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Abstract—EXplainable Artificial Intelligence (XAI) is of in-
creasing importance as researchers and practitioners seek better
transparency and verifiability of AI systems. Mamdani fuzzy
systems can provide explanations based on their linguistic rules,
and thus a potential pathway to XAIL. A factual rule based
explanation generally refers to the given set of rules executed,
or fired, for a given input. However, research has shown that
human explanations are often counterfactual (CF), i.e. rather
than explaining why a given output was reached, they show
why other potential outputs were not. Although several machine
learning-based CF explanation generation methods have been
proposed in recent years, quasi none of them focus on fuzzy
systems. Also, where they do, they focus on correlation, which
limits the interpretive value of any CF explanations obtained as
humans expect a causal relationship in rules, i.e. we are cause-
effect thinkers. In this paper, we propose a new rule generation
framework for Mamdani fuzzy classification systems, which we
refer to as CF-MABLAR, building on the MARkov BLAnket
Rules (MABLAR) framework. CF-MABLAR approximates the
causal links between inputs and output(s) of fuzzy systems
and generates CF rules by leveraging them. Uniquely, the CF
rules obtained not only provide a basic CF explanation, but
can also articulate how the given inputs would need to be
changed to generate a different output, crucial for lay-user
insight, verification and sensitivity-evaluation of XAI systems,
for example in decision support around credit risk, cyber
security and medical assistance.

Index Terms—Fuzzy, rule, counterfactual, explanation, causal

I. INTRODUCTION

Nowadays, Al models are used widely in many areas
including risk sensitive areas, such as healthcare [1], where
mistakes by Al models can result in serious consequences.
More broadly, with Al becoming increasingly pervasive in
consumer-facing products, its ‘trustworthiness’ is essential
for sustained consumer-acceptance. It is important for users
of Al to understand why an AI model makes the given
prediction and decision — supporting Al accountability and
trustworthyness. Consequently, eXplainable Al (XAI) has
attracted an increasing interest in recent years [2].
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In general, the purpose of XAl is to provide explanations
for the behaviour of AI models. It is interesting to note
that the purpose or utility of such explanations may differ
substantially depending on the given Al application, as
already alluded to. One may be interested in understanding
the rationale of an Al to check whether it is making decisions
as-expected (c.f. trustworthiness, verifiability), or in order to
understand how one needs to change its inputs to achieve a
desirable output (e.g. credit assessment).

For example, consider the case discussed in [3]. Here, the
military trained a prediction model called ‘Tank Prediction
Model’ (TPM), to discriminate between photos of enemy and
friendly tanks. Later, the military found that the TPM classi-
fied the tanks on the basis of the weather shown in the photos,
because all photos of friendly tanks were taken on sunny
days, while all photos of enemy tanks were taken on overcast
days. In this case, an XAl explanation could for example
highlight to a user that: ‘The tank is classified as an enemy
tank, because the weather in the photo is overcast’. As a
result, the military in this case may decide that this behaviour
of the Al is unreasonable, leading them to update/change
their model altogether. At the same time, the example shows
that if the military was happy with this behaviour, the XAI
explanation would inform them on how to change an input
(image) to provoke a change in classification—insight which
may be of use from an adversarial point of view. In practice,
the purpose of explanations is a key driver for the type and
format of explanations sought.

Within the context of Al-driven decision support, Mam-
dani Fuzzy Systems (FSs) have been widely used in many
areas [4]-[6] and have shown good ability to present knowl-
edge in an interpretable way [7]. Mamdani FSs can provide
explanations for their output(s) through their linguistic rules.
For example, ‘This flower is Iris Setosa, because its sepal
length, sepal width, petal length and petal width are all low’
is an explanation as can be derived from a rule of a Mamdani
Iris classification FS. Broadly speaking, such explanations
are called factual explanations, because they describe which
features contributed to the model’s output based on the



given input [8]. A substantial number of popular Mamdani
rule generation algorithms exist, including the Wang-Mendel
algorithm and its variants [9]-[12], evolution computation-
based rule generation algorithms [13]-[15] and other data-
driven rule generation algorithms, such as [16], [17] etc.
These approaches are strong at generating ‘factual’ rules
from data directly.

Beyond the ‘factual’ rules used in Al systems, human
explanations are often counterfactual (CF) [18]. When a
model gives a particular output, users benefit from not only
knowing why a particular output is obtained, but also why
other outputs are not obtained. For example, in the above Iris
case, why the flower is classified to Iris Setosa, and not Iris
Versicolour? To explain this, explanations need to contain
CF elements. In the above case, a potential CF explanation
would be ‘This flower would be classified as Iris Versicolour
if its sepal width and sepal length were medium’. Here,
‘sepal width and sepal length were medium’ is a CF element,
because the given inputs of sepal width and sepal length
are low, and not medium. Such explanations are called CF
explanations [8].

Beyond factual explanations, CF explanations can com-
plement a meaningful explanation [8], [18]. Although CF
explanations have a long history in some areas such as phi-
losophy and social sciences [19], they are a fairly recent topic
in the XAl area, attracting much attention only in recent years
[20], [21]. From an XAI perspective, CF explanations can be
viewed as providing two different types of contributions:

o They can help users—commonly expert-users—to assess
whether an Al is making decisions as expected. An ex-
ample here is tank-classification example above, where
a CF explanation can help highlight that the discrimi-
nation strategy of the Al is not reasonable.

o Where validating the correct functionality is not the
focus, CF explanations can guide users to understand
how they can change inputs to provoke a change in
output. For example, CF explanations can help a credit-
applicant understand that their high-spending behaviour
is the reason their loan application was rejected and
inform them to what degree they need to change this
behaviour in order to be considered for a loan.

Recently, many Machine Learning (ML)-based CF expla-
nation generation methods were proposed, such as [22], [23].
However, only few of them focus on Mamdani fuzzy systems.
Addressing this gap, most recently, [24] proposed a CF ex-
planation generation framework for decision trees and fuzzy
rule-base systems, which can be extended to Mamdani fuzzy
systems. However, the above mentioned CF explanation
generation frameworks mainly focus on correlation. Humans
are cause-effect thinkers [25], which means they expect
explanations to reflect causal relationships. Thus, correlation-
based CF explanations generation methods, which may not
capture actual causal relationships, risk misleading users.

As discussed above, ideally Mamdani fuzzy systems can
provide CF explanations which reflect causal relationships.

Furthermore, we expect these explanations to answer the
intervention question, i.e. that they indicate which variable
would have to be changed—and how—in order to change the
system output. In this paper, we summarise the intervention
question as follows:

« How should be modify a given input X whose original
corresponding output is ‘A’ in order for the input to be
associated with a different output ‘B’?

We will give a detailed analysis of the intervention question
in Section III-A. In order to achieve this type of CF explana-
tions, we develop a CounterFactual-MARkov BLAnket Rules
(CF-MABLAR) generation framework which builds on [26]
and [24]. The main contributions are as follows:

1) We review the nature of CF explanations, highlighting

differences and flagging outstanding areas of research.

2) We develop a new framework which can generate

CF rules for Mamdani fuzzy systems. The obtained
rules can provide CF explanations which generally
reflect causal relationships and answer the intervention
question.

3) We conduct experiments to demonstrate and evaluate

the developed framework.

4) We discuss the developed framework and next steps.

The rest of this paper is organised as follows: Section II

provides relevant background. Section III presents the de-
veloped framework. Section IV demonstrates the developed
framework and discusses the counterfactual explanations
provided by the developed framework. Section V shows
the experiment results. Finally, Section VI provides the
conclusions and highlights further research directions.

1I. BACKGROUND
A. Counterfactual XAl

Nowadays, many XAI methods are being proposed (see
[2], [27], [28] for some recent overviews) and are used in
many real-world applications, such as debugging of machine
learning models [29], healthcare [30] and explaining pre-
dictions of classifiers [31]. By providing explanations for
the outputs of AI models, XAl can make the operation of
Al models be understood by users [18], which in turn can
support users’ trust in Al models.

As the demand for human-like explanations is increasing,
Al researchers are paying more attention to particular prop-
erties of explanations and their sub-types [18]. Researchers
in social science have found that human explanations are
often contrastive [8], [32]. Consequently, the research of CF
explanations has attracted more and more Al researchers
in the XAI community [33], [34], because CF explanations
build on this contrastive and intuitive mechanism [18].

Consider that M is a classification model and xy; is an
input vector of M. If the prediction of M for xy; is yyy,
then, from an XAI perspective, a CF explanation needs to
explain why the output of the model is y7; and not y.; [35].
Here, y.; is another output of x ;. Using CF explanations can
alleviate the challenge of explaining the internal workings of



a complex AI models, because CF explanations don’t need
to explain all causes of ‘why yy; is obtained’ [8]. Instead,
CF explanations only need to address those related to ‘why
Yct 18 not obtained’.

CF explanations can also help users to identify components
of an Al system which require change, e.g., the outputs
associated with a given input, which is helpful for users to
validate AI models. For example, sometimes an Al model
may not give users the desired output, in that cases, users
will challenge the output given by the AI model, because
they think the AI model is not working correctly. In that
case, they need CF explanations to see if the output makes
sense. If it does not - users are able to decide that the Al
model is not working well for the given problem and take
mitigating measures as appropriate.

A popular way to generate CF explanations is to find a
vector which is the most similar with the input vector needed
to be explained [19], such as the LIME-Counterfactual [31]
and the framework proposed in [22]. Aiming at the problem
of generating CF explanation for rule-based models, [24]
proposed a novel framework for decision tree models and
fuzzy rule-based models. In [36], the authors proposed a CF
explanation generation framework for the FSs obtained by
the fuzzy unordered rule induction algorithm [37]. However,
these approaches do not focus on the challenge that where
models are correlation-based, explanations, including CF
explanations, reflect correlations, rather than causal relation-
ships. How to design an integrated framework to construct
FSs based on a set of causal rules, which in turn can provide
causal CF explanations is still an open problem.

B. Mamdani fuzzy systems

Mamdani type fuzzy systems were proposed in [38]. The
k-th rule of a Mamdani fuzzy system can be expressed as
follows:

Rule &:

If 21 is A¥ and zy is A§ and ... and x,, is AF,

1
Then y is B* %

where each rule has a corresponding input vector x =
[z1, T2, ..., 4] and maps the fuzzy set A¥ C R of the input
space into the fuzzy set B¥ C R of the output space. A¥
is the corresponding fuzzy subset of the i-th input (i.e., x;)
in rule k. The linguistic term ‘and’ is represented by ‘A’,
representing fuzzy conjunction.

C. Overview of rule generation algorithms

One advantage of fuzzy systems is their good interpretabil-
ity, which is mainly derived from their linguistic rule bases.
While rules of fuzzy systems were initially generated by
experts, with the development of ML techniques, many ML-
based rule generation algorithms were proposed, such as
the Wang-Mendel algorithm [9], the Wang-Mendel com-
pleted algorithm [39], the reduced weighted Wang-Mendel
algorithm [11] and improving Wang—Mendel method [40]

etc. Often, fuzzy systems of which rules generated by ML-
based algorithms have better performance (e.g., classification
accuracy in a classification task) than fuzzy systems of which
rules are obtained by experts [41]. However, rules obtained
by ML-based methods usually have a lower interpretability
compared with rules obtained from experts, because rules
obtained by ML-based methods usually are very complicated
to achieve high performance [42].

Nowadays, as XAI has attracted more and more attention,
many ML-based rule generation algorithms have been pro-
posed to improve the interpretability of rules by reducing the
complexity of rules. One type of them treats the rule genera-
tion problem as a multi-objective optimization problem [13]-
[15] . This type of algorithms treats the number of inputs,
the number of rules, the performance of corresponding fuzzy
system and so on as different optimization objectives. Then,
using a classical evolutionary algorithm, e.g., MOEA/D [43].
They solve the optimization problem and obtain the rule base.
Another type of ML rule generation decreases the complexity
of rules by changing the structure of rules. As discussed in
[44], when there are a large number of inputs, hierarchical
FSs have less complexity and better interpretability than ‘flat’
FSs.

Another factor affecting the interpretability of rules is the
relationship reflected by rules. The above mentioned rule
generation methods can reduce the complexity of rules, how-
ever, all of them are focusing on correlation. In real-world
applications, people expect rules to reflect causality [25].
To address this issue, a causal rule generation framework,
MABLAR, was proposed in [26]. MABLAR is adopted in
this paper to capture (or at least approximate) the causal
relationships between variables, and the details of MABLAR
are shown in the next subsection.

D. The MABLAR framework

The MABLAR framework is a two-step rule generation
framework which can be adopted for Mamdani fuzzy sys-
tems. Rules generated by MABLAR can reflect, or at least

approximate, the causal relationships between the inputs and
output(s). Fig. 1 shows the MABLAR framework.
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Fig. 1. The MABLAR framework [26]

There are two steps of the MABLAR framework:

o Step 1: Find the Markov blanket of the output vari-
able(s).

e Step 2: Generate fuzzy rules using rule generation
algorithms, e.g., the Wang-Mendel algorithm [9].



As we mentioned in Section II.B, most existing ML-based
rule generation algorithms mainly focus on correlations. This
results in some obtained rules reflecting spurious correlations
between inputs and output(s). In this paper, such rules are
called spurious rules. In the MABLAR framework, only the
variables in the Markov blanket of the output variable(s) will
be used to generate rules. Thus, the MABLAR framework
can capture, or at least approximate, the causal relationship
between inputs and output(s) at the rule level.

III. COUNTERFACTUAL RULE GENERATION

In order to generate rules of Mamdani fuzzy systems
which capture causal relationships, and then generate Cf
explanations leveraging these causal relationships which can
be used to answer the intervention question, we develop a
new framework, called CF-MABLAR, which builds on [26]
and [24]. The details of the CF-MABLAR will be presented
in this section.

A. Analysis of the intervention question

As we mention in Section I, we expect to generate rules
which can provide causal CF explanations that can answer
the ‘intervention question’. Here, we give a more detailed
description of the intervention question focused in this paper:

o Intervention Question for fuzzy systems: Suppose we
have already obtained a Mamdani FS F. Given a test
sample X;.5; With d inputs, i.e., Xiest = [21, T2, ..., Td],
the output of x;.s; obtained from F is A. What Xyeq
would be, if the Mamdani FS gave another output B?

Here, B is another output of F, and the term ‘interven-
ing’ means changing values. For example, the intervention
question in the Iris case can be ‘What should the input be
for the given flower to be classified as Iris Versicolour? .
As alluded to in Section I, there are at least two obvious
use cases for CF explanations, i.e. Al-validation and input-
intervention. Answering the intervention question is helpful
to achieve these goals.

We divided the intervention question for fuzzy systems
into the following two sub-questions:

e Sub-Question 1 (SQ1): Which variables should we
change? In real world applications, datasets for ML
tasks usually contain many variables. Most existing CF
explanation methods, such as [22], [24], [45], tend to
select all variables for change. However, variables in
datasets for ML tasks usually have high correlation with
the output variable, but not all of them have a causal
relationship with the output variable. As we mention
in Section I, if two variables only have high correlation
but no causal relationship with each other, then the inter-
vention in one variable will have no effect on the other
(see the ‘tank and weather’ example in Section I). In
that case, the CF explanations generated by existing CF
methods contain redundant variables, which increases
the complexity of the CF explanations. Thus, to solve

SQ1, we should only change the variables which have
a causal relationship with the output variable.

e Sub-Question 2 (SQ2): How much should we change?
Usually, there are many possible interventions for an
input in real world applications. For example, in the
‘tank and weather’ case shown in Section I, the weather
shown in the photo could be ‘changed from overcast
to sunny using image-editing software’ or ‘overcast to
rainy’ etc. Thus, we need to decide which one should be
selected. In this paper, according to the Occam’s razor,
we seek to obtain the expected output with the minimal
intervention/change on the inputs.

B. The similarity measurement of rules

Within the framework, we need to measure the similarity
between two rules. In this paper, the SR metric proposed in
[46] is adopted to calculate the similarity between two rules
due to its simpleness. The SR index is calculated as follows:

ZS (A, Al),

where SR(k1, ko) represents the similarity between rule k;
and ko. D is the number of inputs. Afl and Ai-” are the
antecedent fuzzy sets of the ¢-th input for rule k; and ko,
respectively. S(A¥ A¥2) is the similarity between A¥" and
Afz. In this paper, the Jaccard ratio [47] is adopted to
calculate the similarity between two fuzzy sets. Thus,

SR(k1,k2) @)

s, atey = Jeex MR @ @)
fweX maX(MA?I ($), 'U'AfQ (1'))

C. The process of CF-MABLAR

The developed CF-MABLAR framework contains five
steps. Fig. 2 shows the pipeline of the CF-MABLAR. And
a detailed description is shown in Table 1.

Generation of CF
explanation

Training a Mamdani fuzzy
system using the MABLER

Counterfactual rules
collection

— Rules similarity calculation —— Difference calculation

Fig. 2. The pipeline of CF-MABLAR

TABLE I
THE PROCESS OF THE IMPROVED FRAMEWORK

Step 1:  Train a Mamdani fuzzy system using MABLAR framework.

Step 2:  Find the factual rule and collect all CF rules of the test sample.

Step 3:  Calculate the similarity between the factual rule and each
counterfactual rule, and find the counterfactual rule k£ with
the highest similarity with the factual rule.

Step 4:  For each input of the test sample x;, calculate the difference
d; between x; and z7, where :rff is obtained by (4)

Step 5:  Generate the CF explanation based on the factual rule and the

CF rule.




Step 1 is to solve SQI. In step 1, all rules are obtained
by the MABLAR framework. As we mentioned in Section
IL.D, all input variables in rules obtained by MABLAR
should have a causal relationship with the output(s). Thus,
the intervention on the inputs of rules obtained by MABLAR
should affect the output(s).

Step 2 is to find potential CF rules. The terms ’factual rule
and ’counterfactual rule’ are defined as follows:

o Factual rule: The rule has the highest firing strength of
the test sample.

o CF rules: Rules have a different consequent part with
the factual rule.

Usually, there is more than one rule fired for a test sample
in a Mamdani fuzzy system. However, to keep the final
CF explanation concise, we only consider the rule with the
highest firing strength as the factual rule. Thus, each sample
has only one corresponding factual rule.

Step 3 and Step 4 are used to solve SQ2. Usually, a
number of different CF variants (with different consequents)
can commonly be generated for a given rule. in a Mamdani
rule base. As discussed in Section III.A, we expect to obtain
the expected output with the minimal intervention. Thus, we
need to find the CF rule which is most similar with the factual
rule in Step 3, i.e., find the CF rule which have the highest
SR index with the factual rule.

After we find the most similar CF rule, we need to
know how much should we adjust to make sure that after
the intervention, the CF rule should have the highest firing
strength to obtain the desired output. Thus, in Step 4, we
first find the value xff which can make the i-th input have
the highest membership degree in rule k on A¥:

2¢! = arg max fan (25)
T4 ¢

“4)

where /141 (z;) is the membership degree of z; to AF. k is
the rule index of the counterfactual rule whose consequent
part is the expected output and has the highest similarity with
the factual rule. Then, we calculate the difference between
z; and z57 in Step 4:

diff; =2 —a; (5)

Here, dif f; is the value that we should adjust for x;.
Finally, in Step 5, we will generate the final linguistic CF

explanation by combining the factual rule, ‘dif f;” and the

CF factual rule. An example will be shown in Section IV.B.

D. Properties of CF explanations obtained by CF-MABLAR

Compared with existing ML-based CF explanation gen-
eration methods, e.g., [24], the CF-MABLAR can help
to improve the interpretability of CF explanations in the
following two aspects:

1) Capture of causal relationships between inputs and
output(s): Rules of CF-MABLAR are first obtained from
MABLAR. As mentioned in Section II.D, MABLAR can
capture (or at least approximate) the causal relationship

between inputs and output(s). Thus, rules of CF-MABLAR
generally capture causal relationships between inputs and
output(s). As discussed in [48], human are cause-effect
thinkers and rules reflecting causal relationships are more
in line with the human way of thinking. Also, we discussed
in Section I and Section III.A, interventions are effective
only if there is a causal relationship between two variables.
Existing CF explanation generation methods for fuzzy rule-
based models, such as [24], focus on correlations. Thus, their
CF explanations may contain inputs that ‘only’ correlate with
the output. As discussed before, intervention on such inputs
will have no effect on the output(s). In this case, the CF
explanation will give wrong knowledge and mislead users.
For example, ’changing weather from overcast to sunny can
lead to enemy tanks become fridently tank’.

2) Reduce the complexity of CF explanations: Usually,
not all variables in a dataset have causal relationships with
the output variable. Existing ML-based CF explanation gen-
eration methods will use all variables to generate CF ex-
planations. However, CF-MABLAR only uses the variables
in the Markov blanket of the output variable(s). Usually,
the Markov blanket of the output variable(s) contains a
smaller (or equal) number of variable than the whole dataset
[26]. Thus, CF explanations obtained by CF-MABLAR
contain less elements than the CF explanation obtained by
correlation-based methods.

IV. A DEMONSTRATIVE EXAMPLE
A. Settings

Use the Iris dataset [49] for a simple and accessible
demonstration. The dataset contains four features, i.e., in-
puts of the fuzzy system. The four features are ‘Sepal
Length’(SL), ‘Sepal Width’(SW), ‘Petal Length’(PL) and
‘Petal Width’(PW), respectively. To keep rules concise, each
feature is divided into three fuzzy partitions. Fig. 3 shows the
fuzzy partitions of each feature and the corresponding lin-
guistic term. The Gaussian membership function is adopted
in this paper, because Gaussian membership functions only
require two parameters to be adjusted, which helps the
optimization process [7]. All feature values have already been
normalized into the range [0, 1].

The output of the Iris dataset is the classifications of
iris flowers. There three classifications in the dataset: ‘Iris
Setosa’, ‘Iris Versicolour’ and ‘Iris Virginica’. For simplicity,
we select all the samples of ‘Iris Setosa’ and ‘Iris Versi-
colour’. Thus, the problem becomes a binary classification
problem and the dataset contains 100 samples.

B. Illustrative example of the CF-MABLAR framework

We demonstrate the example following the steps shown in
Table I.

Step 1: Training a Mamdani fuzzy system using the
MABLAR framework. In this step, the PC-algorithm [50]
and the Wang-Mendel algorithm [9] are used to find the
Markov blanket of the output and generate rules, respectively.
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One can also use other algorithms according to specific
applications. The obtained Markov blanket contains sepal
length, petal length and petal width. Note that, the obtained
causal graph may still not be perfect. According to [51],
biologists actually only use ‘Petal length’ and ‘Petal width’
to classify Iris. Part of rules of the obtained Mamdani fuzzy
system are shown in Table II.

TABLE I
PART OF RULES OF THE OBTAINED FUZZY SYSTEM
Sepal Length ~ Petal Length  Petal Width Class
R1 Low Low Low Setosa
R2 Low Low Medium Setosa
R3 Medium Medium High Versicolour

Step 2: Collect CF rules. To make sure our selection is
unbiased, we randomly select a sample from the dataset.
The feature value of the selected sample is sepal length =
0.2963, petal length = 0.0976 and petal width = 0.0588,
respectively. The sample is classified into the Setosa class
and the corresponding factual rule is ‘The sepal length is low
and the petal length is low and the petal width is low, then
class is Setosa’. The collection of counterfactual rules will
contain all rules of which the consequent part is Versicolour,
i.e., NOT Setosa. In total, there are six rules have Versicolour
consequent part of the obtained Mamdani rule base, which
is shown in Table III.

Step 3: Calculate the similarity. In our example, R6 in
Table III has the highest SR index (shown in (2)) with the
factual rule and the corresponding similarity is 0.9362.

Step 4: Calculate the difference. The xff calculated by
(4) of R6 in Table III are 0.2172, 0.8683 and 0.7212,
respectively. Thus, the difference between each input of the
test sample and its corresponding xff are —0.0791, 0.0976
and 0.0588, respectively.

TABLE III
COUNTERFACTUAL RULES OF THE SELECTED SAMPLE

Sepal Length ~ Petal Length ~ Petal Width Class
R1 Medium Medium High Versicolour
R2 High Medium High Versicolour
R3 Low Medium High Versicolour
R4 Medium High High Versicolour
RS High High High Versicolour
R6 Low High High Versicolour

Step 5: Generate CF explanation. So far, we can obtain the
final explanation of the test sample. To make it clearer, we
divide the CF explanation into three parts: the factual part,
the CF part and the CF conclusion part:

o The factual part: The test sample is Iris Setosa, because
its sepal length is low and its petal length is low and
the petal width is low.

o CF part: To obtain Iris Versicolour, its sepal length
should be decreased 0.0791 and its petal length should
be increased 0.0151 and its petal width should be
increased 0.0029.

e The CF conclusion part: In that case, its sepal length
would be low and its petal length would be high and its
petal width would be high, and it would be classified
Iris Versicolour. -

In this paper, we exclusively focus on conjunctive rules (i.e.
using the and logical connective). Considering disjunctive
rules employing or, or indeed a mix of both is possible,
however increases complexity and is left to future work.

V. EXPERIMENTS AND RESULTS

We compare CF-MABLAR with the Correlation-based CF
(Cor-CF) explanation framework for fuzzy rule-based classi-
fiers proposed in [24]. The experiments are also conducted
on the Iris data set to allow for concise comparison in this
paper. The experiment settings are the same as Section [V.A.

A. Evaluation metric

The following three indices are adopted in this paper:

o Number of inputs (#inputs): The number of inputs of
each rule. This index is used to measure the complexity
of rules. A rule with more inputs can be viewed as
having higher complexity, and thus lower interpretabil-
ity [26], [52]. Although the complexity of rules is
affected by multiple factors, such as the number of
fuzzy partitions of each input, structure of rules etc.
[52], the number of inputs is one intuitive index. All the
remaining factors are the same for both frameworks.

« Average Minimal Intervention (AMI): A better CF ex-
planation should have a lower degree of intervention
[19], which means a good CF explanation should change
the inputs as little as possible. Thus, we define an AMI
index as follows:

o1 L (dif 1)

AMI = , (©)
n




where n is the number of samples to be intervened (in
this paper, n = 100) and d is the number of inputs.

o Validity: Validity is the percentage of samples which
obtain the desired output after intervention [19].

B. Results

We train two FSs using the settings shown in Section
IV.A. Specifically, we train one Mamdani fuzzy system
for the causality-focused CF-MABLAR, and another for
the standard Cor-CF approach. Then, we generate a CF
explanation from both frameworks for each sample in the
data set. Thus, each sample has two CF explanations (one
from the CF-MABLAR and one from the Cor-CF), and each
framework generates 100 CF explanations, because there are
100 samples in the dataset as shown in Section IV.A. The
results are shown in Table IV.

TABLE IV
RESULTS
#inputs AMI Validity
CF-MABLAR 3 0.6443 1
Cor-CF 4 0.7394 1

From Table IV we can make the following observations:

1) The validity indices of both frameworks are 1, which
means both two frameworks can obtain the desired out-
put by the interventions provided by their CF explana-
tions. As this is a low-complexity, binary classification
task, this is expected.

2) Compared with Cor-CF, CF-MABLAR has a smaller
number of inputs in its rules. Thus, rules generated by
CF-MABLAR have less complexity, which means a
better interpretability as discussed in Sections III.C and
V.A. This behaviour is in-line with results originally
presented in [26].

3) The AMI of CF-MABLAR is smaller than Cor-CF.
This is because for Cor-CF intervention affects a larger
number of inputs—including those which do not share
a causal relationship with the output. Specifically, as
discussed in Section IV.B, the Markov blanket of the
output does note contain the variable ‘sepal width’,
indicating that ‘sepal width’ does not have a causal
relationship with the output for this data set. Thus,
the intervention on ‘sepal width’ is a redundant in-
tervention, which in turn limits the interpretability of
CF explanation obtained by Cor-CF, because redundant
interventions increase the complexity of CF explana-
tion. Also, redundant intervention results in potentially
misleading explanations, indicating to the user that
changes in the ‘sepal width’ will result in a different
classification, even though this is not the case—for the
causal system.

VI. CONCLUSIONS

In this paper, we develop an integrated rule-based reason-
ing and Counterfactual (CF) explanation generation frame-

work, which we refer to as CF-MABLAR, for Mamdani
fuzzy systems. The proposed framework can generate rules
which capture (or at least approximate) the causal relation-
ships between inputs and output(s) for Mamdani inference—
and it enables the generation of CF explanations leveraging
these causal relationships. The CF explanation provided by
CF-MABLAR can tell users how to intervene, i.e. how
to change given input features of a sample to obtain a
desired output. Compared with existing correlation-based
CF explanation generation frameworks for fuzzy rule-based
systems, the CF explanation have the potential to be more
concise and avoid potentially misleading (CF) explanations.

Experiments in this paper are limited to the proof-of-
concept stage. In future work, we expect to consider larger
and more complex datasets, while discussing the challenge of
Markov blanket approximation and its impact on the causal
quality of the rule set as a whole.

Finally, note that in this paper, we consider that all input
variables can be changed. However, this may not happen in
the real-world. For example, if an input variable is the height
of an adult, it will be unchangeable. Also, it is assumed that
input variables can be modified to any extent, which is also
unusually in the real-world. As alluded to in the introduction,
there are at least two obvious use cases for CF explanations,
i.e. Al-validation and input-intervention. In future work, we
will explore how to generate CF explanations for different
purposes and under constraints such as the immutability of
Inputs.
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