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Abstract 

Continuum robots exhibit promising adaptability and dexterity for soft manipulation 

due to their intrinsic compliance. However, this compliance may lead to challenges in 

modeling as well as positioning and loading. In this paper, a virtual-work based static 

model is established to describe the deformation and mechanics of continuum robots 

with a generic rod-driven structure, taking the geometric constraint of the drive rods 

into account. Following this, this paper presents a novel variable-stiffness mechanism 

powered by a set of embedded Shape Memory Alloy (SMA) springs, which can make 

the drive rods ‘locked’ on the body structure with different configurations. The resulting 

effects of variable stiffness are then presented in the static model by introducing 

tensions of the SMA and friction on the rods. Compared with conventional models, 

there is no need to predefine the actuation forces of the drive rods, but only actuation 

displacements are used in this new mechanism system with stiffness being regulated. 

As a result, the phenomenon that the continuum robot can exhibit an S-shaped curve 

when subject to single-directional forces is observed and analyzed. Simulations and 

experiments demonstrated that the presented mechanism has the stiffness variation over 

287% and further demonstrated that the mechanism and its model are achievable with 

good accuracy that the ratio of positioning error has less than 2.23% at the robot end-

effector to the robot length. 
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1. Introduction 

Inspired by biological tentacles or snakes, soft continuum robots possess 

theoretically infinite degrees of freedom (DOF), intrinsic compliance, and splendid 

adaptability, which extends the capabilities of traditional rigid robots, in areas such as 

detection in unstructured environments and grasping non-cooperative targets with few 

sensors equipped (Rone and Ben-Tzvi, 2014b; Simaan et al., 2009; Deimel and Brock, 

2016). Since the concept, first proposed by Robinson et al. (1999), various types of 

continuum robots have emerged in the past years but can be categorized roughly in 

terms of their actuation mechanisms as cable-driven (rod-driven) type (McMahan et al., 
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2005; Dong et al., 2017; Kato et al., 2015; Rone and Ben-Tzvi, 2014b; Simaan et al., 

2009; Zhang et al., 2016; Catalano et al., 2014), pneumatically-driven type (Walker et 

al., 2005; Kim et al., 2014a; Kang et al., 2013; Hawkes et al., 2017) and concentric-

tube type (Dupont et al., 2010; Webster et al., 2009; Rucker et al., 2010). However, 

their flexible structures make it difficult for all types of soft continuum robots to 

withstand large forces and keep motion precision at the same time (Dai and Ding, 2005). 

These defects have driven researchers to focus on the design of variable stiffness 

mechanisms (Cianchetti et al., 2014). In recent years, several stiffness control methods 

for continuum manipulators have been studied, and can be classified into two categories: 

algorithm-based and mechanism-based methods. 

Using active control algorithms at actuation level to change the stiffness 

characteristics of continuum manipulators originates from the impedance control or 

hybrid motion/force control in traditional rigid robots but the strain energy was also 

taken into account (Mahvash and Dupont, 2011; Bajo and Simaan, 2016). These 

methods were usually performed by detecting/estimating the position and contact force 

at arm tip and calculate the corresponding control variables in a closed-loop way, which 

is complex and time-consuming for the controller. 

Mechanism-based methods have also been used in numerous prior works, as 

summarized in Table 1. The idea of antagonistic actuators is to increase the internal 

stress of the structure by applying a pair of opposing forces. Stilli et al. (2014) 

implemented pneumatic and tendon-driven actuators to control the stiffness of soft 

manipulators. Kim et al. (2014b) proposed a continuum manipulator for minimally 

invasive surgery, which can adjust its stiffness by tensioning all the cables along the 

robot simultaneously, but high tension may cause structural buckling. A slide-linkage 

locking mechanism was proposed by Yagi et al. (2006) for a flexible endoscopic 

manipulator that increases rigidity by meshing the racks embedded in adjacent 

segments. Sun et al. (2020) proposed a hybrid continuum robot based on pneumatic 

muscles with embedded elastic rods, which can enhance stiffness by locking the rods 

to the robot base. Note that, these mechanisms are relatively large in size or heavy in 

weight. A central-cable-tensioning mechanism was designed by Degani et al. (2006) 

for a continuum endoscope whose stiffness can intensify under the tension of a built-in 

cable passing through the central axis of the robot. A similar design was used in a 

tension-stiffening continuum catheter made of a series of spherical joints connected end 

to end (Chen et al., 2010). These mechanisms are feasible to implement but it remains 

difficult to evenly distribute the tension of the built-in cable along the arm, which means 

that the stiffness change on the joints might be unequal, especially when the arm bends. 

Moreover, such mechanisms will occupy the central channel of the continuum 

manipulators and make it difficult to route tubing to the end effector. Jamming based 

mechanisms can stiffen the robots without affecting their position and shape. Cheng et 

al. (2012) and Ranzani et al. (2015) combined soft continuum robots with a granular 

jamming-based stiffening mechanism. In addition, several tension cables were further 

used to strengthen the jammed body (Cheng et al., 2012). However, the above 

approaches may make the robots less compact. Kim et al. (2013), Moses et al. (2013) 

and Santiago et al. (2016) presented layer jamming mechanisms that cover the surface 



of snake-like and tail-like manipulators. The thin layers can keep the internal passage 

out of obstruction but a vacuum pump was still required as an extra power source. 

 

Table 1. The comparison between different approaches of stiffness regulation 
Stiffness 

regulation 

approach 

Total 

length 

(mm) 

Self-

Weight 

(g) 

Payload 

(N) 

Deflection 

(mm) 

Stiffness 

(N/mm) 

Percentage 

change in 

stiffness 

References 

Antagonistic 

actuation 

200 - 1.4 15  0.093 156% (Stilli et al., 2014) 

87 - About 1.6 2.5 0.529 219% (Kim et al., 2014b) 

Rack-locking 

mechanism 
290 98 4.8 - - - (Yagi et al., 2006) 

Drive-rod-
locking 

mechanism  
200 102 2.5 59.79 0.042 165% (Sun et al., 2020) 

Central-cable-
tensioning 
mechanism 

300 34 5 - - - (Degani et al., 2006) 

Layer 

jamming 

250 - About 7 30 About 0.233 About 156% (Moses et al., 2013) 

400 - About 3.8 19 About 0.2 About 190% (Kim et al., 2013) 

Granular 

jamming 

380 345 74 About 90 About 0.78 *About 925% (Cheng et al., 2012) 

135 - About 1.5 10 About 0.15 About 300% (Ranzani et al., 2015) 

*this paper also used additional tension cables to further strengthen the manipulator. 

- Not reported. 

 

Therefore, new methods are still required to achieve effective and reliable stiffness 

adjustment for a continuum robot with slender structure. In the above prototypes, rod-

driven type soft continuum robots are compact, compliant and easy to control with 

bidirectional actuation properties. In this paper, we select this solution to develop a 

continuum robot with variable stiffness for potential use in soft manipulation under 

unstructured environments, such as rescue, space exploration, and medical devices. 

Mathematical models are essential for the design and application of soft continuum 

robots when facing variable conditions including having their stiffness changed. 

Nevertheless, most previous studies focused on the kinematics and dynamics of the 

robot body while few models were concerned with the variable stiffness mechanisms. 

The kinematics models of the continuum robots are generally based on the piecewise 

constant-curvature assumption (Jones and Walker, 2006) and use the bending angles 

and the angles of bending planes to characterize the configurations (Simaan et al., 2009). 

These models established mappings between the actuator space, configuration space, 

and task space (Webster and Jones, 2010; Mahl et al., 2014). However, pure kinematic 

models usually ignored the effects of external loads, which limits their application. 

The statics of continuum robots, taking the external forces into account, can be 

approximately analyzed by beam theories. Desired configurations were transformed 

into tendon inputs utilizing Euler-Bernoulli beam model (Camarillo et al., 2008) or 

Cosserat beam model (Renda et al., 2012). Beam model can also be represented by 

quaternions as configuration variables, which naturally incorporated inflation/extension, 

bending, twisting, extension, and shear deformations of extensible continuum 

manipulators (Tunay, 2013). These beam models usually ignored the interactions 

between individual robotic segments including friction and geometric constraints. Xu 

and Simaan (2009) combined elliptic integrals and optimization to obtain the desired 



internal loads of a multi-segment continuum robot. For more general cases, the curve 

routing paths of the tendon were considered (Rucker and Webster, 2011), and the 

influence of internal friction as well as the variation in curvature were captured (Rone 

and Ben-Tzvi, 2014a; Rone and Ben-Tzvi, 2014b). The force-deflection relationships 

of multi-segment continuum robots can also be derived by lumped-mass approach 

(Kang et al., 2013) or compliance matrix (Qi et al., 2016) where screw theory (Dai, 

2012) and Rodrigues’ formula (Dai, 2015) was used. It is found that in the above static 

models, whether using the Newton method (Qi et al., 2016) or the virtual work principle 

(Rone and Ben-Tzvi, 2014a), the configuration parameters were related to Young’s 

Modules of the robot and applied forces including actuation and external forces. 

However, it remains difficult to measure and control the non-uniformly distributed 

actuation forces along the drive cables/rods, especially when configuration and stiffness 

can vary in such flexible robots. 

In this paper, a static model and variable stiffness mechanism are developed based 

on a general class of rod-driven continuum robot. The contributions of this work include: 

(1) Using the geometric constraint and the principle of virtual work, a static model 

considering the influence of actuation displacement, rod elasticity, gravity, friction, and 

external load is established. Compared with previous static models, it uses the actuation 

displacements derived from geometric constraint equations, rather than the actuation 

forces of the drive rods, as the inputs to predict and control body deformation under 

external payloads. Therefore, the problem that the non-uniformly distributed actuation 

forces of such continuum robots can not usually be measured is solved. Additionally, 

the phenomenon that the robot body can show an S-shaped curve subject to only a 

single-directional force is revealed. The relationship among friction, room temperature 

and the amplitude of current was also revealed. The signal function was used to judge 

if the friction forces do the virtual work. (2) A new variable stiffness mechanism with 

built-in SMA springs is proposed. Such mechanism can ‘lock’ the robot body by tuning 

the internal friction between the drive rods and constraint disks fixed on the central 

backbone.  

The paper is organized as follows: Section 2 describes the statics model of a general 

type of rod-driven continuum robot. In section 3, the working principle of the variable 

stiffness mechanism and its model are revealed. Based on the above methods, a 

prototype of the soft continuum robot is proposed in section 4. Section 5 validates the 

statics model through experiments and presents the relationship between the variable 

friction and stiffness. Section 6 summarizes the paper and discusses future work. 

 

2. Geometric Constraint Based Modeling and Analysis of the Generalized Rod-

driven Continuum Robot 

The generalized design of rod-driven continuum robots has a central backbone and 

M modules (sections) (Rone and Ben-Tzvi, 2014b; Simaan et al., 2009), as shown in 

Fig. 1. Each module is composed of three drive rods and N constraint disks, allowing 

for two DOF bending motion. The backbone and drive rods of the robot discussed in 

this paper are made of hyperelastic alloy (e.g. NiTi alloy) so that the drive rods are able 

to pull and push bidirectionally. The drive rods, fixed to the end disk of the 



corresponding modules and moving through other constraint disks freely, can control 

the configuration of the continuum robot with different displacements. 

Drive rod

Backbone

Constraint
disk

Constraint
disk

Base disk

 
Fig.1 Generalized design of rod-driven continuum robots 

2.1 Kinematic Configurations 

We define the constraint disk n (n=1,2,3…,N) of module m (m=1,2…,M) as diskm,n. 

Thus, diskm,0 represents the base disk of module m which is also the end disk of module 

m-1, diskm-1,N. Next, the segment between diskm,n-1 and diskm,n is abbreviated as Segm,n. 

Here, we introduce a new variable u (u=1,2,…,M) to describe the situation that the drive 

rod j (j =1,2,3) is fixed to the end disk of module u, which is marked as rodu,j. 

The spatial frame O0 is fixed to the base of the continuum robot and a series of local 

frames Om,n is established at each segment as shown in Fig.2 with all of the x-axes point 

to the rod1,1. Assuming each segment is a constant curvature mini-arc, the shape of 

Segm,n can be represented by the two sets of configuration parameters θm,n and φm,n, 

which make up the vector qm,n as 

T

, , ,m n m n m n    q                          (1) 

Integrating all the vectors, the overall robot configuration can be uniquely described by 

the generalized coordinate vector q as 

T
T T T T

1,1 1,N 2,1 M,N
    q q q q q                    (2) 

Tm,n, defined as Eq.(B1) in the Appendix B, represents the transformation matrix 

from frame Om,n-1 to frame Om,n. Therefore, 1,0Tm,n can be derived as shown in Eq.(3) to 

obtain the pose Rm,n and position Pm,n of frame Om,n.  

, ,

, ,
0 1

m n m n1,0

m n 1,1 1,2 1,11 2,1 m n

 
     

 

R P
T T T T T T                 (3) 
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Fig.2 (a) Kinematics of the continuum robot  (b) Bending configuration of Segm,n 

2.2 Geometric Constraint 

For most slender continuum robots (Xu and Simaan, 2009; Camarillo et al., 2008), 

their bending stiffness is lower than torsional stiffness, resulting in the assumption that 

the twisting deformation can be ignored in comparison to the bending deformation. 

Therefore, the central backbone and the drive rods are always parallel as shown in Fig. 

2(b). The geometric constraint mentioned above means that the length change of rodu,j 

within the Segm,n is a function of configuration parameters, which can be expressed as  

, _ , , , ,cos( )u j m n m n u j m nr                         (4) 

where r and ωu,j are the distribution radius and the angle relative to the x-axis of drive 

rodu,j, respectively. The three drive rods of each module are evenly distributed on a 

circle with radius r, which means ωu,j+1 – ωu,j=2π/3. 

In addition, the relative sliding displacement between rodu,j and diskm,n is denoted as 

Du,j_m,n and obtained by 

 

 

, _ , , _ ,

1

, _ , , _ , , _ ,

1 1 1

=

=

N

u j m n u j m n

n n

u N N

u j m n u j m n u j m n

m m n n n

D u m

D u m



 

 

    



 



  

             (5) 

where Du,j_m,N=0 (m=u) since the drive rods are fixed at the end disks of each module. 

When disk1,0 is considered, the relative sliding displacement Du,j_1,0 is simplified as Du,j, 

representing the actuation displacement of the rodu,j, i.e. the total length displacement 

of the drive rod. Thus, the geometric constraint is also reflected by Eq.(5) showing that 

the sum of length change in individual segments equals the actuation displacement. If 

there are three drive rods for each of the two degrees of freedom modules, the 

redundancy of the third drive rod Du,3 can be expressed as  

,3 ,3 ,1 ,3 ,2u u u u uD a D b D                       (6) 

where au,3 and bu,3 are the coefficients, which can be obtained by Eq.(B2) and (B3) in 

the Appendix B. The above-described geometric constraint not only reflects the 



relationship between each actuation displacement and the resulting configuration of the 

continuum robot but also reduces the dependence of the static model on the actuation 

forces as shown in the following sections. 

2.3 Statics Analysis Based on the Principle of Virtual Work 

A typical configuration of the continuum robot under static equilibrium is shown in 

Fig.3, and the virtual work of the system δW under the virtual displacement δq is 

established as 

el ac gr lo+ 0W W W W W                     (7) 

where δWel, δWac, δWgr, and δWlo represent the virtual works of elastic force, actuation 

force, gravity and external load, respectively. 
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Fig.3 Static equilibrium of the continuum robot 

2.3.1 The Elastic Force: The central backbone and the drive rods made of the 

hyperelastic alloy are considered as Euler-Bernoulli beams with linear and isotropic 

relations between stain and stress (Nemat-Nasser and Guo, 2006). The virtual work of 

internal elastic forces, δWel, can be derived by summing the virtual work of the 

backbone and drive rods of each module as 

 
3

el , , , _ , , _ , , _ ,

1 1 1 1 m 1

=
M N M N M

m n m n u j m n u j m n u j m n

m n m n u j

W M l M l   
     

        (8) 

where Mm,n and Mu,j_m,n, indicate bending moments of backbone and the rodu,j within 

Segm,n, and κm,n and κu,j_m,n are the corresponding curvatures. All of these quantities are 

functions of θm,n as Eq.(B4) to Eq.(B7) shown in the Appendix B. l is the backbone 

length of every segment. 

2.3.2 The Actuation Force: As mentioned in Section 2.2, there are just two 

independent drive rods for each module. Therefore, the actuation force of the robot can 

be equivalent to the tension or pressure of two drive rods in module u marked as τu,1 

and τu,2. The corresponding actuation displacements Du,1 and Du,2 are obtained from 

Eq.(5). The virtual work of the actuation force, δWac, accumulates the virtual work of 

equivalent actuation forces in two drive rods as 

 ac ,1 ,1 ,2 ,2

1

M

u u u u

u

W D D    


                    (9) 

javascript:;


Note that, in this paper, although the actuation force of each drive rod is considered in 

the model, its value does not need to be known because of the introduction of geometric 

constraints.  

2.3.3 The Gravity Effect: The gravity of the constraint disk is G, and the density of 

the hyperelastic alloy used as the backbone and the drive rod is ρ with their center of 

gravity Cm,n approximately located in the middle of Segm,n, which can be expressed as  

, , , 1m n m n m n C P P                       (10) 

where Pm,n, obtained from Eq.(3), represents position of diskm,k. dba and dro represent the 

diameter of backbone and the drive rods, respectively. Then, the virtual work of gravity, 

δWgr, including the virtual work of gravity of constraint disks, backbone, and rods can 

be derived as 

 2 2 2 3

gr , , _ , ,

1 1 1

+3
+

4 4

M N M
ba ro ro

m n u j m n m n

m n u m j

l d d d
W G

  
   

   

  
   

  
  

 P C     (11) 

2.3.4 The External Load: The virtual work of external load, δWlo, accumulates the 

virtual work of external loads and moments as 

 lo e _ , , e _ , ,

1 1

M N

m n m n m k m n

m n

W  
 

  F P M A               (12) 

where Fe_m,n and Me_m,n as shown in Fig. 3, represent the external load and the external 

couple acting on diskm,n, respectively. The term δAm,n represents the virtual angular 

displacement and the Am,n can be obtained from Eq.(B8) in the Appendix B.  

2.4 The Equilibrium Equation of the Generalized Rod-Driven Continuum Robot 

The virtual displacements in Eq.(8), (9), (10), (11) and (12) are functions of the 

generalized coordinates q. Eq.(7) can be transformed into the product of generalized 

force Q and generalized coordinate virtual displacement δq as  

( )

el, ac, gr, lo,

1

= ( + + + ) ( ) 0
Len

t t t t

t

W Q Q Q Q t 



q

q            (13) 

where Len(q) is the length of q. Qel,t, Qac,t, Qgr,t, Qlo,t are generalized elastic forces, 

actuation force, gravity, external load, respectively as Eq. (B9) shows in the Appendix 

B. However, except q, there are still 2×M unknowns, the actuation forces τu,1, τu,2  

(u=1,2,..M) in Eq.(13). Unlike the actuation forces given by the sensors in the 

conventional static model, this paper takes the actuation displacement of drive rod that 

derived from the geometric constraint as the input. Considering the redundancy, only 

two inputs are required for each module, so an additional 2×M equations can be derived 

from Eq.(4) and Eq.(5), as shown in Eq.(14). By combining Eq. (14) with Eq. (13), the 

configuration parameters θm,n and φm,n in each local frame can be solved for.  

 , , , ,

1 1

cos ,  ( 1,2), ( 1,2,... )
u N

u j m n u j m n

m n

D r j u M  
 

             (14) 

 

 



3. Modeling and Analysis with SMA Initiated Variable Stiffness 

3.1 Variable Stiffness Mechanism 

Based on the generalized rod-driven continuum robot design, we propose a stiffness 

regulation mechanism that can change the friction between the drive rods and constraint 

disks. Unlike the antagonistic actuators or central-cable-tensioning methods, which 

apply a longitudinal force at the tip to stiffen the entire manipulator, possibly leading 

to uneven internal forces at individual segments/joints, our design uses distributed 

mechanisms along the continuum manipulator to achieve local stiffness regulation for 

individual segments.  

As shown in Fig. 4(a), there are three groups of levers assembled on a pair of adjacent 

constraint disks. SMA springs are utilized to drive the levers due to their high power-

weight ratio, flexibility and compactness that are suitable for implementation in such a 

slender, narrow space. Each group of levers is pulled by one SMA spring through a 

thread tension mechanism shown in Fig.4 (b). In the unlocked mode, when the SMA 

spring and thread are loose, there is no force applied to the corresponding lever on the 

upper and lower constraint disks and the drive rods can move freely. In the locked mode, 

the SMA spring is heated by electrical current, I, and therefore pull two threads at both 

ends with a tension of Ft. The thread goes through the constraint disk and lever through 

a curved hole. Once it is tensioned, it will apply a force F1 to one end of the 

corresponding lever at point B. So the lever will rotate about the pivot, C, and apply a 

force F2 to the other end, A, and therefore clamp the drive rods to the corresponding 

constraint disk shown in Fig.4 (c). In this way, we can use three SMA springs to lock 

the rod’s movement on two adjacent constraint disks. By increasing the current to the 

SMA springs, the contact force to the drive rods and the friction between the rods and 

constraint disks will be increased until they are locked together, which means the 

overall stiffness of the continuum robot increases. 
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Unlock LockedConstraint disk
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Fig.4 Leverage mechanism for stiffness adjustment 

3.2 The Tensions of SMA: When the stiffness of the proposed continuum robot 

changes, new variables such as the tension of the SMA and the resulting frictional force 



will be introduced. The SMA spring between diskm,n-1 and diskm,n is abbreviated as 

SMAj_m,n as shown in Fig.5. Here, n can only take even numbers since every two 

adjacent constraint disks share one SMA. Then, the position of upper fixed point Hj_m,n 

of SMAj_m,n in diskm,n can be deduced by the following equation 

T

_ , , , , ,cos sin 0j m n m n u j u j m nr r     H R P         (15) 

where r is the distribution radius of SMA spring, and Ωu,j is the distribution angle of 

SMAj_m,n relative to x-axis and Ωu,j－ωu,j≈2π/3. lj_m,n is the length of SMAj_m,n, which 

can be obtained from Eq.(16). 

_ , _ , _ , 1j m n j m n j m nl  H H                     (16) 
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Fig.5 SMA springs of stiffness regulating mechanism 

Additionally, the tension Fj_m,n of SMA spring is also related to the temperature T 

as 

 _ , _ , SMA3

s

=
8

T s
j m n j m n

G d
F l l

k N
                  (17) 

_ , _ , 1

_ , _ , 1 _ ,

_ ,

= =
j m n j m n

j m n j m n j m n

j m n

F
l








H H
F F               (18) 

where GT is the shear modulus that changes with temperature (Liang and Rogers, 1990; 

An et al., 2012) and it remains constant when T > 80℃ (Ma et al., 2010; Salerno et al., 

2016). ds is the diameter of the SMA spring, k is the spring index of SMA, Ns is the 

number of turns, lj_m,n is the length of the SMA spring from Eq.(16) and lSMA is the 

original length of the SMA spring. When the SMA spring resistance Rs is fixed, the 

relationship between temperature Tw of SMA and the electric current I is deduced at 

room temperature T0 as Eq. (19), where hs is the coefficient of heat transfer. 
2

02 2

s
w

s s s
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The virtual work of the tension of SMA spring, δWsma, can be derived from the sum 

of the products of the virtual displacement δHj_m,n and the tension Fj_m,n of the SMA 

spring as 

 
3

sma _ , _ ,

1 1 1

=
M N

j m n j m n

m n j

W 
  

 F H                  (20) 

 

3.3 The Friction: The tension of the SMA makes the friction between rodu,j and diskm,n 

increase rapidly, where u=m is considered because the rodu,j is not locked with 

constraint disk in other modules. Therefore, the virtual work of internal friction, δWfr, 

accumulates all the virtual work of sliding friction between the drive rods and the 

constraint disks as  

  
3

fr , _ , _ , , _ ,

1 1 1

= sgn , ( )
M N

u j m n j m n u j m n

m n j

W D f D u m 
  

            (21) 

It is difficult to directly judge whether all friction forces are sliding friction to do virtual 

work, so sgn(Du,j_m,n) is used to estimate the utility and direction of the friction. If 

Du,j_m,n=0, it shows that the drive rod and the constraint disk never slide at the contact 

point. Therefore, there is no virtual work of static friction and the virtual work is 

mapped into 0 by sign function sgn. If Du,j_m,n≠0, there is still a trend of sliding with 

sliding friction rather than an ideal constraint so that the virtual work should be 

considered, and the sign function extracts the sliding direction.  

If there is sliding friction, we can use fj_m,n-1 =fj_m,n (n=even number), which is the 

function of the tension of SMA Fj_m,n (presented as Ft in Fig.4) and can be obtained as  

1
_ , 1 _ , _ ,

2

= =2 cosj m n j m n j m n

l
f f F

l
                  (22) 

where l1 and l2 are the lever arms, μ is the friction coefficient, and α is the winding angle 

of the wire.  

3.4 The Equilibrium Equation Considering the SMA-Based Stiffness Regulation 

Like the equilibrium equation proposed in Section 2.4, here we introduce the virtual 

displacements in Eq. (20), (21), which are also functions of the generalized coordinates 

q. Eq. (13) can be rewritten as  

( )

el, ac, gr, lo, sma, fr,

1

= ( + + + + + ) ( ) 0
Len

t t t t t t

t

W Q Q Q Q Q Q t 



q

q          (23) 

where Qsma,t, Qfr,t are generalized tensions of SMA springs, and sliding friction, 

respectively as Eq. (B10) shows in the Appendix B.  

 

4. The Variable-Stiffness Based Soft Continuum Robot 

4.1 The New Continuum Manipulator 

Based on the design mentioned above, a prototype is designed, which consists of a 

variable stiffness continuum manipulator, an end effector, an actuation box, and an 
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electric cabinet as shown in Fig.6. The design aims to manipulate targets and tune the 

stiffness of the main body in unstructured environments. There are two modules 

included and each module is composed of a central backbone, three drive rods evenly 

distributed 120 degrees apart, and eleven constraint disks. The NiTi alloy is assigned 

as the backbone and the drive rods. The manipulator has a total length of 880mm and 

an outer diameter of 38mm, which is covered with a nylon mesh. Note that the nylon 

mesh skin covering the constraint disks will limit the twisting deformation of the arm. 

The end effector is mounted on the top of the manipulator and is capable of being 

replaced for different tasks. In this paper, a three-fingered gripper driven by a linear 

motor is used. A camera (ZBS-001, EBOSI corp., China) providing vision is embedded 

in the center of the gripper. The electromagnetic sensor (3D Guidance trakSTAR, 

Northern Digital Inc., Canada) can detect and return its position in the magnetic field, 

which was established by the transmitter. Since the point on the backbone cannot be 

directly measured, both sides of the cross section of the constraint disk were measured, 

and the midpoint of them can be calculated and recognized as the centroid of the 

constraint disk on the backbone. 

 
Fig.6 Prototype and measurement platform 

4.2 Rod-driven Actuation 

As shown in Fig. 7, the entire actuation box can be divided into two parts. The right 

half contains six screw slider mechanisms transmitting the rotational motion of the 

motors to the linear motion of the drive rods. In order to detect the tension and 

compression on the rods, force sensors (MBZY-1, ZN Corp., China) are installed on 

each slider at a symmetrical position to the drive rod through an equal-arm lever 

mechanism. This design makes external load detection feasible. The left half is used to 

arrange the corresponding motors (RE25, Maxon motor AG, Switzerland) and their 

drivers. 
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Fig.7 Structure and composition of the actuation box 

The control system consists of a PC and various control objects linked by a CAN bus 

as shown in Fig.8. The configuration and stiffness control routines are coded in the 

VC++ language and run on the PC. The controlled objects mentioned include six DC 

brush motors, data acquisition cards (ICAN-4017, GHD Corp., China), and a linear 

motor (LC1574AQ, China) for the gripper. The data acquisition card can collect the 

analog signals of force sensors and output the signal for SMA current regulation. 
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Fig.8 Block diagram of the control system 



4.3 Specifications of the Continuum Robot 

The geometric and material parameters of the presented continuum manipulator are 

detailed in Table 2.  
Table 2 Material and geometric parameters of the prototype 

Property Value Property Value 

E 
Young’s Modulus 

of NiTi alloy 
160 Gpa hs 

A coefficient of 

heat transfer 
6.3W/(m2·℃) 

ρ 
Density of NiTi 

alloy 
6.5g/cm-3 Rs 

Resistance of 

SMA  
1 Ω 

Iba 
Backbone radial 

moment of inertia 
0.78mm-4 α 

Turning angle of 

Wire 
π/3 

Iro 
Drive rod radial 

moment of inertia 
0.25mm-4 k 

Spring index of 

SMA 
9 

G 
Gravity of 

constraint disk 
5×10-3 kg Ns 

SMA spring 

number of turns 
30 

μ 
Coefficient of 

friction 
1 Ds 

SMA spring 

diameter 
4.5 mm 

GT 

The shear 

modulus of SMA 

spring 

35 GPa 

≥ 80℃ 
dba 

The diameter of 

backbone 
2 mm 

r 

Distribution 

radius of SMA 

and rods 

15 mm dro 
The diameter of 

drive rods 
1.5 mm 

ω1,1 
Angle between 

rod1,1 and x-axis 
0 l Length of Segment 40 mm 

ω2,1 
Angle between 

rod2,1 and x-axis 
π/3 T0 Room temperature 20 ℃ 

 

5. Effect of Variation of Actuation Displacement, External Load and Stiffness 

In this section, a series of simulations with different actuation inputs and external 

loads were implemented and compared against experimental results. In addition, the 

influence of the internal friction on the stiffness was demonstrated through simulation 

and experiment. To simplify the results, the deformation of the manipulator is 

represented by the curve of its backbone. 

5.1 Effect of Change of Actuation Displacement With Zero External Load: In this 

case, four sets of actuation displacements are given without external loads as the inputs, 

which is Du,j =[4, -2, -2, 2, -4, 2] (the resulting configuration is referred to as 

configuration 1.1 and marked as Conf. 1.1), Du,j =[-4, 2, 2, -2, 4, -2] (Conf. 1.2), Du,j 

=[2, 2, -4, 4, -2, -2] (Conf. 1.3) and Du,j =[2, -4, 2, -2, -2, 4] (Conf. 1.4). As a reference, 

Conf. 0 is also presented, which is the initial state of the manipulator Du,j =[0, 0, 0,0, 0, 

0] but only under gravity as shown in Fig. 9. The red line, blue dashed line and gray 

circle present the deformation of module 1 and module 2 in simulations and the results 

of experiments, respectively. If only kinematics are considered, Conf. 1.1 and Conf. 1.2 

are symmetric about (0, 0, 880), yet due to gravity, the endpoint positions are all shifted 

toward the negative direction of the x-axis, whose positions obtained by simulations 

and experiments are listed as Table 3. The results show that in this case, the ratio of the 

positioning error at the manipulator tip to its length, defined as error ratio, is less than 

1.83%. 
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Fig.9 Deformations under different actuation displacement 

 

Table 3 Results of endpoint under different actuation displacement 

Configurations Conf 0 Conf 1.1 Conf 1.2 Conf 1.3 Conf 1.4 

Experiments 
(-53.6, 0.0, 

876.3) 

(-220.6, 2.6, 

856.2) 

(126.4, 3.2, 

873.4) 

(-102.3, 110.2, 

879.5) 

(-105.3, -116.5, 

880.4) 

Simulations 
(-58.9, 1.5, 

891.5) 

(-215.6, 0.0, 

861.4) 

(119.6, 0.0, 

870.2) 

(-110.4, 115.2, 

875.4) 

(-112.3, -113.2,  

876.8) 

Deviation 16.1 7.6 8.16 10.4 8.5 

Error ratio 1.83% 0.86% 0.93% 1.18% 0.97% 

 

5.2 Effect of Change of External Load with the Stand-Still Actuation Displacement: 

In this case, the actuation displacement of all the drive rods is given to be zero (Du,j=0), 

to obtain the deformation of the manipulator under identical external loads acting on 

different points in the x-z plane. Firstly, F=-3N is applied to the midpoint (Conf. 2.1) 

and the endpoint (Conf. 2.2) of the manipulator respectively, then F=3N is applied to 

the midpoint (Conf. 2.3) and the endpoint (Conf. 2.4) of the manipulator respectively, 

as shown in Fig.10. It can be seen that the closer the load force F is to the end, the larger 

the deflection of the manipulator generated. In addition, the deformations of the Conf. 

2.1 and Conf. 2.3 as well as the Conf. 2.2 and Conf. 2.4 are almost symmetric but with 

a slight difference due to gravity.  
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Fig.10 Deformations under loads acting on different points 

Next, we keep the actuation displacement at zero and change the value of the external 

loads where all of them are applied on the endpoint. The F= -0.5 (Conf. 2.5), F= -1 

(Conf. 2.6), F= 0.5 (Conf. 2.7) and F= 1 (Conf. 2.8) are exerted as shown in Fig.11. 

With the increase of the value of F, the displacement of the endpoint on the x-axis 

becomes larger, and the manipulator shows a double ‘S-shaped’ curve. 
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Fig.11 Deformations under the different value of loads 

Figure 11 not only reveals the effects of different loads on the deformation but also 

shows the phenomenon that each module of the manipulator presents an S-shaped curve 

rather than a C-shaped curve usually observed in a cantilever beam. As the external 

load increases, the S-shape becomes more obvious. This is because we limit all the 

actuation displacements Du,j=0. According to the geometric constraint given by Eq.(5), 

an S-shaped manipulator allows for different local length change of a drive rod in 



individual segments, but the total length change of the drive rod keeps constant. If the 

manipulator bends in a C-shape, the local length of a drive rod in all segments will 

simultaneously become larger or smaller depending on which side (dorsal or ventral) 

the drive rod locates on, which is not consistent with the geometric constraints. 

5.3 Effect of Different Actuation Displacement with External Loads: In this case, 

the performance of the manipulator under the same external load, F = -1N at the end 

disk, but with different actuation displacement are shown. To better compare the results 

under different conditions, all the actuation displacement make the robot only bend in 

the x-z plane. The Du,j =[0, 0, 0, 5, -10, 5] (Conf. 3.1), Du,j =[5, -2.5, -2.5, 5, -10, 5] 

(Conf. 3.2), Du,j =[0, 0, 0, -5, 10, -5] (Conf. 3.3), Du,j =[-5, 2.5, 2.5, -7.5, 15, -7.5] (Conf. 

3.4) and Du,j =[-10, 5, 5, -10, 20, -10] (Conf. 3.5) are presented in Fig.12 respectively. 

For comparison, Conf. 2.6 is also introduced with Du,j =[0, 0, 0, 0, 0, 0]. In addition, the 

actuation displacement of the first module of Conf. 3.1 and Conf. 3.3 keep also zero, so 

their first module shows an S-shape curve. Fig.12 shows that if the bending direction 

of two modules is the same, the larger the actuation displacement input was given, the 

larger deflection of the manipulator exhibited. 
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Fig.12 Deformations under same direction bends  

Moreover, Du,j =[5, -2.5, -2.5, -2.5, 5, -2.5] (Conf. 3.6), Du,j =[10, -5, -5, -2.5, 5, -2.5] 

(Conf. 3.7), Du,j =[10, -5, -5, 0, 0, 0] (Conf. 3.8), Du,j =[-5, 2.5, 2.5, 2.5, -5, 2.5] (Conf. 

3.9), Du,j =[-10, 5, 5, 2.5, -5, 2.5] (Conf. 3.10) and Du,j =[-20, 10, 10, 2.5, -5, 2.5] (Conf. 

3.11) are shown in Fig.13, respectively, which makes the first module and the second 

module bend in opposite directions. Similarly, the simulation results obtained by the 

proposed model are well matched with the experimental results. In particular, at the 



Conf. 3.8, the actuation displacements of module 2 D2,j = [0, 0, 0], but it still presents 

an upward curve due to the downward curve of module 1. 
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Fig.13 Deformations under different direction bends 

It can be noted from the above three cases that the deformations of the simulations 

are close to the experiments, but there still are some errors, which may be caused by 

some assumptions mentioned in Section 2. The maximum deviation occurred in Conf. 

3.5 with a position error at the endpoint of 19.6mm and the error ratio is 2.23%. 

5.4 Effect of Variable Stiffness Demonstration and Validation 

As mentioned in Section 3, the stiffness of the manipulator can be improved by 

increasing the internal friction, whose relationship can also be solved by using the 

proposed statics model with actuation displacement inputs. According to Eq.(22), the 

maximum sliding friction depends on the electric current I of the SMA springs. 

Therefore, in this case, the deformation of the manipulator obtained by experiments and 

simulations under the same end load 100g but different electric currents are shown in 

Fig.14 and Fig.15, respectively. Conf. 0 (0N, 0A) is the initial state without payload. 

Then, if F=1N is exerted at the endpoint, its configuration changes to Conf. 2.6 (-1N, 

0A) with a displacement in the x-axis of 158.2mm in the experiment at the endpoint. 

However, if the currents are applied before the payload, the deformation will change to 

Conf. 4.1(-1N, 0.5A), Conf. 4.2(-1N, 1A) and Conf. 4.3(-1N, 2A), with the 

corresponding displacement in the x-axis of 132.5mm, 91.6mm and 68.7mm, 

respectively. In addition, we found that the SMA springs have little effect on the 

configuration of the continuum manipulator because the tension of SMA springs are 

local and applied to all drive rods. 
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Fig.14 Physical demonstration of the stiffness adjustment under 100g end load 
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Fig.15 Simulation and experiments under 100g end load with variable stiffness 

Furthermore, keeping the initial condition as Conf. 0, we change the magnitude of 

the end load and plot the relationship of payload and displacement under different 

currents, as is shown in Fig. 16. It can be seen that the modulation of current does 

promote the ability of the manipulator to maintain the desired configuration. The 

quotient between the ΔF and the corresponding Δx, as shown in the Eq. (24), is used to 

characterize the stiffness of the manipulator. 

x





F
K                            (24) 

When external loads are lower than 1.5 N, a nonlinear relationship can be observed and 

the stiffness will decrease slightly with the increase of external loads. This is because, 

first, the constitutive model of the NiTi alloy itself conforms to this trend. Another 

factor is that the internal static friction provided by the stiffening mechanism is not 

enough to resist the deformation of the manipulator. However, when the external loads 

are greater than 1.5N, the stiffness of the manipulator increases again and approximates 

to a constant indicating that the load has less influence on the stiffness under this 

situation. This is because, since the actuation displacement of all the drive rods are 

limited to zero, this geometric constraint converts into a motion constraint, which exerts 

a non-negligible influence on the mechanical properties of the manipulator. Under this 

condition, when the external load is 3N, the currents of 2A, 1A and 0.5A can increase 

the stiffness of the manipulator by 287%, 192% and 121%, respectively.  
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Fig.16 Relationship between the end load and displacement 

5.5 Discussion on the variable stiffness performance 

The main structure of our continuum manipulator is composed of the NiTi alloy with 

its intrinsic compliance and light weight. The total length and the weight are 880mm 

and 137g, respectively. Before its stiffness is changed, the deflection of the manipulator 

is 54mm when under gravity (Conf. 0). Then it increases to 287mm when subjected to 

an extra payload of 3N (Conf. 2.2), and the stiffness is 0.0129N/mm according to Eq. 

(24). By heating the SMA springs with a current of 2A, the deflection under the same 

payload becomes 135mm, and the stiffness increases 287% to 0.0370N/mm. In this 

situation, the external load is 2.2 times the weight of the manipulator and the deflection 

is 15.3% of the manipulator length. 3N payload is considered as the upper limit of this 

prototype as shown in Fig. 16. If the external load is increased further, the large 

deflection will make it difficult to control the manipulator. 

Compared with previous variable stiffness continuum robots summarized in Table 1, 

the percentage change in stiffness, 287%, of our manipulator is at a relatively high level. 

However, the absolute stiffness of our manipulator may initially appear to not be so 

impressive. This can however be explained by using beam theory (Boresi et al., 1985). 

If a continuum manipulator is approximately considered as a cantilever, the stiffness at 

the tip and load capacity are inversely proportional to the cubic of its total length. 

Considering our manipulator has a much greater length than others, we believe the 

results are good. 

In addition, we observe that the SMA material has some limitations, such as the 

hysteresis, low control accuracy, and long cooling time. However, compared with 

position control requirements (usually at millimeter level for positioning and second 

level for response time (Webster and Jones, 2010)) for this type of manipulator, the 

stiffness control does not require very high precision and speed. It is usually allowable 

for the continuum manipulator to spend some time stiffening its body after reaching the 

desired position. In this paper, the SMA springs can reach the phase-transition 

temperature within 1–2 seconds by applying a current of 2A and the stiffness of the 

manipulator will soon have a significant increase in 5–6 seconds. On the other hand, at 



room temperature around 20 degrees Celsius, the SMA spring will take about 22–29 

seconds to cool down and unload the internal stress, which is also acceptable. 

 

6 Conclusions 

This paper introduced an SMA-spring-based stiffness regulating mechanism for a 

new rod-driven continuum robot. The friction along the drive-rods are then adjusted by 

electric current applied to the SMA springs, that the desired robot configuration can be 

maintained. 

In the analysis, a new static model based on both virtual work and geometric 

constraint was established and took for the first time both adjustable friction force and 

tension of the SMA into account. Therefore, the performance before and after stiffness 

regulation can be obtained. The paper in particular demonstrated that the geometric 

constraints contained two parts. One is the length change of drive rods as function of 

two sets of configuration parameters within individual segments and two is the sum of 

the length changes in each segment is equal to the actuation displacement. The 

geometric constraints in such rod-driven type continuum robots help solve the statics 

without a measurement of actuation force. Further, it was found that the robot under an 

external load will exhibit an S-shaped curve to meet the above geometric constraints. 

The experimental validations showed that the maximum error ratio of the continuum 

robot is 2.23%.  

The proposed stiffness regulation mechanism and the virtual-work based static model 

present a new way for design and analysis of continuum robots for use in detection and 

maintenance tasks in unconstructed environments, e.g. turbine engines, satellites, 

nuclear plant and so on. Future work will implement micro grooves to the portion of 

the drive rod that is in contact with the lever mechanism, so that high friction or even 

complete locking will be achieved between the lever and drive rods. The effects of the 

twisting motion will be assessed and incorporated in the analytical model. These will 

further improve the variable stiffness performance of our prototype and the accuracy of 

the model.  
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Appendix A: Index to Multimedia Extensions 

Table of Multimedia Extensions 

Extension Media type Description 

1 video Video shows that the continuum robot grasps a ping-

pong ball avoiding the obstacle 

2 video Video shows the actuation, transmission and control 

systems of the continuum robot 

3 video Video shows how the variable stiffness mechanism 

works 

4 video Video shows the double “S-shaped” curve of the robot 

 

Appendix B: Equation Derivation of the Variables in the Text 

The transformation matrices from frame Om,n-1 to frame Om,n and l is the backbone 

length of Segm,n. 
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The Euler angles of frame Om,n 
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The generalized force Q 
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Nomenclature 

diskm,n The constraint disk n (n=1,2,…,N) of module m (m=1,2,…,M) 

Segm,n The segment between diskm,n-1 and diskm,n 

rodu,j The drive rod j (j =1,2,3) is fixed to the end disk of module u 

O0 The spatial frame 

Om,n The local frames 

qm,n The configuration parameter of Segm,n 

1,0Tm,n The transformation matrix from frame O1,0 to frame Om,n 

Tm,n The transformation matrix from frame Om,n-1 to frame Om,n 

Rm,n The pose of frame Om,n 

Pm,n The position of frame Om,n 

Am,n The angular displacement of frame Om,n 

, _ ,u j m n  The length change of rodu,j within the Segm,n 

r The distribution radius of drive rod and the SMA spring 

ωu,j The angle relative to the x-axis of drive rodu,j 

Du,j The actuation displacement of the rodu,j 

δW The virtual work of the system 



δq The virtual displacement  

Mm,n The bending moment of backbone within Segm,n 

Mu,j_m,n The bending moment of the rodu,j within Segm,n 

κm,n The curvature of backbone within Segm,n 

κu,j_m,n The curvature of backbone within Segm,n 

Iba The backbone radial moment of inertia 

Iro The drive rod radial moment of inertia 

dba, dro The diameter of backbone and drive rod 

E Young’s Modulus of NiTi alloy 

l The backbone length of every segment 

τu,j The equivalent forces of drive rodu,j 

G The gravity of constraint disk 

Cm,n The center of gravity of backbone and drive rod within Segm,n 

ρ The density of the NiTi alloy 

Fe_m,n The external load acting on diskm,n 

Me_m,n The external couple acting on diskm,n 

SMAj_m,n The jth SMA spring between diskm,n-1 and diskm,n  

Hj_m,n The position of fixed point of SMAj_m,n in diskm,n 

Ωu,j The distribution angle of SMAj_m,n relative to x-axis 

lj_m,n The length of SMAj_m,n 

Fj_m,n The tension of SMAj_m,n 

Tw The temperature of SMA spring 

GT The shear modulus of SMA spring 

ds The diameter of SMA spring 

k The spring index of SMA spring 

Ns The number of turns of SMA spring 

Rs the SMA spring resistance 

I The electric current in SMA spring 

hs The coefficient of heat transfer 

fj_m,n The sliding friction between the drive rods and the constraint disks 



l1 , l2 The length of lever arms of stiffening mechanisms  

μ The friction coefficient of stiffening mechanisms 

α The winding angle of the wire of stiffening mechanisms 

Q The generalized force of robot 

q The generalized coordinates of robot 
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