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Abstract. An artificial compound eye (ACE) is a bio-inspired vision sensor which mimics a natural compound eye (typical of insects). This
artificial eye is able to visualize large fields of the outside world through multi-aperture. Due to its functioning, the ACE is subject to optical
flow, that is an apparent motion of the object visualized by the eye. This paper proposes a method to estimate the optical flow based on capturing
multiple images (multi-aperture).

In this method, based on descriptors-based initial optical flows, a unified global energy function is presented to incorporate the information of
multi-aperture and simultaneously recover the optical flows of multi-aperture. The energy function imposes a compound flow fields consistency
assumption along with the brightness constancy and piecewise smoothness assumptions. This formula efficiently binds the flow field in time and
space, and further enables view-consistent optical flow estimation. Experimental results on real and synthetic data demonstrate that the proposed
method recovers view-consistent optical flows crossed multi-aperture and performs better than other optical flow methods on the multi-aperture
images.
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1. Introduction

Modern robotics imposes the solution of complex
tasks such as industrial operations [27,22,56], speech
recognition [18], machine-human interaction [30] and
navigation [47,21,23]. Within this context, machine
vision tasks are very challenging and fundamental, see
[16,26].

A powerful machine vision tool is the artificial
compound eye, see [50], which allows a broad vision
of the scene. The natural compound eyes widely ex-
ist in insects and crustaceans, and one of the mer-
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its of natural compound eyes is its sensitivity to mo-
tion objects. The outstanding property is contributed
by both its high temporal resolution and the structure
with multiple ommatidia (singular: ommatidium, the
basic unit of compound eyes that provides the picture
element to brain). In general, the motion object is cap-
tured by a small number of ommatidia, and therefore,
the pressure on a processor system can be very low
and the processing speed can be very fast since only a
small amount of data is needed to be processed. As a
bionic system that hopes to inherit the merits of natural
compound eyes, the artificial compound eye (ACE) is
increasingly investigated [6,44,50]. However, few re-
searches have addressed the practical use of ACE cam-
eras [50], such as motion estimation. Although lots
of literatures based on the 2-dimensional motion es-
timation method called optical flow [17] and the 3-
dimensional motion estimation method called scene



flow [45] have been reported in recent years, the mo-
tion estimation method of ACE has scarcely been stud-
ied. There are mainly two limitations about the op-
tical flow estimation of artificial compound eye. On
one hand, ACEs have multiple apertures, while most
of which contains only one pixel in each aperture. The
image resolution obtained by ACE is limited by the
number of apertures [12], and the interval between
apertures are much larger than the pixel interval in
traditional camera. The relatively low resolution and
large aperture interval heavily restricts the accuracy of
optical flow result, in addition, it also limits the use
of optical flow information to other high level com-
puter vision tasks, such as semantic segmentation, ob-
ject recognition et al., due to the sparse sampling of the
scenario. This problem can be addressed by integrat-
ing a pixel array in each aperture. Therefore, an aper-
ture of ACE captures a small image, and the image of
ACE is composed of an image array. Then the image
resolution of ACE with the same aperture is greatly
improved. However, the image array captured by ACE
incurs the second problem, since the ACE often has a
small size [50], the image of an aperture only captures
a small region of the scenario, therefore, estimating
the optical flow on each aperture will suffer from the
aperture problem [9]. In this paper, we mainly address
the second problem of optical flow in ACEs based on
a specific artificial compound eye (electronic cluster
eye, eCley).

The eCley, inspired by a wasp parasite called
Xenos Peckii, is widely researched to get super-
resolution of imagery [6]. In this work, the eCley has
a lenslet array of 17×13 apertures, and the size of the
optics module is 6.8mm×5.2mm×1.4mm (Length ×
Width × Height). This means that the height of the
optics module of eCley is about one third of a single-
aperture optics module with the similar resolution.
With such a compact size, the eCley can be widely ap-
plied to the fields such as bio-medical imaging, doc-
ument analysis, fingerprint identification, micro-robot
navigation. However, since the eCley was proposed
several years ago, only a few researchers have adopted
this kind of camera in the area of computer vision.
This is partially because the optical axes between ad-
jacent apertures of eCley have an small offset to ob-
tain a larger field of view (FOV), which leads to the
oblique incidence of the marginal aperture. As shown

in Fig. 1, a chessboard captured by eCley is parallel to
the eCley, and the image captured by the central aper-
ture (image in the cyan box) has less distortion, while
the images captured by the marginal apertures suffer
from the oblique distortion (images in the red and yel-
low box). The oblique distortion will lead to a com-
plex process for computer vision tasks [52]. Therefore,
standard vision algorithms cannot transfer to eCley di-
rectly to yield accurate results. Besides, the biggest
challenge for using the eCley is that the small size and
small FOV of aperture image resulting in little context
to support the corresponding field inferencing.

Figure 1. The captured image of eCley. Top, the image array of
eCley; Bottom, the cropped image of the corresponding color box
area.

The image caputered by eCley is an image array,
and adjacent aperture images are partially overlapped.
The multi-aperture structure will cause stereo prob-
lem. The depth estimation method for eCley can re-
fer to [52,51]. Due to the short focal length and base-
line of eCley, the stereo nature of aperture images is
negligible when the objects locate larger than 86mm
away from the eCley. Therefore, this paper assumes
that the moving objects are far enough, and the mo-
tion estimation problem with eCley camera becomes
multi-aperture optical flow problem. Howerver, tradi-
tional optical flow methods are based on single aper-
ture image sequences. The small FOV of aperture im-
age will lead to the inaccurate optical flow result, espe-
cially for the border of image, and inconsistent optical



flow between adjacent aperture images. For example,
four adjacent aperture images at time t (left) and time
t +1 (right) are shown in Fig. 2(b), and the color cod-
ing in [2] for the visualization of optical flow is shown
in Fig. 2(a), and the optical flow of each aperture im-
age sequences is estimated independently based on the
DeepFlow method [33,49], which are shown in the
right of Fig. 2(c). The optical flow of bottom-right
aperture image based on DeepFlow method can not
be accurately estimated due to the aperture problem.
Besides, the four aperture images capture the same
motion boundary, but the optical flows at the motion
boundary are less consistent.

(a)

(b)

(c)

Figure 2. Optical flow results of eCley aperture images. (a) the
color coding of the flow vectors; (b) the aperture images sequences,
left: image at time t, right: image at time t+1; (c) optical flow. left:
the proposed method, right: DeepFlow [33,49].

To address the optical flow problem of eCley,
we first introduce an oblique distortion rectification
method to rectify the image array and estimate the par-
allax between adjacent aperture images. Then, based
on the rectified image array sequences, the Deep-
Matching method [33] is used to obtained the initial

optical flow. While the initial optical flow estimation
of an aperture image based on DeepMatching method
uses only the contexts of corresponding aperture im-
age sequences. The refinement method based on tra-
ditional variational method leads to less accurate re-
sults due to the aperture problem, see the right image
of Fig. 2(c). Therefore, in order to obtain accurate op-
tical flow, a multi-aperture optical flow method is pro-
posed to refine the optical flow fields. In this method,
a unified variational framework for all images is pro-
posed to simultaneously refine the optical flows of all
images. In contrast to traditional variational optical
flow methods using brightness constancy and piece-
wise smoothness assumptions, our model combines
the information of multi-aperture and further imposes
a compound flow field consistency assumption that
combines the corresponding flow fields of adjacent
images. Consequently, the multi-aperture images in-
formation is used to define a global energy function.
By solving the associated Euler-Lagrange equations
and following the coarse-to-fine warping strategy, the
minimization of the nonconvex energy function is ob-
tained.

Experiments are based on synthetic and real data,
and the results demonstrate that our method achieves
more accurate and consistent performances in compar-
ison with those optical flow methods based on single
aperture.

The rest of the paper is organized as follows. The
related work is presented in Section 2. Section 3 de-
scribes our multi-aperture optical flow method. Exper-
iments are presented in Section 4. Finally, conclusions
are followed in Section 5.

2. Related work

Since ACEs are bio-inspired instruments, the bio-
inspired model of optical flow computation and the use
of optical flow signal to control the movement are rel-
atively important aspects for mimicking the function
of their biological prototype. Franceschini et al. [13]
researched the visual behavior and neural networks
of the airborne insects with compound eyes, and de-
signed an artificial compound eye with an array of
elementary motion detectors (EMD) to avoid obsta-
cles. Inspired by insects, Zufferey et al. [59] proposed



a simple control strategy based on optical flow to
avoid obstacles. Pericet-Camara et al. [31] designed a
lightweight artificial elementary eye to extract the lo-
cal optical flow fields. Bračun et al. [3] used the func-
tional subnetwork approach to model the neural sys-
tem of ACE for visual motion recognition. Although
above researches focused on the motion detections
of ACEs and further handling method based on mo-
tion information, a basic unit of the ACE only con-
tains an EMD, which is quite different from the eCley
used in this paper. The basic imaging unit (the aper-
ture) of eCley contains multiple pixels that will form
an image of scenario in the FOV. Therefore, an aper-
ture image of eCley is able to capture much more
information (such as color and environmental con-
text) than the EMD in above ACEs, and is a local
image captured the scenario. The most related cam-
era to eCley is the light field (LF) camera, which
puts a microlenses array behind the main lens. Due
to the ability to capture much richer information than
traditional camera, LF camera is widely researched
in the field of computer vision, such as depth esti-
mation [58,7,19], motion deblurring [41,25], material
recognition [46], super-resolution imaging [11], scene
flow estimation [24]. Since the captured light field in-
formation mainly comes from the microlenses struc-
ture, the eCley can also be considered as a kind of
LF camera that do not have the main lens. The widely
used LF cameras capture multiple aperture images
with small offset. However, the adjacent aperture im-
ages of eCley have much larger offset. For a pixel in
an aperture image, the large offset leads to the corre-
sponding pixels can only be found in several neighbor-
ing aperture images. Therefore, some methods based
on LF image [20], such as epipolar plane image (EPI)
method, angular patches method, can not yield good
performance.

The bio-inspired model for the velocity estima-
tion of local image has been widely researched [15,
40,38,9]. These models mimic the neural models ex-
isted in cortical areas called primary visual cortex (V1)
and medio-temporal area (MT) by using a two layers
feed-forward model. The V1 layers uses a bank of ori-
ented filters (i.e. the Gabor filters or Gaussian deriva-
tives [9]) to obtain the responses of the velocity and
the direction of velocity. Then, the responses of V1
layer are pooled and transfered to the MT layers, fi-

nally, the final responses are acquired by transform-
ing the pooled responses through a non-linear func-
tion. To compute the optical flow of large moved ob-
ject, the multi-scale approach is adopted. Although the
two layers model is likely to the model of the visual
system, the obtained optical flow is worse than the re-
sults by using modern computational method (i.e. the
variational method). The possible reasons may be due
to the fact that the visual system has much more com-
plicated procedure and can use much larger range of
scenario to infer the contextual information. On the
contrary, the convolutional neural network (CNN) us-
ing much more layers to extract the local features and
global abstract descriptors greatly improved the accu-
racy of optical flow [10,14,1,8]. While the CNN-based
method for optical flow needs numerous training data
to learn the hyper-parameters, and the numerous train-
ing data of ACE images are currently unobtainable.

Except for the CNN-based method, the varia-
tional method is another widely researched optical
flow method. After 35 years’ development, current
variational methods achieve more accurate results.
Brox et al. derived a variational formulation to im-
prove the optical flow result by imposing a coarse-to-
fine warping technique for large displacements and us-
ing two nested fixed point iteration strategy to opti-
mize the global energy function [4,29]. Zach et al. im-
proved the Horn-Schunck model by imposing a robust
L1 data term and total variation (TV) regularization
[55]. The energy function is minimized by alternat-
ing optimization strategy, see also [39,34,35,36,37].
Subsequently, Wedel et al. further improved the TV −
L1 optical flow algorithm by performing a structure-
texture decomposition of the images and integrating
a median filter into the numerical scheme [48]. Sun
et al. gave a thorough analysis of what has made re-
cent advances possible [42,43]. A systemic analysis
of the energy function, the optimization, and modern
implementation practices was drawn. Consequently, a
method called ”Classic + NL” was proposed to fur-
ther improve the accuracy. The above methods were
performed based on a multi-scale variational frame-
work for large displacements. Although the multi-
scale strategy is the key step for variational framework
to estimate the large displacement, the fine motion
structure with a large displacement cannot always be
correctly estimated. Recently, several algorithms were



proposed to handle this problem by going beyond the
variational framework and incorporating additional
feature corresponding information [5,53,49,32]. Un-
fortunately, due to the small size and small FOV of
aperture image, estimating the optical flow of aperture
image independently often leads to inaccurate results
caused by aperture problem. Since an object near the
border of an aperture image will be close to the image
center of one of the neighboring aperture, incorporat-
ing the neighbor aperture image to address the aper-
ture problem can be considered to be a possible way
to improve the accuracy of optical flow results.

3. Multi-aperture optical flow method

Our goal is to simultaneously recover the optical flows
of an image array captured by a multi-aperture camera
- eCley. However, as shown in Fig. 1, the oblique inci-
dence of marginal aperture leads to oblique distortion,
which will result in the parallaxes of adjacent aperture
images inconsistent. Therefore, in this Section, we first
introduce a method to rectify the image array and es-
timate the parallaxes in Section 3.1. Then the optical
flow method is given in Section 3.2.

3.1. Preprocessing of eCley image array

To address the distortion caused by oblique incidence,
this section introduces the rectification method for
eCley to rectify all the aperture images simultane-
ously. Since the eCley is an array of optical channels,
it can be considered as multi-apertures camera and the
incident angle of marginal aperture is oblique. The pa-
rameters of the marginal apertures obtained by tradi-
tional calibration method [57] will not be the accurate
parameters due to the oblique incidence. Therefore,
based on the fixed system parameters and incident an-
gles, we propose to deduce the rectification parame-
ters of other apertures from the central aperture’s. The
rest of this section gives the detail of our rectification
method.

As the same as calibration method, we use a
chessboard as reference pattern. The chessboard is
parallel to the eCley lens and put far enough to ensure
that the disparity is negligible. The captured chess-
board image is shown in Fig. 1, and each aperture im-

age captures a part of the chessboard. Since the aper-
ture image is a small size and small FOV image and
the optical axis of central aperture is perpendicular to
the imaging sensor plane, the image of central aperture
is considered as undistorted image. Therefore, the size
of black and white block of the central aperture image
can be used as a reference for the rest of aperture to
rectify those images.

To obtain the reference block size in the central
aperture image, the corners of each block need to be
extracted. In this paper, a canny edge detector is ap-
plied to obtain the edges, and then a Least Square (LS)
fitting is performed over these edges to obtain multi-
ple straight lines. Then the corner points can be ex-
tracted from the intersection points of these straight
lines. Consequently, the average size of these white
and black blocks is used as the reference block size.
Since all of the black and white blocks in the chess-
board we used have the same size, the sizes of blocks
in the undistorted images will be the same as the
blocks’ in the central aperture image. Therefore, for an
aperture image, the block size and corner points can
be obtained by using the same procedure as the cen-
tral aperture’s. Assume that the corner point closest
to the aperture image center is chosen as a reference
point, then each corner point can be assigned an undis-
torted coordinate according to the block size of cen-
tral aperture image. Base on the original coordinates
and the undistorted coordinates of corner points, the
Random Sample Consensus (RANSAC) method can
be used to estimate the rectification parameters. Con-
sequently, the aperture image can be rectified by using
those transformation parameters.

Due to the unfixed reference point, the parallax
between rectified adjacent images is required to be re-
estimated. For a rectified aperture image, the undis-
torted corner points can be used to further estimate
the translation parameters. Since there is an inherent
parallax between adjacent aperture images (see [28]
for more detail about eCley), a corner point has a
roughly corresponding point at the neighboring im-
age, then the exact corresponding point is searched
around the corresponding point. Afterward, the trans-
lation parameters are obtained by averaging offsets of
these corner points. For each aperture image (except
the marginal aperture), 4-neighboring aperture images
are used to obtain 4-pair translation parameters, which



can be considered as the inherent parallax between the
rectified adjacent images.

Fig. 3 shows the aperture images and merged im-
age of the chessboard before and after rectification.
The oblique distortion is largely reduced in the rec-
tified aperture images, and the merged image based
on the re-estimated parallax has much less aliasing
than the merged image with original aperture images.
While the rectification needs to be an interpolation
processes, the marginal aperture images after rectifica-
tion is blurrier than the central image, and the merged
image with rectified aperture images is blurry at the
image border.

Figure 3. Top-left: the merged image with original aperture images;
Top-right: the merged image with rectified aperture images. Bot-
tom: the comparison of three aperture images, the first row: original
aperture images of Fig. 1; the second row: corresponding rectified
aperture images.

3.2. Optical flow method

3.2.1. System parameters and notations

Consider an array of M×N apertures, {Ai}, where i is
a two-dimensional vector that indicates the position of
the aperture. Let Ii(x,y, t) : Ω ⊂ R3→ R, be the recti-
fied image sequence in aperture Ai. Let x := (x,y, t)>

be the coordinate of pixel at time t, and w := (u,v,1)>

be the displacement vector between an image at time
t and another image at time t + 1. The optical flow
(u,v)> is the objective to estimate.

3.2.2. Optical flow initialization

In order to handle large displacement in optical flow,
lots of literatures blend a matching approach with a
variational method [5,53,49,32], and largely boost the
optical flow performance. This paper also takes ad-
vantage of the matching approach to obtain the ini-
tial optical flow. Since the DeepMatching method is a
quasi-dense matching method tailored for optical flow
problem, for each aperture image sequence Ii(x,y, t)
and Ii(x,y, t +1), the DeepMatching method as [49] is
adopted to obtain the initial optical flow winit

i of aper-
ture image. Due to the small FOV of the aperture, the
captured image frequently shows a textureless or little
texture pattern, which leads to the initial optical flow
less accuracy. To refine the initial optical flow, we pro-
pose a variational optical flow model to incorporate the
adjacent aperture optical flow to improve the result.

3.2.3. The variational optical flow model

Based on the variational formulation of optical flow,
the total energy function we aim to minimize is

E(u,v) = ∑
i

Ei(u,v), (1)

where Ei(u,v) is the energy function of aperture Ai,
and is a weighted sum of three terms,

Ei(u,v) = E i
Data +αE i

Smooth +βE i
Compound , (2)

where E i
Data is data term, E i

Smooth is smooth term,
E i

Compound is compound term that encourages the flow
of adjacent images to be similar. α and β are weight
parameters accordingly. If β = 0, Ei(u,v) becomes the
energy function of traditional optical flow model.

E i
Data imposes the brightness constancy and gra-

dient constancy assumption, and is obtained by

E i
Data =

∫
Ω

Ψ(|Ii(x+w)− Ii(x)|2

+ γ|∇Ii(x+w)−∇Ii(x)|2)dx,
(3)

where ∇ = (∂x,∂y)> denotes the spatial gradient. The
function Ψ is a penalty function. As illustrated in



[42,43], among three penalty functions, the quadratic
penalty Ψ(x2) = x2, the Charbonnier penalty Ψ(x2) =√

x2 + ε2 and the Lorentzian penalty Ψ(x2) = log(1+
x2

2δ 2 ), the Charbonnier penalty performs the best. So
the Charbonnier penalty is chosen in this paper and ε

is a small positive constant to make sure the function
is convex.

The smooth term E i
Smooth imposes a piecewise

smoothness assumption to deal with the ambiguities of
low texture regions and give a smooth flow field. It is
obtained by penalizing the total variation of flow field,

E i
Smooth =

∫
Ω

Ψ(|∇3u|2 + |∇3v|2)dx, (4)

where ∇3 = (∂x,∂y,∂t )>. If only two sequence images
are available, it will be replaced by the spatial gradient
∇ due to ∂t = 1.

By using a modern optimization method, tradi-
tional optical flow model with the two terms men-
tioned above can yield an accurate result [4]. While in
our eCley images, the image captured by an aperture
only spans a small FOV and has a small size, which
may lead to less accurate results due to the lack of
texture information in aperture image. As shown in
Fig. 2(c), the optical flows of adjacent aperture images
are not consistent by using DeepFlow method, espe-
cially in the motion boundary. Fortunately, adjacent
images are partially overlapping and can provide spa-
tial correspondence information to improve the con-
sistence optical flow results. As for the corresponding
areas of the border area of aperture image in adjacent
images, at least one of them will be close to the center
of corresponding image. Therefore, the moving object
in corresponding area will have less chance to move
out of the aperture image and more likely to have an
accurate flow boundary. Thus, this paper further im-
poses a compound term E i

Compound to improve the opti-
cal flow. The left image of Fig. 2(c) shows that the pro-
posed compound term gives more consistent and accu-
rate optical flow result. the compound term E i

Compound
assumes that the corresponding pixels of adjacent im-
ages have the same flow field, and is expressed as

E i
Compound =

∫
Ω

∑
j∈Ne(i)

δ (x j) ·g(x j) ·Ψ(|w−w j|2)

∑
j∈Ne(i)

δ (x j)
dx,

(5)
where Ne(i) indicates the 4-nearest neighboring aper-
tures of aperture Ai; x j indicates the corresponding
pixel of x in aperture A j, and w j is its displacement
vector. δ (x j) is a Dirac function which is 1 if x j exists,
and is 0 otherwise. Ψ(|w−w j|2) measures the differ-
ence between the flow of pixel x and the corresponding
pixel x j.

Since pixel x in aperture Ai generally has at least
two corresponding pixels among Ne(i). The flow vec-
tor of x tends to be the mean of displacement vectors
of corresponding pixels by using an uniform weight
to all corresponding pixels. If all corresponding pix-
els use the same weight, the error flow vector of cor-
responding pixels located at the border of adjacent im-
age will force the flow vector of pixel x to tend to the
error flow vector. To reduce the effect of correspond-
ing border pixels, a weight function g(x j) is added.
The pixel closer to the border of image will have a
smaller weight, and the weight of pixel x j only relates
to its position in the corresponding image. Therefore,
we use a Gaussian function to model the relative im-
portance of the position of pixel.

3.2.4. Minimization

Based on the preprocessing method in 3.1, the paral-
lax between aperture images is obtained, so for a pixel
in aperture Ai, the corresponding pixels x j are known.
Although a new compound term is added, the same
penalty function is used for compound term so that
the total energy function is differentiable. The energy
function of each aperture, according to the calculus of
variations, a minimizer of eq.(2) must fulfill the as-
sociated Euler-Lagrange equations with homogeneous
Neumann boundary conditions. For better readability
we follow the abbreviations defined in [4]



Ix := ∂xI(x+w),

Iy := ∂yI(x+w),

Iz := I(x+w)− I(x),

Ixx := ∂xxI(x+w),

Ixy := ∂xyI(x+w),

Iyy := ∂yyI(x+w),

Ixz := ∂xI(x+w)−∂xI(x),

Iyz := ∂yI(x+w)−∂yI(x),

(6)

where t is replaced by z. Since the energy function of
each aperture is the same, i is omitted for simplicity.

The Euler-Lagrange equations of eq.(2) is ex-
pressed as

Ψ
′(I2

z + γ(I2
xz + I2

yz)) · (IxIz + γ(IxxIxz + IxyIyz))

+β

∑
j∈Ne(i)

δ (x j) ·g(x j) ·Ψ′(|w−w j|2)(u−u j)

∑
j∈Ne(i)

δ (x j)

− α div(Ψ′(|∇3u|2 + |∇3v|2)∇3u) = 0,

Ψ
′(I2

z + γ(I2
xz + I2

yz)) · (IyIz + γ(IyyIyz + IxyIxz))

+β

∑
j∈Ne(i)

δ (x j) ·g(x j) ·Ψ′(|w−w j|2)(v− v j)

∑
j∈Ne(i)

δ (x j)

− α div(Ψ′(|∇3u|2 + |∇3v|2)∇3v) = 0.
(7)

Since the initial optical flow based on Deep-
Matching still suffers from the aperture problem, The
variational refinement is based on a standard coarse-
to-fine warping scheme. After a pyramid of images
is constructed, the flow is estimated from the coars-
est level to the finest level, and at each level, a fixed
point iteration method is used to compute w. Let wk =
(uk,vk,1)>, k = 0,1, ..., be the displacement vector at
iteration k. The coarsest level w0 is initialized based
on the DeepMatching result winit , and the finer level
is initialized by using the final result of previous level.
At each step k+1, wk+1 will be the solution of

Ψ
′((Ik+1

z )2 + γ((Ik+1
xz )2 +(Ik+1

yz )2))

· (Ik
x Ik+1

z + γ(Ik
xxIk+1

xz + Ik
xyIk+1

yz ))+

β

∑
j∈Ne(i)

δ (x j) ·g(x j) ·Ψ′(|wk+1−wk+1
j |2)(uk+1−uk+1

j )

∑
j∈Ne(i)

δ (x j)

− α div(Ψ′(|∇3uk+1|2 + |∇3vk+1|2)∇3uk+1) = 0,

Ψ
′((Ik+1

z )2 + γ((Ik+1
xz )2 +(Ik+1

yz )2))

· (Ik
y Ik+1

z + γ(Ik
yyIk+1

yz + Ik
xyIk+1

xz ))+

β

∑
j∈Ne(i)

δ (x j) ·g(x j) ·Ψ′(|wk+1−wk+1
j |2)(vk+1− vk+1

j )

∑
j∈Ne(i)

δ (x j)

− α div(Ψ′(|∇3uk+1|2 + |∇3vk+1|2)∇3vk+1) = 0.
(8)

We assume uk+1 = uk +4uk, vk+1 = vk +4vk,
and use the same approximate expression of Ik+1

∗ as
[4]

Ik+1
z ≈ Ik

z + Ik
x4uk + Ik

y4vk,

Ik+1
xz ≈ Ik

xz + Ik
xx4uk + Ik

xy4vk,

Ik+1
yz ≈ Ik

yz + Ik
xy4uk + Ik

yy4vk.

(9)

Then let

(Ψ′)k
Data = Ψ

′((Ik
z + Ik

x4uk + Ik
y4vk)2

+ γ((Ik
xz + Ik

xx4uk + Ik
xy4vk)2 +(Ik

yz + Ik
xy4uk + Ik

yy4vk)2)),

(Ψ′)k
Smooth = Ψ

′(|∇3(uk +4uk)|2 + |∇3(vk +4vk)|2),

(Ψ′)k
Compound = Ψ

′(|(wk +4wk)− (wk
j +4wk

j)|2).
(10)

With eqs. (9) (10), the first equation in eq. (8) can
be written as



(Ψ′)k
Data ·

(
Ik
x (I

k
z + Ik

x4uk + Ik
y4vk)+

γ
(
Ik
xx(I

k
xz + Ik

xx4uk + Ik
xy4vk)+ Ik

xy(I
k
yz + Ik

xy4uk + Ik
yy4vk)2))+

β

∑
j∈Ne(i)

δ (x j) ·g(x j) · (Ψ′)k
Compound · ((u

k +4uk)− (uk
j +4uk

j))

∑
j∈Ne(i)

δ (x j)

−α div
(
(Ψ′)k

Smooth ·∇3(uk +4uk)

)
= 0,

(11)

and the second equation can be expressed in a simi-
lar way. In order to estimate the increment of displace-
ment vector at each iteration, we follow Brox et al [4]
and use a second, inner, fixed point iteration. We ini-
tialize the inner iteration with 4uk,0 = 0, 4vk,0 = 0.
Then at each step l +1, the system of equations in in-
crement of displacement vector4uk,l+1,4vk,l+1 are

(Ψ′)k,l
Data ·

(
Ik
x (I

k
z + Ik

x4uk,l+1 + Ik
y4vk,l+1)

+ γ
(
Ik
xx(I

k
xz + Ik

xx4uk,l+1

+ Ik
xy4vk,l+1)+ Ik

xy(I
k
yz + Ik

xy4uk,l+1 + Ik
yy4vk,l+1)

))
+

β

∑
j∈Ne(i)

δ (x j) ·g(x j) · (Ψ′)k,l
Compound · ((u

k +4uk,l+1)− (uk
j +4uk,l+1

j ))

∑
j∈Ne(i)

δ (x j)

−α div
(
(Ψ′)k,l

Smooth ·∇3(uk +4uk,l+1)

)
= 0.

(12)

For the first equation of eq.(8), here we further
assume that 4uk,l+1

j = 0, and we use the uk−1
j to re-

place uk
j so that there is not any new unknown variable

added. Then the final linear system can be solved by
successive overrelaxation (SOR) method [54].

The minimization is performed from the coarse
level to the fine level, and therefore, the original image
resolution is the finest level. At each image level, the
outer loop is iterated k times. In each outer loop, the
inner loop iterates l times to estimate the increment
of displacement vector. After each outer loop iteration
we further use a weighted median filter (WMF) with
size of 5× 5 to remove outliers and preserve motion
boundary [42,43]. The pseudo code of our method is
shown in Algorithm 1, and the function f (wk

r) is to

Algorithm 1 Pseduo code of the proposed optical flow
method

Input: two frame of image set Ii(t),Ii(t + 1), i ∈
[1,M]× [1,N].
Output: displacement vector w
1: rectify the eCley image (Section 3.1)
2: initial optical flow estimation (Section 3.2.2)
3: variational refine method initialization
4: for image level r = 1 : maxlevel do
5: for iter k = 1 : 3 do
6: for each Iim(t) and corresponding Iim(t +

1) do
7: ∆wk

r = 0
8: ∆wk

r estimation (eq.(12))
9: wk+1

r = wk
r +∆wk

r
10: wk+1

r = WMF(wk+1
r )

11: w1
r+1 = f (wk

r)

transfer the displacement vector wk
r to next finer scale

as an initialization.

4. Experimental results

This section presents the experimental evaluation of
the proposed method. In this paper, all experiments are
performed on a laptop with an Intel Core i5-3210M
CPU clocked at 2.5GHz and 4GB RAM. To evalu-
ate the efficiency of the proposed method, four opti-
cal flow methods, DeepFlow [33], Classic+NL [43],
LDOF [5] and EpicFlow [32], are used for compar-
ison. Classsic+NL method is a baseline variational
optical flow estimation method. DeepFlow, EpicFlow
and LDOF used dense descriptors matching and in-
terpolation to estimate the initial flow, and then used
variational method to optimize the optical flow. In
the proposed method, the initial optical flow is ob-
tained as the same as DeepFlow. The accurate de-
scriptor matching method and interpolation method
can largely improve the initial flow result, and fur-
ther achieve more accurate optical flow after optimiza-
tion. Among the optical flow results submitted to Sin-
tel dataset based on variational method (with or with-
out descriptor matching), EpicFlow ranks 17th, Deep-
Flow ranks 20th, Classic+NL ranks 43th, and LDOF
ranks 50th. The parameters of DeepFlow, Classic+NL,
LDOF, EpicFlow are kept the same as in the litera-



tures. The evaluation of the results is based on Mid-
dlebury datasets, Sintel datasets and real data captured
by eCley, and the performances of benchmark datasets
with ground truth are evaluated with the standard met-
rics, the average angular error (AAE) and average end-
point error (EPE). All the visualized optical flow im-
age are using the color coding method as [2].

In our method, all parameters at the initial opti-
cal flow estimation stage are kept the same as in [33].
At the variational refinement stage, since the most of
motions in the Middlebury dataset are small, while the
Sintel dataset contains large motions, therefore, the
downsampling factor in coarse-to-fine step of Middle-
bury dataset and Sintel dataset are 0.8 and 0.5, respec-
tively. For the outer iteration at each image level k,
Fig. 4 gives the AAE and EPE of four images and their
averages under different k. In order to better visual-
ize the results, the AAE and EPE at different iterations
are compared with the initial flow’s (iteration = 0), and
the ratio of AAE and EPE are shown in the figure.
As shown in the figure, after 1 iteration, both the EPE
and AAE decrease significantly thanks to the coarse-
to-fine scheme. As the iteration increase, most AAE
and EPE decrease gradually and then turn to increases.
When k = 3, the average AAE and EPE are the small-
est. Therefore, we use k = 3 in our experiments. The
inner iteration based on SOR method l = 100. Fig. 5
- Fig. 8 gives the AAE and EPE of Middlebury data
and Sintel data under different α and β , respectively.
The data are divided into image array as described in
Section 4.1. We find that good results of Sintel data
are obtained at α = 0.5, β = 1. For Middlebury data,
α = 0.9 has the best result, and the smallest AAE ob-
tained at β = 1.2 but smallest EPE at β = 0.8, in order
to balance the AAE and EPE, we choose the median
value with β = 1 for the Middlebury data.

4.1. Results on benchmark datasets

Middlebury dataset The evaluation on Middlebury
Benchmark is performed on 7 pairs of frames, which
have ground truth optical flow. In order to construct an
image array like the images captured by eCley, each
frame is divided into a set of partially overlapping im-
ages. More concretely, the RubberWhale, Hydrangea
and Dimetrodon sequence with resolution of 584×388
pixels are divided into 7× 11 sub-images with reso-

Figure 4. The AAE and EPE ratio under different k.

Figure 5. The AAE and EPE of Middlebury data under different α .

lution of 96× 96 pixels, the Grove2, Grove3, Urban2
and Urban3 sequence with resolution of 640× 480
pixels are divided into 5× 7 sub-images with reso-
lution of 160× 160 pixels, and the overlap between
neighboring images is half FOV of the sub-image. The
ground truth optical flow images are divided in the
same way. The sub-image pair is extracted from the



Figure 6. The AAE and EPE of Middlebury data under different β .

Figure 7. The AAE and EPE of Sintel data under different α .

original image pair at the same position but in different
frame, and is a local image pair of original image pair.
Since the ground truth describes the displacement of
each pixel of current frame at the following frame, the
displacement of each pixel in sub-image will keep the
same as the original image. Therefore, the optical flow
extracted from the same position can be considered as
the ground truth of each sub-image. The original im-
age, ground truth optical flow, and the divided image
array and ground truth array are shown in Fig. 9. Ta-
ble 1 gives AAE and EPE of five optical flow meth-
ods, and the visualized results are shown in Fig. 10.
The percentage in the bracket shown in Table 2 indi-

Figure 8. The AAE and EPE of Sintel data under different β .

(a) original image and optical flow

(b) divided image and optical flow

Figure 9. (a) left: the original Urban2 image; right: the original op-
tical flow ground truth. (b) left: the divided image array; right: the
divided optical flow ground truth.

cates the improvement rate of our method, in which
the negative percentage means our method is worse
than the corresponding method. Our method achieves
the best result among the five methods except for the
Dimetrodon sequence.

Sintel dataset The Sintel dataset and ground
truth is divided in the similar way. The resolution of
Sintel image is 1024×436 pixels. Due to the large mo-
tion existed in Sintel image, we use a relatively high
resolution (200× 200) of sub-image to avoid the ob-
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Figure 10. Visualized optical flow results on Middleburry datasets. In the error map, the blue color means no error or tiny error, white means
small error, the orange color indicates large error.



Table 1. AAE/EPE for test sequences from Middlebury benchmark

Sequences Classic+NL DeepFlow EpicFlow LDOF Proposed

RubberWhale 3.2144/ 0.0996 3.2442/ 0.1014 4.0227/ 0.1232 7.5509/ 0.2346 2.8994/ 0.0947
(10.86%/ 5.17%) (11.89%/ 7.07%) (38.74%/ 30.10%) (160.43%/ 147.73%)

Hydrangea 2.1954/ 0.1809 2.6967/ 0.2027 2.3398/ 0.2003 3.6114/ 0.3680 2.1344/ 0.1743
(2.86%/ 3.79%) (26.34%/ 16.29%) (9.62%/ 14.92%) (69.20%/ 111.13%)

Dimetrodon 1.7508/ 0.0909 1.7448/ 0.0905 2.0073/ 0.1016 2.4334/ 0.2610 1.8672/ 0.0969
(-6.23%/ -6.19%) (-6.55%/ -6.6%) (7.5%/ 4.85%) (30.32%/ 169.35%)

Urban2 2.9435/ 0.7381 2.7157/ 0.3780 3.5239/ 0.5181 5.8456/ 1.5918 2.5436/ 0.3301
(15.72%/ 123.6%) (6.77%/ 14.51%) (38.53%/ 56.95%) (129.82%/ 382.22%)

Urban3 3.5065/ 0.4410 3.4933/ 0.4251 6.5589/ 1.2668 18.4243/ 1.9045 2.2718/ 0.3189
(54.35%/ 38.29%) (53.77%/ 33.3%) (188.71%/ 297.24%) (711.0%/ 495.53%)

Grove2 2.1397/ 0.1432 2.1276/ 0.1435 2.3944/ 0.1587 3.3487/ 0.2753 1.4409/ 0.0981
(32.66%/ 45.87%) (47.65%/ 46.28%) (66.17%/ 61.77%) (132.40%/ 180.63%)

Grove3 5.8726/ 0.6077 5.8431/ 0.6001 6.7210/ 0.7004 8.7605/ 0.9313 5.0618/ 0.4937
(16.02%/ 23.09%) (15.44%/ 21.58%) (32.78%/ 41.87%) (73.07%/ 88.63%)

ject moving outside the sub-image. The image array
contains 3×9 sub-images. Table 2 shows the AAE and
EPE of 16 Sintel image sequences. Our method per-
forms the best for almost all the test images. Fig. 11
gives the visualized results of divided image arrays,
and Fig. 12 shows the sub-image results of image ar-
ray for visualized comparison. In Fig. 11, the Clas-
sic+NL and LDOF are much worse than the other three
methods. Our method yields the similar performance
to DeepFlow method and both of them outperform the
EpicFlow method. As shown in Fig. 12, for the motion
boundary near the image border, our method is able to
correctly estimate the motion boundary and performs
better than DeepFlow method.

In addition, the compared methods are used to
estimate the optical flow based on single image se-
quence. Therefore, Table 3 gives the results on the
original benchmark data in comparison with our result
on multi-aperture images. The results indicate that the
proposed method for small sub-image array achieves
an approximate optical flow accuracy to these methods
on the original image sequences, although the aperture
problem of sub-image array is more severe than the
original image.

4.2. Results on real data

In this section, we used the real-world sequences cap-
tured by eCley. the eCley image used in this section
contains 13× 13 apertures. Each aperture image after

rectification has a resolution of 101× 101 pixels, and
the parameters of our method on eCley image keep the
same as in Sintel dataset. The first sequences (Fig. 13)
involves the vertical motion of an arm and a hand,
in a static scene. As shown in Fig. 13, Classic+NL
method is able to estimate the motion boundary, but
the corresponding flow fields across adjacent aperture
images do not keep consistent; DeepFlow, LDOF and
EpicFlow use descriptor matching to estimate initial
optical flow and have more consistent results, but they
can not accurately estimate the motion boundary; Our
method is able to estimate the motion boundary and
keep the flow fields consistent between adjacent im-
ages. In addition, EpicFlow uses the edges information
for interpolation, the optical flows of textureless sub-
images are much worse than our method and the other
three methods. The second sequences in Fig. 14 show
complex motions of a person, where the body and head
have a horizontal motion, and two hands are vertically
moved. Also, the Classic+NL method is less consis-
tent. DeepFlow and LDOF fail to estimate the motion
boundary. EpicFlow yields worse result at textureless
sub-images. Our method performs best.

The computing time of the variational step in the
proposed method takes 170 seconds for Sintel data,
125 seconds for Middlebury data, and 213 seconds for
eCley images. The DeepFlow method takes 140, 103
and 194 seconds for Sintel data, Middlebury data and
eCley images, respectively. The Classic+NL method
takes 240, 177, 421 seconds, respectively. The LDOF
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Figure 11. Visualized optical flow results on Sintel datasets. In the error map, the blue color means no error or tiny error, white means small
error, the orange color indicates large error.



Table 2. AAE/EPE for test sequences from Sintel benchmark

Sequences Classic+NL DeepFlow EpicFlow LDOF Proposed

alley 1 4.8839/ 0.5602 5.2970/ 0.4916 5.8962/ 0.5762 12.8830/ 0.8826 3.4515/ 0.3710
(41.5%/ 51%) (53.47%/ 32.51%) (70.83%/ 55.31%) (273.26%/ 137.90%)

alley 2 4.1721/ 0.4771 3.4958/0.4010 4.6241/ 0.5438 4.9992/ 0.6666 2.3877/ 0.3206
(74.73%/ 48.81%) (46.41%/ 25.08%) (93.66%/ 69.62%) (109.37%/ 107.92%)

ambush 4 30.8977/ 16.5084 18.8441/ 9.9561 21.3644/ 12.6051 24.7671/16.8604 16.9577/ 9.1512
(82.2%/ 80.4%) (11.12%/ 8.79%) (25.99%/ 37.74%) (46.05%/ 84.24%)

ambush 5 14.1738/ 3.3918 9.0546/ 1.7866 14.2703/ 2.7259 13.8827/ 3.4023 8.2569/ 1.6359
(71.66%/ 107.33%) (9.66%/ 9.21%) (72.83%/ 66.63%) (68.13%/ 105.71%)

ambush 7 17.0295/ 6.1172 11.3141/ 2.3059 16.1809/ 3.5922 20.1161/ 3.7040 12.7842/ 2.1459
(33.21%/ 185.07%) (-11.5%/ 7.46%) (26.57%/ 67.40%) (57.35%/ 72.61%)

bamboo 1 4.7622/ 0.4509 4.8079/ 0.4528 4.9010/ 0.4672 8.1417/ 0.7365 4.2248/ 0.4180
(12.72%/ 7.87%) (13.8%/ 8.33%) (16.01%/ 11.77%) (92.71%/ 76.20%)

bamboo 2 11.3918/ 1.7387 8.6703/ 0.9452 10.0012/ 1.2423 19.5096/ 1.5828 7.6564/ 0.8378
(48.79%/ 107.53%) (13.24%/ 12.82%) (30.63%/ 48.28%) (154.81%/ 88.92%)

bandage 1 8.0451/ 1.6240 6.2041/ 1.2877 8.1358/ 1.5168 9.8101/ 2.5097 5.6050/ 1.2075
(43.53%/ 34.49%) (10.69%/ 6.64%) (45.15%/ 25.61%) (75.02%/ 107.84%)

cave 2 41.9416/ 16.0512 9.0333/ 2.8502 15.5628/ 4.1770 13.0757/ 3.9949 7.8904/ 2.5342
(506.69%/ 579.39%) (30.67%/ 20.64%) (97.24%/ 64.83%) (65.72%/ 57.64%)

cave 4 22.2026/ 6.3129 14.0963/ 3.9122 21.2991/ 5.4596 17.9773/ 4.9500 12.7640/ 3.6907
(73.95%/ 71.05%) (10.44%/ 6.0%) (66.87%/ 47.93%) (40.84%/ 34.12%)

market 2 12.9066/ 1.7816 12.0870/ 1.2845 15.9892/ 1.7816 21.6570/2.0481 10.4974/ 1.1384
(22.95%/ 56.50%) (15.14%/ 12.83%) (52.32%/ 56.50%) (106.31%/ 79.91%)

market 5 21.2936/ 14.6889 7.5622/ 2.8192 9.6230/ 3.4391 11.2901/ 5.4965 6.9999/ 2.5895
(204.2%/ 467.25%) (8.03%/ 8.87%) (37.47%/ 32.81%) (61.29%/ 112.26%)

market 6 25.7618/ 10.3904 18.9207/ 6.1782 22.6330/ 7.5181 24.7129/ 9.2926 17.6978/ 6.0227
(45.57%/ 72.52%) (6.91%/ 2.58%) (27.89%/ 24.83%) (39.64%/ 54.29%)

mountain 1 5.6542/ 0.736 6.2371/ 0.5722 8.6418/ 0.6092 20.6351/ 1.3487 7.0734/ 0.7204
(-20.06%/ 2.16%) (-11.82%/ -20.57%) (22.17%/ -15.44%) (191.73%/ 87.22%)

temple 2 30.7928/ 24.9824 13.8948/ 11.8773 18.3791/ 15.3767 19.6556/ 18.5054 11.7069/ 11.0138
(163.03%/ 126.83%) (18.69%/ 7.84%) (56.99%/ 39.61%) (67.90%/ 68.02%)

temple 3 16.9331/ 3.6524 12.4207/ 3.4254 25.2147/ 6.9696 16.6264/ 7.5460 9.6350/ 2.9133
(75.75%/ 25.37%) (28.91%/ 17.58%) (161.70%/ 139.23%) (72.56%/ 159.02%)

method takes 317, 244, 648 seconds and EpicFlow
method takes 123, 88 and 160 seconds. In addition, al-
though our method imposes a compound term to im-
prove the result, at each iteration, the aperture im-
age only needs the optical flow fields of current aper-
ture image and adjacent images from the last itera-
tion. Therefore, the estimation of optical flow of one
aperture image does not need the information from
this iteration and can be accelerated by using multi-
threading processors.

From the experimental results on Middlebury
datasets, Sintel datasets and the real data, the proposed

method has a better performance on the sub-image ar-
ray structure. But there are also some failure cases, i.e.
the proposed method can only take care of the motion
within an aperture image, if the motion crosses the
aperture images, then the proposed method will fail to
obtained the accurate flow. As shown in Fig 15, the
bottom-left image sequences cannot estimate the ac-
curate optical flow due to the across images motions.
Since the large motion that across images will lead
to the lack of matching point for the moving object,
therefore, future work will focus on the fast moving
objects that across multiple images.



Figure 12. The optical flow results of sub-image array.

Table 3. AAE/EPE for data based on original images

Sequences Classic+NL DeepFlow EpicFlow LDOF Proposed

RubberWhale 3.0539/ 0.0921 3.0679/ 0.0925 2.9382/ 0.0959 3.8738/ 1.3901 2.8994/ 0.0947
Hydrangea 1.8994/ 0.1520 1.8895/ 0.1507 1.8235/ 0.1464 2.7091/ 0.3102 2.1344/ 0.1743
Dimetrodon 1.4704/ 0.0771 1.4699/ 0.0769 1.4823/ 0.0821 2.0311/ 1.1304 1.8672/ 0.0969

Urban2 2.2361/ 0.3012 2.2407/ 0.2881 2.3349/ 0.2990 6.1663/ 0.7509 2.5436/ 0.3301
Urban3 3.3396/ 0.3734 3.3770/ 0.3758 2.9892/ 0.3594 3.8125/ 0.4972 2.2718/ 0.3189
Grove2 2.0853/ 0.1388 2.1270/ 0.1417 1.7491/ 0.1097 2.3481/ 0.1596 1.4409/ 0.0981
Grove3 5.5149/ 0.5825 5.4848/ 0.5804 5.3204/ 0.5389 6.3925/ 0.6837 5.0618/ 0.4937
alley 1 3.8725/ 0.4002 3.9862/ 0.4054 3.7482/ 0.3897 4.2193/ 0.5203 3.4515/ 0.3710

ambush 5 8.5670/ 2.4261 7.6437/ 1.3808 7.9523/1.6944 9.3815/ 2.8471 8.2569/ 1.6359
cave 2 10.9686/ 3.1578 7.4004/ 2.3027 7.2018/ 2.2027 10.8731/ 3.2010 6.9132/ 2.3626

temple 2 13.6418/ 12.3415 9.1151/ 6.0763 8.9470/ 5.9871 14.0981/ 12.5981 11.7069/ 11.0138
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Figure 13. Results comparison of the real data captured by eCley (hand).

5. Conclusion

In this paper, we proposed a multi-aperture optical
flow method for ACE - eCley. we first introduce an im-
age rectification method for eCley. Based on the multi-
aperture configuration, all apertures are used to simul-
taneously recover the optical flow of multi-aperture
and keep the flow consistent across apertures. In ad-
dition, the method based on a variational framework,
which imposes a compound flow field consistency
assumption along with the brightness constancy and

piecewise smoothness assumptions. The correspond-

ing information from multi-apertures adds supplemen-

tary constrains that reduce ambiguities and improve

stability. Our results on Middlebury benchmark, Sintel

benchmark and real data from eCley demonstrate the

validity of the proposed method.
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Figure 14. Results comparison of the real data captured by eCley
(human).

Figure 15. The failure situation.
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[6] A. Brückner, J. Duparré, R. Leitel, P. Dannberg, A. Bräuer,
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