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As there is growing evidence for the tumor microenvironment’s (TME) role in tumorigenesis, 

we investigated the role of fibroblast-expressed kinases in triple negative breast cancer 

(TNBC). Using a high-throughput kinome screen combined with 3D invasion assays, we 

identified fibroblast-expressed PIK3Cδ (f-PIK3Cδ) as a key regulator of progression. Although 

PIK3Cδ was expressed in primary fibroblasts derived from TNBC patients, it was undetectable 

in breast cancer cell lines. Genetic and pharmacologic gain- and loss-of functions experiments 

verified the contribution of f-PIK3Cδ in TNBC cell invasion. Integrated secretomics and 

transcriptomics analyses revealed a paracrine mechanism via which f-PIK3Cδ confers its pro-

tumorigenic effects. Inhibition of f-PIK3Cδ promoted the secretion of factors, including PLGF 

and BDNF, which led to upregulation of NR4A1 in TNBC cells where it acts as a tumor 

suppressor. Inhibition of PIK3Cδ in an orthotopic BC mouse model reduced tumor growth only 

after inoculation with fibroblasts, indicating a role of f-PIK3Cδ in cancer progression. Similar 

results were observed in the MMTV-PyMT transgenic BC mouse model, along with a decrease 

on tumor metastasis emphasizing the potential immune-independent effects of PIK3Cδ 

inhibition. Finally, analysis of BC patient cohorts and TCGA datasets identified f-PIK3Cδ 

(protein and mRNA levels) as an independent prognostic factor for overall and disease free 

survival, highlighting it as a therapeutic target for TNBC.  
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Introduction 

Triple negative breast cancer (TNBC; ER-, PR-, HER2-) represents a molecularly diverse and 

highly heterogeneous subtype of BC (15-20%) with a poor prognosis, high rates of recurrence 

and metastasis. Treatment largely relies on chemotherapy which remains toxic and often 

ineffective (1, 2).  

Despite mounting evidence for the role of the tumor microenvironment (TME) in affecting 

surrounding cells and its involvement in metastatic progression, little is known about how 

stromal cells can influence the behavior of cancer epithelial cells and how they affect their 

response to target therapy (3-5). Under physiological conditions, the stroma serves as a barrier 

to epithelial cell transformation, while the interplay between epithelial cells and the 

microenvironment can maintain epithelial polarity and modulate growth inhibition (6). In BC, 

gene expression analysis of the tumor stroma has led to identification of clusters that can 

predict clinical outcome (7). In TNBC patients, infiltration of inflammatory cells or the 

presence of a stroma with reactive, invasive properties, has been associated with a poor 

prognosis (8, 9).  

Fibroblasts are the most prominent cells in the TME and can induce both beneficial and adverse 

effects in pre-metastatic progression (4, 10). The important functions of fibroblasts include the 

deposition of extracellular matrix (ECM), regulation of epithelial differentiation, regulation of 

inflammation and involvement in cell migration (11, 12). Fibroblast-secreted ECM proteins 

play a vital role in BC onset and progression (13), while cancer-associated fibroblasts (CAFs) 

have been shown to promotes resistance to cytotoxic and target therapy by secreting protective 

factors (14). Further understanding the involvement of stromal cells in TNBC, in particular the 

elucidation of the cross-talk between fibroblasts and BC cells, might lead to the design of new 

therapeutic strategies and more effective tailored treatments for TNBC patients. 

Finak et al. reported that functional inactivation of PTEN, that leads to phosphoinositide 3-

kinase (PI3K) activation, in fibroblasts within the breast TME contributes to cancer 

development and progression (7). We hypothesized that PI3K activity may be a regulator of 

the tumor-stroma interactions (15) and inhibition of PI3K signaling in fibroblasts could impede 

its tumor-promoting activity. PI3Ks phosphorylate inositol lipids and are involved in immune 

response (16-18). Whereas PIK3Cα (p110α) and PIK3Cβ (p110β) are ubiquitously expressed, 

PIK3Cδ (p100δ) is predominantly expressed in white blood cells (19). However, an unexpected 

role of PIK3Cδ in oncogenesis of non-hematopoietic cells was observed in avian fibroblasts 
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where overexpression of wild-type PIK3Cδ induced oncogenic transformation (20, 

21).Another report has demonstrated the involvement of PI3K isoforms (including PIK3Cδ) in 

the differentiation of human lung fibroblasts into myofibroblasts (22). PIK3Cδ contributes to 

neutrophil accumulation in inflamed tissue by impeding chemoattractant-directed migration as 

well as adhesive interactions between neutrophils and cytokine-stimulated endothelium (23). 

Although hampering PI3Ks’ activity in fibroblasts would be expected to inhibit stroma 

mediated tumor-promoting activity, a direct effect of PI3K inhibitors on these cells has not 

been tested to date. 

Herein, using a high throughput siRNA kinome screening we identify fibroblast-expressed 

PIK3Cδ as a mediator of TNBC development in vitro and in vivo and we show the mechanism 

via which fibroblast PIK3Cδ modulates TNBC progression. Our work reveals a previously 

uncharacterized yet significant role of fibroblast-expressed PIK3Cδ, which supports the 

rationale for clinical use of PIK3Cδ inhibitors for the treatment of TNBC. 
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Results 

Cancer associated markers in HMF and MRC5 fibroblast cell lines 

The primary aim of this work was to examine how normal fibroblasts (NFs) within the TME 

affect TNBC progression. This reflects several controversial issues that have been raised about 

the genomic landscape of CAFs and the identification of specific markers that differentiate 

CAFs. According to recent evidence (8), CAFs in TNBC should be characterized by the 

combined expression of fibroblast activated protein (FAP), integrin β1 (ITGβ1/CD29) 

S100A4, PDGFRβ, α-smooth muscle actin (α-SMA) and Caveolin. Therefore, the expression 

of CAF markers was evaluated in the fibroblast cell lines used herein (HMF and MRC5) and 

were also compared to primary fibroblasts (NFs and CAFs) obtained from four TNBC patients 

(Supplementary Table 1). The separation of primary CAFs from NFs was based on the 

distance from the site of the primary tumor (CAFs<5cm; NFs >5cm). 

As shown in Supplementary Figure 1A, PDGFRβ was more abundant in CAFs compared to 

NFs while Caveolin was downregulated in CAFs. Overall expression and changes in FAP 

levels were related to patient’s variability rather than the fibroblast site of origin. ITGβ1 and 

α-SMA were widely expressed in all samples, while S100A4 was hardly detectable in primary 

fibroblasts. The expression levels of the CAF markers in HMF and MRC5 were comparable to 

those in the primary fibroblast cell lines. PDGFRβ, ITGβ1, FAP, Caveolin and α-SMA were 

equally detected in HMF and MRC5 cells while S100A4 was solely present in HMF.  

Although the expression of these markers in HMF and MRC5 were comparable to those found 

in primary fibroblasts of TNBC tumors, there was no clear distinction between NFs and CAFs 

based on these proteins, which supports the aforementioned controversy. In contrast, the 

similarities between HMF/MRC5 and primary fibroblasts in the expression of CAF-markers 

support the use of these cells as a model to study cancer cells-fibroblasts interactions.  

Nevertheless, since our goal is not restricted to a specific fibroblast subtype, we used both HMF 

and MRC5 in our experiments. 
 

High-throughput (HT) RNAi screening identifies fibroblast-expressed kinases involved 

in TNBC cell invasion  

Based on the established role of protein kinases (PKs) as drug targets and considering the fact 

that intra- and extra-cellular signaling is mainly transmitted through PKs, we investigated the 

role of fibroblast-expressed kinases on TNBC progression. Hence, we established an 
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experimental pipeline (Figure 1A), broadly applicable to different systems that consisted of a 

3D co-culturing model (cancer and stromal cells) linked to an invasion assay as a readout tool. 

The primary screening was performed in duplicate in HMF and once in MRC5 cells. Fibroblast 

cell lines were transfected with a pool of 3 siRNAs/gene targeting each of the 710 human 

kinases (Figure 1A; Step 1). 24 hours after transfection, HMF or MRC5 were co-cultured in 

3D with MDA-MB-231 and after 3 days, required for spheroids formation, Matrigel and 

chemoattractants were added to the wells to promote invasion (Figure 1A, Supplementary 

Figure 2 and Supplementary Videos 1 & 2; Step 2). Pictures of spheroids taken after 3 and 

6 days were analyzed and the results were expressed as changes in spheroid surface (Δ= 

SurfaceDay6 - SurfaceDay3). The Δ-value of each silenced kinase (ΔK) was compared with the Δ-

value of the control (ΔCT), at different time-points, to obtain a ΔRatio (ΔRatio= ΔCT/ΔK) (Figure 

1A; Step 3). Kinases were divided depending on their effects on MDA-MB-231 invasion and 

those with a ΔRatio ≤ 0.5 (50% less invasion vs CT) and p<0.01 (as well as SD < 0.5 for HMF), 

were considered as ‘invasion-promoting’, while kinases with a ΔRatio > 2 (100% more 

invasion vs CT), P > 0.05 (as well as SD > 0.5 for HMF) were considered as ‘invasion 

inhibiting’ ones. The ΔRatio values were used to calculate the Z-Scores and all hits were plotted 

for both cell lines, revealing new potential fibroblast-expressed kinases able to modulate TNBC 

cell invasion (Figure 1B and Supplementary Figure 3; Step 4). All screening data are 

presented in Supplementary Table 2. 

Based on pre-specified cut-off criteria, we identified 17 kinases in HMF and 64 in MRC5 

whose silencing decreased the rate of TNBC invasion (~40%-90%), suggesting a pro-invasive 

role of these proteins (Figure 2A). Under these conditions, there were two shared targets 

amongst HMF and MRC5: PIK3Cδ and AURKA. Using a panel of fibroblasts and breast 

cancer (BC) cells, we analyzed the levels of PIK3Cδ and AURKA and discovered a variability 

in their expression amongst the primary and immortalized fibroblast cell lines (Figure 2B, 

Supplementary Figure 1B). PIK3Cδ protein levels in fibroblast cells were comparable to 

those in the BJAB B-cell line (used as a positive control) (24) while intriguingly PIK3Cδ was 

hardly detectable/totally absent in most of the BC cells, as opposed to AURKA, which was 

ubiquitously expressed (Figure 2C, Supplementary Figure 1C and Supplementary Figure 

4D-upper panel). qRT-PCR analysis of PIK3Cδ revealed a similar trend for most of the cell 

lines tested (Supplementary Figure 4A), though it is well-known that protein and mRNA 

abundances do not always correlate (25, 26). Moreover, RNA sequencing (RNAseq) in 

different organs obtained from the Human Protein Atlas (27) revealed that apart from myeloid 
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and lymphoid cells, fibroblast cell lines express moderate/high PIK3Cδ mRNA levels in 

contrast to BC cell lines that have low/negligible mRNA transcripts (Supplementary Figure 

4B). We also investigated whether fibroblast-PIK3Cδ can induce the expression of PIK3Cδ in 

TNBC following extended co-culturing between the different cell types. As shown in 

Supplementary Figures 4C and 4D, by using both fibroblast cell lines and primary CAFs 

derived from MMTV-PyMT tumors, there were no changes of PIK3Cδ in TNBC cells, 

maintaining their low/undetectable protein levels.  

Altogether, these results suggest that PIK3Cδ could not have been identified if we were solely 

studying BC cells instead of examining their interactions with the surrounding stroma, further 

supporting the setup of our experimental approach by regarding cancer as a systemic multi-cell 

lineage dependent disease. We further validated the involvement of fibroblast PIK3Cδ-

mediated TNBC 3D invasion by repeating the experiment following silencing (Figure 2D) or 

overexpression of (Figure 1G) PIK3Cδ. Similar data were obtained using MDA-MB-231, BT-

549 and fibroblast cell lines (Supplementary Figures 5A-5F). Finally, we determined that 

treatment of TNBC cells with conditioned media (CM) derived from genetically modified 

fibroblasts (PIK3Cδ-silenced or PIK3Cδ-overexpressed) has no significant effect on TNBC 

cell proliferation (Supplementary Figure 5G). Taking everything into consideration and 

bearing in mind the potential implication in BC we focused on PIK3Cδ and investigated its 

fibroblast involvement.  
 

Confirmation of HT-RNAi screening results  

The accuracy and validity of our experimental pipeline/screening was supported by 

identification of kinases (positive hits) whose involvement in stromal-mediated cancer invasion 

has been previously reported. Amongst these results were FLT4 (28) and EGFR (29) (invasion-

promoting) as well as ACVR1B (30) and ITPKB (31) (invasion-inhibiting).  

To further validate the of HT-RNAi screenings results, we performed the experimental pipeline 

by using shRNA plasmids targeting randomly selected kinases. As shown in Supplementary 

Figure 6A, the effects of shRNA-mediated silencing of the tested kinases in MRC5 led to 

similar effects on the invasion of MDA-MB-231 as observed in the primary screening. The 

gene knockdown efficiency was confirmed by real-time qRT-PCR (Supplementary Figure 

6B). 

Next, we examined the effects of 8 specific inhibitors against the randomly selected and 

shRNA-validated kinases that affected invasion in the MRC5 screening and repeated the 
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experiment. As anticipated, similar results were observed, although in some cases (i.e. 

AZD4547) the results were not identical to the primary screening (Supplementary Figures 

6C). This could be due: (i) to potential off-target effects of some inhibitors, (ii) to the fact that 

some inhibitors can target other isoforms of a specific kinase and/or (iii) because the genomic 

vs the chemical/pharmacological inhibition of a kinase does not necessarily have the same 

outcome. 

Regarding the overlapping hits from our screening (PIK3Cδ and AURKA), we verified that 

the observed effects on MDA-MB-231 cell invasion, following genomic inhibition (siRNA), 

is not based on a reduction (Supplementary Figure 6D) or an increase (PIK3Cδ 

overexpression; Supplementary Figure 6E) of cell viability. 
 

Genomic or chemical inhibition of PIK3Cδ in fibroblasts reduces TNBC cell invasion as 

a result of paracrine signaling 

To clarify whether the catalytic activity of PIK3Cδ is required for its effect on TNBC 

progression, we repeated our 3D spheroid invasion assay following chemical inhibition of 

PIK3Cδ in fibroblast cells, using CAL-101 (Idelalisib; a highly selective and potent PIK3Cδ 

inhibitor) (32). HMF or MRC5 were initially treated with different concentrations of CAL-101 

for 24h, while the efficacy of CAL-101 inhibition on downstream targets of PIK3Cδ was 

validated (Supplementary Figure 7A). Moreover, treatment with CAL-101 had limited/no 

effects on fibroblasts’ cell viability for the 24h period of treatment (Supplementary Figure 

7B). Nevertheless, to avoid any misinterpretations, fibroblasts were washed with PBS, counted 

with trypan blue and only viable cells were used in co-cultures with TNBC cells (MDA-MB-

231 or BT-549) at a 1:1 ratio. CAL-101 pre-treated fibroblasts showed a decrease in 3D-

spheroid invasion (Figure 3A and Supplementary Figure 8A), suggesting that the kinase 

activity of PIK3Cδ is, to a great extent, responsible for the observed results. 

Intercellular communication sets the pace for transformed cells to survive and to thrive. Based 

on the initial setup of our assay (3D-spheroids/cells co-culture), we could not be certain 

whether the involvement of stromal PIK3Cδ on TNBC progression is a result of juxtacrine 

signaling (cell-to-cell contact-dependent) or a consequence of paracrine signaling due to 

secreted factors derived from fibroblasts that can alter the behavior of TNBC cells. Hence, we 

implemented a transwell assay, where HMF or MRC5 cells pre-treated with CAL-101, were 

seeded on the lower chamber of the inserts and 24h later co-cultured with TNBC cells platted 

on a Matrigel-coated top chamber to assess the 2D invasion potential of TNBC cells (Figure 
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3B and Supplementary Figure 8B). Using a similar experimental principle, we employed the 

xCELLigence Real-Time Cell Analysis (RTCA) instrument (33), to monitor the real-time 

invasion rate of TNBC cells following co-culturing with fibroblasts pre-treated with CAL-101 

(Figure 3C and Supplementary Figure 8C). Both assays revealed a reduction in invasiveness 

after inhibition of fibroblast-PIK3Cδ activity. Similar results were observed when we 

implemented another method for indirect contact co-cultures using the CM of CAL-101 treated 

HMF or MRC5 and examining their effects on TNBC invasion (Figure 3D and 

Supplementary Figure 8D). Moreover, 2D invasion assays of either MDA-MB-231 or BT-

549 cells co-cultured with primary TNBC CAFs showed comparable results further 

highlighting the role of fibroblast-PIK3Cδ (Supplementary Figure 9). 

To further demonstrate the contribution of PIK3Cδ in the observed phenotype and rule out any 

off-target effects, we repeated the 2D invasion assays by silencing PIK3Cδ and then performed 

a recovery experiment by re-introducing/overexpressing PIK3Cδ. As expected, by recovering 

PIK3Cδ levels (Supplementary Figure 10A), we reversed the decrease in invasion that was 

induced by genetic inhibition of PIK3Cδ (Supplementary Figure 10B). 

Next, to examine the possibility of other fibroblast-expressed PI3K isoforms contributing to 

the decrease of TNBC cell invasion, in particular PI3KCγ that can also be inhibited by CAL-

101, we repeated the 2D invasion assays using various PI3K inhibitors (Supplementary 

Figure 11A). Treatment with AS252424 (PIK3Cγ/α inhibitor) had minor effects on TNBC cell 

invasion, as compared to either CAL-101 or Leniolisib (PIK3Cδ inhibitor). Furthermore, use 

of the pan-PIK3C inhibitors, PI-103 and NVP-BEZ235 had analogous effects with the PIK3Cδ 

inhibitors, further supporting the importance of PIK3Cδ in the observed phenotype 

(Supplementary Figure 11B). Finally, we verified that the observed effects on MDA-MB-

231 cell invasion, following treatment with the different PIK3 inhibitors, is not based on a 

reduction of cell viability (Supplementary Figure 11C). 

Taken together all combinations of cell lines and assays used, our results demonstrated that 

fibroblast-PIK3Cδ promotes TNBC progression via paracrine regulatory mechanisms. 
 

Integrated secretome/transcriptomic analyses reveal fibroblast PIK3Cδ-mediated 

paracrine mechanisms that promote TNBC progression 

We and others (34, 35) have shown that co-culture of stromal with BC cells leads to changes 

in protein expression supporting the hypothesis of cross-talk between different cell types. 

Changes of PIK3Cδ activity in fibroblasts can alter the intercellular communication between 
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stromal and cancer cells thereby affecting their biological properties. To gain insights into the 

paracrine mechanisms employed by fibroblasts to promote invasion in TNBC cells, we 

performed an integrated analysis of proteins secreted by HMF and MRC5 treated with CAL-

101 and the transcriptome of MDA-MB-231 cells which were grown in a transwell setup with 

CAL-101 treated MRC5 cells.  

Based on our 2D/3D co-culture results, we analyzed the PIK3Cδ-regulated secretome, using 

the Human L1000 Array. HMF and MRC5 cells were treated with either DMSO or 10 µM 

CAL-101 for 24h and cell culture supernatants were isolated and processed according to the 

manufacturer’s instructions. By employing differential expression analysis, we identified a 

total of 206 and 377 secreted proteins that were significantly regulated by CAL-101 treatment 

of HMF and MRC5 respectively at the Log2 fold difference of |0.5| and a P-value of ≤ 0.05. 

We found that 73 secreted proteins were common between CAL-101 treated HMF and MRC5 

cells, providing evidence for a mechanism of fibroblast-mediated regulation of TNBC 

aggressiveness (Figure 4A, Supplementary Table 3). To gain additional insights into the 

similarities and differences in CAL-101 mediated effects on the secretome, we generated an 

upset plot of differentially expressed secreted proteins from CAL-101 treated HMF and MRC5 

cells. As shown in Figures 4B and 4C, CAL-101 upregulated a common set of 40 proteins and 

downregulated a set of 5 proteins in both HMF and MRC5 cells, while 28 proteins were 

differentially regulated by CAL-101 in HMF and MRC5.       

With comprehensive profiling of CAL-101 mediated changes in the secretome of fibroblast 

cell lines established, next we investigated how these secreted proteins altered the 

transcriptional state of MDA-MB-231 cells. We cultured MDA-MB-231 in a transwell along 

with CAL-101 or vehicle-treated MRC5 cells for 24 hours and total RNA was extracted from 

MDA-MB-231 and processed as described before (36). Whole transcriptome data showed a 

high degree of similarity between replicate samples and most significant variations between 

MDA-MB-231 cells co-cultured with CAL-101 treated or untreated MRC5 cells 

(Supplementary Figure 12). The principal component analysis (PCA) support our hypothesis 

that inhibition of PIK3Cδ in fibroblasts has a paracrine effect on TNBC cells.       

We next employed differential gene expression analysis using the DESeq2 pipeline to identify 

genes dysregulated in MDA-MB-231 cells as a consequence of inhibiting PIK3Cδ in MRC5 

cells. We found 137 genes here at the false discovery rate Padj  ≤ 0.05 (Figure 4D and 

Supplementary Table 4). Only 24/137 genes, were significantly dysregulated at the false 

discovery rate Padj  ≤  0.05 and Log2 fold difference of ≥ |0.5| (Figure 4E). We validated the 
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RNASeq analysis using an orthogonal approach of real-time qRT-PCR in independent 

experiments using a separate cohort including the effects of overexpression of PIK3Cδ on 

NR4A1 mRNA levels (Figure 4F, and Supplementary Table 5). Amongst the most 

significantly modulated genes was NR4A1 transcription factor, which was recently reported to 

be implicated in TNBC invasion (37). The increase on NR4A1 protein levels in MDA-MB-231 

cells following co-culture with CAL-101 treated MRC5 cells was also confirmed (Figure 4G). 

Overall, these results show that pharmacological inhibition of PIK3Cδ in fibroblast cells not 

only alters its secretome, but also has a subtle paracrine effect on the gene expression of cancer 

cells.  
 

Promotion of TNBC invasion via the fibroblast/epithelial-mediated PIK3Cδ-

PLGF/BDNF-NR4A1 signaling pathway  

Following confirmation of NR4A1 protein expression in different BC cell lines 

(Supplementary Figure 13A) and to further demonstrate its involvement in TNBC, we treated 

cells with cytosporone B, an agonist of NR4A1 (38) and examined its effects on the 

invasiveness of MDA-MB-231 and BT-549 cells. As expected, cytosporone B significantly 

decreased the invasiveness of TNBC cells (Figure 5A and Supplementary Figure 13B). On 

the contrary, silencing of NR4A1 increased the invasive ability of MDA-MB-231 cells (Figure 

5B). Moreover, in the NR4A1-silenced cells, the effects of cytosporone B was almost 

completely abrogated (Supplementary Figure 13G). Silencing of NR4A1 was confirmed by 

qRT-PCR and western blotting (Supplementary Figures 13D and 13E) and in order to 

exclude possible off-targets effects, NR4A2 and NR4A3 mRNA levels were analyzed by qRT-

PCR in NR4A1 silenced cells (Supplementary Figures 13F). 

Additionally, we investigated the effects of PIK3Cδ overexpression in MRC5 cells on the 

invasiveness of MDA-MB-231 cells pre-treated with cytosporone B in order to increase their 

NR4A1 levels. As shown in Figure 5C, PIK3Cδ partly rescued the inhibitory effects of NR4A1 

activation, demonstrating the PIK3Cδ-NR4A1 paracrine signaling axis between fibroblast and 

TNBC epithelial cells. To examine if the effects of PIK3Cδ inhibition (CAL-101) on TNBC 

cell invasion are related to NR4A1 expression, we performed a 2D-invasion assay in which 

MRC5 (or HMF) were treated with CAL-101 (or DMSO), while NR4A1 was silenced in MDA-

MB-231 cells. As shown in Figure 5D and Supplementary Figure 13C, silencing of NR4A1 

completely abrogated the effects of CAL-101 on TNBC cell invasion. Moreover, the NR4A1 

silencing-mediated induction of invasion was abolished when fibroblasts were pre-treated with 

CAL-101 (Figure 5D), which is due to the paracrine induction of NR4A1 expression caused 
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by CAL-101 (Figure 3F) that balances the NR4A1 siRNA knock-down. Indeed, when NR4A1-

silenced cancer cells were co-cultured with CAL-101 treated-fibroblasts, NR4A1 levels were 

restored (comparable to those of the control), thus siNR4A1 MDA-MB-231 cells co-cultured 

with CAL-101 treated MRC5 cells completely restore the baseline conditions in terms of 

NR4A1 levels as well as the invasion levels compared to those of MDA-MB-231 co-cultured 

with MRC5 cells (Figure 5D; right panel). Together, these results suggest the existence of a 

direct association between fibroblast PIK3Cδ-mediated reduction of invasion and TNBC cells’ 

NR4A1 levels. 

Having built a comprehensive dataset of secreted proteins from CAL-101 treated MRC5 cells 

and the transcriptome of MDA-MB-231 co-cultured with CAL-101 treated MRC5 cells, we 

performed an integrated transcriptomics-proteomics analysis to unravel mechanisms employed 

by stromal cells to promote invasion in malignant cells.  

We hypothesized that secreted factors derived from CAL-101 treated MRC5 and HMF cells 

may alter cell-cell communication pathways and regulate the invasion of MDA-MB-231 cells 

by modulating the expression of invasion related genes including NR4A1, which was shown to 

be overexpressed in our transcriptomic analysis (Supplementary Table 4). To test this 

hypothesis, we employed the Ingenuity Pathway Analysis (IPA) software and literature mining 

to curate a list of potential PIK3Cδ-regulated secreted proteins that are enriched in cell 

migration/invasion pathways and are also known to modulate NR4A1expression. Our 

analytical method, which is described in Supplementary Figure 14, identified several secreted 

factors (n=40) that were directly involved in pathways regulating cellular movement or cell-

to-cell signaling mechanisms (Supplementary Table 6), amongst which certain of them have 

been reported to have an association with NR4A1 expression, including placental growth factor 

(PLGF) (39, 40) and brain-derived neurotrophic factor (BDNF) (41) (Supplementary Figure 

15). Scatter plots displaying all secreted proteins from CAL-101 treated MRC5 and HMF while 

highlighting the list of potential candidates regulating NR4A1 expression in MDA-MB-231 

are shown in Figures 6A and 6B. 

Previous studies have demonstrated that induction of NR4A1 by PLGF inhibits endothelial cell 

proliferation (42, 43), while PLGF can also impede tumor growth and metastasis (44). 

Moreover, BDNF has been described to have a role in BC progression (45), even though its 

exact role has not been completely clarified. Treatment of MDA-MB-231 or BT-549 cells with 

PLGF or BDNF confirmed its positive effects on NR4A1 supporting their contribution in the 

paracrine upregulation of NR4A1 mRNA/protein levels (Figures 6C, 6D and Supplementary 
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Figure 16A). Moreover, PLGF and BDNF also led to a significant decrease in TNBC invasion 

(Figure 6E and Supplementary Figure 16B). Finally, we confirmed that silencing of either 

BDNF or PLGF in fibroblasts attenuated the CAL-101-mediated reduction of TNBC cell 

invasion, further supporting the involvement of this pathway, while suggesting the existence 

of additional mechanisms implicated in the described phenotype (Supplementary Figure 

17A). Interestingly, silencing of BDNF and/or PLGF did not affect TNBC invasion, suggesting 

that the PIK3Cδ effects are exerted during membrane trafficking and/or secretion of these 

factors and not at the gene/protein expression level. This is in accordance with previous reports 

describing a role of CAL-101 in down-regulating secretion, rather than expression, of 

chemokines in stromal co-cultures (32). In addition, silencing of BDNF and/or PLGF abolished 

the CAL-101 inhibitory effects on fibroblast-mediated invasion, without affecting basal 

invasion levels. This may be due to the experimental design, since silencing of a gene does not 

have an immediate effect on the respective total and/or secreted protein levels. Finally, it is 

worth mentioning that other mechanisms/factors could also contribute to the fibroblast-

mediated invasion. Silencing of BDNF and PLGF was confirmed by qRT-PCR 

(Supplementary Figure 17B). 

In summary, our results reveal a novel paracrine signal transduction pathway between 

fibroblasts and TNBC cells, encompassing PIK3Cδ-PLGF/BDNF-NR4A1 (Figure 6F), 

without ruling out the existence of other mechanisms contributing to the observed phenotype.  
 

Pharmacological inhibition of fibroblast PIK3Cδ reduces BC tumor growth in vivo  

Next, we used an orthotopic BC xenograft model where MDA-MB-231 or MDA-MB-231 with 

MRC5 were co-injected in the mammary fat pads of NOD SCID mice in order to examine the 

effects of PIK3Cδ inhibition. After tumor formation and mice randomization, perioral (PO) 

administration of CAL-101 or vehicle (30% PEG 400 +0.5% Tween 80) was initiated for both 

groups according to the scheme in Figure 7A.  

As previously reported (46), cancer cells in the co-injected tumors (MDA-MB-231+MRC5) 

exhibited larger tumor volumes (Figure 7B) and a higher proliferative rate (Ki-67 labelling, 

Figure 5C). Moreover, CAL-101 treatment of MDA-MB-231 tumors did not significantly 

affect their in vivo growth (Figure 7B), in agreement with our cell-based data that demonstrated 

only a marginal inhibitory effect of CAL-101 on MDA-MB-231 proliferation (Supplementary 

Figure 18). Interestingly, MDA-MB-231+MRC5 tumors were reduced following treatment 

with CAL-101 (Figure 7B; Day 14: 48.28% average reduction; Day 21: 23.65% average 

reduction). The efficacy of CAL-101 on PIK3Cδ activity was validated by assessing the 
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expression of pAKT via immunohistochemistry on tissue samples (Figure 7D). Moreover, the 

presence of human fibroblasts in MDA-MB-231+MRC5 tumors was confirmed in cryosection 

slides using a human anti-fibroblast antibody (Figure 7E). We also checked for CD68+ 

(monocytes / macrophages) cells, however we only detected a small population of these tumor 

infiltrating cells, which is consistent with the immunocompromised background of this mouse 

strain (Supplementary Figure 19). Finally, animals treated with CAL-101 did not display any 

significant changes in weight nor gross phenotypic changes, indicating that that the treatment 

did not cause any adverse or toxic effects.  

As a proof of concept of the potential use of PIK3Cδ inhibitors for BC treatment, we employed 

the MMTV-PyMT transgenic model (47). MMTV-PyMT mice received daily oral 

administration of either control vehicle or CAL-101 (10 mg/kg) for a period of six weeks. Our 

results revealed a significant reduction in tumor growth following CAL-101 treatment (Figures 

8A, 8B and Supplementary Figures 20A, 20B). Moreover, the number of lung metastasis 

nodules was significantly reduced in the CAL-101 group, compared with the control group, as 

evidenced by H&E staining and macroscopic observation of lung specimens (Figure 8C and 

Supplementary Figures 20B and 20C). Furthermore, following CAL-101 treatment, the 

expression of p-AKT was decreased in tumor infiltrating fibroblasts (a-SMA+) (Figures 8D), 

besides from macrophages (F4/80+) (Figure 8E), while no changes were observed in the total 

PIK3Cδ levels of fibroblasts or macrophages (Supplementary Figures 20D and 20E). In 

addition, as demonstrated in TNBC and fibroblast cell lines (Supplementary Figure 4C), 

PIK3Cδ was exclusively expressed in CAFs isolated from MMTV-PyMT tumors, while cancer 

cells had low/undetectable levels of PIK3Cδ, the expression of which did not change following 

co-culturing with CM isolated from CAFs (Supplementary Figure 20F), further supporting 

the in vitro evidence that the effects of CAL-101 are cancer cells-independent. Finally, IHC 

analysis of MMTV tumors revealed an increased expression of NR4A1 along with PLGF and 

BDNF following CAL-101 treatment (Supplementary Figure 21) supporting our cell-based 

data.  

Taken together, these results highlight the involvement of fibroblast-expressed PIK3Cδ in 

promoting BC growth in vivo. 
 

High fibroblast PIK3Cδ expression correlates with poor patient outcome in TNBC 

Finally, we investigated the plausible role of fibroblast (a-SMA+) or tumor-expressed (cancer 

cells) PIK3Cδ in a clinical setting by analyzing a well-characterized TNBC patients’ cohort 

(n=179) (48, 49). The clinico-pathologic parameters are summarized in Supplementary Table 
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7. PIK3Cδ expression was variable in both tumor (H-score range 20-220) and surrounding 

cancer associated fibroblasts (5-100%) with high PIK3Cδ tumoral expression (H-Score >130 

observed in 31/179 cases (17%) whereas fibroblasts showed high PIK3Cδ (>85%) in 44/179 

(25%) of the cases (Figure 9A and Supplementary Figure 22).  

Analysis of the surrounding stromal (a-SMA+) PIK3Cδ expression, revealed PIK3Cδ as an 

independent prognostic factor for overall survival (OS; P = 0.000285; Figures 9B) and disease 

free survival (DFS; P = 0.048; Figure 9C), indicative of fibroblast-PIK3Cδ’s involvement in 

TNBC progression. Multivariate analyses demonstrated that PIK3Cδ in the surrounding cancer 

fibroblasts was also an independent prognostic factor for OS (P = 0.001), DFS (P = 0.044), age 

and nodal stage (Supplementary Table 8). Similar analyses revealed that, high PIK3Cδ 

protein levels in tumoral-PIK3Cδ were associated with a significantly shorter OS (P = 0.0004) 

and DFS (P = 0.009) (Supplementary Figures 23A and 23B), while tumoral-PIK3Cδ was an 

independent prognostic factor of age, nodal stage and lymphovascular invasion (LVI) status 

and for predicting OS (P = 0.006) and DFS (P = 0.028) (Supplementary Table 9). 

Interestingly, investigation of fibroblast-PIK3Cδ in an ERα+ patients’ cohort from Singapore 

(n=73; P = 0.703) did not reveal any correlation with survival outcome (Figure 9D and 

Supplementary Tables 10-12). 

We also employed another approach to investigate the potential association of CAF-PIK3Cδ 

mRNA levels with survival outcomes of ERα+, HER2+ and TNBC subtypes, by de-convoluting 

bulk RNA-seq samples from TCGA BC data. As illustrated in Figure 9E, TNBC patients 

(n=108) with high CAF-expressed PIK3Cδ levels had shorter OS compared to those with low 

CAF-expressed PIK3Cδ (P = 0.001), in agreement with our IHC data. Conversely, when 

studying the bulk tumors, there was no significant association between PIK3Cδ mRNA levels 

and TNBC patients’ survival outcome (P = 0.405; Supplementary Figure 23C), opposite to 

the IHC data, emphasizing the discrepancies that can arise when examining mRNA vs protein 

levels, which can lead to different conclusions. In addition, these results also highlight the 

importance of comprehensively analyzing the different cell types separately within the TME. 

Moreover, expression of CAF-PIK3Cδ mRNA levels were not predictive for survival neither 

for ERα+ (n=778, P = 0.0584; Figures 9F) -recapitulating the IHC data- nor for HER2+ (n=160, 

P = 0.684; Figures 9G) BC subtypes, further underlining the significance of fibroblast-

expressed PIK3Cδ isoform in TNBC specifically.  

We analyzed the association between the mRNA expression levels of CAF-PIK3Cα, -β, and -

γ isoforms and patients’ survival for all BC subtypes. Our results revealed that in TNBC high 
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CAF-expressed PIK3Cα (P = 0.01; Supplementary Figures 23D) or CAF-expressed PIK3Cβ 

(P = 0.01; Supplementary Figures 23E) were correlated with shorter OS, while there was no 

association of either PIK3Cα or PIK3Cβ with ERα+ or HER2+ BC patients’ survival (ERα+ 

patients: PIK3Cα, P = 0.106 ; PIK3Cβ, P = 0.15. / HER2+ patients: PIK3Cα, P = 0.731; 

PIK3Cβ, P = 0.849). Regarding CAF-PIK3Cγ mRNA levels, there was no correlation with 

survival in neither TNBC (Supplementary Figures 23F) nor any of the other BC subtypes 

(ERα+ patients: PIK3Cγ, P = 0.137. / HER2+ patients: PIK3Cγ, P = 0.943). 

In conclusion, our results demonstrate the clinical significance of fibroblasts-expressed 

PIK3Cδ in TNBC. 
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Discussion 

TNBC represents an aggressive BC subtype where there remains an unmet clinical need; 

currently the recommended therapeutic approach in the neoadjuvant, adjuvant and metastatic 

settings are based on chemotherapeutics (most often platinum-, anthracycline or taxane -based) 

with recent data suggesting roles for antibody-drug conjugates and immunotherapies (50-53). 

However, fewer than 30% of women with metastatic TNBC will survive 5 years after diagnosis 

(54). Sequencing and other ‘omics’ have revealed an unexpected level of heterogeneity in 

TNBCs and led to identification of potential actionable targets (52). 

However, translational research and clinical trials usually focus on targeting epithelial cancer 

cells. This is likely to diminish the contribution of reciprocal interactions between malignant 

and stromal cells that creates a local microenvironment, which fosters tumor growth and also 

influences responses to treatment (55). The prognostic and predictive significance of 

gene/protein expression signatures of the surrounding stroma have been well-documented and 

could represent unexplored ground within the TME which could then be used to improve 

therapies and outcomes. 

PKs are involved in every aspect of cell activity and perturbation of their signaling can 

contribute to human diseases including malignancies (56-59). Pharmaceutical intervention 

targeting aberrant kinase signaling represents the major therapeutic approach but although 

targeted therapies against PKs have improved the clinical outcome of patients, resistance to 

these treatments develops (60), emphasizing the need for the identification of new druggable 

targets. 

Despite extensive research describing deregulated kinase activity in cancer cells, there has been 

no thorough and comprehensive investigation about how kinases expressed in stromal cells can 

influence tumor growth and malignant progression. Therefore, we focused on fibroblasts, the 

main stromal component in the TME, whose multiplex role in BC initiation, progression and 

therapy-resistance has been well described (7, 13, 14). We performed a kinome siRNA 

screening in two different fibroblast cell lines, aiming to identify kinases responsible for 

stroma-tumor cross-talk. Our siRNA screening/3D co-culturing model was linked to an 

invasion readout assay that could be performed easier and more reliably by using TNBC cell 

lines, considering their invasive potential, compared to the non-invasive and less aggressive 

ER+ luminal BC cells. However, our findings do not rule out the possibility that these targets 

can also be linked to other BC subtypes. Ultimately this study aimed to identify targets that are 

associated with an aggressive phenotype, invasion being the clearest readout. Nevertheless, the 
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original screening is not designed to identify a mechanism of action and therefore the target’s 

effects could be diverse once studied further (e.g. in vivo).  

Considering the limited available therapeutic options for TNBC, we focused on this subtype 

since the identification of new putative druggable targets for TNBC is fundamental. Amongst 

a subset of differently fibroblast-expressed kinases that could modulate TNBC progression, 

PIK3Cδ was one of the prominent hits. Despite the involvement of PI3K activity in tumor-

stroma interactions (15), still the possibility of using PI3K inhibitors on fibroblasts has not 

been considered to date. 

Given its almost exclusive expression in fibroblasts, PIK3Cδ could not have been identified by 

focusing solely on TNBC cells, further supporting that the contribution of the TME in cancer 

development and progression needs to be studied in detail. Using 2D and 3D co-culturing 

models we determined that fibroblast-expressed PIK3Cδ is integral in TNBC progression. We 

validated our findings using genomic approaches (loss and gain of function experiments) and 

we assessed the effects of the chemical inhibition of PIK3Cδ, using a highly selective FDA 

approved PIK3Cδ inhibitor (CAL-101/Idelalisib) (61), confirming that the catalytic activity of 

fibroblast PIK3Cδ is required for its paracrine effects on TNBC cells. Mechanistically, using 

an integrated analysis of the fibroblast PIK3Cδ-regulated secretome and its paracrine mediated 

transcriptomic changes in TNBC cells, we identified secreted factors and genes that represent 

key signaling pathways contributing towards the observed PIK3Cδ-induced tumor promoting 

phenotype. We focused on the link between the overexpression of fibroblast-secreted factors, 

including PLGF and BDNF, and the upregulation of NR4A1 transcription factor in TNBC 

epithelial cells, after inhibition of fibroblast-PIK3Cδ. NR4As nuclear receptors are involved in 

metabolic, cardiovascular and neurological functions, as well as in inflammation and cancer 

(62-65). Despite the structural similarities of NR4A1, NR4A2 and NR4A3 they display 

distinctive roles and specific functions (66).  Intriguingly, NR4A1 has been reported to act as 

a tumor suppressor implicated in TNBC proliferation, viability, migration and invasion (37). 

Our results support a model where inhibition of fibroblast-expressed PIK3Cδ impedes TNBC 

progression, by promoting the secretion of PLGF, BDNF and other factors, which in turn lead 

to the paracrine upregulation of NR4A1 in TNBC cells (Figure 4I). The existence of additional 

direct and/or reciprocal signaling pathways originated from cancer cells towards fibroblasts, 

which could potentially affect PIK3Cδ expression and ultimately contribute to this phenotype, 

merits further investigation.  
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To examine the effects of fibroblast-expressed PIK3Cδ on TNBC growth in vivo, we initially 

attempted to generate stable PIK3Cδ knock-out (KO) HMF and MRC5 cell lines and compare 

their involvement in tumor growth vs PIK3Cδ wild-type fibroblasts. However, PIK3Cδ-KO 

clones exhibited a relative slow growing rate and considering also the fact that fibroblasts can 

easily differentiate (67), led us to the alternative option of pharmacologically (CAL-101) 

inhibiting PIK3Cδ. CAL-101 had no effect when used as a treatment on MDA-MB-231 tumor 

growth, similarly to what we observed in our cell-based proliferation data when MDA-MB-

231 cells were directly treated with CAL-101. Moreover, CAL-101 was administered orally in 

immune-deficient mice which, combined with the lack of any MDA-MB-231 tumor inhibition, 

suggests that there were systemic responses initiated from other sub-populations of cells within 

the TME. This result, along with a recent report, where the authors showed that 

pharmacological inhibition of PIK3Cδ impedes in vivo tumor growth by targeting cancer cells 

and macrophages, further supports the stromal involvement of PIK3Cδ in BC and the potential 

use of PIK3Cδ inhibitors in a clinical setting.  

In our immunocompromised xenograft model, we initially verified that the co-injection of 

fibroblasts (MDA-MB-231+MRC5) had an additive effect in tumor formation, when compared 

to MDA-MB-231 cancer cells alone. More importantly, we observed a decrease in MDA-MB-

231+MRC5 tumors following daily treatment with CAL-101. Considering that the only 

variable between the two mouse models was the introduction of fibroblasts, it is clear that the 

anti-tumor effects of CAL-101 were conferred via their actions on fibroblasts. Noteworthy, the 

tumor growth reduction that was observed on Day 21 between MDA-MB-231+MRC5 CAL-

101-treated tumors vs MDA-MB-231+MRC5 vehicle-treated ones was borderline non-

significant despite the 23.65% median reduction (it is worth mentioning that alternative 

statistical tests gave a significant P value). We attributed this to the progressive population 

dilution and decreased viability of human fibroblast cells (MRC5) as the tumor size increases, 

causing a reduction in relative potency of CAL-101 (as the dosage was left unchanged) on 

fibroblast PIK3Cδ and its paracrine consequences. Moreover, our results in MMTV-PyMT 

transgenic mice revealed a significant reduction in primary tumor growth and in metastasis 

following treatment with CAL-101. The downregulation of PIK3Cδ’s activity in fibroblasts, 

apart from macrophages, implies of a prospective additive, immune-independent mechanism 

of action of PIK3Cδ inhibitors for cancer treatment. In addition, as fibroblasts have been 

reported to influence a number of other immune cells, namely monocytes and macrophages 
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(68, 69), the existence of additional PIK3Cδ-mediated paracrine signaling effects between 

different cell types could not be ruled out. 

The translational significance of fibroblast-expressed PIK3Cδ was validated in a TNBC cohort, 

where we revealed PIK3Cδ as a prognostic factor for outcomes (OS and DFS), providing strong 

evidence for the use of PIK3Cδ inhibitors in this setting in clinical trials. Interestingly, PIK3Cδ 

was also expressed in the cancer cell population of patients, possibly as a result of inflammatory 

processes, since it has been reported that PIK3Cδ can be activated by pro-inflammatory 

mediators (70). This can explain the low/undetectable protein levels of PIK3Cδ in our tested 

BC cell lines and in our animal models, considering the short period of the in vivo experiments. 

In light of new evidence of the existence of distinct TNBC subtypes (71, 72), an even more 

comprehensive profiling of TNBC patients can reveal a specific subgroup where 

stromal/tumoral PIK3Cδ can epitomize a successful treatment strategy.  

In conclusion, this study highlights the so-far undescribed tumor promoting role of fibroblast-

expressed PIK3Cδ in BC. Although our work predominantly focused on TNBC, fibroblasts 

represent the major cellular components within the TME in most cancers, therefore the 

involvement of PIK3Cδ in other BC subtypes and malignancies should be explored. 

Considering that local invasion and metastasis are the main causes of death for most types of 

cancer, this discovery opens new potential therapeutic paths and supports the rationale for using 

PIK3Cδ inhibitors (as single or combined therapy) for the treatment of solid tumors where 

irregular activation of stromal PIK3Cδ occurs independently of the immunological landscape. 
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Figure 1: Experimental design of siRNA Kinome screening and identification of 

fibroblast-expressed kinases affecting TNBC invasion.  

(A) Step 1: Silencing of 710 kinases in HMF and MRC5 cells using a siRNA kinome library. 

Step 2: 3D co-culture of HMF or MRC5 with MDA-MB-231 in the presence of Matrigel® and 

chemoattractants to promote invasion. A representative image of cells stained with different 

fluorescent lipophilic tracers is shown: MDA-MB-231 (red/ DiRDiIC18) and MRC5 

(green/DiOC6). Step 3: The invasive potential of MDA-MB-231 cells was used as a readout 

tool. Results are expressed as changes in spheroid surface between Day 6 and Day 3 (ΔRatio= 

ΔCT/ΔK). The ΔRatio values were used to calculate the Z-Scores based on the formula: z = (x – 

μ)/σ (μ: ΔRatio mean of 710 kinases; σ: standard deviation (SD); x: ΔRatio value for each kinase). 

For HMF, the ΔRatio Z-Score colour code refers to SD, as the screening was performed twice, 

while for MRC-5 the ΔRatio Z-Score colour code refers to p-Value. (B) Step 4: The Z-Score for 

HMF and MRC5 are shown. Kinases were divided depending on their effects on MDA-MB-

231 invasion. ‘Invasion-promoting’: ΔRatio ≤ 0.5, P < 0.01 (as well as SD < 0.5 for HMF). 

‘Invasion inhibiting’: ΔRatio> 2, P>0.05 (as well as SD>0.5 for HMF).  
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Figure 2: Involvement of fibroblast-expressed PIK3Cδ in TNBC invasion. 

(A) Venn diagrams comparing the number of invasion-promoting and invasion-inhibiting 

kinases in HMF and MRC5 cells. (B) Western blotting of PIK3Cδ and AURKA in HMF, 

MRC5 and primary fibroblasts obtained from TNBC patients. GADPH was used as loading 

control. (C) Western blotting of PIK3Cδ and AURKA in BC and fibroblast cell lines (BJAB 

B-cell-line were used as positive control for PIK3Cδ expression). GADPH and α-tubulin were 

used as loading controls. (D) Validation of effects of PIK3Cδ knockdown in MRC5 on MDA-

MB-231 invasion following the experimental procedure described above (n=3 independent 

experiments, minimum 3 technical replicates). Results are expressed as mean ± SEM. 

Significance was calculated using unpaired t-test; **** P < 0.0001 vs Control siRNA. (E). 

Effects of PIK3Cδ overexpression in MRC5, using pCMV6-AC-PIK3Cδ-GFP plasmid, on 

MDA-MB-231 invasion following the experimental procedure described above (n=3 

independent experiments, minimum 3 technical replicates). Results are expressed as mean ± 

SEM. Significance was calculated using unpaired t-test; * P < 0.05 vs Control siRNA vs 

pCMV6 transfected fibroblasts.  
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Figure 3: Effects of chemical inhibition of PIK3Cδ on TNBC 2D and 3D invasion.  

(A) 3D invasion assay: HMF (left panel) and MRC5 (right panel) were pre-treated with DMSO 

or with 1/5/10 µM of CAL-101. After 24h, fibroblasts were co-cultured with MDA-MB-231 

and invasion was measured. Representative pictures are shown (n=3 independent experiments, 

minimum 4 technical replicates). Significance was calculated using one-way Anova and 

Tukey's multiple comparisons tests. Results are expressed as mean ± SEM; ** P < 0.01, *** P 

< 0.001 vs DMSO treated fibroblasts. (B) 2D invasion assay: HMF (left panel) and MRC5 

(right panel) were pre-treated with DMSO or with 1/5/10 µM of CAL-101 for 24h and were 

seeded on the lower chamber of a transwell. MDA-MB-231 cells were seeded on the Matrigel-

coated upper chamber of the transwell and co-cultured with the fibroblasts. 24h later, migrated 

MDA-MB-231 cells were fixed, stained and counted (n=3 independent experiments, minimum 

3 technical replicates) Significance was calculated using one-way Anova and Tukey's multiple 

comparisons tests. Data are expressed as mean ±  SEM; * P < 0.05, ** P < 0.01, **** P < 

0.0001 vs DMSO treated fibroblasts. (C) Real-time invasion assay: HMF (left panel) and 

MRC5 (right panel) were treated as mentioned in 2B. MDA-MB-231 cells were seeded on the 

upper chamber of the transwell insert and were co-cultured with the fibroblasts. After 24h, 

MDA-MB-231 were moved to CIM-Plates to monitor their relative invasion rate t. Significance 

was calculated using unpaired t-test. Results are expressed as mean ± SEM; **** P < 0.0001. 

(D) Conditioned Medium (CM) invasion assay: HMF (left panel) and MRC5 (right panel) were 

treated with vehicle or with 10 µM CAL-101 in serum free for 24h to obtain the CM. MDA-

MB-231 were incubated with HMF or MRC5 CM for 2D invasion assays (n=3 independent 

experiments, minimum 10 technical replicates). Significance was calculated using unpaired t-

test. Data are expressed as mean ± SEM; ** P < 0.01 vs DMSO-treated fibroblasts’ CM.  
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Figure 4: Global secretome analysis of CAL-101 treated fibroblasts and transcriptomics 

analysis of MDA-MB-231 cells. 

(A) To obtain CM from HMF and MRC5, cells were treated with vehicle or 10 µM CAL-101 

in serum free medium for 24h. CM was used to perform secretome analysis using the Human 

L1000 array. Venn diagram showing differences in the secreted proteins significantly regulated 

by CAL-101 in HMF and MRC5 cells (Padj < 0.05 and Log2 fold difference of ≥|0.5|) (B) 

UpSet plot showing common and unique CAL-101 regulated proteins significantly up (Up) or 

down-regulated (Down) in each dataset (MRC5 and HMF). (C) Heatmap comparing Log2 fold 

change of secreted proteins between CAL-101 treated HMF and MRC5 cells. (D) MRC5 were 

treated with either DMSO or with 10 µM CAL-101 for 24h hours. Following, cells were 

washed with PBS to remove the treatment and complete fresh medium was added to each well. 

5 µm inserts containing MDA-MB-231 were then added in the well containing previously 

treated MRC5. 24h after co-culture, cancer cells were collected for RNA extraction and 

subsequent RNA sequencing. Volcano plot showing the Log2 fold change of genes in MDA-

MB-231 cells that responded differently to CAL-101 treatment on MRC5 (DMSO:CAL-101). 

The Log10 of P value, for significance in fold change, is plotted on the y-axis. (E) Heatmap 

showing amounts by which the read counts of the top-24 (ordered based on Log2 fold change 

≥ |0.5| and Padj value ≤ 0.05) regulated genes deviates from the genes’ average across all the 

samples. (F) qRT-PCR validation of genes identified via the RNAseq and DESeq2 analysis. 

Significance was calculated using unpaired t-tests. Results are expressed as mean ± SEM; *P 

< 0.05 vs vector. (G) Western blotting of NR4A1 in MDA-MB-231 cells following co-culture 

with CAL-101 treated MRC5 cells. α-tubulin was used as loading control. Densitometry 

analysis of the blot is displayed as a ratio between CAL-101-treated vs DMSO-treated cells. 
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Figure 5: Effects of fibroblast PIK3Cδexpression on NR4A1-mediated invasion of TNBC 

cells. 

(A) 2D invasion assay: MDA-MB-231 cells were seeded on the Matrigel-coated upper chamber 

of the transwell insert and were treated with DMSO or 5 µM Cytosporone B (CytoB). After 

24h, migrated MDA-MB-231 cells were fixed, stained and counted (n=2 independent 

experiments, minimum 9 technical replicates).  Significance was calculated using unpaired t-

test. Results are expressed as mean ± SEM; **** P < 0.0001 vs. DMSO treated cells. (B) 2D 

invasion assay: MDA-MB-231 cells transfected with control or NR4A1 siRNAs were seeded 

as above. After 24h, migrated MDA-MB-231 cells were fixed, stained and counted (n=2 

independent experiments, minimum 9 technical replicates). Significance was calculated using 

unpaired t-test. Results are expressed as mean ± SEM; *** P < 0.001 vs. siRNA control 

transfected cells. (C) Effects of PIK3Cδ overexpression in MRC5 on MDA-MB-231 invasion 

following pre-treatment of MDA-MB-231 with 5 µM CytoB. (n=2 independent experiments, 

minimum 9 technical replicates). Significance was calculated using two-way Anova and 

Tukey's multiple comparisons tests.  Results are expressed as mean ± SEM; *** P < 0.001, 

**** P < 0.0001 vs the samples indicated in the graph. (D) Left/middle panels: MRC5 cells 

were treated with CAL-101 or DMSO. NR4A1-siRNA MDA-MB-231 or control-siRNA cells 

were seeded on the Matrigel-coated upper chamber of a transwell and co-cultured with 

fibroblasts. After 24h, migrated MDA-MB-231 cells were fixed, stained and counted (n=3 

independent experiments, minimum 6 technical replicates).  Significance was calculated using 

two-way Anova and Tukey's multiple comparisons tests. Results are expressed as mean ± SEM; 

** P < 0.01, *** P < 0.001, **** P < 0.0001 vs the samples indicated in the graph. Right panel: 

NR4A1 levels were evaluated in siRNA transfected MDA-MB-231 before and after co-culture 

with CAL-101-treated MRC5. Significance was calculated using one-way ANOVA, followed 

by Dunnett's tests. Results are expressed as mean ± SEM; *P < 0.05 vs control.  
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Figure 6: Effects of PLGF/BDNF secreted factors on NR4A1-mediated invasion of TNBC 

cells. 

(A) Volcano plot showing the Log2 fold change of secreted proteins in MRC5 cells that 

responded differentially to the CAL-101 treatment. The Log10 of P value, for significance in 

fold change, is plotted on the y-axis. (B) Volcano plot showing the Log2 fold change of secreted 

proteins in HMF cells that responded differentially to the CAL-101 treatment. The Log10 of P 

value, for significance in fold change, is plotted on the y-axis. (C) qRT-PCR of NR4A1 

expression levels in MDA-MB-231 cells following treatment with PLGF and BDNF. (D) 

Western blotting of NR4A1 in MDA-MB-231 cells following treatment with PLGF (10ng/ml). 

GAPDH was used as loading control. Densitometry analysis of the blot is displayed as a ratio 

between PLGF-treated vs vehicle-treated cells. (E) 2D invasion assay: MDA-MB-231 cells 

were seeded on the Matrigel-coated upper chamber of the transwell insert and were treated with 

PLGF or BDNF or vehicle. After 24h, migrated MDA-MB-231 cells were fixed, stained and 

counted (n=3 independent experiments, minimum 4 technical replicates). Significance was 

calculated using unpaired t-test. Results are expressed as mean ± SEM; *** P < 0.001, **** P 

< 0.0001 vs vehicle treated cells. (F) Schematic model depicting the paracrine signaling 

pathway between fibroblasts and TNBC cells. Inhibition of PIK3Cδ in fibroblasts leads to the 

secretion of different factors, including PLGF and BDNF, which promote the overexpression 

of NR4A1 in epithelial cancer cells. NR4A1 acts as a tumor suppressor inhibiting the 

invasiveness of TNBC cells. 
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Figure 7: Effects of fibroblast-PIK3Cδ inhibition on TNBC tumor growth in vivo. 

(A) Schematic representation of the in vivo experiment using NOD CB17 PRKDC/J mice. 

MDA-MB-231 (Groups 1-2) and MDA-MB-231/MRC5 (Groups 3-4) tumor cells were 

implanted s.c. on day 0. After randomization on day 7, treatment with CAL-101 was initiated 

in Groups 2 and 4, whereas Groups 1 and 3 were administrated with vehicle. During the course 

of the study, the growth of the subcutaneously implanted primary tumors was determined twice 

weekly by luminescence and caliper measurement. (B) Upper panel: Box and whisker plots 

comparing different groups at Day14 and Day 21. Significance was calculated using unpaired 

t-test. Results are expressed as mean ± SEM; ** P < 0.01. Lower panel: Representative in vivo 

images of different groups, treated with vehicle or CAL-101. (D) Histological analysis of Ki67 

expression in representative tumor tissue sections of different groups. Original magnification, 

20×. (D) Representative images of immunofluorescent staining of MDA-MB-231/MRC5 

tumor cryosections for α-SMA and p-AKTSer473 after DMSO or CAL-101 treatment. 

Significance was calculated using unpaired t-test. Results are expressed as mean ± SEM; * P < 

0.05 vs vehicle treated tumors. Original magnification, 40×.(E) Representative images of 

immunofluorescence staining of tumor cryosections using TE-7 anti-human fibroblast 

antibody. Original magnification, 20×.  
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Figure 8: Effects of CAL-101 treatment on tumor growth of MMTV-PyMT transgenic 

mice.  

(A) Tumor volumes chart from MMTV-PyMT transgenic mice after vehicle or CAL-101 

treatment (n=8 mice / group). Individual values for each mouse are displayed. Significance was 

calculated using unpaired t-test (week 12). Results are expressed as mean ± SEM; *** P < 

0.001. (B) Representative images for immunohistochemical Ki-67 staining in the mammary 

tumor sections of MMTV-PyMT transgenic mice after vehicle or CAL-101 treatment. (C) 

Quantification of lung metastatic nodules in each group. Significance was calculated using 

unpaired t-test. Results are expressed as mean ± SEM; * P < 0.05. Yellow and black dots 

represent mice that were sacrificed at week 12 or week 15 respectively. (D) Left panel: 

Representative images of immunofluorescent staining for α-SMA and p-AKTThr308 in the 

mammary tumor sections of MMTV-PyMT transgenic mice after vehicle or CAL-101 

treatment. Arrows indicate a-SMA+ fibroblasts. Higher-magnification images are shown at the 

bottom right corner. Right panel: Quantification of p-AKTThr308 immunofluorescent staining in 

tumor infiltrating a-SMA+ fibroblasts in the mammary tumors of MMTV-PyMT transgenic 

mice after vehicle or CAL-101 treatment. Significance was calculated using multiple t-tests. 

Results are expressed as mean ± SEM; ** P < 0.01 vs. vehicle treated tumors. (E) Left panel: 

Representative images of immunofluorescent staining for F4/80 and pAKTThr308 in the 

mammary tumor sections of MMTV-PyMT transgenic mice after vehicle or CAL-101 

treatment. Arrows indicate F4/80+ macrophages. Higher-magnification images are shown at the 

bottom right corner. Right panel: Quantification of pAKTThr308 immunofluorescent staining in 

tumor infiltrating F4/80+ macrophages in the mammary tumors of MMTV-PyMT transgenic 

mice after vehicle or CAL-101 treatment. Significance was calculated using multiple t-tests. 

Results are expressed as mean ± SEM; * P < 0.05 vs vehicle treated tumors.  
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Figure 9: PIK3Cδ expression in fibroblast cells and association with patients’ survival. 

(A) Representative images of low and high PIK3Cδ expression in tumor or surrounding 

fibroblast cells (a-SMA+). Original magnification ×20. (B) Kaplan-Meier plots showing the 

association between fibroblast-PIK3Cδ protein expression with OS (Log rank test; P = 

0.000285) in TNBC patients. (C) Kaplan-Meier plots showing the association between 

fibroblast-PIK3Cδ protein expression with DFS (Log rank test; P = 0.048) in TNBC patients. 

(D) Kaplan-Meier plots showing the association between fibroblast-PIK3Cδ protein expression 

with OS (Log rank test; P = 0.703) in ERα+patients. (E) Kaplan-Meier plots showing the 

association between CAF-PIK3Cδ mRNA expression with OS (Log rank test; P = 0.001) in 

TNBC patients following deconvolution of bulk TCGA RNA-seq samples. (F) Kaplan-Meier 

plots showing the association between CAF-PIK3Cδ mRNA expression with OS (Log rank 

test; P = 0.058) in ERα+ patients following deconvolution of bulk TCGA RNA-seq samples. 

(G) Kaplan-Meier plots showing the association between CAF-PIK3Cδ mRNA expression 

with OS (Log rank test; P = 0.684) in HER2+ patients following deconvolution of bulk TCGA 

RNA-seq samples. 
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