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ABSTRACT 27 

 28 

This paper aims to introduce a highly efficient computational model compared to the current cycle-by-cycle 29 

simulation strategy to compute the viscoelastic responses of asphalt concretes and pavement structures 30 

under large numbers of cyclic loading. An explicit constitutive relation for viscoelastic solids in multiple 31 

time scales was developed based on the temporal homogenization. The original initial-boundary value 32 

problem was divided into a global part in the slow time scale and a local part in the fast time scale. Two 33 

simulation studies were presented to validate the computational accuracy and efficiency of the proposed 34 

model: (a) a cylindrical asphalt concrete subject to a uniaxial cyclic compression load; and (b) a pavement 35 

structure subject to a locally cyclic loading. The laboratory test results and field measurements were 36 

compared with the modeled responses to validate the models before comparing with the reference solutions. 37 

Results indicate that the temporal homogenization-based viscoelastic model saves considerable 38 

computational cost and maintains a satisfactory accuracy. The absolute values of relative error of the 39 

modeled responses between the time homogenization and reference solutions are lower than 1% and 4% 40 

for the cylindrical asphalt concrete and pavement structure under locally cyclic loadings, respectively. 41 

Based on the proposed computational approach, only 4 minutes are needed to model the response of a 42 

cylindrical asphalt concrete subject to 104 repeated load cycles under a uniaxial compression load. The 43 

computational time is reduced from 7 hours of the reference solution to 38 minutes of the temporal 44 

homogenization solution to model 103 load cycles of a viscoelastic pavement structure. 45 

 46 

AUTHOR KEYWORDS: Temporal Homogenization; Asymptotic Analysis; Viscoelasticity; Cyclic 47 

Loading; Asphalt Concrete; Asphalt Pavement 48 
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INTRODUCTION 53 

 54 

Accurately predicting the long-term performance and obtaining the essential design criteria (e.g., 55 

rut depth and percent of the crack area) of asphalt pavements is one of the most significant challenges in 56 

pavement engineering. In the past decades, considerable regressions and field calibrations were employed 57 

to develop the empirical functions which transfer the mechanical responses at specific pavement positions 58 

(e.g., the bottom of asphalt layer) to the long-term performance indices of asphalt pavements (Abdelfattah 59 

et al. 2021; Tarefder and Rodriguez-Ruiz 2013). The approach above consists of the long-term performance 60 

prediction of the mainstream pavement design method known as the Mechanistic-Empirical Pavement 61 

Design Guide (MEPDG) (AASHTO 2020). In MEPDG, each pavement distress prediction model requires 62 

inputting the responses calculated by the structural response model which is a multilayer elastic program 63 

(Kim et al. 2007). As can be seen, the main drawbacks of the structural response model are: (a) unrealistic 64 

to describe the complex mechanical behaviors (viscoelasticity, viscoplasticity, and continuum damage) of 65 

asphalt concretes; and (b) unable to provide the accurate stress state at each load cycle. 66 

 67 

The current pavement performance models in MEPDG were proposed 30 years ago; thus, the main 68 

obstacles for developing a pure mechanistic design method at that time were the lack of advanced 69 

computing platforms and efficient computational approaches (Lytton et al. 1993). From the perspective of 70 

constitutive modeling of asphalt pavements, the asphalt concrete is regarded as a viscoelastic material and 71 

its constitutive relation is usually described via the convolutional integrations (Kim 2009). Time integration 72 

algorithms are needed when one is trying to model the mechanical responses of asphalt pavements using 73 

finite element (FE) modeling. In this case, obtaining the pavement long-term (e.g., 20 years) responses is 74 

impossible based on the conventional time-domain computation, as the time steps in FE modeling are of 75 

the order of seconds. From the perspective of initial-boundary value problems (IBVPs) for asphalt 76 

pavements, the vehicle load is usually simplified as a cyclic loading input with a haversine waveform, 77 

which means the time steps in the FE modeling need to be small enough to capture the rapid variations of 78 
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mechanical responses within each load cycle. Over millions of load cycles need to be modeled to obtain the 79 

long-term performance of asphalt pavements; thus, the required computational resources are almost 80 

unaffordable even for a high-performance computing platform. 81 

 82 

An ideal approach for predicting the long-term pavement performance is to conduct the cycle-by-83 

cycle modeling of pavement responses, as the permanent deformation and structural damage are intimately 84 

associated with the stress state at each load cycle. Different methods have been utilized to improve the 85 

modeling efficiency of pavement responses, including using a 2D plane strain model or a semi-analytical 86 

FE modeling (Chen et al. 2017; Shen et al. 2022). However, it is still unknown if the methods above can 87 

provide the pavement responses under a large number of load cycles within an acceptable computing time. 88 

Another method for pavement long-term performance prediction was developed by the North Carolina State 89 

University (NCSU) (Eslaminia et al. 2012; Eslaminia and Guddati 2016). Compared to the MEPDG, this 90 

method uses a layered viscoelastic continuum damage (LVECD) program for calculating the pavement 91 

responses and damage conditions, while still requiring an extrapolation scheme so that the millions of load 92 

cycles can be reduced to the hundred independent analyses. 93 

 94 

The above approaches are usually used in the asphalt pavement engineering for the long-term 95 

pavement performance prediction. However, modeling the mechanical responses of solids under large 96 

numbers of cyclic loading is widely needed in the field of solid mechanics (Lemaitre and Desmorat 2005). 97 

Many methods have been proposed for handling the long-term mechanical response modeling of different 98 

materials with varying constitutive relations (e.g., cement concretes, polymers, metals, and biomaterials), 99 

including the large time increments (LATIN) method, cycle jump, and temporal homogenization (Cognard 100 

and Ladevèze 1993; Cojocaru and Karlsson 2006; Devulder et al. 2010). The key concept of the above 101 

computational methods is to apply a large time increment and separate the IBVP into a global and a local 102 

one via numerical approximations. The idea seems intuitive as modeling the mechanical response evolution 103 

of solids under large numbers of cyclic loading is indeed a multiscale problem in the time domain, as it 104 
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involves the slow evolution in the long term and the fast variations in the short term. The temporal 105 

homogenization method inserts the numerical approximation formula into the material constitutive relations, 106 

while the other two methods require an external extrapolation algorithm and the balance between the 107 

computational efficiency and accuracy highly depends on the user-defined extrapolation scheme. Thus, this 108 

paper selects the temporal homogenization method to model the long-term mechanical responses of asphalt 109 

pavements, although all three methods have good computational gain. This paper is one of the few attempts 110 

in the pavement engineering field to apply the temporal homogenization method for modeling the pavement 111 

long-term mechanical responses with a focus on the viscoelastic modeling (Behnke et al. 2019; Behnke and 112 

Kaliske 2018). By successfully implementing a mechanistic framework for the long-term pavement 113 

performance prediction, the pavement design can more rely on the material inherent properties instead of 114 

using redundant empirical transfer functions.  115 

 116 

In summary, this paper focuses on introducing a highly efficient computational model based on the 117 

temporal homogenization to predict the long-term mechanical responses of the viscoelastic asphalt 118 

concretes and pavement structures. This paper is organized as follows. The next section details the 119 

fundamentals and formula of the temporal homogenization method and its implementation in the 120 

constitutive relations of viscoelastic solids (asphalt concrete is taken as a verification example). The 121 

following section presents the modeling scenarios including a cylindrical asphalt concrete sample and a 122 

pavement structure and shows the validation results of the temporal homogenization and reference 123 

solutions. Conclusions and recommendations are summarized in the last section. 124 

 125 

 126 

 127 

 128 

 129 

 130 
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METHODOLOGIES 131 

 132 

Fundamentals of Temporal Homogenization Method 133 

 134 

The temporal homogenization method was proposed based on the asymptotic analysis/series, a 135 

mathematical approximation for describing limiting behaviors. It is a direct extension of the spatial 136 

homogenization which definition is shown as follows. If the period of the structure is small compared to 137 

the size of the region in which the system is to be studied, then an asymptotic analysis is called for: to obtain 138 

an asymptotic expansion of the solution in terms of a small parameter 𝜍 which is the ratio of the period of 139 

the structure to a typical length in the region. In other words, to obtain by systematic expansion procedures 140 

the passage from a microscopic description to a macroscopic description of the behavior of the system 141 

(Bensoussan et al. 1978; Guennouni 1988; Yu and Fish 2002a). To solve the above problems, using the 142 

multiple (time or space) scales to construct the asymptotic expansion is one of the solutions. 143 

 144 

Based on the descriptions above, the temporal homogenization method is used to address the IBVPs 145 

with rapidly varying periodic loading via two time scales. One is measuring the evolutions within the entire 146 

loading time (in the slow time scale), and the other is measuring the variations within one load cycle (in the 147 

fast time scale). The following content details the concepts and formula of temporal homogenization. 148 

 149 

First of all, two time scales and a scaling parameter are introduced as shown in Figure 1, which 150 

has been proposed in the literature (Yu and Fish 2002a). For the viscoelastic materials under periodically 151 

cyclic loading, an intrinsic time 𝑡𝑟 is related to its relaxation time; it serves as the characteristic length of 152 

the slow time scale 𝑡 and describes a relatively long-term behavior compared to a single period of loading. 153 

Equation 1 shows the definition of 𝑡𝑟 (Yu and Fish 2002b). The period of external loading denoted by 𝜏0 154 

serves as the characteristic time length of the fast time scale 𝜏, describing the rapidly varying behavior 155 

within each load cycle. To characterize the fast-varying features of response fields (stress, strain, and 156 
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displacement) induced by the locally periodic loading, a small positive scaling parameter 𝜍 is defined in 157 

Equation 2 so that the fast time scale 𝜏 can be defined via Equation 3. With the 𝜏-periodicity assumption, 158 

all the response fields 𝜙 can be described using Equation 4. The first-order time differentiation of the 159 

response fields can be written as Equation 5 according to the chain rule. 160 

 𝑡𝑟 = 𝑂{‖𝑽𝒊𝒋𝒌𝒍‖ ‖𝑳𝒊𝒋𝒌𝒍‖⁄ } (1) 161 

where 𝑡𝑟 is the material intrinsic time that accounts for the slow time scale; ‖∗‖ is the norm of ∗; 𝑽𝒊𝒋𝒌𝒍 is 162 

the component of viscosity tensor; and 𝑳𝒊𝒋𝒌𝒍 is the component of elastic stiffness tensor. 163 

 𝜍 = 𝜏0 𝑡𝑟⁄ ,  𝜍 ≪ 1 (2) 164 

where 𝜍 is the scaling parameter for differentiating the two time scales; 𝜏0 and 𝑡𝑟  are the characteristic 165 

lengths of the fast time scale and slow time scale. 166 

 𝜏 = 𝑡 𝜍⁄  (3) 167 

where 𝜏 is the fast time scale and 𝑡 is the slow time scale. 168 

 𝜙𝜍(�⃗⃗� , 𝑇) = 𝜙(�⃗⃗� , 𝑡, 𝜏) = 𝜙(�⃗⃗� , 𝑡, 𝜏 + 𝑘𝜏0), 𝑘 ∈ ℤ (4) 169 

where �⃗⃗�  denotes the position vector in space; 𝑇 is the observation time in the natural time scale: 𝑇 = 𝑇(𝑡, 𝜏); 170 

𝜙𝜍 is the response field in the natural time scale; and 𝜙 is the response field in the combination of slow 171 

time scale and fast time scale. 172 

 �̇�𝜍 = 𝜙,𝑡 + 𝜍−1𝜙,𝜏 (5) 173 

where �̇�𝜍 =
𝑑𝜙𝜍

𝑑𝑇
; 𝜙,𝑡 =

𝜕𝜙

𝜕𝑡
; and 𝜙,𝜏 =

𝜕𝜙

𝜕𝜏
. 174 

 175 
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Figure 1. Illustration of two time scales. 176 

 177 

Secondly, another important concept of temporal homogenization is to use asymptotic expansion 178 

to represent each response field and achieve the decompositions of initial response fields which are in the 179 

natural time scale 𝑇. Supposing that every response field is periodic and the scaling parameter is small 180 

enough, 𝜙𝜍 can be expanded into an asymptotic series of powers of 𝜍, as shown in Equation 6 (Haouala 181 

and Doghri 2015). 182 

 𝜙𝜍 = ∑ 𝜍𝑛𝜙𝑛(𝑥 , 𝑡, 𝜏)∞
𝑛=0  (6) 183 

where 𝜙𝑛 are 𝜏-periodic functions; for the 𝜙𝑛, 𝑛 denotes the order of terms in the expansion; for the 𝜍𝑛, 𝑛 184 

denotes the power. This asymptotic expansion of the response fields can be regarded as consisting of a 185 

leading term 𝜙0(𝑥 , 𝑡, 𝜏), plus a series of terms with rapidly decreasing amplitude (Haouala and Doghri 186 

2015). 187 

 188 

Thirdly, to decompose the initial response fields into a global (in the slow time scale) and a local 189 

(in the fast time scale) part, a temporal averaging operator 〈•〉 on the 𝜏-periodic response fields is introduced 190 

in Equation 7. As can be seen, all the response fields only depend on the slow time scale after conducting 191 

the temporal averaging transformation. 192 

  〈𝜙〉(�⃗⃗� , 𝑡) =
1

𝜏0
∫ 𝜙(�⃗⃗� , 𝑡, 𝜏)

𝜏+𝜏0

𝜏
𝑑𝜏  (7) 193 

 194 

Thus, the following decompositions for each response field can be obtained: 195 

 𝝈𝒊𝒋
𝒎(�⃗⃗� , 𝑡, 𝜏) = 〈𝝈𝒊𝒋

𝒎〉(�⃗⃗� , 𝑡) + 𝚽𝒊𝒋
𝒎(�⃗⃗� , 𝑡, 𝜏) (8) 196 

 𝜺𝒊𝒋
𝒎(�⃗⃗� , 𝑡, 𝜏) = 〈𝜺𝒊𝒋

𝒎〉(�⃗⃗� , 𝑡) + 𝚿𝒊𝒋
𝒎(�⃗⃗� , 𝑡, 𝜏) (9) 197 

 𝒖𝒊
𝒎(�⃗⃗� , 𝑡, 𝜏) = 〈𝒖𝒊

𝒎〉(�⃗⃗� , 𝑡) + 𝝌𝒊
𝒎(�⃗⃗� , 𝑡, 𝜏) (10) 198 

where 𝝈𝒊𝒋
𝒎(�⃗⃗� , 𝑡, 𝜏), 𝜺𝒊𝒋

𝒎(�⃗⃗� , 𝑡, 𝜏), and 𝒖𝒊
𝒎(�⃗⃗� , 𝑡, 𝜏) are the stress, strain, and displacement fields for the original 199 

IBVP, respectively; 〈𝝈𝒊𝒋
𝒎〉(�⃗⃗� , 𝑡), 〈𝜺𝒊𝒋

𝒎〉(�⃗⃗� , 𝑡), and 〈𝒖𝒊
𝒎〉(�⃗⃗� , 𝑡) are the global part of the stress, strain, and 200 
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displacement fields in the slow time scale; 𝚽𝒊𝒋
𝒎(�⃗⃗� , 𝑡, 𝜏), 𝚿𝒊𝒋

𝒎(�⃗⃗� , 𝑡, 𝜏), and 𝝌𝒊
𝒎(�⃗⃗� , 𝑡, 𝜏) are the local part of 201 

the stress, strain, and displacement fields in the fast time scale. 202 

 203 

Temporal Homogenization Formula for Asphalt Concretes  204 

 205 

In this paper, an explicit constitutive relation of a solid-like generalized Maxwell model is used for 206 

describing the linear viscoelasticity of asphalt concretes, as shown in Equations 11 and 12 (Zhang and 207 

Zhang 2023). The explicit constitutive equation is clearer and easier to use in writing the weak formula and 208 

time discretization in FE modeling. 209 

 𝛔𝒊𝒋
𝝇

= 𝐾∞𝜺𝒌𝒌
𝝇,𝒗𝒆

𝜹𝒊𝒋 + 2𝐺∞𝒆𝒊𝒋
𝝇,𝒗𝒆

+ ∑ [𝐾𝑚(𝜺𝒌𝒌
𝝇,𝒗𝒆

− 𝜺𝒌𝒌
𝝇,𝒎∙𝒗𝒊

)𝜹𝒊𝒋 + 2𝐺𝑚 (𝒆𝒊𝒋
𝝇,𝒗𝒆

− 𝒆𝒊𝒋
𝝇,𝒎∙𝒗𝒊

)]𝑀
𝑚=1  (11) 210 

 {
𝑎𝑇𝜏𝑚�̇�𝒌𝒌

𝝇,𝒎∙𝒗𝒊
+ 𝜺𝒌𝒌

𝝇,𝒎∙𝒗𝒊
− 𝜺𝒌𝒌

𝝇,𝒗𝒆
= 0

𝑎𝑇𝜏𝑚�̇�𝒊𝒋
𝝇,𝒎∙𝒗𝒊

+ 𝒆𝒊𝒋
𝝇,𝒎∙𝒗𝒊

− 𝒆𝒊𝒋
𝝇,𝒗𝒆

= 0
 (12) 211 

where 𝝈𝒊𝒋
𝝇

 is the stress tensor; 𝜺𝒌𝒌
𝝇,𝒗𝒆

 and 𝒆𝒊𝒋
𝝇,𝒗𝒆

are the viscoelastic volumetric and deviatoric strains, 212 

respectively; 𝜺𝒌𝒌
𝝇,𝒎∙𝒗𝒊

 and 𝒆𝒊𝒋
𝝇,𝒎∙𝒗𝒊

 are the viscous volumetric and deviatoric strains resulted from the mth 213 

dashpot (m=1, 2, …, M) in the generalized Maxwell model; 𝐾∞ and 𝐺∞ are the long-term equilibrium bulk 214 

and shear moduli; 𝐾𝑚  and 𝐺𝑚  are the components of the relaxation bulk and shear moduli; 𝜏𝑚  are the 215 

components of relaxation time; 𝜹𝒊𝒋 is the Kronecker delta; and 𝑎𝑇 is the time-temperature shift factor. 216 

 217 

The asymptotically expanded formula of Equations 11 and 12 can be written as follows based on 218 

Equation 6. 219 

 ∑ 𝜍𝑛∞
𝑛=0 𝛔𝒊𝒋

𝒏 = 𝐾∞ ∑ 𝜍𝑛∞
𝑛=0 𝜺𝒌𝒌

𝒏,𝒗𝒆𝜹𝒊𝒋 + 2𝐺∞ ∑ 𝜍𝑛∞
𝑛=0 𝒆𝒊𝒋

𝒏,𝒗𝒆 + ∑ [𝐾𝑚(∑ 𝜍𝑛∞
𝑛=0 𝜺𝒌𝒌

𝒏,𝒗𝒆 −𝑀
𝑚=1220 

∑ 𝜍𝑛∞
𝑛=0 𝜺𝒌𝒌

𝒏,𝒎∙𝒗𝒊)𝜹𝒊𝒋 + 2𝐺𝑚(∑ 𝜍𝑛∞
𝑛=0 𝒆𝒊𝒋

𝒏,𝒗𝒆 − ∑ 𝝇𝒏∞
𝒏=𝟎 𝒆𝒊𝒋

𝒏,𝒎∙𝒗𝒊)] (13) 221 

 {
𝑎𝑇𝜏𝑚 ∑ 𝜍𝑛∞

𝑛=0 �̇�𝒌𝒌
𝒏,𝒎∙𝒗𝒊 + ∑ 𝜍𝑛∞

𝑛=0 𝜺𝒌𝒌
𝒏,𝒎∙𝒗𝒊 − ∑ 𝜍𝑛∞

𝑛=0 𝜺𝒌𝒌
𝒏,𝒗𝒆 = 0

𝑎𝑇𝜏𝑚 ∑ 𝜍𝑛∞
𝑛=0 �̇�𝒊𝒋

𝒏,𝒎∙𝒗𝒊 + ∑ 𝜍𝑛∞
𝑛=0 𝒆𝒊𝒋

𝒏,𝒎∙𝒗𝒊 − ∑ 𝜍𝑛∞
𝑛=0 𝒆𝒊𝒋

𝒏,𝒗𝒆 = 0
 (14) 222 

 223 
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Here the idea is to equate the terms having the same power of 𝜍 of Equations 13 and 14 to obtain 224 

the different order of problems (Bhattacharyya et al. 2020). 225 

-1 order problem: 226 

Equate the terms having 𝜍−1 in Equations 13 and 14, then it yields: 227 

 {
𝜺𝒌𝒌
𝟎,𝒎∙𝒗𝒊

,𝜏
= 0

𝒆𝒊𝒋
𝟎,𝒎∙𝒗𝒊

,𝜏
= 0

 (15) 228 

 229 

Equation 15 means the zero-order terms of viscous volumetric and deviatoric strains for each 230 

Maxwell brunch, 𝜺𝒌𝒌
𝟎,𝒎∙𝒗𝒊

 and 𝒆𝒊𝒋
𝟎,𝒎∙𝒗𝒊

, only depend on the slow time scale. Based on this finding and the 231 

Equations 7 and 9, the following relations can be concluded: 232 

 {
𝜺𝒌𝒌
𝟎,𝒎∙𝒗𝒊 = 〈𝜺𝒌𝒌

𝟎,𝒎∙𝒗𝒊〉

𝒆𝒊𝒋
𝟎,𝒎∙𝒗𝒊 = 〈𝒆𝒊𝒋

𝟎,𝒎∙𝒗𝒊〉
 (16) 233 

0 order problem: 234 

Equate the terms without 𝜍 in Equations 13 and 14, then it yields: 235 

 𝛔𝒊𝒋
𝟎 = 𝐾∞𝜺𝒌𝒌

𝟎,𝒗𝒆𝜹𝒊𝒋 + 2𝐺∞𝒆𝒊𝒋
𝟎,𝒗𝒆 + ∑ [𝐾𝑚(𝜺𝒌𝒌

𝟎,𝒗𝒆 − 𝜺𝒌𝒌
𝟎,𝒎∙𝒗𝒊)𝜹𝒊𝒋 + 2𝐺𝑚(𝒆𝒊𝒋

𝟎,𝒗𝒆 − 𝒆𝒊𝒋
𝟎,𝒎∙𝒗𝒊)]𝑀

𝑚=1  (17) 236 

 {
𝑎𝑇𝜏𝑚 (𝛆𝒌𝒌

𝟎,𝒎∙𝒗𝒊

,𝑡
+ 𝛆𝒌𝒌

𝟏,𝒎∙𝒗𝒊

,𝜏
) + 𝜺𝒌𝒌

𝟎,𝒎∙𝒗𝒊 − 𝜺𝒌𝒌
𝟎,𝒗𝒆 = 0

𝑎𝑇𝜏𝑚 (𝐞𝒊𝒋
𝟎,𝒎∙𝒗𝒊

,𝑡
+ 𝐞𝒊𝒋

𝟏,𝒎∙𝒗𝒊

,𝜏
) + 𝒆𝒊𝒋

𝟎,𝒎∙𝒗𝒊 − 𝒆𝒊𝒋
𝟎,𝒗𝒆 = 0

 (18) 237 

 238 

The zero-order constitutive relation in the slow time scale is shown as follows by applying the 239 

averaging operator defined in Equation 7. 240 

 〈𝛔𝒊𝒋
𝟎 〉 = 𝐾∞〈𝜺𝒌𝒌

𝟎,𝒗𝒆〉𝜹𝒊𝒋 + 2𝐺∞〈𝒆𝒊𝒋
𝟎,𝒗𝒆〉 + ∑ [𝐾𝑚(〈𝜺𝒌𝒌

𝟎,𝒗𝒆〉 − 〈𝜺𝒌𝒌
𝟎,𝒎∙𝒗𝒊〉)𝜹𝒊𝒋 + 2𝐺𝑚(〈𝒆𝒊𝒋

𝟎,𝒗𝒆〉 − 〈𝒆𝒊𝒋
𝟎,𝒎∙𝒗𝒊〉)]𝑀

𝑚=1 (19) 241 

 {
𝑎𝑇𝜏𝑚〈𝛆𝒌𝒌

𝟎,𝒎∙𝒗𝒊〉,𝑡 + 〈𝜺𝒌𝒌
𝟎,𝒎∙𝒗𝒊〉 − 〈𝜺𝒌𝒌

𝟎,𝒗𝒆〉 = 0

𝑎𝑇𝜏𝑚〈𝒆𝒊𝒋
𝟎,𝒎∙𝒗𝒊〉,𝑡 + 〈𝒆𝒊𝒋

𝟎,𝒎∙𝒗𝒊〉 − 〈𝒆𝒊𝒋
𝟎,𝒗𝒆〉 = 0

 (20) 242 

 243 
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The zero-order constitutive relation in the fast time scale is shown as follows based on Equations 244 

8, 9, and 16 to 20. 245 

 𝚽𝒊𝒋
𝟎 = 𝐾∞𝚿𝒌𝒌

𝟎,𝒗𝒆𝜹𝒊𝒋 + 2𝐺∞℮𝒊𝒋
𝟎,𝒗𝒆 + ∑ [𝐾𝑚(𝚿𝒌𝒌

𝟎,𝒗𝒆)𝜹𝒊𝒋 + 2𝐺𝑚(℮𝒊𝒋
𝟎,𝒗𝒆)]𝑀

𝑚=1  (21) 246 

 247 

Summary of The Initial-Boundary Value Problems 248 

 249 

Including the constitutive relations in Equations 11 and 12, Table 1 summaries the IBVP for a 250 

linear viscoelastic solid. Here, 𝒃𝒊 is the body force; 𝝈𝒊𝒋
𝝇

 and 𝒆𝒊𝒋
𝝇

 are the components of stress and strain 251 

tensors, respectively; 𝒖𝒊
𝝇
 is the components of displacement vector; �̃�𝒊 is the initial displacement; �̅�𝒊 and 𝒇𝒊 252 

are the prescribed displacement and traction, respectively; 𝒏𝒊  is the normal vector component on the 253 

boundary; 𝑇 is the observation time in the natural time scale; 𝜏0 is the load period in the fast time scale; Ω 254 

denotes the spatial domain while Γ𝑢 and Γ𝑓 are the corresponding boundary portions where displacements 255 

�̅�𝒊 and tractions 𝒇𝒊 are prescribed. 256 

 257 

 258 

Table 1. The initial-boundary value problem for a linear viscoelastic solid. 259 

Principle Formulation 

Equilibrium equation 𝝈𝒊𝒋,𝒋 + 𝒃𝒊(�⃗⃗� , 𝑡, 𝜏)=0 on Ω × (0, 𝑇) × (0, 𝜏0) 

Constitutive equation Equations 11 and 12 

Kinematic equation 𝒆𝒊𝒋
𝝇

= (𝒖𝒊,𝒋
𝝇

+ 𝒖𝒋,𝒊
𝝇
) 2⁄  on Ω × (0, 𝑇) × (0, 𝜏0) 

Initial condition 𝒖𝒊
𝝇(�⃗⃗� , 𝑡 = 𝜏 = 0) = �̃�𝒊(�⃗⃗� ) on Ω 

Boundary condition 

𝒖𝒊
𝝇
= �̅�𝒊(�⃗⃗� , 𝑡, 𝜏) on Γ𝑢 × (0, 𝑇) × (0, 𝜏0) 

𝝈𝒊𝒋
𝝇
𝒏𝒋 = 𝒇𝒊(�⃗⃗� , 𝑡, 𝜏) on Γ𝑓 × (0, 𝑇) × (0, 𝜏0) 

 260 
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The IBVP in Table 1 can be divided into the global and local IBVPs in the slow time scale and fast 261 

time scale, as shown in Tables 2 and 3. Each constitutive relation is obtained from the previous section. 262 

The transformation of the equilibrium equation, kinematic equation, initial condition, and boundary 263 

condition to the global and local parts can be found in the literature (Yu and Fish 2002a).  264 

 265 

Table 2. The global initial-boundary value problem for a linear viscoelastic solid in the slow time scale. 266 

Principle Formulation 

Equilibrium equation 〈𝝈𝒊𝒋
𝟎 〉,𝑗 + 〈�̅�𝒊〉(�⃗⃗� , 𝑡) = 0 on Ω × (0, 𝑇) 

Constitutive equation Equations 19 and 20 

Kinematic equation 〈𝒆𝒊𝒋
𝟎 〉 = (〈𝒖𝒊,𝒋

𝟎 〉 + 〈𝒖𝒋,𝒊
𝟎 〉) 2⁄  on Ω × (0, 𝑇) 

Initial condition 〈𝒖𝒊
𝟎〉(�⃗⃗� , 𝑡 = 0) = �̃�𝒊(�⃗⃗� ) on Ω 

Boundary condition 

〈𝒖𝒊
𝟎〉 = 〈�̅�𝒊〉(�⃗⃗� , 𝑡) on Γ𝑢 × (0, 𝑇) 

〈𝝈𝒊𝒋
𝟎 〉𝒏𝒋 = 〈𝒇𝒊〉(�⃗⃗� , 𝑡) on Γ𝑓 × (0, 𝑇) 

 267 

 268 

Table 3. The local initial-boundary value problem for a linear viscoelastic solid in the fast time scale. 269 

Principle Formulation 

Equilibrium equation 𝚽𝒊𝒋,𝒋
𝟎 + �̅�𝒊 − 〈�̅�𝒊〉 = 0 on Ω × (0, 𝜏0) 

Constitutive equation Equation 21 

Kinematic equation 𝚿𝒊𝒋
𝟎 = (𝝌𝒊,𝒋

𝟎 + 𝝌𝒋,𝒊
𝟎 ) 2⁄  on Ω × (0, 𝜏0) 

Initial condition 𝝌𝒊
𝟎(�⃗⃗� , 𝜏 = 0) = 0 on Ω 

Boundary condition 

𝝌𝒊
𝟎 = �̅�𝒊 − 〈�̅�𝒊〉 on Γ𝑢 × (0, 𝜏0) 

𝚽𝒊𝒋
𝟎𝒏𝒋 = 𝒇𝒊 − 〈𝒇𝒊〉 on Γ𝑓 × (0, 𝜏0) 

 270 
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Based on Equations 8 to 10, the zero-order reference solutions of the given IVBP can be obtained 271 

by combining the solutions of the global part in the slow time scale and local part in the fast time scale, 272 

shown as follows: 273 

 𝝈𝒊𝒋
𝟎 (�⃗⃗� , 𝑡, 𝜏) = 〈𝝈𝒊𝒋

𝟎 〉(�⃗⃗� , 𝑡) + 𝚽𝒊𝒋
𝟎(�⃗⃗� , 𝑡, 𝜏) (22) 274 

 𝜺𝒊𝒋
𝟎 (�⃗⃗� , 𝑡, 𝜏) = 〈𝜺𝒊𝒋

𝟎 〉(�⃗⃗� , 𝑡) + 𝚿𝒊𝒋
𝟎(�⃗⃗� , 𝑡, 𝜏) (23) 275 

 𝒖𝒊
𝟎(�⃗⃗� , 𝑡, 𝜏) = 〈𝒖𝒊

𝟎〉(�⃗⃗� , 𝑡) + 𝝌𝒊
𝟎(�⃗⃗� , 𝑡, 𝜏) (24) 276 

 277 

Equations 11 and 12 are used as the material constitutive relation and a default time-dependent 278 

solver is used to obtain the reference solution/cycle-by-cycle simulation of the original IBVP in the natural 279 

time scale for comparing with the temporal homogenization solution in the next section. The absolute value 280 

of relative error (𝐴𝐸𝑅) and the computational gain between the reference and temporal homogenization 281 

solutions are used to evaluate the computational accuracy and efficiency of the proposed model, as shown 282 

in Equations 25 and 26. 283 

 𝐴𝐸𝑅 = |
𝜙𝑟𝑒𝑓−𝜙𝑇𝐻

𝜙𝑟𝑒𝑓
| (25) 284 

where 𝜙𝑟𝑒𝑓 and 𝜙𝑇𝐻 are the responses obtained from the reference solution and temporal homogenization 285 

solution, respectively. 286 

 Computational gain =
𝑇𝑟𝑒𝑓

𝑇𝑇𝐻
 (26) 287 

where 𝑇𝑟𝑒𝑓  and 𝑇𝑇𝐻  are the computation time for the reference solution and temporal homogenization 288 

solution, respectively. 289 

 290 

Figure 2 shows the flowchart of the temporal homogenization-based mechanical response 291 

modeling of viscoelastic solids (asphalt concrete is taken as a verification example in this paper). 292 

 293 
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 294 

Figure 2. Flowchart for the temporal homogenization-based mechanical response modeling of 295 

viscoelastic solids. 296 

 297 

VALIDATION EXAMPLES AND DISCUSSION 298 

 299 

Uniaxial Cyclic Loading on A Cylindrical Sample of Asphalt Concrete 300 

 301 

A stress-controlled uniaxial cyclic compression test with a haversine load waveform was performed 302 

on a cylindrical asphalt concrete sample. The used material properties and test results are from the authors’ 303 

previous work (Zhang et al. 2015). A two-dimensional axisymmetric model has been established using 304 
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COMSOL Multiphysics® to conduct the FE modeling of the cylindrical sample to obtain the reference and 305 

temporal homogenization solutions. The axial strains obtained by the laboratory test and reference solution 306 

will be compared for validating the FE model. The responses obtained by the reference and temporal 307 

homogenization solutions will be compared to validate the accuracy and efficiency of the proposed 308 

temporal homogenization-based viscoelastic modeling of asphalt concretes. The material properties and 309 

testing conditions are detailed in Table 4 and Figure 3. 310 

 311 

Table 4. Viscoelastic properties of the cylindrical sample (Poisson’s ratio: 0.32). 312 

Component of relaxation modulus (MPa) Component of relaxation time (s) 

E∞ 41.1 - 

E1 3093.4 τ1 1.0×10-6 

E2 6040.0 τ2 1.0×10-5 

E3 6994.3 τ3 1.0×10-4 

E4 5565.7 τ4 1.0×10-3 

E5 3292.7 τ5 1.0×10-2 

E6 1649.0 τ6 1.0×10-1 

E7 525.1 τ7 1.0×100 

E8 177.6 τ8 1.0×101 

E9 129.7 τ9 1.0×102 

E10 37.6 τ10 1.0×103 

E11 2.9 τ11 1.0×104 

 313 
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 314 

Figure 3. FE model of the cylindrical sample and the applied load. 315 

 316 

Figure 4 compares the axial strains measured by laboratory tests and predicted by the reference 317 

solution of FE modeling. As can be seen, the evolutions of the measured and modeled axial strains are 318 

consistent, although the measured strain is greater (the maximum difference is around 30 με at the end of 319 

test) than the modeled one. The possible reasons are: (a) the loading amplitude of the cyclic load test is 320 

higher than the dynamic modulus test whose results were used to determine the linear viscoelastic 321 

parameters in Table 4 (thus, the nonlinear response was not captured by the present linear material model); 322 

and (b) the viscoelastic model in this paper cannot capture the plastic deformation that may be induced to 323 

the sample. It can be concluded that the response fields of the cylindrical sample have not reached a steady 324 

state after 600 load cycles, which means more simulated load cycles are needed to capture a stable response 325 

in order to use the transfer functions in MEPDG.  326 

 327 
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Figure 4. Comparison of the axial strains obtained by laboratory tests and reference solution of FE 328 

modeling. 329 

 330 

Figures 5 and 6 demonstrate the comparisons of the reference solution and temporal 331 

homogenization solution for the IBVP via FE modeling. As can be seen, the temporal homogenization 332 

solution is consistent with the reference solution regarding on both of the long-term evolution and fast 333 

variation. Figure 7 shows the computational accuracy and efficiency of the time homogenization-based 334 

modeling. As it is seen, the relative error decreases in absolute value with the number of load cycles. It is 335 

lower than 1% when the load cycles are more than 100 and relatively high difference only exists in the first 336 

a few cycles. Thus, the temporal homogenization-based viscoelastic response modeling demonstrates a 337 

sufficient accuracy when considering cyclic loading regarding the sample scale simulation. In addition, the 338 

computational time of the reference solution is 59 minutes while the computational time of temporal 339 

homogenization solution is about 4 minutes for modeling 104 load cycles, based on a workstation with an 340 

Intel® i9 CPU (@ 2.3 GHz). Besides, the computational gain increases with the number of cycles according 341 

to Figure 7. Thus, the computational gain of the temporal homogenization method is remarkable without 342 

the loss of evident simulation accuracy. The improvement of the computational efficiency comes from: (a) 343 
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using a relatively large time increment to solve the global responses in the slow time scale; and (b) only 344 

one load cycle needs to be solved surrounding each slow time interval and the stress update is not necessary 345 

for the local responses in the fast time scale due to the periodic assumption (Lee and Shin 2023; Shin 2020; 346 

Yu and Fish 2002b). 347 

 348 

 

Figure 5. Comparison of the axial strains obtained by reference solution and temporal homogenization 349 

solution at different load cycles (TH refers to temporal homogenization). 350 

 351 



  

19 

 

 

Figure 6. Comparison of the radial strains obtained by reference solution and temporal homogenization 352 

solution at different load cycles (TH refers to temporal homogenization). 353 

 354 

 

Figure 7. Accuracy and efficiency examination of the temporal homogenization modeling on the 355 

cylindrical asphalt concrete sample. 356 

 357 
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Locally Cyclic Loading on An Asphalt Pavement Structure 358 

 359 

The mechanical responses of a typical semi-rigid base asphalt pavement structure are modeled 360 

using the reference and temporal homogenization methods. The pavement materials and structure are 361 

detailed in Tables 5 and 6 and Figure 8, adopted from the authors’ previous work (Luo et al. 2023). The 362 

three asphalt concrete layers are treated as the linear viscoelastic materials and the remaining layers are 363 

linear elastic materials. There are four transverse strain sensors embedded in the four corners of a rectangle 364 

area at the bottom of the lower asphalt layer, as shown in Figure 8. Two types of axle load (100 kN and 365 

150 kN) were used to measure the pavement responses under normal and heavy vehicle load. The contact 366 

pressure of the two types of axle load were determined as 0.7 MPa and 0.91 MPa by the conversion 367 

relationship of Equation 27 (Li and Huang 2004). 368 

 
𝑝𝑖

𝑝0
= (

𝑃𝑖

𝑃0
)
0.65

 (27) 369 

where 𝑝𝑖 and 𝑃𝑖 are the nonstandard contact pressure (MPa) and nonstandard axle load (kN), respectively; 370 

𝑝0 = 0.7 MPa is the standard contact pressure; and 𝑃0 = 100 kN is the standard axle load. 371 

 372 

Table 5. Material properties for each layer. 373 

Material type Layer Density (kg/m3) Poisson’s ratio Modulus (MPa) 

SMA-13, linear viscoelastic Upper asphalt layer 2243 0.3 Table 6 

SUP-20, linear viscoelastic Middle asphalt layer 2243 0.3 Table 6 

SUP-25, linear viscoelastic Lower asphalt layer 2243 0.3 Table 6 

Upper CBM, linear elastic Upper base layer 2350 0.35 11500 

Lower CBM, linear elastic Lower base layer 2350 0.35 8500 

Soil, linear elastic Subgrade 2400 0.4 60 

Note: SMA-13 refers to the stone mastic asphalt concrete with a 13 mm NMAS; SUP-20 refers to the Superpave 374 

asphalt concrete with a 20 mm NMAS; SUP-25 refers to the Superpave asphalt concrete with a 25 mm NMAS; CBM 375 

refers to the cement stabilized macadam; NMAS refers to the nominal maximum aggregate size. 376 
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 377 

Table 6. Viscoelastic properties of the three asphalt concretes. 378 

 Component of relaxation modulus (MPa) Component of relaxation time (s) 

 SMA-13 SUP-20 SUP-25  

E∞ 13.0 11.5 14.2 - 

E1 1631.9 1637.8 2246.9 τ1 1.0×10-6 

E2 1102.2 2294.9 7272.1 τ2 1.0×10-5 

E3 3476.9 7649.7 8808.9 τ3 1.0×10-4 

E4 3659.7 5308.0 8027.5 τ4 1.0×10-3 

E5 2759.0 3092.8 5752.7 τ5 1.0×10-2 

E6 1188.9 1320.9 2433.9 τ6 1.0×10-1 

E7 579.6 579.5 921.7 τ7 1.0×100 

E8 9.8 24.6 74.0 τ8 1.0×101 

E9 32.7 31.2 125.4 τ9 1.0×102 

E10 39.4 26.4 53.3 τ10 1.0×103 

E11 55.7 32.4 150.4 τ11 1.0×104 

 379 

  

(a) (b) 



  

22 

 

  

(c) (d) 

Figure 8. Illustrations of pavement structure, strain sensor position, and field test: (a) pavement structure 380 

in vertical direction; (b) layout of the sensors and tire load; (c) embedded strain sensors; (d) creep-381 

recovery field loading test. 382 

 383 

Due to the limitations of monitoring resolution and sampling frequency of the strain sensors, the 384 

field loading scheme was designed as a static loading with a creep (7 min) and recovery (5 min) procedure. 385 

A three-dimensional pavement FE model was developed based on the exact structural and material 386 

information, as shown in Figure 9-a. All layers are assumed to be fully continuous. To validate the 387 

pavement FE model via the measured transverse strain, a creep and recovery scenario was simulated with 388 

the same field loading procedure, as shown in Figure 9-c. The contact area of the tire load was simplified 389 

as a square area with 0.3 m in length. Figure 10 shows the comparison between the measured and modeled 390 

strain responses for the two contact pressures. The discrepancy at the high load level may be due to the 391 

presented viscoelastic model cannot capture the plastic deformation of asphalt concretes, so the residual 392 

strains at the end of recovery are almost the same under the two contact pressures. However, the modeled 393 

strains are overall consistent with the field measurements and the creep-recovery features can be well 394 

captured. Thus, the pavement FE model can be further used for comparing the accuracy and efficiency of 395 

the reference and time homogenization modeling subject to large numbers of cyclic loading. 396 

 397 
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(a) 

 

(b) 
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(c) (d) 

Figure 9. Illustrations of pavement FE model and loading schemes: (a) a quarter of FE model; (b) cross 398 

section of pavement structure; (c) loading scheme of the creep-recovery field test to validate the FE 399 

model; (d) cyclic loading to compare the reference and time homogenization solutions. 400 

 401 

 402 

Figure 10. Comparison of the transverse strains obtained by field measurements and FE modeling for the 403 

creep-recovery loadings subject to two types of contact pressure. 404 

 405 
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In order to compare the reference and time homogenization solutions for a pavement structure 406 

under locally cyclic loading (Figure 9-d), two critical positions (points A and B in Figure 9-b) are selected 407 

to present their mechanical responses. Point A is at the bottom of the asphalt layer on the central line of the 408 

loading area and point B is at the middle of the asphalt layer on the central line of the loading area. Based 409 

on the current pavement design guide, the transverse strain of point A and vertical stress of point B are 410 

presented as the critical responses for the distress prediction models of asphalt pavements.  411 

 412 

The results indicate that the temporal homogenization solution agrees well with the reference 413 

solution, as shown in Figures 11 and 12. The absolute value of relative error for the transverse strain of 414 

point A and vertical stress of point B are below 1% and 4% after 100 load cycles, which can be found in 415 

Figure 13. The computational time is reduced from 7 hours of the reference solution to around 38 minutes 416 

of the temporal homogenization solution for 103 load cycle simulation. An extrapolation regarding the 417 

computational gain versus the number of load cycles has been made in Figure 13. Assuming the annual 418 

average daily traffic (AADT) is 103, the temporal homogenization-based modeling approach can be 419 

approximately 103 times quicker than the reference solution to simulate the pavement responses after 27 420 

years use (107 load cycles). Thus, it seems possible now to model the pavement responses and predict its 421 

long-term performance via the temporal homogenization method with an acceptable computing time.  422 

 423 
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Figure 11. Comparison of the transverse strains (𝑥-direction normal strain) of point A obtained by 424 

reference solution and temporal homogenization solution at different load cycles (TH refers to temporal 425 

homogenization). 426 

 427 
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Figure 12. Comparison of the vertical stresses (𝑧-direction normal stress) of point B obtained by 428 

reference solution and temporal homogenization solution at different load cycles (TH refers to temporal 429 

homogenization). 430 

 431 

 

Figure 13. Accuracy and efficiency examination of the temporal homogenization modeling on the asphalt 432 

pavement structure. 433 
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CONCLUSIONS 435 

 436 

This study introduces a highly efficient computational model to compute the viscoelastic responses 437 

of asphalt concretes and pavement structures under large numbers of cyclic loading. Multiple time scales 438 

were applied to an explicit constitutive relation of asphalt concretes to obtain the formula of global and 439 

local IBVPs. The temporal homogenization-based solutions were compared with the testing results and 440 

reference solutions for a cylindrical sample and a pavement structure to validate its computational accuracy 441 

and efficiency. The major conclusions are as follows: 442 

 443 

• An explicit constitutive relation for viscoelastic solids in multiple time scales is developed based 444 

on the temporal homogenization. 445 

• The temporal homogenization-based viscoelastic model saves considerable computational cost and 446 

maintains a satisfactory accuracy compared to the reference solution. 447 

• The absolute values of relative error of the modeled responses between the time homogenization 448 

and reference solutions are lower than 1% and 4% for the cylindrical asphalt concrete and pavement 449 

structure under locally cyclic loadings, respectively. 450 

• By using the proposed computational approach, only 4 minutes are needed to model the responses 451 

of a cylindrical asphalt concrete subject to 104 repeated load cycles under a uniaxial compression load.  452 

• The computational time is reduced from 7 hours of the reference solution to 38 minutes of the 453 

temporal homogenization solution to model 103 load cycles of a pavement structure. 454 

 455 

Future work will focus on predicting the pavement fatigue failure under cyclic loading by 456 

expanding the present temporal homogenization-based viscoelastic model to a viscoelastic-damage model. 457 

 458 

 459 
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• Transverse strain of the creep-recovery test on the field pavement section. 465 

 466 

ACKNOWLEDGMENTS 467 

 468 

The authors would like to acknowledge the financial support of a PhD studentship provided by the 469 

University of Nottingham, Nynas, and Colas. This work is also supported by the Asphalt Institute 470 

Foundation (AIF). This paper is supported by the Engineering and Physical Sciences Research Council 471 

(EPSRC) under Grant number: EP/W000369/1. 472 

 473 

REFERENCES 474 

 475 

AASHTO. 2020. Mechanistic-Empirical Pavement Design Guide: A Manual of Practice. 476 

American Association of State Highway and Transportation Officials, Washington, DC. 477 

Abdelfattah, H. F. H., H. Baaj, and H. J. Kadhim. 2021. “Calibration of MEPDG permanent 478 

deformation models using Hamburg Wheel Rut Tester and field data.” International Journal 479 

of Pavement Engineering, 0 (0): 1–16. Taylor & Francis. 480 

https://doi.org/10.1080/10298436.2021.1937622. 481 

Behnke, R., and M. Kaliske. 2018. “Square block foundation resting on an unbounded soil layer: 482 

Long-term prediction of vertical displacement using a time homogenization technique for 483 

dynamic loading.” Soil Dynamics and Earthquake Engineering, 115: 448–471. Elsevier Ltd. 484 

https://doi.org/10.1016/j.soildyn.2018.07.045. 485 

Behnke, R., I. Wollny, F. Hartung, and M. Kaliske. 2019. “Thermo-mechanical finite element 486 

prediction of the structural long-term response of asphalt pavements subjected to periodic 487 

traffic load: Tire-pavement interaction and rutting.” Comput Struct, 218: 9–31. Elsevier Ltd. 488 

https://doi.org/10.1016/j.compstruc.2019.04.003. 489 



  

30 

 

Bensoussan, A., J.-L. Lions, and G. Papanicolaou. 1978. Asymptotic Analysis for Periodic 490 

Structures. North-Holland Publishing Company. 491 

Bhattacharyya, M., D. Dureisseix, and B. Faverjon. 2020. “A unified approach based on temporal 492 

homogenisation and cycle jump for thermo-mechanical combined cycle fatigue.” Int J 493 

Fatigue, 131. Elsevier Ltd. https://doi.org/10.1016/j.ijfatigue.2019.105320. 494 

Chen, F., R. Balieu, and N. Kringos. 2017. “Thermodynamics-based finite strain viscoelastic-495 

viscoplastic model coupled with damage for asphalt material.” Int J Solids Struct, 129: 61–496 

73. Elsevier Ltd. https://doi.org/10.1016/j.ijsolstr.2017.09.014. 497 

Cognard, J.-Y., and P. Ladevèze. 1993. “A large time increment approach for cyclic 498 

viscoplasticity.” Int J Plast, 9: 141–157. https://doi.org/10.1016/0749-6419(93)90026-M. 499 

Cojocaru, D., and A. M. Karlsson. 2006. “A simple numerical method of cycle jumps for cyclically 500 

loaded structures.” Int J Fatigue, 28 (12): 1677–1689. 501 

https://doi.org/10.1016/j.ijfatigue.2006.01.010. 502 

Devulder, A., D. Aubry, and G. Puel. 2010. “Two-time scale fatigue modelling: Application to 503 

damage.” Comput Mech, 45 (6): 637–646. Springer Verlag. https://doi.org/10.1007/s00466-504 

010-0476-2. 505 

Eslaminia, M., and M. N. Guddati. 2016. “Fourier-finite element analysis of pavements under 506 

moving vehicular loading.” International Journal of Pavement Engineering, 17 (7): 602–614. 507 

Taylor and Francis Ltd. https://doi.org/10.1080/10298436.2015.1007237. 508 

Eslaminia, M., S. Thirunavukkarasu, M. N. Guddati, and Y. R. Kim. 2012. “Accelerated Pavement 509 

Performance Modeling Using Layered Viscoelastic Analysis.” 497–506. 510 

Guennouni, T. 1988. “Sur une méthode de calcul de structuressoumises à des chargements 511 

cycliques :l’homogénéisation en temps.” Mathematical Modelling and Numerical Analysis, 512 

22. 513 

Haouala, S., and I. Doghri. 2015. “Modeling and algorithms for two-scale time homogenization of 514 

viscoelastic-viscoplastic solids under large numbers of cycles.” Int J Plast, 70: 98–125. 515 

Elsevier Ltd. https://doi.org/10.1016/j.ijplas.2015.03.005. 516 

Kim, R. 2009. Modeling of Asphalt Concrete. Modeling of Asphalt Concrete, (Y. Richard Kim, 517 

ed.). McGraw-Hill. 518 

Kim, S., H. Ceylan, and K. Gopalakrishnan. 2007. “Effect of M-E design guide inputs on flexible 519 

pavement performance predictions.” Road Materials and Pavement Design, 8 (3): 375–397. 520 

https://doi.org/10.3166/rmpd.8.375-397. 521 

Lee, W., and H. Shin. 2023. “Temporal homogenization formula for viscoelastic–viscoplastic 522 

model subjected to local cyclic loading.” Int J Numer Methods Eng, 124 (4): 808–833. John 523 

Wiley and Sons Ltd. https://doi.org/10.1002/nme.7143. 524 



  

31 

 

Lemaitre, J., and Rodrigue. Desmorat. 2005. Engineering damage mechanics : ductile, creep, 525 

fatigue and brittle failures. Springer. 526 

Li, H., and X. Huang. 2004. “Axle load conversion formula based on deflection equivalent for 527 

semi-rigid base asphalt pavement under heavy-load.” Journal of Highway and Transportation 528 

Research and Development, 21 (7): 5–8. 529 

Luo, X., H. Wang, S. Cao, J. Ling, S. Yang, and Y. Zhang. 2023. “A hybrid approach for fatigue 530 

life prediction of in-service asphalt pavement.” Philosophical Transactions of the Royal 531 

Society A: Mathematical, Physical and Engineering Sciences, 381 (2254). Royal Society 532 

Publishing. https://doi.org/10.1098/rsta.2022.0174. 533 

Lytton, R. L., J. Uzan, E. G. Fernando, R. Roque, D. Hiltunen, and S. M. Stoffels. 1993. 534 

Development and Validation of Performance Prediction Models and Specifications for 535 

Asphalt Binders and Paving Mixes. Shrp-a-357. 536 

Shen, K., H. Wang, H. Zhang, J. Tong, and X. Chen. 2022. “SAPAVE: an improved semi-537 

analytical FE program for dynamic viscoelastic analysis of asphalt pavement.” International 538 

Journal of Pavement Engineering, 23 (9): 3024–3035. Taylor and Francis Ltd. 539 

https://doi.org/10.1080/10298436.2021.1878516. 540 

Shin, H. 2020. “Temporal homogenization formulation on general linear viscoelastic materials 541 

subjected to locally periodic loading.” Int J Solids Struct, 196–197: 1–9. Elsevier Ltd. 542 

https://doi.org/10.1016/j.ijsolstr.2020.03.026. 543 

Tarefder, R., and J. I. Rodriguez-Ruiz. 2013. “Local calibration of MEPDG for flexible pavements 544 

in New Mexico.” J Transp Eng, 139 (10): 981–991. https://doi.org/10.1061/(ASCE)TE.1943-545 

5436.0000576. 546 

Yu, Q., and J. Fish. 2002a. “Temporal homogenization of viscoelastic and viscoplastic solids 547 

subjected to locally periodic loading.” Comput Mech, 29 (3): 199–211. Springer Verlag. 548 

https://doi.org/10.1007/s00466-002-0334-y. 549 

Yu, Q., and J. Fish. 2002b. “Multiscale asymptotic homogenization for multiphysics problems 550 

with multiple spatial and temporal scales: a coupled thermo-viscoelastic example problem.” 551 

Int J Solids Struct. https://doi.org/10.1016/S0020-7683(02)00255-X. 552 

Zhang, H., and Y. Zhang. 2023. “A time-temperature-ageing shift model for bitumen and asphalt 553 

mixtures based on free volume theory.” International Journal of Pavement Engineering, 24 554 

(1). Taylor and Francis Ltd. https://doi.org/10.1080/10298436.2022.2138882. 555 

Zhang, Y., B. Birgisson, and R. L. Lytton. 2015. “Weak Form Equation-Based Finite-Element 556 

Modeling of Viscoelastic Asphalt Mixtures.” Journal of Materials in Civil Engineering. 557 

https://doi.org/10.1061/(ASCE)MT.1943-5533. 558 

  559 


