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Abstract

A spring/rod model is presented that describes one-dimensional behaviour of solids susceptible to large or
small viscoelastic deformation. Derivation of its constitutive equation is underpinned by the fact that the
internal energy, which the elastic part of deformation stores into the spring, changes in time with the
observed strain as well as with some, unknown part of the strain-rate. The latter emerges through the action
of a viscous flow potential and is the source of inelastic deformation. Thus, unlike its conventional
viscoelasticity counterparts, the model does not postulate a priori a rule that relates strain with viscous flow
formation. Instead, it considers that such a rule, as well as other important features of combined elastic and
inelastic material response, should become known a posteriori through the solution of a relevant, well-posed
boundary value problem. This communication begins with considerations compatible with large viscoelastic
deformations, and gradually progresses through simpler modelling situations. The latter also include the case
of small viscoelastic strain that underpins formulation of classical, spring-dashpot viscoelastic models. In an
example application, a relevant closed form solution is obtained for a spring undergoing small viscoelastic
deformation under the influence of a viscous flow potential which is quadratic in the stress.

Keywords: Constitutive equations, Large viscoelastic deformations, Small viscoelastic deformations,
Viscoelasticity, Viscoelastic rod, Viscoelastic spring.

1. Introduction

The subjects of Elasticity, Plasticity and Viscoelasticity are generally considered as parts of continuum solid
mechanics that deal with different kinds of solid material behaviour. In this context, most of the existing
standard models of either plastic or viscoelastic material behaviour begin with some postulation that
presupposes the manner that the anticipated parts of elastic and inelastic deformation are assembled and
enter the resulting constitutive rule. This observation may be felt more commonly associated with models
met in the theory of plasticity. The model of multiplicative decomposition [1] is here referred to as one of the
most successful relevant examples. Nevertheless, classical models in linear viscoelasticity also anticipate the
manner that the observed strain and its time derivative are assembled. The well-known and long-established
method of appropriate combinations of elastic springs and “inelastic” dampers/dashpots [2-4] is still
considered a most successful such (e.g., [5, 6]).

A recent plasticity model [7] follows a different approach and perceives the work hardening stage of
a stretched deformable cube as a regime of material response in which the anticipated elastic and inelastic
parts of deformation are initially both unknown; along with the rule that these are finally combined and form
the observed total deformation. The model considers instead that these important features of the observed
material response should become known through the solution of a relevant, well posed mathematical
boundary value problem. The manner in which this aim becomes possible in [7] is (i) by retaining the
classical postulation that the inelastic part of deformation emerges through the reaction of a yield function,



which also acts as a flow potential, and (ii) by properly accounting for the evident fact that the change of the
energy, W, stored in the material depends on the change of both the observed deformation and the observed
material flow. It is recalled that, upon removing the yield function involvement, the plasticity model
proposed in [7] reduces naturally to, and collapses into its own hyperelasticity framework.

The present communication aims to demonstrate that the outlined new postulations [7] are similarly
relevant and applicable to classical viscoelasticity situations, and, hence, to indicate that all three subjects of
Hyperelasticity, Plasticity and Viscoelasticity share a common theoretical background. With these aims in
mind, attention here focuses onto one of the simplest possible models of one-dimensional deformable bodies,
namely that of a cantilever viscoelastic cylindrical rod. Nevertheless, Figure 1 describes schematically the
existing close relationship between the linearly elastic spring and a linearly elastic cantilever rod subjected to
tension (e.g., Sects. 23 and 30 in [8]), and serves as a useful reminder of the implied well-known
mathematical equivalence.

It thus becomes initially clear that, wherever the term “spring” is met in what follows, this may be
replaced with the term “rod” without further consequences, at least within the small deformation regime. In
cases of large deformation, the cross-sectional area of a cylindrical rod is naturally expected to change with
the deformation in accordance with well-known relevant rules. However, such a change of the cross-
sectional area is here regarded of minor importance, as it influences only the relationship between the force
and the relevant traction distribution applied externally on the relevant end boundary of the cantilever rod.

Section 2 thus presents a new viscoelastic spring model that shares simultaneously properties of an
elastic spring and an inelastic damper (dashpot). In strict terms, this essentially represents a one-dimensional
deformable solid subjected to large viscoelastic deformation. Progressively simplifying considerations
enable afterwards this communication to proceed through simpler modelling situations, and to finally
establish the manner that the presented model relates to its well-known classical spring-dashpot counterparts.

Accordingly, Section 3 considers separately particular cases of infinitesimally small strain and
succeeds to end with a relevant, geometrically linearised viscoelastic spring model. That model is applicable
within the region of validity of the classical spring-dashpot models met in linear viscoelasticity. However, it
is still substantially more general as, despite its small strain region of applicability, it makes use of a non-
linear constitutive equation.

The implied material nonlinearity does not prevent Section 4 to proceed and specify a special case in
which a corresponding boundary/initial value problem admits an exact, closed form solution. This is a case
in which the internal energy function and the viscous flow potential of that geometrically linear viscoelastic
spring are both quadratic functions of their arguments. Section 5 describes next the manner that further
approximations enable that small strain version of the present model to connect with its well-known Kelvin-
Voight counterpart met in classical viscoelasticity. Finally, Section 6 summarises important principal steps
and considerations that underpin the model’s novelty and originality, and briefly suggests directions for
future relevant research and study.

2. The viscoelastic spring model

Figure 1 employs a single co-ordinate parameter, X, and illustrates schematically the known analogy
between a linearly elastic spring, having elastic modulus K, and a linearly elastic cylindrical rod having
Young’s modulus £ and cross-sectional area 4. These elastic components are both considered of the same
length, L, and are subjected to one-dimensional deformation through the action of the same external force.
That force is having magnitude f and is applied externally on the free end of the component, where X = L,
along the direction of the depicted co-ordinate axis.

Interest here is directed towards a corresponding situation in which the observed response of the
externally loaded spring is viscoelastic. In this context, it is worth recalling that such a kind of viscoelastic
material response is observed very often in nature. Most polymers behave in this viscoelastic manner, while
the Mullins effect is here also referred to as a well-known relevant example of rubber-type material
behaviour (e.g., [9-12]).



2.1 Preliminaries and viscous flow considerations

It is accordingly assumed that at its initial length L (at time ¢ = f, say) the rod of interest is unloaded and
unstressed. Loading from that initial configuration takes off through application of a force,

f(t)=T(t)4, f(t,)=T(1,)=0. (2.1
This is considered uniformly distributed over the area of the free end of the rod and may vary slowly in time.
Moreover, it gives rise to immediate viscoelastic material response which, at ¢ > #y, is described with the use
of a current co-ordinate parameter, x; 4 is naturally expected to change at large deformation according to the
known relevant rule. It is postulated that the observed one-dimensional deformation comprises simultaneous
action and possible interaction of elastic deformation and viscous fluid flow.

The manner that those parts of elastic and inelastic material response are merged and compose the
observed total deformation is initially considered unknown. However, the mass of the viscoelastic spring is
required to obey the standard continuity equation
ptpv,=0, @2)
where p and v represent current mass density and velocity, respectively, a dot denotes total differentiation
with respect to time and a comma differentiation with respect to x.

Denote with d" the rate of the inelastic deformation gradient, and note that, in general, this is
different to its total deformation counterpart, v,; namely d" # v,. It is postulated that there exists a viscous
flow potential ¢(0') , where ¢ is the single Cauchy stress component acting along the spring/rod axis, and

that this potential is the source of d". The relevant viscous flow rule may then be postulated in the direct

manner

d’ :M:ﬁ(g), (2.3)
do

which is consistent with the general concept of a potential function; here, as well as in what follows, a prime

denotes differentiation with respect to o.

Alternatively, adopt relevant plasticity postulations and assume that ¢(0') is such that
¢(o)-x=0, 24

where x is some non-negative parameter. Then, amend slightly a route employed already in classical
plasticity [13, 14] as well as in non-linear visco-plasticity [15] by requiring from the rate of the dissipative
work,

v =0 22

to be stationary. The implied alteration refers to the fact that the stress is split into two parts (e.g., [16]) as
follows:

o=0,+0,, (2.6)
where the former part gives rise to recoverable work and the second contributes into the dissipative work rate
" The imposed requirement necessitates minimisation of the expression

2y =o,d’ —/1[¢(0)—K] ,

where 4 is a Lagrange multiplier, thus leading to

d deo d d
g =290 _ ;49 9 ;49 _4(0). @7
do, do do, do
If 1 is considered constant, then this flow rule is seen equivalent to (2.3) because, as becomes later more

evident (see (2.18) and Section 3.2), that constant can be absorbed by ¢(o-) .



2.2. Equilibrium and constitution

Let

x=x(X,t) (2.8)
represent the rule that governs the spring deformation. In the light of the adopted notation, consider that the
initial length, L, of the spring changes into £, so that 0 < x < {. The following boundary conditions thus hold:

e =T(1). (2.9)
As is already mentioned, the elastic part of the deformation is initially considered indistinguishable

from its inelastic counterpart. However, the rate of the internal energy that the deformation accumulates into
the material is still governed by the usual rate-of-energy equation

x|X:0 =0, o

i xp(LW+l\>2jdx=Gv, (2.10)
dat*0 \ p, 2
where W represents the internal energy per unit axial length stored into the implied, arbitrary part [0, x] of
the deformed spring and po is the initial density of the spring, at # = #. The second term inside the integrand
is the kinetic energy, while o is evidently the only boundary traction acting externally on [0, x].

It is now recalled (e.g., [17]) that the material time derivative appearing in the left-hand-side of
(2.10) obeys the rule

4 o Lyely dx:rpi Ll o, 2.11)
dt’o"  p, 2 o dt\ p, 2

Introduction of (2.11) into (2.10), followed by differentiation with respect to x, leads to
ﬁW:(ax—p\'/)v+0'vx. (2.12)
Po , ’

It is next observed that, due to the implied energy dissipation, W changes with, and therefore
depends not only on the deformation and its gradient

oo (2.13)
)¢
but also on the rate of the inelastic deformation gradient, d". In mathematical terms, this fact takes the form
w=w(F.d"), Ww(0,0)=0, (2.14)
and leads to
i =W _ W (W gy [ W W\ [OW OWd (oxox [OW OWd \p, (2.15)
dt OF od” OF od" F OF od" F )oxoX \oF od" F ’
A comparison of this result with (2.12) leads to
(Gx—p\'/)v+ o-LF a—WJraWd—. v.=0, (2.16)
’ P, \OF od" F |-
which, due to the arbitrariness of both v and v _, requires
o =pv, =L IWd | (2.17)
' P, \OF dd" F

While (2.17a) is recognised as the standard one-dimensional equation of motion, (2.17b) emerges as
the constitutive equation sought for the present viscoelastic spring model. On its own, the first term in the
right-hand-side of (2.17b) represents the constitutive equation of the corresponding hyperelastic spring. In
the present viscoelastic spring case though, that term refers to the change of W with respect to the total,



rather than to the still unknown elastic part of the deformation. In (2.17b), this is further accompanied by a
term which is influenced heavily by the appearing features of inelastic deformation and viscous flow.

It is revealing in this context to note that, if the Lagrange multiplier parameter appearing in (2.7) is
considered constant, one obtains

7 2
d" = ﬁ,%:ﬂa—éd =A¢"c,

oo oo
and (2.17b) thus reduces to
o =ﬁF(a—W+/1¢"3.aWj.

P, \OF Fod’
This makes it clearer that both (2.18) and its more general version (2.17b) are implicit in the stress and, also,
differential rather than algebraic constitutive equations.

In summary, the presented viscoelastic spring model is alternatively regarded as an initial/boundary
value problem that is described as follows: given the form of the flow potential introduced in (2.4) and the
form of the internal energy density (2.14), determine three principal unknowns, namely the material density,
p, the placement function, x, and the Cauchy stress, o, in a manner that satisfies three principal equations,
namely (2.2), (2.17a) and (2.18), subject to the boundary conditions (2.9) and the initial conditions

,0|,:0=p0, x|,:0=X, 0'|,:0=0. (2.19)

(2.18)

2.3 Energy and dissipation considerations

In view of the general form (2.14) of the internal energy density, it is anticipated that
We(F)=W(F,0)=0, (2.20)

represents the internal energy stored into a corresponding elastic spring subjected to same loading and
deformation conditions; the equality sign holds in the absence of deformation (F = 0).

On the other hand, and in accordance with the definition (2.5), the energy dissipation is expected to
be the following non-decreasing function of time:

w_t _ lt vV 7. 1 t '
D —tj;t//dt— Eg%d dr= 5;[20'1)¢ (o)dt>0, (2.21)

where op is to be determined through the solution of the boundary value problem of interest, and the equality
sign holds in the special case that the spring behaves elastically (op = 0).

Hence, by proposing the following connection between the internal energy densities of a pair of
corresponding elastic and viscoelastic springs:

we(F)=w(F.d")+D", (2.22)
one arrives to the condition
we(F)zW(F.d")20. (2.23)

This condition implies further that this generalised viscoelastic spring stops to represent a solid at the first
instance, ¢ = tr > t,, at which

D*|_ =we¢ e w(F.d')., =0. (2.24)

t=tp

In this general form, the developed viscoelastic model is highly nonlinear, and its connection with
specific boundary value problems must confront the usual analytical hurdles met in corresponding
hyperelasticity problems. Moreover, as is seen in the next Section, material nonlinearity is generally present
even in the small strain regime. This additional mathematically difficulty is readily compatible with the
viscoelastic nature of the solid of interest, as it is due to the fluid-type flow part of its material behaviour.
Nevertheless, a further special case will later be identified as part of an application (Section 4), where both
geometric and material nonlinearities can be considered negligible. In that case, the model obtains a

t=ty



considerably simplified form that admits a closed form solution and facilitates its connection, as well as its
comparison, with its conventional counterparts (Section 5).

3. Small strain
Potential connection of the present model with standard spring-dashpot models requires initially

specialisation of the former within the region of applicability of the latter, namely the region of
infinitesimally small strain. Such a specialisation begins with the introduction of the displacement

u=x—-X, 3.D

and the subsequent approximation

Fe lient, (3.2)
oX

where the strain

e=u, (3.3)

is considered much smaller than 1.

It is now recalled that in linear elasticity problems, where strains are considered infinitesimally
small, the deformed and undeformed coordinate parameters are considered practically indistinguishable (x =
X) and the current mass density, p, indistinguishable from its initial counterpart, po. However, in the present
case, where the rod responds in a viscoelastic manner, potential differences between the current and the
initial mass density might be found influential in applications. Therefore, such differences are not considered
a priori negligible in what follows.

As (3.2) implies that
ow oW oe oW

F=eé, = ==, (3.4)
OF 0Oe OF Oe
(2.14) is now approximated as follows:
w=Ww(ed"), W(0,0)=0. (3.5)
and the constitutive equation (2.18) takes the form
P, \ Ce e od”

In general, this is still a non-linear differential equation for ¢, and stays such even in cases that its solution
might be sought and found independently of the solution of the continuity and the equilibrium equations
(2.2) and (2.17a).

The following connection is now made between the rate of inelastic deformation and the rate of
small strain due to viscous flow:

d'=é". 3.7
By virtue of (2.7), this implies that the inelastic part of small strain is
¢ =[ddt=A[¢ (c)dt- (3.8)

Hence, the elastic parts of strain and displacement can respectively be calculated as follows:

e’ = e—quﬁ'(a)dt,
fo (3.9)

X

u = [edx = ]{{e—ﬂujqﬁ'(a)dt}dX.

It follows that the initial/boundary value problem set in the previous section for the case of large
spring deformation, is now modified as follows: given the form of the flow potential appearing in (2.4) and



the form of the internal energy function (3.5), determine the three principal unknowns, p, u, and o, in a
manner that satisfies the three principal equations (2.2), (2.17a) and (3.6), subject to the boundary conditions

Uy, =0, oy, =T(1), (3.10)
and the initial conditions
P|t=o:p0> u|t:0=O'|,:0=0. (3.11)

Following the solution of this initial/boundary value problem, the total strain and its viscoelastic part may be
evaluated, a posteriori, through use of (3.3) and (3.8), respectively, while (3.9) will lead to the determination
(3.9) of the elastic parts of both the strain and the displacement.

3.1 Quadratic form of the internal energy function

Foundation of linearised small strain elasticity models is based on purely quadratic forms of W, so that the
resulting constitutive equation relates the stress and the strain in a linear manner. In the present viscoelastic
spring case, the most general, purely quadratic form of (3.5a) is
1 1 2
Wle,d')==Ee* +ned” +=E&(d") , (3.12)
(ed") =5 Ee* +ned” +2&(d")

where, E, n and ¢ are appropriate material moduli whose values should enable consistency of the model with
the internal energy conditions (2.20) and (2.23). It is seen that this form of IV satisfies the initial condition
(3.5b).

Moreover, the form (3.12) of W enables the constitutive equation (3.6) to acquire the more specific

form

Jzﬁ{Ee+ndV+ﬂ¢”%(7]e+§d”’)}, (3.13)

or, by Ovirtue of (2.7),

o= ﬁ{Eemmﬂ +;L¢"%(ne+ /1§¢')}- (3.14)
0 It is noted that, in the special case that # = £ =0, (3.12) reduces to its standard linear elasticity form

Wz%Eez. (3.15)

In that case, the constitutive equation (3.14) resembles closely its linearly elastic spring/rod counterpart,

J=C;—V::Ee, (3.16)

which, based in the aforementioned linear elasticity postulate, neglects the influence of the continuity
equation (2.2) and implies that the material density is not affected by the deformation (p = po). It is thus seen
that if this linear elasticity postulate is applied when # = &= 0, then (3.14) and (3.16) become identical.

At the other extreme, by setting £ = # = 0, one recognises a constitutive model that exhibits purely
fluid material behaviour. Such an observation is fully compatible with a basic rheology concept, according
which viscoelastic material description does not recognise or distinguish clear boundaries between solid and
fluid material behaviour (e.g., [2-5]). That concept thus classifies the proposed generalised viscoelastic
spring as a properly developed viscoelastic model, in the sense that at one extreme (y = & = 0) this resembles
an elastic solid while at the other (£ = # = 0) a viscous fluid. However, a study of the purely fluid case (£ =7
= 0) is not pursuit here, as it does not fulfil the energy and dissipation conditions set in Section 2.3, and thus
is incompatible with the anticipated mechanical response of a solid spring.

It is also noted that the last term in the right-hand-side of either (3.13) or (3.14) represents a
constitutive equation that still preserves the nonlinear differential equation features observed earlier in (3.6).
However, additional postulations concerning the choice of the viscous flow potential may simplify the form



of this constitutive equation. Standard yield surfaces met in metal plasticity, for instance, are traditionally
considered quadratic functions of their arguments.

3.2 Quadratic form of the viscous flow potential

In this regard, consider next the special case of a viscous flow potential which is quadratic in ¢, namely
1
¢(0')=§G0'2, (3.17)

where G is some appropriate material modulus. Then, the viscous flow rule (2.7) yields

d’=1Go =Go . (3.18)
As was anticipated earlier in Section 2, introduction of the new parameter G=AG enables

incorporation of a constant value of A into the form of the flow potential ¢(0) , and, hence, validates in that

case a direct postulation of the flow rule (2.3). The constitutive equation (3.14) thus reduces to

Jzﬁ{Ee+néa+é(ne+§éa)g}, (3.19)
Po €

which, due to involvement of the ratio &/ e is differential with respect to time, as well as nonlinear in ¢ and
e.

It is recalled that, in general, solution of (3.19) should be sought in conjunction with the kinematic
relation (3.3), the equation of motion (2.17a) and the continuity equation (2.2), subject to the associated
boundary conditions (3.10) and the initial conditions (3.11). Completion of the outlined solution will finally
enable use of (3.8) and (3.9) and, hence, determination of the remaining unknown deformation features,
namely

e’ = jdvdt zéj odt, e =e— Gj odt, u°=u- G)jjadth. (3.20)
01

l fy l
3.3. Energy and dissipation considerations

The energy and power dissipation considerations discussed in Section 2.3 can also be applied in a posteriori
manner, as soon as decomposition of stress into its two-part form (2.6) enables a similar split the of the total
work rate into its recoverable and dissipative parts. In more detail, introduction of (2.6) into (3.19)
transforms the latter equation into the following:

o, +0, =p£{E(e“’ +ev)+né(aR +0,)+ é[?](e“’ +e")+§é(0'R +0'D)] Z’ZJJ:ZVD}. (3.21)
0

A necessary second condition that leads to precise determination of the involved couple of unknowns, oz and
op, 1s next established by balancing separately all terms in (3.21) that contribute to recoverable work. This
condition is postulated through the observation that (3.21) should also hold true at time instances or stages of
the deformation that may be dissipation free (op = €”" = 0).

Hence, a split of (3.21) into two parts containing terms that contribute to the creation of recoverable
and dissipative work rate, respectively, leads to

G(fGUR + nee)o"R +é° (né—&] o, =—Ee‘e’,
P (3.22)

G(fGUR + ne)o"D + {é[né —&j + fézd} o, = —E(eee'" +e'¢é ) - néé‘Re".
P

It is noted that (3.22a) is a first order non-linear differential equation for og, and its solution may be
attempted independently of (3.22b). The latter is a first order linear differential equation for op, and, hence,



its standard solution can be formed immediately after its first and last terms are fed by the solution of
(3.22a).

After some suitable rearrangement, it can be verified that the forms of (3.19) and (3.22a) are
essentially identical. This observation justifies, at least to a first approximation, the split of (3.21) that leads
to (3.22) and suggests that ¢ and oz might be sought as two different solutions of the same time-dependent
differential equation. However, such a search for relevant solutions should still take place in conjunction
with the equation of motion (2.17a) and the continuity equation (2.2). Hence, while the density, p, and the
total strain, e, are unknown during the solution process of (3.19), their counterparts p and e° that emerge in
equation (3.22a) are there considered determined and, therefore, known quantities.

4. Application: Quasi-static viscoelastic deformation at small strain

Despite the mathematically complicated form of the constitutive equation (3.19), a closed form solution of
the outlined viscoelastic boundary value problem is still possible, at least in the case that small strain takes
place in a quasi-static manner. Description of that solution begins with a displacement field of the form

u=la(t)-a, | X, a,=a(t). 4.1
Here, the function ¢ () is assumed to be such that the implied deformation is imposed in an adequately slow

manner that justifies replacement of the equation of motion (2.17a) with its quasi-static version

o,=0. 4.2)
By virtue of (3.3), (4.1) leads next to the following results:

e=[a(t)-a,|, é=i,=v,=a(t). (4.3)

These enable the continuity condition (2.2) to obtain the separable form

p+pa(t)=0, (4.4)

and, hence, to give the material density of the viscoelastic spring as follows:

o/ p, =exp{a0—a(t)}. (4.5)

The constitutive equation (3.19) attains then the following form of a first-order ordinary differential
equation for o:

A

pG, [§Ga+n(a—a”]o'%[ﬁ—l]o%ﬁ(a—ao)=0, (4.6)

P Po Po

which is nonlinear due to the first term that appears in the square bracket. It is noted that, as neither e nor é
depend on X, equation (4.6) and, therefore, its potential solution for ¢ are also independent of X. Therefore,
the quasi-static equation of motion (4.2) is already satisfied identically.

For small values of &, the non-linear differential equation (4.6) may be solved asymptotically with
the use of some standard perturbation technique. The first approximation to the implied asymptotic solution
is evidently obtained by setting £ = 0 and represents a special case in which the rate of inelastic strain does
not influence on its own the internal energy function (3.12). That solution represents the deformation and
material response of a generalised linearly viscoelastic spring, and, hence, deserves separate mention on its
own merit.

4.1 Particular case: The generalised linearly viscoelastic spring (& = 0)

When & =0, the quadratic form (3.12) of the internal energy function reduces to

W(e,dv)zéEe2+nedV, 4.7
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and is influenced by the rate of inelastic strain only though the coupling of the latter with the total strain.
This form of W excludes effects associated with purely fluid constitutive behaviour but corresponds to a
viscoelastic spring whose constitution equation (3.19) is generally still differential as well as non-linear at
small strain.

However, the rather simple form of the displacement field (4.1) enables the reduced form (4.6) of the
constitutive equation to acquire the following form of a linear first-order ordinary differential equation:

&+ p(1)o=q(1), 48)
where
(né—aea(’)'“‘) )0’( Ed
= S . 4.9
p() o P (1) G (4.9)

Thus, when subjected to the initial condition (3.11c), equation (4.8) provides the stress in the following
closed form:

o—:ﬁiz(z)q(z)d@ 1(6)=exp(] p(0)d). (4.10)

where, however, the noted integrations are generally expected to require numerical evaluation regardless of
the form of the function «(¢).

4.2 Strictly quasi-static spring deformation

The linear form
a(t)=t/1, (4.11)
is the optimal choice of ¢(r), as it produces no acceleration and thus reduces the equation of motion (2.17a)

into its quasi-static counterpart (4.2). When combined with (4.11), the displacement distribution (4.1) gives
thus rise to a strictly quasi-static deformation, which also satisfies the displacement boundary condition
(3.10a).

Moreover, solution of (2.2) suggests that the material density changes in time according to the rule

p/pozexp(l—t/to). (4.12)

When is based on the quadratic internal energy function (4.7) and the quadratic flow potential (3.17), the
choice (4.11) still gives rise to the stress distribution (4.10), where, however, it is

Gt — pyt

p(t):<p7—p°°), P (4.13)

pGnty (1—1,) Gnt,
Thus, the implied displacement and stress distributions represent an exact solution of this well posed
viscoelastic spring problem, provided that the external traction 7() that appears in the final, yet to be used
boundary condition (3.10b) is applied according to the rule (4.10). The remaining unknown features of this
viscoelastic deformation, namely e’, ¢° and u°, may then be determined with the use of (3.20), where the
noted integrations are expected to require numerical evaluation as well.

After ¢ and e’ thus become known, the two-part decomposition (2.6) of ¢ becomes also possible
through potential solution of the first-order ordinary differential equations (3.22). However, in the present
case, where ¢ = 0, both equations (3.22) attain linear forms; namely

énee('fR +é (77@ —&] o, =—Ee‘é’,
p (4.14)

Gnec, + {e{qé —&J + gé%} o, =—E (e’ +e'¢)~nGore’.
P
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Either of these is a first order linear ordinary equation and can evidently be brought into the standard form
(4.8). Its closed form solution can thus be described in the standard manner (4.10). More practical future
investigations will thus require considerable further computational work that will not only accompany the
outlined solution but will also enlighten matters associated with the subsequent split of the work rate into its
recoverable and dissipative parts.

5. Relevance to conventional linear viscoelastic solids

Conventional linear viscoelasticity models are based on the simplification

d' =eé, (5.1)
which implies that the rate of viscous strain and the rate of total strain are considered a priori identical. In
this special case, the small strain constitutive equation (3.13) of the present model reduces to the following:

azﬁ{Eemémwd(ﬁni]} : (5.2)

Po e

Moreover, (2.7) implies that

o199 (5.3)
do

However, conventional viscoelasticity models do not make use of the continuity equation (2.2).
They instead postulate a priori that the imposed small strain consideration is adequate to justify the
approximation
plp,=1. (5.4)
Moreover, classical models make no use of a viscous flow potential and, in this regard, do not make use of
(5.3).

Hence, if (5.4) is assumed valid and, along with (5.3), the influence of the flow potential, ¢, is also
completely disregarded, then (5.2), reduces to
o=Ee+neé. (5.5
This is recognised as the constitutive equation of the Kelvin-Voight viscoelastic model shown schematically
in Figure 2(a).

Nevertheless, in addition to the constitutive equation (5.5), the present model provides a
corresponding internal energy function, namely

W(eeé)= %Eez +1nee, (5.6)

which is evidently obtained by inserting (5.1) into (4.7). The constitutive equation (5.5) is thus alternatively
obtained with the use of
ow
o=—0>
Oe
which is quoted through (3.6) in a similar manner. Namely, by imposing the approximation (5.4) and
disregarding the noted influence of the flow potential, ¢.

It is now recalled that the constitutive equations of a standard elastic spring or a viscous damper
(dashpot) is obtained through (5.5) by simply setting # = 0 or £ = 0, respectively. Constitutive equations of
conventional viscoelastic solids which are more complicated than that of the Kelvin-Voight solid, may then
still be built up in the manner employed in classical viscoelasticity. Namely, by (i) using appropriately
several kinds of different combinations of one or more Kelvin-Voight solids with one or more springs and/or
dashpots, and (ii) ignoring the concept of the internal energy function.

For instance, the well-known constitutive equation of the Kelvin’s version of the standard, three-
parameter viscoelastic solid depicted in Figure 2(b), namely

(5.7)
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n &= EE, e+ En és (5.8)
E +E, E+E, E+E,
is evidently obtainable by combining in the usual well-known manner (e.g. [2, 3, 5]) the depicted pair of
linear solids. Both solids make essentially use of the constitutive equation (5.5); for the first element E is
replaced by E), while for the second E is replaced by £, and # is set equal to zero. However, the concept of
the internal energy function must be ignored in this case, as there is no evident manner that a relevant form

of W can be obtained and, in turn, lead the constitutive equation (5.8) through appropriate combination(s) of
(5.7).

o+

6. Conclusions

The generalised viscoelastic spring model presented in this communication is directly relevant to the
behaviour of one-dimensional solid components susceptible to large or small viscoelastic deformation. In its
most general form, the large deformation version of the model requires determination of three principal
unknowns, namely the material density, p, the current placement function, x, and the Cauchy stress, o, in a
manner that satisfies a set of three principal differential equations; namely, the continuity equation (2.2), the
equation of motion (2.17a) and the constitutive equation (2.18). The corresponding small strain version of
the model is essentially described in the same manner, with the displacement, u, replacing the placement
function, and the small strain constitutive equation (3.6) replacing (2.18). Even in the small strain case
though, the constitutive equation is, in general, a differential rather than an algebraic equation.

In either case, derivation of the constitutive equation is underpinned by the fact that the internal
energy stored in the viscoelastic spring material changes in time with, and therefore depends on both the
observed actual strain and the unknown part of the strain-rate that is due to the anticipated viscous flow.
Creation of the implied unknown part of the strain-rate, which is evidently the source of the observed
inelastic deformation, is accordingly related with the action of a viscous flow potential, which, in turn,
depends on the magnitude of stress.

In this manner, the presented generalised viscoelastic spring model makes successful simultaneous
use of two different fundamental concepts met in the theories of Elasticity and Plasticity; namely, the
concepts of the internal energy density/function and that of the yield/flow potential. Hence, along with [7],
this model is regarded as another piece of evidence in support of the claim that hyperelastic, plastic and
viscoelastic material behaviour have all the same source and can accordingly be based on and studied within
a common theoretical framework.

It has indeed been shown that, unlike its classical viscoelasticity counterparts, the present
generalised model does not need to postulate a priori the manner that the strain and its time rate are
combined or related to form its constitutive equation. Instead, the model considers that this, as well as other
important features of combined elastic and inelastic material behaviour, including the rate of energy
dissipation, can become known a posteriori through the solution of a relevant, well-posed boundary value
problem. The latter should always be completed by associating to the afore-mentioned set of three
simultaneous differential equations an appropriate set of initial and boundary conditions.

This communication developed the presented viscoelastic model around the classical example of a
cantilever spring. It accordingly completed description of the implied boundary value problem by employing
the boundary conditions (2.9) and the initial conditions (2.19) in the general case of large deformation, or
their counterparts (3.10) and (3.11), respectively, in the case that deformation is infinitesimally small. In this
context, considerable attention was also given to the closed form solution obtained in Section 4, for a spring
undergoing small viscoelastic strain under the influence of inelastic deformation underpinned by a quadratic
form of the viscous flow potential.

That exact, closed form solution requires further consideration and study, and its computational
implementation and treatment is regarded as a project of immediate priority and interest. Such a project
should initially be expected to make better understood the relevance as well as the differences of this model
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with its classical spring-dashpot counterparts and, hence, to expose practical aspects of its anticipated
theoretical superiority. The latter is, in brief, underpinned by the facts that the proposed generalised
viscoelastic spring model enables (i) a posteriori determination of the rule that its elastic and inelastic
deformation parts are assembled, (ii) consideration of the levels of energy stored in its viscoelastic material,
and (iii) through time account of corresponding levels of energy dissipation.
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FIGURE 1: The known analogy between (a) a linearly elastic spring of elastic modulus K, and (b) a

cantilever linearly elastic cylindrical rod of Young’s modulus E, cross-sectional area A, and length L; f, o
and e represent externally applied force, axial normal stress and strain, respectively.
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(a) Kelvin-Voight solid (b) Kelvin-type of a three-parameter solid

FIGURE 2: Two classical models of a viscoelastic solid met commonly in the classical viscoelasticity
literature; £, E1 and E» represent elastic spring stiffness moduli while # is the modulus of damper viscosity.
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Media Summary:

THE GENERALISED VISCOELASTIC SPRING
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Summary

Existing viscoelasticity models presuppose the rule that relates elastic strain and viscous/inelastic flow
during viscoelastic material deformation. The proposed generalised viscoelastic spring model describes one
of the simplest relevant mathematical problems without employing a priori such a rule. Solution to this
problem discovers that rule, and other characteristics of combined elastic and inelastic material behaviour, in
a posteriori manner. This generalised model is underpinned by a novel combination of features and
postulations used so far independently in the theories of elasticity and plasticity. It thus shows that all three
subjects of Hyperelasticity, Plasticity and Viscoelasticity share a common theoretical
background/framework.



