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ABSTRACT: The newly isolated [FeFe]-hydrogenase 

CbA5H was characterized by FTIR spectroscopy cou-

pled to enzymatic activity assays. This showed for the 

first time that in this enzyme the oxygen-sensitive active 

state Hox can be simply and reversibly converted to the 

oxygen-stable inactive Hinact state. This suggests that ox-

ygen sensitivity is not an intrinsic feature of the catalytic 

center of [FeFe]-hydrogenases (H-cluster), opening new 

challenging perspectives on the oxygen sensitivity 

mechanism as well as new possibilities for the exploita-

tion in industrial applications. 

[FeFe]-hydrogenases are a vast class of redox en-

zymes that catalyze reversibly the reaction of H2 evolu-

tion by the catalytic center H-cluster (Fig. 1A).1 Several 

hundreds of sequenced genes can potentially express en-

zymes that are members of this class,2 but so far only 

few of them have been characterized.3-5 Thus, the isola-

tion and characterization of novel [FeFe]-hydrogenases 

is expected to provide novel important information.6,7,8 

A common feature to all [FeFe]-hydrogenases is oxy-

gen sensitivity: these enzymes are found in strict anaer-

obic or facultative anaerobic organisms and they are in-

activated by molecular oxygen. Oxygen inactivation is a 

complex mechanism, still under active debate. Variabil-

ity in the inactivation rate has been described between 

enzymes from different organisms.9-15 

Oxygen sensitivity is the main factor that hinders the 

exploitation of [FeFe]-hydrogenases for applicative pur-

poses3,16,17 as generally exposure to O2 leads to irreversi-

ble inactivation on a time scale of seconds. This is be-

lieved to be due to a partial degradation of the H-cluster, 

via a multistep process.14,15,18 Partial reversible reactiva-

tion in some [FeFe]-hydrogenases was previously re-

ported by electrochemical studies, but resulting from a 

very complex interplay of electrode potential and anaer-

obic/aerobic inactivation processes.12,13,19 Protein engi-

neering was used to generate [FeFe]-hydrogenase mu-

tants with slightly decreased oxygen sensitivity.20 

So far, the clearest exceptions to irreversible inactiva-

tion are the [FeFe]-hydrogenases from Desulfovibrio 
desulfuricans (DdH),21,22 D. vulgaris (DvH)23,24,25 and D. 

gigas.26 DdH is known to produce the inactive and oxy-

gen-stable redox state called Hinact (Fig. 1B).21,22 This 

state was originally identified in DdH preparations that 

have been purified aerobically.27 

 

Figure 1. A) Scheme of the H-cluster structure. B) Scheme 

of the H-cluster redox states and their interconversion, as 

known in DdH (black arrows).4,21,22 The red arrow marks 

the reversible transition described in this paper in CbA5H.  

Spectroscopic experiments showed that this form of 

the DdH enzyme can be activated by a reductive treat-

ment but, subsequently, the Hinact state cannot be formed 

again.13,21,22 Also, when the activated protein is exposed 

to oxygen, the H-cluster is degraded.13,28 In particular, 

spectro-electrochemical experiments on DdH have 

shown that Hinact can be reversibly converted into the in-

termediate state Htrans by a single electron reduction and 

that, subsequently, Htrans can be converted irreversibly 

into the active state Hox by a two electrons reduction. At-

tempts to prepare intentionally in vitro the Hinact state 

were usually unsuccessful21,22, with the exception of a 

single report of a complex procedure28 that could not be 

successfully reproduced21,22. Cyclic voltammetry exper-

iments showed the reversible formation of an inactive 

species under anaerobic conditions, but no spectroscopic 

evidence has determined its identity.9,16,29 



 

In this work, we report the first characterization of a 

novel monomeric [FeFe]-hydrogenase from the strain 

Clostridium beijerinckii SM10 that was isolated from an 

efficient bio-hydrogen pilot plant fed with vegetable 

wastes.6 The gene sequence was deposited in the NCBI 

database (accession KX147468) and the enzyme was re-

combinantly produced in E. coli under strict anaerobic 

conditions.30,31 

Phylogenetically, the enzyme belongs to cluster A5 

and has a modular structure M2c.5,32 For this reason, the 

enzyme has been named as CbA5H. Starting from the N-

terminus, it is composed by 1) a domain hosting the 

poorly characterized SLBB motif (soluble-ligand-

binding β-grasp fold);33 2) a domain hosting two 

[4Fe4S] centers that is homologous to bacterial ferre-

doxins and that is widely distributed in hydrogenases; 3) 

the H-domain hosting the catalytic center H-cluster, 

which shows high sequence similarity to other [FeFe]-

hydrogenases (See Fig. S1). 

When the enzyme is purified anaerobically in the 

presence of 2 mM sodium dithionite as oxygen scaven-

ger, it is active both in the H2 uptake assay and the H2 

evolution assay, with rates that are 158±34 and 751±91 

μmol H2 min-1 mg protein-1, respectively.  

A detailed FTIR analysis was performed to character-

ize the specific influence of the protein environment on 

the H-cluster properties in this hydrogenase. The as-

signment of the various signals to known redox states as 

discussed below, was obtained by comparison to data 

previously reported for other [FeFe]-hydrogenases.21,22,33 

The anaerobically purified enzyme mainly equilibrat-

ed in the Hox state, with minor contributions from the 

Hred state (fig. 2A). The FTIR spectral signature of the 

Hox is composed by five peaks at 2091, 2080, 1964, 

1940 and 1800 cm-1. The FTIR spectral signature of Hred 

was more difficult to identify, due to low intensity sig-

nals that could be identified at 2040, 1915 and 1893 cm-

1. Treatment of this sample with carbon monoxide 

caused a complete shift to the Hox-CO state (fig. 2B), 

whose spectral signature is composed by six peaks at 

2094, 2090, 2016, 1971, 1963 and 1807 cm-1. 

These data show that the structure of CbA5H H-

cluster is highly consistent with that of other [FeFe]-

hydrogenases:21,22,34,35 two terminal CO, two terminal 

CN and a bridging CO are coordinated to the [2Fe] sub-

cluster in the Hox state; upon reduction, the bridging CO 

is shifted to a semi-bridging position (the signal at 1800 

cm-1 in Hox shifts to 1893 cm-1 in Hred); upon CO expo-

sure, the new ligand binds to the vacant coordination of 

Fed, causing a vast rearrangement in the vibrational 

modes of all the ligands. 

Much more interestingly, treatment of the anaerobical-

ly purified protein with different organic oxidants, such 

as thionine (Em7 = +60 mV), 2,6-

dichlorophenolindophenol (DCIP, Em7 = +220 mV) or 

air (i.e. oxygen) produce samples displaying an homo-

geneous spectrum with the Hinact signature with signals 

at 2107, 2080, 2011, 1992 and 1840 cm-1 (fig. 2C, 2D, 

2E). The Hinact could be reconverted to a mixture of Hox 

and Hred by reducing treatment with sodium dithionite or 

H2 (fig. 2F and 2G). 

         

Figure 2. FTIR spectra of Clostridium beijerinckii [FeFe]-

hydrogenase CbA5H. A) After anaerobic purification, 

without further treatment. B) After CO treatment. C) After 

thionine oxidation (8-fold molar ratio). D) After DCIP oxi-

dation (24-fold molar ratio). D) After oxidation with air (10 

min). E) After oxidation with air and reduction with sodium 

dithionite (10-fold molar ratio). F) After oxidation with air 

and reduction with H2 (50 min). The protein concentration 

was 0.3-1 mM and opportune scaling factors were applied 

to the spectra for simpler comparison, as follows: B) x2. C) 

x3.5. D) x1.8. E) x1.6. F) x1.2. G) x2.4. 

These first evidences show that in Clostridium bei-

jerinckii [FeFe]-hydrogenase it is possible to convert the 

Hox state into the Hinact state and that the conversion is 

spontaneous upon oxidation by thionine or DCIP or by 

the oxygen present in air, while this has never been ob-

served in DdH, the Hinact to Hox reaction being irreversi-

ble, according to FTIR evidences.21,22 More detailed ex-

periments were carried out to correlate the spectral 

change to the catalytic rate of CbA5H. To confirm the 

functional properties of the different redox states of the 

H-cluster, the same sample was split: a part was used to 

acquire FTIR spectra (fig. 3) and the other part tested for 

H2 uptake activity (fig. 4). 

As already presented above, the anaerobically purified 

enzyme was a catalytically active mixture of Hox and 



 

Hred (Fig. 3A and 4) and it could be pushed towards the 

inactive Hinact by air treatment (Fig. 3B and 4). Subse-

quently, the enzyme could be completely reactivated by 

H2 treatment; after the reactivation, CbA5H equilibrated 

again in a mixture of Hox and Hred states, where the re-

duced state was more abundant (Fig. 3C and 4). 

 

Figure 3. FTIR spectra of CbA5H after anaerobic or aero-

bic purification and after various cycles of activa-

tion/inactivation. A) After anaerobic purification, without 

further treatment. B) The anaerobically purified sample af-

ter exposure to air (10 min). C) The anaerobically purified 

sample after exposure to air (10 min) followed by exposure 

to H2 (50 min). D) The anaerobically purified sample after 

exposure to air (10 min), followed by exposure to H2 (50 

min) and then air (10 min). E) The anaerobically purified 

sample after two cycles of exposure to air, followed by ex-

posure to H2. F) After aerobic purification, without further 

treatment. G) The aerobically purified sample after expo-

sure to H2 (50 min). H) The aerobically purified sample af-

ter exposure to H2 (50 min) followed by exposure to air (10 

min). The protein concentration was 0.8-1 mM and oppor-

tune scaling factors were applied to the spectra for simpler 

comparison, as follows: C) x1.5. D) x1.5. E) x1.5. 

Low intensity peaks at 2075 and 1980 cm-1 might sug-

gest the presence of a minor proportion of Htrans in this 

sample. Furthermore, after the reactivation, the enzyme 

could be converted again completely into Hinact by air 

treatment (Fig. 3D and 4). Once more, the resulting 
sample could be converted into an active mixture of Hox 

and Hred (Fig. 3E and 4), with low intensity peaks at 

2075 and 1987 cm-1 that might suggest the presence of a 

minor proportion of Htrans. 

These results show that, in CbA5H, the transition 

Hox/Hinact is completely reversible in both directions and 

that several cycles can be repeated without damaging the 

structural and functional properties of the enzyme. Con-

trol experiments on the O2 sensitive CaHydA confirmed 

instead all the signatures15 of O2 damage (see Fig. S4). 

 

Figure 4. Enzyme activity of samples presented in figure 3. 

Since CbA5H produced very intense and homogene-

ous Hinact spectra when exposed to air and the enzyme 

was stable, an aerobic purification was carried out. The 

enzyme was expressed under anaerobic conditions, but 

the purification was entirely carried out aerobically in 

the absence of dithionite. 

The aerobically purified sample displayed a homoge-

nous Hinact spectrum and it was catalytically inactive 

(Fig. 3F and 4). Also in this case, it was possible to reac-

tivate completely the enzyme with a H2 treatment: this 

sample showed a mixture of Hox and Hred signals and full 

H2 evolution activity (Fig. 3G and 4). Furthermore, this 

sample could be re-inactivated by air, displaying a ho-

mogeneous Hinact spectrum and strong activity loss (Fig. 

3H and 4). The low intensity signal at 2014-2015 cm-1 

present in most of the active CbA5H samples might be 

an unassigned vibrational mode that was previously ob-

served in reduced samples of DdH;21,22 alternatively, it 

might be due to a very low amount of Hox-CO, which is 

often found in [FeFe]-hydrogenases preparations. The 

low intensity signals at 2098-2099 and 2003 cm-1 pre-

sent in some of the inactive CbA5H samples could not 

be assigned to any previously described H-cluster signal 

or redox state. 

In conclusion, the data presented here show that in 

Clostridium beijerinckii [FeFe]-hydrogenase CbA5H the 

transition between the oxygen-sensitive catalytically ac-

tive Hox state and the oxygen-stable inactive Hinact state 

is completely reversible. The transition can be driven by 

mild organic oxidants, such as thionine or DCIP, or 

simply by exposure to the oxygen present in air. Moreo-

ver, the transition Hox/Hinact can be repeated several 

times (at least two), while in DdH after the first transi-

tion from Hinact to Hox the reverse reaction was impossi-

ble and oxygen damage was observed.  



 

These results give an original contribution to the dis-

cussion on oxygen sensitivity in [FeFe]-hydrogenases, 

because they show that irreversible oxygen sensitivity is 

not an intrinsic property of the H-cluster, but it is very 

strongly influenced by the protein environment. It seems 

clear that, upon oxygen exposure, the protein environ-

ment of different enzymes can tune the fate of the H-

cluster towards an irreversible O2 damage or a complete-

ly reversible transition to the oxygen-stable Hinact. 

The exact mechanism in CbA5H is currently under in-

vestigation: more detailed experiments will be per-

formed to assess if there are specific residues in the H-

domain that can influence the Hox/Hinact transition or if 

this novel effect is more specifically due to the accesso-

ry domains present in this new enzyme (SLBB, 

2[4Fe4S] ferredoxin-like). 

Another important conclusion is that air does not 

cause any irreversible damage to the enzyme, since the 

transition Hox/Hinact can be performed several times 

without any activity loss or spectral influence. The 

treatment did not result in significant appearance of Hox-

CO state, typical signature of H-cluster decomposition15.  

Consequently, these data open completely new per-

spectives for the exploitation of [FeFe]-hydrogenases in 

real applications. The use of CbA5H (or engineered en-

zymes with similar properties) would make the enzyme 

preparation, manipulation and storage much simpler 

than with any other [FeFe]-hydrogenase and pave the 

way for applicative exploitation of these highly efficient 

biocatalysts in hydrogen producing devices. 
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