzy set Ã be based on

xi ∈ X, i = 1, 2, ..., N

Ji ≡ [
¯
ui, ūi], 0 6

¯
ui 6 ūi 6 1

where xi is the primary variable in the discrete universe of
discourse X (note that xi is in ascending order for i from
1 to N), Ji represents the membership grade interval for the
primary variable xi, and N is the number of discrete points
in the universe of discourse of the IT2 fuzzy set.

For any given embedded type-1 fuzzy set1, with membership
grades ui ∈ Ji for all i, of such an IT2 fuzzy set Ã, the
centroid is defined as:

c =

∑N
i=1 xiui∑N
i=1 ui

. (1)

The centroid interval of Ã is defined to be [cl, cr], where
cl and cr are the minimum and maximum possible values
of c respectively. The EKM [11], EIASC [13] and DA [16]
algorithms are used to compute such a centroid interval as

cl =

∑L
i=1 xiūi +

∑N
i=L+1 xi¯

ui∑L
i=1 ūi +

∑N
i=L+1 ¯

ui
(2)

cr =

∑R
i=1 xi¯

ui +
∑N

i=R+1 xiūi∑R
i=1 ¯

ui +
∑N

i=R+1 ūi
(3)

L and R, which are integer indices in the range of [1, N − 1],
are known to be the switch points to minimise and maximise
cl and cr respectively.

EKM and EIASC are iterative algorithms for determining
the switch points. In contrast, DA (or the optimised version
DA*) is a direct approach based on derivatives. Due to the
space limitation, these algorithms are only briefly reviewed
below. Detailed summarisation can be found in the supple-
mental materials of this paper.

Note that in the commonly used center-of-sets (COS) type-
reduction which concerns more general interval weighted
average, xi may also be an interval denoted by [

¯
xi, x̄i]. In

such cases,
¯
xi and x̄i should be used for computing cl and

cr respectively. However, in this paper, we do not distinguish
between

¯
xi and x̄i for the sake of simplicity.

1The definition of an embedded type-1 fuzzy set can be found in [24].

A. The EKM algorithm

As mentioned in [13], there could be numerical issues or
potential infinite loops for the EKM algorithm. It was clarified
that these issues can be prevented by preprocessing steps or
extra checks (see Appendix A in [13]). However, it should be
noted that these extra steps, especially when they are not well
implemented, may make the EKM significantly slower. In this
paper, we have taken out the inefficient checks that were added
in the implementation of EKM in [16].

B. The EIASC Algorithm

A key difference between EIASC and EKM is that of how
to select the next potential solution to the switch point for each
new iteration. EKM requires a search which obviously costs
more time. In contrast, EIASC is a brute force method which
iterates all the solutions one by one. Note that such strategy of
EIASC is a ‘double-edged sword’. It reduces the complexity
in finding the next solution, but makes EIASC an algorithm
which heavily relies on loops. In fact, the use of loops is
commonly not the first choice for efficient programming. As
clarified in [20], loops are much less efficient in R than they
are in Matlab. This is the key reason for the unsatisfactory
performance of EISAC in [16].

C. The DA* Algorithm

It was found in [16] that the partial derivatives of c with
respect to uj are in ascending order with j from 1 to N . As
illustrated in [16], the switch points are located at the indices
where the sign of partial derivatives changes. Based on this,
DA is a direct approach to find the switch points for type-
reduction. In [20], the implementation of DA is optimised by
eliminating some unnecessary computations and more efficient
vectorisations. The optimised implementation is called DA*.

D. The COSTRWSR algorithm

COSTRWSR, which was proposed in [17], has a different
basis to the above algorithms, not being based on the switch
points. A table which summarises the COSTRWSR algorithm
can be found in the supplemental material of this paper. Note
that a key property of this algorithm is that there is no need
to sort xi in any case. This can save a lot of computations
compared to other algorithms (e.g. EKM) for which sorting is
required in some cases. It has to be mentioned that the original
COSTRWSR algorithm in [17] can be easily and clearly
enhanced (e.g. by moving Step 3 out of the loop declared
in Step 6). Given that another more efficient but simplified
algorithm will be proposed in this paper below, details of the
enhanced COSTRWSR (ECOSTRWSR) algorithm will only
be presented in the supplemental materials.

III. NEW ALGORITHMS

In this section, we propose two new algorithms.

3

A. A Simplified COSTRWSR Algorithm

This section introduces a simplified COSTRWSR algo-
rithm (SC). Note that, for the COSTRWSR proposed in [17],
an extra parameter λi ∈ [0, 1] was added to c. The algorithm
COSTRWSR is based on a property of the derivatives. That
is, for example, when the derivative of c with respect to λj is
positive, λj must be 1 in order to get cr, or 0 to get cl.

In fact, such a property of the derivatives, as described
above, can be used to obtain cl and cr without the need to
add the extra parameter λi. Specifically, the derivative of c
with respect to uj ,

∂c

∂uj
=

xj − c∑N
i=1 ui

can be used directly. Note that the denominator
∑N

i=1 ui is
always positive, and hence it will not affect the sign of ∂c

∂uj
.

Let Aj = xj − c, then when Aj is positive, uj must be 1 in
order to get cr, or 0 to get cl; when Aj is negative, uj must
be 0 in order to get cr, or 1 to get cl.
Aj and c can be rewritten as,

Aj = xj −
δ2
δ1

c =
δ2
δ1

where

δ1 =

N∑
i=1

ui

δ2 =

N∑
i=1

xiui

The SC algorithm is summarised in Table I.

B. A Non-derivative based DA Algorithm

Recall that the DA algorithm is a direct approach to find the
switch points for obtaining cl and cr based on the sign change
of derivatives. This section introduces a new direct approach
which is not based on derivatives (DAND) for obtaining cl
and cr.

Essentially, DAND is a brute force method to get cl and cr.
There is no need to find the switch points. For example, by
Equation (2), we use all possible values of the switch point
L from 1 to N to calculate and find the minimum value
of cl. Similarly, by Equation (3), cr can be found with all
possible values of the switch point R from 1 to N . Note that
Equations (2) and (3) can be rewritten as (4) and (5),

cl =

∑N
i=1 xi¯

ui +
∑L

i=1 xi(ūi − ¯
ui)∑N

i=1 ¯
ui +

∑L
i=1(ūi −

¯
ui)

(4)

cr =

∑N
i=1 xiūi −

∑R
i=1 xi(ūi − ¯

ui)∑N
i=1 ūi −

∑R
i=1(ūi −

¯
ui)

(5)

By using cumulative summation for some of the above terms
(e.g.

∑L
i=1 xi(ūi−¯

ui) and
∑L

i=1(ūi−
¯
ui)), the computational

cost to obtain cl and cr can be reduced.
The DAND algorithm is summarised in Table II.

IV. COMPARATIVE STUDY

In this section, we compare the algorithms described above
based on both algorithm complexity and practical2 computa-
tional time.

A. Algorithm Complexity

Four existing algorithms (EKM, EIASC, DA* and
COSTRWSR) and two new algorithms (DAND and SC) are
compared based on the computational complexity. In this
paper, the complexity of each algorithm is determined by the
number of calculations and comparisons for obtaining cl. The
results are presented in Tables III to VI, and summarised in
Table IX.

Note that Step 1 of COSTRWSR and SC is not considered
since it is also used by other algorithms. Also note that the
total numbers are approximations. Constant values are omitted
when calculating the totals. For example, 2N−1 is considered
to be 2N .

As can be observed in Table IX, the results can be sum-
marised as follows: i) all these algorithms have a similar
number of calculations and comparisons, except that SC seems
clearly better than COSTRWSR (SC only needs approximately
one sixth of the calculations of COSTRWSR); ii) regardless
of the difference in the coefficients of N , the asymptotic
time complexity of all these algorithms is linear O(N) in
terms of the big O complexity; iii) EKM and EIASC are also
associated with L and m (the number of iterations), while
other algorithms such as DAND and SC only depend on N
(the number of discrete points).

B. Experimental Comparison

As discussed in [20], regardless of the algorithm used,
the computational time difference between programming lan-
guages is very large. Results in one programming language
cannot be simply extended to all languages. Hence, computa-
tional time comparisons were made under five commonly used
programming languages (R, Matlab, C, Java and Python). Two
example fuzzy sets from [16], and one control surface example
from [25] are used for comparisons.

The test platform was a Macbook Pro (13-inch, 2017)
with 3.10GHz Intel Core i5 processor and 16GB 2133
MHz LPDDR3 memory, running macOS High Sierra ver-
sion 10.13.6. The programming languages and software en-
vironment are R x64 version 3.6.1, Matlab R2017b, Python
3.7, Apple LLVM version 10.0.0 (clang-1000.11.45.5) for
C (compiled with options -O3 and -std=c99), and Java
SE Development Kit 8, Update 202. Computational costs
were measured by the user time returned by the built-in
function(s) proc.time in R, tic and toc in Matlab, clock
in C, System.currentTimeMillis in Java, and time.process time
in Python.

In our experiments, we start with the six algorithms de-
scribed above in the complexity analysis. It was found that
DAND is always more efficient than DA*, which is supported
by the complexity analysis. Similarly, SC is always more

2By practical we mean the user time taken for the comparisons.

4

TABLE I
THE SC ALGORITHM FOR COMPUTING THE CENTROID END POINTS (cl AND cr) OF AN IT2 FUZZY SET.

Step The SC algorithm for computing cl The SC algorithm for computing cr

1 If
¯
ui = 0,∀i ∈ [1, N], then

cl = min(xj), cr = max(xj),
∀j ∈ [1, N] with ūj 6= 0. Stop.

2 Initialise δi = 1,∆ui =
¯
ui − ūi, ∀i ∈ [1, N].

3 Calculate{
δ1 =

N∑
i=1

ūi, δ2 =

N∑
i=1

xiūi,

}
4 flag = 0
5 For j from 1 to N , repeat the following operations of this Step.

Aj = xjδ1 − δ2
If Aj < 0, If Aj > 0,

δ′j = 1, else δ′j = 0.
If δ′j 6= δj , then

If δj = 1,

{
flag = 1, δ1 = δ1 + ∆uj ,

δj = δ′j , δ2 = δ2 + xj∆uj .

}

else

{
flag = 1, δ1 = δ1 −∆uj ,

δj = δ′j , δ2 = δ2 − xj∆uj .

}
6 If flag 6= 0, go to Step 4; else

cl = δ2
δ1

cr = δ2
δ1

Note that there is no need to sort xi, in any case, for the SC algorithm. Also note that Step 1 is included in the pre-processing steps for all the other
algorithms in this paper. Compared to COSTRWSR in Table S-IV of the supplementary material, it is clear that Steps 3 and 5 in this Table need less
computations.

TABLE II
THE DAND ALGORITHM FOR COMPUTING THE CENTROID END POINTS (cl AND cr) OF AN IT2 FUZZY SET.

Step The DAND algorithm for computing cl The DAND algorithm for computing cr

1 Sort xi (i = 1, 2, ..., N) in ascending order and match
¯
ui and ūi accordingly with their respective xi.

2 Calculate

a =

N∑
i=1

xi
¯
ui

b =

N∑
i=1

¯
ui

a =

N∑
i=1

xiūi

b =

N∑
i=1

ūi

3 Calculate the vector U , that is
U = {ūi −

¯
ui} for i from 1 to N U = {

¯
ui − ūi} for i from 1 to N

4 Calculate vectors A, B and C, that are,
A = a+ cumsum(XU)

B = b+ cumsum(U)

C = A/B
, where X is the vector of xi for i from 1 to N .

5 cl = min(C) cr = max(C)

Note that for the case in Section II, Step 1 is not necessary since xi has already been defined in ascending order.

efficient than COSTRWSR. Hence, to make the results more
concise, only four algorithms (EKM, EIASC, DAND and SC)
are included in the time comparisons in this section. The re-
sults including the original COSTRWSR and DA* algorithms
are presented in the Supplemental Material in Figs. S-1 to S-3.

1) Generalised bell-shaped IT2 fuzzy sets: The fuzzy sets
used in this comparison are the same as those used in [16]. The
vector X , containing xi, is uniformly distributed from 0 to 10.

ūi and
¯
ui are defined by generalised bell-shaped function3:

ūi =
1

1 +
((

xi−c
ā

)2)b
¯
ui =

1

1 +

((
xi−c

¯
a

)2
)b

where
¯
a and b are randomly selected between 1 and 2; ā is

the multiplication of
¯
a with a random number between 1 and

3Sometimes Gaussian MFs are also referred to as bell MFs in the literature.
However, we use the definition used in the Matlab fuzzy logic toolbox, which
is not a Gaussian MF.

5

TABLE III
THE COMPUTATIONAL COMPLEXITY OF EKM FOR OBTAINING cl .

Step Pseudo Code Calculations
per Iteration

Comparisons
per Iteration Iterations

1 k = [N/2.4] 1 0 1

2 a =
∑k
i=1 xiūi +

∑N
i=k+1 xi¯

ui 2N 0 1

3 b =
∑k
i=1 ūi +

∑N
i=k+1 ¯

ui N 0 1

4 c = a/b 1 0 1

5 Find k′ ∈ [1, N − 1] 0 N m+ 1
such that xk′ < c 6 xk′+1

6 If k′ = k, set cl = c and stop; 0 1 m+ 1

7 s = sign(k′ − k) 1 0 m

8 a′ = a+ s
∑max(k,k′)
i=min(k,k′)+1

xi(ūi −
¯
ui) 3|k − k′|+ 1 0 m

9 b′ = b+ s
∑max(k,k′)
i=min(k,k′)+1

(ūi −
¯
ui) |k − k′|+ 1 0 m

10 c′ = a′/b′ 1 0 m

11 Set c = c′, a = a′, b = b′ and k = k′. 0 0 m
Go to Step 5;

Note that the total number of calculations from Steps 6 to 9 is approximately 4 |[N/2.4]− L|, regardless of m. Hence, the total number of calculations for
EKM is 3N + 4 |[N/2.4]− L|, and the total number of comparisons is (1 +m)N .

TABLE IV
THE COMPUTATIONAL COMPLEXITY OF EIASC FOR OBTAINING cl .

Step Pseudo Code Calculations
per Iteration

Comparisons
per Iteration Iterations

1 k = 0 0 0 1

2 a =
∑N
i=1 xi¯

ui 2N 0 1

3 b =
∑N
i=1 ¯

ui N 0 1

4 k = k + 1 1 0 L

5 uk = ūk −
¯
uk 1 0 L

6 a = a+ xkuk 2 0 L

7 b = b+ uk 1 0 L

8 c = a/b 1 0 L

9 If c 6 xk+1, set cl = c, L = k and stop; 0 1 L
Otherwise, go to Step 4;

The total number of calculations is 3N + 6L, and the total number of comparisons is L.

2; c is a random number between 0 and 10.
To investigate the performance of algorithms under fuzzy

sets of different size, N (the length of discretised X) is set to
be 4, 16, 36, 64, 100, 144, 196, 256, 324 and 400 (10 different
values). For each value of N , 5000 Monte Carlo simulations
were made and the computational time costs were aggregated
to be compared for each algorithm.

2) Generalised randomly-shaped IT2 fuzzy sets: This ex-
perimental comparison is designed to be similar to the first
comparison in [13]. As mentioned in Chapter 8 of Mendel’s
book [26], all kinds of type-reductions are related to comput-
ing the interval-weighted average, which requires solutions to
two optimization problems, one of which leads to cl and the
other to cr. Hence, this experiment is associated with centre
of sets type-reduction.

It is assumed that vectors X and Ū , containing xi and ūi
respectively, are uniformly distributed from 0 to 1.

¯
ui is the

multiplication of ūi with a random number between 0 and 1.
Similar to the above for generalised bell-shaped IT2 fuzzy sets,
N (the length of discretised X) is set to be 4, 16, 36, 64, 100,
144, 196, 256, 324 and 400 (10 different values). For each
value of N , 5000 Monte Carlo simulations were made and
the computational time costs were aggregated to be compared
for each algorithm.

3) Control Surface Computation: In this comparison, two-
input and single-output IT2 fuzzy logic controllers (FLCs) us-
ing Gaussian membership functions (MFs) are considered [25].
Note that these FLCs are based on Takagi–Sugeno–Kang
(TSK) models. Each input domain of a fuzzy logic controller
has n MFs, and hence there are n2 rules, where n =
2, 4, 6, ..., 20. Each of the n2 rule consequents is represented
by a crisp number. Then, a type-reduction algorithm is required
to compute the output of the IT2 FLC. The set of crisp
consequents of all the rules can be considered as X . Hence,

6

TABLE V
THE COMPUTATIONAL COMPLEXITY OF DA* FOR OBTAINING cl .

Step Pseudo Code Calculations
per Iteration

Comparisons
per Iteration Iterations

1 X ′ ← {xi − xi−1, 0 | i = 2, 3, ..., N} N 0 1

2 S1 ← {
∑j
i=1 ūi | j = 1, 2, ..., N} N 0 1

3 S2a ← {
∑j
i=1 ¯

ui | j = 1, 2, ..., N} N 0 1

S2 ← {s2aN − s2ai | i = 1, 2, ..., N} N 0 1

4 TP ← {x ′i · s1i | i = 1, 2, ..., N} N 0 1

5 TN ← {x ′i · s2i | i = 1, 2, ..., N} N 0 1

6

7 dN ←
∑N
i=1 t

N
i N 0 1

8 D ← {
∑j
i=1

(
tPi + tNi

)
| j = 1, 2, ..., N} 2N 0 1

9 Find the smallest k ∈ 1, 2, ..., N − 1 such that dk > dN 0 N 1

10 if k exists then L← k else L← N − 1; 1 1 1

11 if L 6= 1 then ∂c
∂uL

← dL−1 − dN else ∂c
∂uL

← −dN ; 1 1 1

cl = xL − ∂c
∂uL

(∑L
i=1 ūi +

∑N
i=L+1 ¯

ui

)
N 0 1

Pseudo code is taken from [20], where more details can be found. The total number of calculations and comparisons are 10N and N respectively. Note that
Steps 2 to 9 here, which are optimised for better performance in R, add an extra N calculations (in Step 3) compared to original steps of DA. This is not
necessary if DA* is implemented in C or Java, where the total number of calculations can be reduced to 9N by just using the original Steps 2 to 9 of DA.

TABLE VI
THE COMPUTATIONAL COMPLEXITY OF DAND FOR OBTAINING cl .

Step Pseudo Code Calculations
per Iteration

Comparisons
per Iteration Iterations

1 a =
∑N
i=1 xi¯

ui 2N 0 1

2 b =
∑N
i=1 ¯

ui N 0 1

3 U ← {ūi −
¯
ui | i = 1, 2, ..., N} N 0 1

4 A = a+ cumsum(XU) 3N 0 1

5 B = b+ cumsum(U) 2N 0 1

6 C = A/B N 0 1

7 cl = min(C) 0 N 1

The number of calculations for Steps 4 and 5 can be reduced to 2N and N respectively. This can be achieved by adding a and b to the first element of XU
and U respectively before calculating the cumulative sum. Hence, the total number of calculations is 10N , or can be reduced to 8N . The total number of
comparisons is N .

for the defuzzification of the fuzzy controller, N (the length
of discretised X) is equal to n2.

The parameter settings of the fuzzy controller described
above are as follows. The centre of each MF is given by a
random number uniformly distributed from -1 to 1. The uncer-
tain standard deviations of each MF are uniformly distributed
from 0.1 to 0.5. The crisp consequent values of each rule for
the fuzzy logic controller are uniformly distributed from -2 to
2.

To generate the control surface, each input domain is discre-
tised into 10 points from -1 to 1. Hence computing a complete
control surface for one fuzzy logic controller requires 100
(10×10) defuzzifications (computations of centroids). For each
N , 50 fuzzy logic controllers based on the settings described
above are generated for the comparison of algorithms. This
means, for each N , there are 5000 (100× 50) type-reductions

to be performed by each algorithm in the comparisons.

C. Experimental Results

The results of the above three experimental comparisons
are shown in Figs. 1 to 3 respectively. The comparisons for
specified value of N are also presented in Tables X to XII.
Here, one algorithm is considered to be more efficient than
another if its computational time is smaller. Below, we briefly
summarise the results observed.

For all the three cases: i), in Matlab, EIASC performs
mostly the best. We use the word ‘mostly’ here since the
computational time of EIASC is quite close to DAND and
SC. And for some values of N , EIASC does not give the
shortest computational time. ii), in R and Python, DAND is
shown to be the most efficient, while EIASC and SC are much
worse than other algorithms.

7

TABLE VII
THE COMPUTATIONAL COMPLEXITY OF COSTRWSR FOR OBTAINING cl .

Step Pseudo Code Calculations
per Iteration

Comparisons
per Iteration Iterations

1

2 Initialise λi = 0.5, ∀i ∈ [1, N]. 0 0 1

3


δ1 =

N∑
i=1

ūi, δ3 =

N∑
i=1

xi(ūi −
¯
ui)(1− λi),

δ2 =

N∑
i=1

xiūi, δ4 =

N∑
i=1

(ūi −
¯
ui)(1− λi).


12N 0 p

4 flag = 0 0 0 p

5 For j from 1 to N , repeat the following operations of this Step.

Aj = xj − δ2
δ1

+ δ3
δ1
− δ4
δ1
xj 7 0 pN

if Aj < 0 then λ′j = 1 else λ′j = 0; 0 1 pN

if λ′j 6= λj then 0 1 pN{
flag = 1, δ3 = δ3 + xj(ūi −

¯
ui)(λj − λ′j),

λj = λ′j , δ4 = δ4 + (ūi −
¯
ui)(λj − λ′j).

}
9 0 qN

6 if flag 6= 0 then go to Step 3 else 0 1 p

cl = δ2−δ3
δ1−δ4

3 0 1

The total number of calculations and comparisons are (19p+ 9q)N and (2p)N respectively. According to experiments, p is on average 3 with a maximum
of 4, and q is on average less than 1.1. Hence, the total number of calculations and comparisons are on average less than 86N and 8N respectively.

TABLE VIII
THE COMPUTATIONAL COMPLEXITY OF SC FOR OBTAINING cl .

Step Pseudo Code Calculations
per Iteration

Comparisons
per Iteration Iterations

1

2 Initialise δi = 1,∆ui =
¯
ui − ūi,∀i ∈ [1, N]. N 0 1

3

{
δ1 =

N∑
i=1

ūi, δ2 =

N∑
i=1

xiūi,

}
3N 0 1

4 flag = 0 0 0 p

5 For j from 1 to N , repeat the following operations of this Step.

Aj = xjδ1 − δ2 2 0 pN

if Aj < 0 then λ′j = 1 else λ′j = 0; 0 1 pN

if δ′j 6= δj then 0 1 pN

if δj = 1, then

{
flag = 1, δ1 = δ1 + ∆uj ,

δj = δ′j , δ2 = δ2 + xj∆uj .

}
3 1 rN

else

{
flag = 1, δ1 = δ1 −∆uj ,

δj = δ′j , δ2 = δ2 − xj∆uj .

}
3 1 sN

6 if flag 6= 0 then go to Step 4 else 0 1 p

cl = δ2
δ1

1 0 1

The total number of calculations and comparisons are (2p+ 3r + 3s+ 4)N and (2p+ r + s)N respectively. According to experiments, p is on average 3
with a maximum of 4, and (r + s) is on average less than 0.6. Hence, the total number of calculations and comparisons are on average less than 14N and
9N respectively.

For the first case where sort is not needed for all the four
algorithms (see comparisons in Fig. 1): i), in C, EIASC is
the best except for small N (less than 200) where SC is the
most efficient. ii), in Java, without considering the anomaly
when N is 200, DAND is the quickest for most values of N ;

iii), in Matlab, SC performs as good as EIASC and they are
both more efficient than other algorithms.

For the other two cases where sort is needed for all
algorithms except SC, the results are shown in Figs. 2 and 3:
i), in C and Java, SC performs remarkably better than other

8

TABLE IX
A SUMMARY OF THE COMPUTATIONAL COMPLEXITY OF DIFFERENT

ALGORITHMS BASED ON THE NUMBER OF CALCULATIONS AND
COMPARISONS FOR THE CORE PART OF THEIR IMPLEMENTATIONS FOR cl

Calculations Comparisons

EKM 3N + 4 |[N/2.4]− L| (1 +m)N
EIASC 3N + 6L L
DA* 10N or 9N 1N
DAND 10N or 8N 1N
COSTRWSR 86N 8N
SC 14N 9N

L (1 ≤ L ≤ N) is the index of the switch point for cl, and m (normally 2
to 6) is the number of iterations for the EKM algorithm. Note that the
calculation complexity for DA* and DAND can be simplified to 9N and
8N respectively. However, it does not reduce the computational time clearly
since operations with indices are required for the simplification.

algorithms; ii), in Matlab, SC is more efficient than other
algorithms when N is small (e.g. N < 100 as shown in
Figs. 2 and 3).

V. DISCUSSION

Fundamentally, all algorithms are O(N) whilst EKM and
EIASC are technically O(N+L). As summarised in Table IX,
the number of calculations for DA* and DAND can be simpli-
fied to 9N and 8N respectively. However, such simplifications
do not reduce the practical computational time clearly since
operations with indices are required for the simplifications.
Further, in practice, the computational complexity is not nec-
essarily the only factor affecting the efficiency of algorithms,
especially when they have the same computational complexity,
which is O(N). For example, the practical efficiency of an
algorithm is closely related to its implementation. Also, the
runtime environment is also important for the efficiency of
algorithms. As can be observed from the results above, EIASC
performs the best in Matlab, but much worse in R and Python.
Results could also be different when comparisons are made
under various operating systems or hardware (i.e. the compute
infrastructure on which the codes run). Also note that for real-
time applications results in C are more crucial as C/C++ are
normally used for such applications.

As illustrated in Tables III to IX, the number of calculations
and comparisons for DAND only depends on N . For other
algorithms, they also depend on the number of iterations. For
example, EKM and EIASC also depends on L and m. Note
that L and m vary for each specific case given a fixed number
of N . As discussed in [20], DAND is more desirable for real-
time control problems when the computational time of the
algorithm needs to be known in advance.

In our experiments, the comparison based on generalised
bell-shaped IT2 fuzzy sets is representative of the type-
reduction on ordinary IT2 fuzzy sets. For such type-reductions,
sort is not need for X . The experiments based on gener-
alised randomly-shaped IT2 fuzzy sets and the control surface
computation can be considered as the same scenarios. For
type-reductions in these scenarios, the sorting process for X
is required. It has to be mentioned that sort only needs to be

done one time in many cases. For example, for applications
based on TSK fuzzy models where the rule consequents are
fixed values, sorting only has to be done once and it can be
normally achieved offline (e.g. during the design process).

Note that a key property of SC is that there is no need
to sort xi in any case. This makes a clear difference for the
comparisons made in C and Java. For example, as can be
observed in Fig. 1, SC performs worse than other algorithms
when sort is also not required for other algorithms. But, it is
clearly more efficient than other algorithms which need sort
in Fig. 2. However, the sort process does not make too much
difference for SC in Matlab, R and Python.

In summary, though there are some differences among the
number of calculations and comparisons, the asymptotic time
complexity of all algorithms is O(N). The practical time
efficiency of algorithms varies under different programming
languages. There is no single best algorithm for all cases. An
appropriate algorithm should be selected based on specific
needs (e.g. for which application and on which platform).
Based on our comparisons, it is suggested that: i) EIASC is
in general the best choice in Matlab; ii), DAND is the best to
use in R and Python; iii) In C and Java, SC should be the best
choice when sort is needed for xi (e.g. the type-reduction and
defuzzification process of fuzzy logic controllers), otherwise,
EIASC is preferential (e.g. sort is not needed for the type-
reduction of interval type-2 fuzzy sets); iv) DAND performs
generally as good as EIASC in Matlab, C and Java; v)
Given that the complexity of DAND only depends on N ,
DAND is more desirable for real-time control problems when
the computational time of the algorithm needs to be known
in advance.

VI. CONCLUSION

In this paper, two novel type-reduction algorithms (DAND
and SC) have been proposed. A comprehensive comparison
has been made with other existing algorithms. The compar-
isons were based on both algorithm complexity and prac-
tical time efficiency. Results showed that all the compared
algorithms have the same asymptotic time complexity O(N).
On the other hand, the practical time efficiency of algorithms
varies under different programming languages. All algorithm
code, and experiments are available online [27]. The results
showed that there is no single algorithm which is best for all
cases. Suggestions for the algorithms to be used in different
scenarios have been given based on our comparisons. For
example, the algorithm to be used may be different depending
on whether a sort for X is required. Generally, sorting is not
needed for type-reductions on ordinary fuzzy sets. For type-
reduction in computing the outputs of IT2 TSK fuzzy models,
sorting is required. Note that for many applications (e.g. IT2
TSK fuzzy models where rule consequents are fixed values),
sorting only needs to be done once offline. For such cases,
algorithms can be selected based on the suggestions that are
given for applications without sorting.

Though comparisons have been made under five commonly
used programming languages, future work could be done with
more languages. It has to be mentioned that current sugges-
tions are given mainly based on programming languages. It

9

0 200 400

N

0

0.1

0.2

0.3

C
o
m

p
u
ta

ti
o
n
al

 c
o
st

 (
s) Matlab

0 200 400

N

0

0.01

0.02

0.03

C
o
m

p
u
ta

ti
o
n
al

 c
o
st

 (
s) C

0 200 400

N

0

0.02

0.04

0.06

C
o
m

p
u
ta

ti
o
n
al

 c
o
st

 (
s) Java

0 200 400

N

0

1

2

3

C
o
m

p
u
ta

ti
o
n
al

 c
o
st

 (
s) R

0 200 400

N

0

1

2

3

C
o
m

p
u
ta

ti
o
n
al

 c
o
st

 (
s) Python

EKM

EIASC

DAND

SC

Fig. 1. Practical computational cost comparisons based on bell-shaped fuzzy sets.

0 200 400

N

0

0.2

0.4

C
o
m

p
u
ta

ti
o

n
al

 c
o
st

 (
s) Matlab

0 200 400

N

0

0.1

0.2

0.3

C
o
m

p
u
ta

ti
o

n
al

 c
o
st

 (
s) C

0 200 400

N

0

0.1

0.2

0.3

C
o
m

p
u
ta

ti
o

n
al

 c
o
st

 (
s) Java

0 200 400

N

0

1

2

3

C
o
m

p
u
ta

ti
o

n
al

 c
o
st

 (
s) R

0 200 400

N

0

1

2

3

C
o
m

p
u
ta

ti
o

n
al

 c
o
st

 (
s) Python

EKM

EIASC

DAND

SC

Fig. 2. Practical computational cost comparisons based on random-shaped fuzzy sets.

0 200 400

N

0

0.2

0.4

C
o
m

p
u
ta

ti
o
n
al

 c
o
st

 (
s) Matlab

0 200 400

N

0

0.1

0.2

C
o
m

p
u
ta

ti
o
n
al

 c
o
st

 (
s) C

0 200 400

N

0

0.1

0.2

0.3

C
o
m

p
u
ta

ti
o
n
al

 c
o
st

 (
s) Java

0 200 400

N

0

1

2

3

C
o
m

p
u
ta

ti
o
n
al

 c
o
st

 (
s) R

0 200 400

N

0

1

2

3

C
o
m

p
u
ta

ti
o
n
al

 c
o
st

 (
s) Python

EKM

EIASC

DAND

SC

Fig. 3. Practical computational cost comparisons based on computing control surfaces.

TABLE X
PRACTICAL COMPUTATIONAL COST COMPARISONS (MIN / AVERAGE / MAX) BASED ON BELL-SHAPED FUZZY SETS WHEN N = 100

Matlab C Java R Python

EKM 0.019 / 0.030 / 0.144 0.001 / 0.003 / 0.027 0.002 / 0.003 / 2.632 0.057 / 0.112 / 6.310 0.099 / 0.183 / 0.692
EIASC 0.009 / 0.010 / 0.045 0.001 / 0.003 / 0.011 0.001 / 0.003 / 0.014 0.099 / 0.147 / 5.523 0.092 / 0.105 / 0.403
DAND 0.015 / 0.019 / 0.896 0.001 / 0.003 / 0.007 0.001 / 0.002 / 0.019 0.042 / 0.076 / 5.343 0.070 / 0.081 / 0.245
SC 0.016 / 0.022 / 1.658 0.002 / 0.004 / 0.023 0.001 / 0.002 / 0.018 0.105 / 0.158 / 5.698 0.343 / 0.463 / 1.720

TABLE XI
PRACTICAL COMPUTATIONAL COST COMPARISONS (MIN / AVERAGE / MAX) BASED ON RANDOM-SHAPED FUZZY SETS WHEN N = 100

Matlab C Java R Python

EKM 0.030 / 0.040 / 0.195 0.007 / 0.009 / 0.031 0.008 / 0.010 / 0.046 0.091 / 0.150 / 4.991 0.080 / 0.159 / 1.688
EIASC 0.020 / 0.022 / 0.151 0.007 / 0.009 / 0.065 0.009 / 0.014 / 0.083 0.136 / 0.191 / 4.517 0.097 / 0.116 / 0.740
DAND 0.027 / 0.034 / 0.320 0.007 / 0.013 / 0.139 0.008 / 0.009 / 0.026 0.083 / 0.129 / 22.84 0.084 / 0.100 / 1.468
SC 0.021 / 0.029 / 0.531 0.005 / 0.008 / 0.069 0.004 / 0.005 / 0.035 0.128 / 0.179 / 6.111 0.431 / 0.646 / 1.721

TABLE XII
PRACTICAL COMPUTATIONAL COST COMPARISONS (MIN / AVERAGE / MAX) BASED ON COMPUTING CONTROL SURFACES WHEN n = 10, WHICH IS

EQUIVALENT TO N = 100

Matlab C Java R Python

EKM 0.030 / 0.046 / 0.189 0.004 / 0.006 / 0.020 0.004 / 0.016 / 0.615 0.096 / 0.158 / 6.505 0.070 / 0.168 / 0.332
EIASC 0.020 / 0.022 / 0.102 0.004 / 0.006 / 0.046 0.005 / 0.012 / 0.239 0.101 / 0.195 / 23.41 0.039 / 0.118 / 0.201
DAND 0.026 / 0.030 / 0.207 0.004 / 0.006 / 0.043 0.003 / 0.006 / 0.052 0.088 / 0.127 / 4.390 0.074 / 0.086 / 0.240
SC 0.017 / 0.023 / 0.118 0.002 / 0.005 / 0.025 0.001 / 0.005 / 0.209 0.121 / 0.218 / 5.148 0.354 / 0.663 / 1.695

may worth a further exploration of the efficiency of these
algorithms in different types of real-world applications or
scenarios in future work. Also, this paper focuses on discrete
type-reduction approaches for interval type-2 fuzzy sets. In the

future, study could be done with other approaches for general
type-2 fuzzy systems.

10

ACKNOWLEDGEMENT

The authors dedicate this paper to our dear friend and
colleague, Professor Robert I. (Bob) John, who passed away
whilst this paper was being peer reviewed.

REFERENCES

[1] J. Mendel, H. Hagras, W.-W. Tan, W. W. Melek, and
H. Ying, Introduction To Type-2 Fuzzy Logic Control:
Theory and Applications, 1st ed. Wiley-IEEE Press,
2014.

[2] Q. Liang, N. N. Karnik, and J. M. Mendel, “Connection
admission control in ATM networks using survey-based
type-2 fuzzy logic systems,” IEEE Transactions on Sys-
tems, Man, and Cybernetics, Part C (Applications and
Reviews), vol. 30, no. 3, pp. 329–339, aug 2000.

[3] D. Wu and W. W. Tan, “Genetic learning and perfor-
mance evaluation of interval type-2 fuzzy logic con-
trollers,” Engineering Applications of Artificial Intelli-
gence, vol. 19, no. 8, pp. 829–841, 2006.

[4] D. Wu and W. W. Tan, “A simplified type-2 fuzzy
logic controller for real-time control,” ISA Transactions,
vol. 45, no. 4, pp. 503–516, 2006.

[5] Z. Liu, Y. Zhang, and Y. Wang, “A Type-2 Fuzzy
Switching Control System for Biped Robots,” IEEE
Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews), vol. 37, no. 6, pp. 1202–
1213, nov 2007.

[6] H. Hagras, “Type-2 FLCs: A New Generation of Fuzzy
Controllers,” IEEE Computational Intelligence Maga-
zine, vol. 2, no. 1, pp. 30–43, feb 2007.

[7] O. Castillo and P. Melin, Type-2 Fuzzy Logic: Theory
and Applications, 1st ed. Springer Publishing Company,
Incorporated, 2008.

[8] E. A. Jammeh, M. Fleury, C. Wagner, H. Hagras, and
M. Ghanbari, “Interval Type-2 Fuzzy Logic Congestion
Control for Video Streaming Across IP Networks,” IEEE
Transactions on Fuzzy Systems, vol. 17, no. 5, pp. 1123–
1142, oct 2009.

[9] N. Karnik and J. Mendel, “Centroid of a type-2 fuzzy
set,” Information Sciences, vol. 132, no. 1–4, pp. 195–
220, 2001.

[10] M. Nie and W. W. Tan, “Towards an efficient type-
reduction method for interval type-2 fuzzy logic sys-
tems,” in Proceedings IEEE International Conference on
Fuzzy Systems, 2008, pp. 1425–1432.

[11] D. Wu and J. M. Mendel, “Enhanced Karnik–Mendel al-
gorithms,” IEEE Transactions on Fuzzy Systems, vol. 17,
no. 4, pp. 923–934, 2009.

[12] S. Greenfield, F. Chiclana, S. Coupland, and R. John,
“The collapsing method of defuzzification for discretised
interval type-2 fuzzy sets,” Information Sciences, vol.
179, no. 13, pp. 2055–2069, jun 2009.

[13] D. Wu and M. Nie, “Comparison and practical imple-
mentation of type-reduction algorithms for type-2 fuzzy
sets and systems,” in Proceedings IEEE International
Conference on Fuzzy Systems, 2011, pp. 2131–2138.

[14] C. Y. Yeh, W. H. R. Jeng, and S. J. Lee, “An Enhanced
Type-Reduction Algorithm for Type-2 Fuzzy Sets,” IEEE
Transactions on Fuzzy Systems, vol. 19, no. 2, pp. 227–
240, 2011.

[15] S. Greenfield, F. Chiclana, R. John, and S. Coupland,
“The sampling method of defuzzification for type-2 fuzzy
sets: Experimental evaluation,” Information Sciences,
vol. 189, pp. 77–92, apr 2012.

[16] C. Chen, R. John, J. Twycross, and J. M. Garibaldi, “A
Direct Approach for Determining the Switch Points in
the Karnik–Mendel Algorithm,” IEEE Transactions on
Fuzzy Systems, vol. 26, no. 2, pp. 1079–1085, apr 2018.

[17] M. A. Khanesar, A. J. Khakshour, O. Kaynak, and
H. Gao, “Improving the Speed of Center of Sets Type
Reduction in Interval Type-2 Fuzzy Systems by Eliminat-
ing the Need for Sorting,” IEEE Transactions on Fuzzy
Systems, vol. 25, no. 5, pp. 1193–1206, 2017.

[18] J. Li, R. John, S. Coupland, and G. Kendall, “On Nie-Tan
operator and type-reduction of interval type-2 fuzzy sets,”
IEEE Transactions on Fuzzy Systems, vol. PP, no. 99,
p. 1, 2017.

[19] T. A. Runkler, S. Coupland, R. John, and C. Chen, “Inter-
val type-2 defuzzification using uncertainty weights,” in
Frontiers in Computational Intelligence, S. Mostaghim,
A. Nürnberger, and C. Borgelt, Eds. Springer Interna-
tional Publishing, 2017.

[20] C. Chen, D. Wu, J. M. Garibaldi, R. John, J. Twycross,
and J. M. Mendel, “A Comment on ”A Direct Ap-
proach for Determining the Switch Points in the Karnik-
Mendel Algorithm”,” IEEE Transactions on Fuzzy Sys-
tems, vol. 26, no. 6, pp. 3905 – 3907, 2018.

[21] T. A. Runkler, C. Chen, and R. John, “Type reduction op-
erators for interval type–2 defuzzification,” Information
Sciences, vol. 467, pp. 464–476, 2018.

[22] E. Ontiveros-Robles, P. Melin, and O. Castillo, “New
Methodology to Approximate Type-Reduction Based on
a Continuous Root-Finding Karnik Mendel Algorithm,”
Algorithms, vol. 10, no. 3, 2017.

[23] E. Ontiveros, P. Melin, and O. Castillo, “High order α-
planes integration: A new approach to computational cost
reduction of General Type-2 Fuzzy Systems,” Engineer-
ing Applications of Artificial Intelligence, vol. 74, pp.
186–197, 2018.

[24] J. M. Mendel and R. I. B. John, “Type-2 fuzzy sets made
simple,” pp. 117–127, 2002.

[25] D. Wu, “Approaches for Reducing the Computational
Cost of Interval Type-2 Fuzzy Logic Systems: Overview
and Comparisons,” IEEE Transactions on Fuzzy Systems,
vol. 21, no. 1, pp. 80–99, 2013.

[26] J. M. Mendel, Uncertain Rule-Based Fuzzy Systems:
Introduction and New Directions, 2nd Edition. Springer
International Publishing, 2017.

[27] C. Chen and D. Wu, “Source Code for ‘A Comprehensive
Study of the Efficiency of Type-Reduction Algorithms’,”
https://www.codeocean.com/, 2019.

11

Chao Chen received the B.Eng. degree in Elec-
tronic and Information Engineering from Tianjin
University of Technology, Tianjin, China, in 2003,
the M.Sc. degree (Distinction) in Management of
Information Technology and the Ph.D. degree (with
the Vice-Chancellor’s Scholarship for Research Ex-
cellence) in Computer Science from the Univer-
sity of Nottingham, Nottingham, UK, in 2012 and
2017, respectively. He received the Chinese Govern-
ment Award for Outstanding Self-Financed Students
Abroad in 2017. Dr. Chen is currently a research

fellow with the School of Computer Science at the University of Nottingham.
He is also a member of the Laboratory for Uncertainty in Data and Decision
Making (LUCID) and the Intelligent Modelling and Analysis (IMA) Research
Group. His main research interests include the modelling of fuzzy logic
systems for different types of applications such as time series forecasting and
medical image analysis. He has a particular interest in the optimisation of
fuzzy inference systems with different techniques. One of his recent publica-
tions, A new accuracy measure based on bounded relative error for time series
forecasting, has been recommended by leading researchers on forecasting
methods and applications, and is receiving more and more attention.

Dongrui Wu (S’05-M’09-SM’14) received the BE
degree in automatic control from the University of
Science and Technology of China in 2003, the ME
degree in electrical engineering from the National
University of Singapore in 2005, and the PhD de-
gree in electrical engineering from the University of
Southern California in 2009. He is now Professor in
the School of Artificial Intelligence and Automation,
Huazhong University of Science and Technology,
Wuhan, China, and Deputy Director of the Key Lab-
oratory of Image Processing and Intelligent Control,

Ministry of Education. His research interests include affective computing,
brain computer interfaces, computational intelligence, and machine learning.
He has more than 140 publications.

Dr. Wu received the IEEE Computational Intelligence Society Outstanding
PhD Dissertation Award in 2012, the IEEE TRANSACTIONS ON FUZZY
SYSTEMS Outstanding Paper Award in 2014, the NAFIPS Early Career
Award in 2014, the IEEE Systems, Man and Cybernetics (SMC) Society Early
Career Award in 2017, and the IEEE SMC Society Best Associate Editor
Award in 2018. He was also a finalist of another three Best Paper Awards. He
was/is an Associate Editor of the IEEE Transactions on Fuzzy Systems (2011-
2018), the IEEE Transactions on Human-Machine Systems (2014-), the IEEE
Computational Intelligence Magazine (2017-), and the IEEE Transactions on
Neural Systems and Rehabilitation Engineering (2019-).

Jonathan M. Garibaldi received the B.Sc (Hons)
degree in Physics from Bristol University, UK in
1984, and the M.Sc. degree in Intelligent Systems
and the Ph.D. degree in Uncertainty Handling in
Immediate Neonatal Assessment from the University
of Plymouth, UK in 1990 and 1997, respectively.
He is Head of School of Computer Science at
the University of Nottingham, UK, and leads the
Intelligent Modelling and Analysis (IMA) Research
Group. The IMA research group undertakes research
into intelligent modelling, utilising data analysis and

transformation techniques to enable deeper and clearer understanding of
complex problems. His main research interests are modelling uncertainty and
variation in human reasoning, and in modelling and interpreting complex
data to enable better decision making, particularly in medical domains. He
has made many theoretical and practical contributions in fuzzy sets and
systems, and in a wide range of generic machine learning techniques in
real-world applications. Prof. Garibaldi has published over 300 papers on
fuzzy systems and intelligent data analysis, and is the Editor-in-Chief of
IEEE Transactions on Fuzzy Systems (2017-). He has served regularly in
the organising committees and programme committees of a range of leading
international conferences and workshops, such as FUZZ-IEEE, WCCI, EURO
and PPSN. He is a Senior Mmber of the IEEE.

Robert I. (Bob) John received the B.Sc. (Hons.)
degree in mathematics from Leicester Polytechnic,
Leicester, U.K., the M.Sc. degree in statistics from
UMIST, Manchester, U.K., and the Ph.D. degree in
Fuzzy Logic from De Montfort University, Leicester,
U.K., in 1979, 1981, and 2000, respectively. He
worked in industry for 10 years as a mathematician
and knowledge engineer, developing AI systems for
British Gas and the financial services industry. Bob
spent 24 years at De Montfort University, before
joining the University of Nottingham in 2013. He

headed up the COL (formerly ASAP) research group in the School of
Computer Science, and was also a member of LUCID. Bob published over 250
papers, including co-authoring the seminal papers “Type-2 fuzzy sets made
simple” and “Interval type-2 fuzzy logic systems made simple”. Bob passed
away in February 2020, following a short illness. This paper is dedicated to
his memory.

Jamie Twycross is an Assistant Professor in Com-
puter Science at the University of Nottingham. He
has a B.Sc. (Hons) in Mathematical Physics from
Imperial College, London, an M.Sc. in Evolution-
ary and Adaptive Systems from the University of
Sussex, and a Ph.D. in Computer Science from the
University of Nottingham. His main research interest
is in Computational Biology, where he works at
the interface of computer science and biology to
develop and apply computational and mathematical
approaches to address biological and digital prob-

lems. He has expertise in computational and mathematical modelling, data
analytics, machine learning, and software engineering. He is a member of the
Intelligent Modelling and Analysis Group, and leads the Modelling Group in
the Synthetic Biology Research Centre at the University of Nottingham.

Jerry M. Mendel (LF’04) received the Ph.D. de-
gree in electrical engineering from the Polytechnic
Institute of Brooklyn, Brooklyn, NY. Currently, he
is Emeritus Professor of Electrical Engineering at
the University of Southern California in Los An-
geles, where he has been since 1974. He is also a
Tianjin 1000-Talents Foreign Experts Plan Endowed
Professor, and Honorary Dean of the College of
Artificial Intelligence, Tianjin Normal University,
Tianjin, China. He has published over 580 technical
papers and is author and/or co-author of 13 books,

including Uncertain Rule-based Fuzzy Systems: Introduction and New Di-
rections, 2nd ed. (Springer 2017), Perceptual Computing: Aiding People in
Making Subjective Judgments (Wiley & IEEE Press, 2010), and Introduction
to Type-2 Fuzzy Logic Control: Theory and Application (Wiley & IEEE
Press, 2014). He is a Life Fellow of the IEEE, a Distinguished Member
of the IEEE Control Systems Society, and a Fellow of the International
Fuzzy Systems Association. He was President of the IEEE Control Systems
Society in 1986, a member of the Administrative Committee of the IEEE
Computational Intelligence Society for nine years, and Chairman of its Fuzzy
Systems Technical Committee and the Computing With Words Task Force of
that TC. Among his awards are the 1983 Best Transactions Paper Award of the
IEEE Geoscience and Remote Sensing Society, the 1992 Signal Processing
Society Paper Award, the 2002 and 2014 IEEE Transactions on Fuzzy Systems
Outstanding Paper Awards, a 1984 IEEE Centennial Medal, an IEEE Third
Millenium Medal, a Fuzzy Systems Pioneer Award (2008) from the IEEE
Computational Intelligence Society for fundamental theoretical contributions
and seminal results in fuzzy systems”. His present research interests include:
type-2 fuzzy logic systems and computing with words.

	Introduction
	Existing Related Algorithms
	The EKM algorithm
	The EIASC Algorithm
	The DA* Algorithm
	The COSTRWSR algorithm

	New Algorithms
	A Simplified COSTRWSR Algorithm
	A Non-derivative based DA Algorithm

	Comparative Study
	Algorithm Complexity
	Experimental Comparison
	Generalised bell-shaped IT2 fuzzy sets
	Generalised randomly-shaped IT2 fuzzy sets
	Control Surface Computation

	Experimental Results

	Discussion
	Conclusion
	Biographies
	Chao Chen
	Dongrui Wu
	Jonathan M. Garibaldi
	Robert I. (Bob) John
	Jamie Twycross
	Jerry M. Mendel

