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Abstract. By identifying K-polystable limits in 4 specific deformations families of smooth Fano 3-folds,
we complete the classification of one-dimensional components in the K-moduli space of smoothable Fano
3-folds.

1. Introduction

By recent advances in the theory of K-stability, there is a projective moduli space MKps
n whose closed

points parameterise n-dimensional K-polystable smoothable Fano varieties over C for a choice of fixed
volume, see for the original works [Alp+20; Blu+21; BLX22; BX19; CP21; LWX21; LXZ22; OSS16;
SSY16; XZ20; XZ21], or the survey by Xu [Xu21] and the references therein.

Components of MKps
2 have been studied in [OSS16]. The next step is to analyse components of MKps

3
together with all K-polystable smoothable Fano 3-folds.

According to the classification by Iskovskikh, Mori and Mukai, there are 105 deformation families of
smooth Fano 3-folds. Among these, 27 families contain no K-polystable smooth 3-folds [Ara+23; Fuj16],
while the general element of the remaining 78 families is K-polystable [Ara+23; Fuj23]. Note that in
one case (№2.26 in the Mori-Mukai notation), there are no K-polystable smooth objects, but the family

contains a unique singular K-polystable member [Ara+23, Section 5.10]. To study MKps
3 , it would be

sensible to work inductively on the dimension of components appearing in this moduli space. Among the
78 families under study, 20 deformation families contain a unique K-polystable smooth object1, hence
their corresponding K-moduli components are isolated points. Next up is to study the one-dimensional
components.

1.1. One-dimensional components in MKps
3 . The goal of this paper is to describe one-dimensional

components of MKps
3 . There are 8 families of smooth Fano 3-folds with one-dimensional moduli, but only

6 of them have K-polystable elements. For these 6 families, all smooth K-polystable members are known
[Ara+23; CP22; Den24], and for 2 of these 6 families, the singular K-polystable limits are also known.
Let us describe K-polystable smooth Fano 3-folds in these 6 deformation families, and introduce their
singular K-polystable limits.

Family 1. Divisors of bidegree (1, 2) in P2 × P2. (№2.24 in Mori-Mukai notation)
For λ ∈ P1, let Xλ be the 3-fold defined by {xu2+ yv2+ zw2 = λ(xvw+ yuw+ zuv)} ⊂ P2×P2, where

([x : y : z], [u : v : w]) are coordinates on P2 × P2. Then Xλ is smooth if and only if λ3 ̸= 1 or λ ̸= ∞.
By [Ara+23, Lemma 4.70] Xλ are K-polystable for all λ ∈ P1. In particular, if λ3 = 1, then Xλ

∼= X∞,
and this 3-fold has 3 ordinary double points. Moreover, every K-polystable smooth Fano 3-fold in this
family is isomorphic to Xλ for some λ ∈ P1. Note that the family contains strictly K-semistable smooth
members (see [Ara+23, Section 4.7] for details).

Family 2. Blowups of P3 along quartic elliptic curves. (№2.25 in Mori-Mukai notation)
For λ ∈ P1, consider the curve Cλ =

{
x20 + x21 + λ(x22 + x23) = 0, λ(x20 − x21) + x22 − x23 = 0

}
⊂ P3,

where [x0 : x1 : x2 : x3] are coordinates on P3, and let π : Xλ → P3 be the blowup along Cλ. If
λ ̸∈ {0,±1,±i,∞}, then Cλ is a smooth elliptic curve, and Xλ is a smooth K-stable Fano 3-fold [Ara+23,
Corollary 4.32]. Moreover, every smooth Fano 3-fold in this family is isomorphic to Xλ for some λ ∈ P1.

1In Mori-Mukai notation, these are the families numbered 1.15, 1.16, 1.17, 2.27, 2.29, 2.32, 2.34, 3.15, 3.17, 3.19, 3.20, 3.25,
3.27, 4.3, 4.4, 4.6, 4.7, 5.1, 5.3 and 6.1.
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If λ ∈ {0,±1,±i,∞}, then Cλ is a union of 4 lines, and Xλ
∼= X0 is a toric K-polystable smoothable Fano

3-fold; X0 has four singular points, which are ordinary double points.

Family 3. Blowups of P3 along rational quartic curves. (№2.22 in Mori-Mukai notation)
Let Q be the smooth quadric surface {x0x3 = x1x2} ⊂ P3, where [x0 : x1 : x2 : x3] are coordinates

on P3. Identify Q with P1 × P1 via the isomorphism given by(
[u : v], [x : y]

)
→

[
xu : xv : yu : yv

]
,

where ([u : v], [x : y]) are coordinates on P1 × P1. Let Cλ ⊂ Q be the curve defined by {ux2(x + λy) =
vy2(y + λx)}, for λ ∈ P1. One can check that Cλ is smooth if and only if λ ̸∈ {±1,∞}, and it is then
a rational quartic curve. If π : Xλ → P3 is the blowup along Cλ, then Xλ is a smoothable Fano 3-fold.
Moreover, every (smooth) member of family №2.22 is isomorphic to Xλ for some λ ∈ P1. The 3-fold Xλ

is K-polystable for λ ̸∈ {±1,±3,∞} by [CP22]. On the other hand, X±3 is strictly K-semistable, with
K-polystable limit X0.

Since C±1 is the union of a twisted cubic and a line, and C∞ is a union of a conic and two lines, X±1

admits an isotrivial degeneration to X∞. Hence, if X∞ is K-polystable, then X±1 is strictly K-semistable.
Note that X∞ has two singular points, which are ordinary double points.

Family 4. Blowups of P3 along the disjoint union of a twisted cubic and a line. (№3.12 in Mori-Mukai
notation)

In the notation of Family 3, identify P1 × P1 and Cλ with subvarieties of P1 × P2 via the embedding(
[u : v], [x : y]

)
7→

(
[u : v], [x2 : xy : y2]

)
.

Let π : Xλ → P1 × P2 be the blowup along the curve Cλ, then Xλ is a smoothable Fano 3-fold. Further,
every (smooth) member of family №3.12 is isomorphic to Xλ for some λ ∈ P1 \ {±1,∞}. Moreover, if
λ ̸∈ {±3,±1,∞}, then Xλ is K-polystable [Den24]. The smooth Fano 3-fold X±3 is strictly K-semistable,
with K-polystable limit X0. Since the (singular) 3-fold X±1 admits an isotrivial degeneration to X∞, if
X∞ K-polystable, X±1 is strictly K-semistable. Note that X∞ has two singular points, which are ordinary
double points.

Family 5. Blowups of P1 × P1 × P1 along a curve of degree (1, 1, 3). (№4.13 in Mori-Mukai notation)
For λ ∈ P1, let π : Xλ → (P1)3 be the blowup along the curve

Cλ =
{
x0y1 − x1y0 = 0, x30z0 − x31z1 + λx0x1(x1z0 − x0z1) = 0

}
,

where ([x0 : x1], [y0 : y1], [z0 : z1]) are the coordinates on (P1)3. If λ ̸∈ {±1,∞}, then Xλ is a smooth
K-polystable Fano 3-fold. Further, every (smooth) member of family №4.13 is isomorphic to Xλ for some
λ ∈ P1. One can show that X±1

∼= X∞, and the 3-fold X∞ has two singular points, which are ordinary
double points.

Family 6. Complete intersection of divisors of degree (1, 1, 0), (1, 0, 1), and (0, 1, 1) in P2 × P2 × P2.
(№3.13 in Mori-Mukai notation)

For λ ∈ P1, let Xλ ⊂ (P2)3 be given by

(1.1)
{
x0y0 + x1y1 + x2y2 = 0, y0z0 + y1z1 + y2z2 = 0, (1 + λ)x0z1 + (1− λ)x1z0 − 2x2z2 = 0

}
,

where ([x0 : x1 : x2], [y0 : y1 : y2], [z0 : z1 : z2]) are coordinates on (P2)3. If λ ̸∈ {±1,∞}, then Xλ is a
smooth K-polystable Fano 3-fold. Further, every (smooth) member of family №3.13 is isomorphic to Xλ

for some λ ∈ P1. For λ ∈ {±1,∞}, Xλ is singular (X±1 has one ordinary double point and X∞ is singular
along a curve) and K-unstable.

This family can reparametrised in such a way that Xλ degenerates to the toric K-polystable Fano 3-fold
{x0y1 = x1y0, y1z2 = y2z1, x0z2 = x2z0} when λ→ ±1. Note that this 3-fold is singular; it has 3 ordinary
double points.

Now, we are ready to state our main result:
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Main Theorem. Let X be one of the 3-folds X∞ described in Families 3, 4, 5. Then X is K-polystable.
In the notation of Family 6, let

(1.2) X ′
∞ =



x2y3 − x3y2 = 0,

y2z3 − y3z2 = 0,

x2z3 − x3z2 = 0,

x1y1z3 + x1y3z1 + x3y1z1 + x3y2z3 = 0,

x1y1z2 + x1y2z1 + x2y1z1 + x2y3z2 = 0.

Then X ′
∞ has a unique singular point, which is an ordinary double point, and is a K-polystable limit of

elements of family №3.13.

Corollary 1.3. The Fano 3-fold X∞ in Families 1, 2, 3, 4, 5 are the only singular K-polystable limits of
members of the deformation families №2.24, 2.25, 2.22, 3.12 and 4.13.

Proof. We only consider Family 3, since the proof is similar for other families. Denote by MKps
2.22 the one-

dimensional component of the K-moduli space MKps
3 that contains all smooth K-polystable Fano 3-folds

in Family 3 (equivalently, all K-polystable elements of Mori-Mukai family №2.22). Above, we described a
parametrisation

{
Xλ;λ ∈ P1

}
that is a Q-Gorenstein family, and such that all smooth members of Family

3 are fibres of the family Xλ for λ ∈ P1 \ {±3,±1,∞}. Note that Xλ
∼= X−λ for λ ∈ P1.

Moreover, it follows from the description of the Family 3 above and the Main Theorem that all objects
Xλ in the parametrisation except for the 3-folds X±3 and X±1 are K-polystable. As mentioned already,
the 3-folds X±3 and X±1 are K-semistable, and their K-polystable limits are X0 and X∞, respectively.
Thus we have a morphism P1 → MKss

2.22, the moduli stack parametrising K-semistable objects in this

family, which descends to a morphism ϕ : P1 → MKps
2.22 given by λ 7→ [Xλ] such than ϕ(0) = ϕ(±3),

ϕ(∞) = ϕ(±1), and ϕ(λ) = ϕ(−λ) for λ ∈ P1. Since MKps
2.22 is proper and one-dimensional, we conclude

that ϕ is surjective, which implies the required assertion. □

Corollary 1.4. Singular K-polystable limits of smooth Fano 3-folds in the Mori-Mukai family №3.13 are
the toric Fano 3-fold described in Family 6 above and the non-toric Fano 3-fold X ′

∞ defined in (1.2).

Proof. Let MKps
3.13 be the one-dimensional component of MKps

3 that contains K-polystable smooth Fano
3-folds in this deformation family. It follows from the description in Family 6 that there exists a Q-
Gorenstein family of Fano 3-folds over P1 such that the fibre Xλ over λ ∈ P1 is the complete intersection
in P2 × P2 × P2 given by (1.1). This family contains all smooth K-polystable 3-folds in the family №3.13,
which are fibres over the points in P1 \{±1,∞}. Note that Xλ

∼= X−λ for every λ ∈ P1. Arguing as in the

proof of Corollary 1.3, we see that there is a surjective morphism ϕ : P1 → MKps
3.13 such that ϕ(λ) = [Xλ]

for λ ∈ P1 \ {±1,∞}, and ϕ(±1) is the K-polystable toric Fano 3-fold described in Family 6.
For λ ̸= ∞, either the K-polystable Fano 3-fold corresponding to ϕ(λ) is smooth or it has ordinary

double points, in particular, Xλ has unobstructed Q-Gorenstein deformations. So, it follows from [KP21,

Remark 2.4] that MKps
3.13 is smooth at ϕ(λ) for λ ̸= ∞. It follows from Main Theorem that [X ′

∞] ∈MKps
3.13 ,

where X ′
∞ is the 3-fold (1.2). But [X ′

∞] ̸= ϕ(λ) for λ ̸= ∞, since X ′
∞ ̸∼= Xλ for λ ̸∈ {0,∞}, and X ′

∞ is
not isomorphic to the toric Fano 3-fold described in Family 6. Thus, we conclude that ϕ(∞) = [X ′

∞], so

that MKps
3.13 is smooth at ϕ(λ), which gives MKps

3.13
∼= P1. □

Corollary 1.5. All one-dimensional components of MKps
3 are isomorphic to P1.

1.2. The mirage of GIT. Explicitly describing the K-moduli for a given deformation family is no easy
task at present. In all known cases, the K-moduli space either coincides with some GIT moduli space
or is closely related to it by blowing up certain subspaces in the GIT moduli. Out approach to proving
the Main Theorem was guided by this phenomenon but with a new hands-on approach. We first write
down a parametrisation of the objects and then examine their limits for K-polystability. Hidden in that
approach is the hope that the K-polystable limit has the same description as the smooth objects; in other
words it lives in the same ambient space with similar defining equations — that is to say it follows some
GIT principle. This works almost perfectly in our studies, and one obtains that the K-moduli space is
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the same as a suitable natural GIT moduli for Families 1–5. Verifying the details of the latter claim
could be an interesting research exercise. For instance, the case of Family 2 is well-studied [Pap22, §5],
cf. [Pap23]. However, as the reader has already observed, the K-polystable limit X ′

∞ in Family 6 is no
longer a complete intersection in P2 × P2 × P2. Indeed, by a result of Eisenbud–Buchsbaum [BE77] such
codimension 3 subschemes would be given by Pfaffians, rather than being complete intersections. So, we
rewrote the parametrisation of the complete intersection of 3 divisors in P2 × P2 × P2 that would define
the desired (smooth) Fano 3-fold in (redundant) Pfaffian format and studied their Pfaffian limit, which is
no longer a complete intersection. This limit is X ′

∞ as in the Main Theorem and is K-polystable. Hence,
the obvious candidates of GIT compactification (regarded as complete intersection) would not read off
the K-moduli in this case. Whether there is another GIT description that coincides with the K-moduli
in this case remains to be investigated.

1.3. Structure of the paper. In Section 2, we explain the strategy of the proof for the first part of
Main Theorem, and provide details in Sections 3, 4, 5. In Section 6, we present a very simple geometric
construction for the 3-fold (1.2), and prove the second part of Main Theorem.
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2. Strategy of the proof

In order to prove K-polystability, we use the following powerful result proven by Zhuang in [Zhu21,
Corollary 4.14]: If G is a reductive group acting on the Fano variety X such that β(E) > 0 for all G-
invariant prime divisors E over X, then X is K-polystable. By a divisor over X, we mean that there

exists a birational morphism φ : X̂ → X such that E is a divisor on X̂, and following [Fuj19a], β(E) is
defined to be

β(E) = AX(E)− SX(E).

In it, AX(E) = 1 + ordE
(
K

X̂
− φ∗(KX)

)
is the log discrepancy of the divisor E, and

SX
(
E
)
=

1

(−KX)n

τ(E)∫
0

vol
(
φ∗(−KX)− uE

)
du,

where τ
(
E
)
= sup

{
u ∈ R⩾0 | φ∗( − KX

)
− uE is big

}
, and n is the dimension of X. By [Fuj19c,

Proposition 2.1], we have that

(2.1) SX
(
E
)
⩽

n

n+ 1
τ
(
E
)
.

Let X be one of the singular Fano 3-folds X∞ described in Families 3, 4, 5. Then X has two isolated
ordinary double points, Aut0(X) ∼= C∗, and Aut(X) is a semi-direct product of C∗ and a finite group.
Moreover, in each case Aut(X) swaps the singular points of X. In Sections 3, 4, 5, we will present
generators of the group Aut(X), and we will describe basic geometric facts about X. Set G = Aut(X).
Then to prove that X is K-polystable, it is enough to show that β(E) > 0 for every G-invariant prime
divisor E over X.

Now, let φ : X̂ → X be a G-equivariant birational morphism with X̂ normal, and let F be a G-invariant

prime divisor in the 3-fold X̂, and Z = φ(F) its centre on X. Since G swaps singular points of X, we
have the following possibilities: Z is a smooth point of X, Z is a G-invariant irreducible curve, Z is a
G-invariant irreducible surface.

To proceed, it is more convenient to replace X with a suitable G-equivariant small resolution. A
priori, such a resolution may not exist, but in all cases considered here, it does, yielding a G-equivariant
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commutative diagram

X̃

��

// X

��
X

where X̃ → X and X → X are small resolutions of singularities of X, and X̃ 99K X is a composition

of two Atiyah flops. Let Y be one of the 3-folds X̃ or X, let η : Y → X be the corresponding small
G-equivariant birational morphism, and let ZY be the centre of the divisor F on the 3-fold Y . Then
−KY ∼ η∗(−KX), which implies that AX(F) = AY (F) and SX(F) = SY (F), where we set

SY
(
D
)
=

1

(−KY )3

∞∫
0

vol
(
−KY − uD

)
du

for every (not necessarily prime) divisor D over Y .

Remark 2.2. Let S1, . . . , Sr be effective divisors on Y such that SY (Si) < 1 for every i. If every G-

invariant prime divisor in Y is linearly equivalent to
r∑

i=1
niSi for some non-negative integers n1, . . . , nr,

then β(S) > 0 for every G-invariant prime divisor S in Y . Using (2.1) we can weaken the condition

“every G-invariant prime divisor in Y is linearly equivalent to
r∑

i=1
niSi for some non-negative integers

n1, . . . , nr” as follows: for every G-invariant prime divisor D ⊂ Y such that −KY ∼Q
4
3D +∆ for some

effective Q-divisor ∆ on the 3-fold Y , there are non-negative integers n1, . . . , nr such that D ∼
r∑

i=1
niSi.

Furthermore, using [Fuj19b, Proposition 3.2], we can weaken the latter condition slightly as follows: for
every G-invariant prime divisor D ⊂ Y such that −KY ∼Q λD + ∆ for some rational number λ > 4

3
and some effective Q-divisor ∆ on the 3-fold Y , there are non-negative integers n1, . . . , nr such that

D ∼
r∑

i=1
niSi.

Now, fix a point P ∈ ZY and set

δP
(
Y
)
= inf

E/Y
P∈CY (E)

AY (E)

SY (E)
,

where the infimum runs over all prime divisors E over Y whose centre on Y contains P . If β(F) ⩽ 0 for
a divisor F whose centre contains P , then δP (Y ) ⩽ 1. Quite often, we can use the inductive argument of
Abban and Zhuang [AZ22], and its formulation in certain scenarios in [Ara+23], to show that δP (Y ) > 1.
To do this in the cases we deal with in Families 3, 4, 5, let C be a smooth irreducible curve in Y that
contains P , and let S be a smooth irreducible surface in Y that contains C . They provide an admissible
flag P ∈ C ⊂ S . To apply [AZ22; Ara+23], set

τ = τ
(
S

)
= sup

{
u ∈ R⩾0 the divisor | −KY − uS is big

}
.

Next, for every u ∈ [0, τ ], it is required to find the Zariski decomposition

−KY − uS ∼R P (u) +N(u),

where P (u) is the positive part of the decomposition, and N(u) is the negative part. A priori, the Zariski
decomposition may not exist on Y for every u ∈ [0, τ ], but in cases dealt with here, it exists either for

Y = X̃ or for Y = X. Hence, we may assume that the required Zariski decomposition exists on Y for
every u ∈ [0, τ ]. For u ∈ [0, τ ], set d(u) = ordC (N(u)|S ) and write

N(u)
∣∣
S

= N ′(u) + d(u)C

where N ′(u) is an effective divisor on S such that C ̸⊂ Supp(N ′(u)). For u ∈ [0, τ ], set

t(u) = sup
{
v ∈ R⩾0

∣∣ the divisor P (u)
∣∣
S

− vC is pseudo-effective
}
.
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Then, for every v ∈ [0, t(u)], let P (u, v) be the positive part of the Zariski decomposition of the R-divisor
P (u)|S − vC , and let N(u, v) be its negative part. Set

S
(
WS

•,•;C
)
=

3

(−KX)3

τ∫
0

d(u)
(
P (u, 0)

)2
du+

3

(−KX)3

τ∫
0

t(u)∫
0

(
P (u, v)

)2
dvdu,

which is well defined since the support of N(u) does not contain S for every u ∈ [0, τ ]. If C = ZY , it
follows from [AZ22; Ara+23] that

(2.3)
AX(F)

SX(F)
=
AY (F)

SY (F)
⩾ min

{
1

SY (S )
,

1

S
(
WS

•,•;C
)}.

Hence, if C = ZY , SY (S ) < 1 and S(WS
•,•;C ) < 1, then β(F) > 0. Using this approach, we can show

that β(F) > 0 if Z is a G-invariant irreducible curve.

Remark 2.4. ([AZ22; Ara+23]) In fact, if C = ZY , SY (S ) < 1 and S(WS
•,•;C ) ⩽ 1, then β(F) > 0.

Now, we observe that C ̸⊂ Supp(N(u, v)), and set

FP

(
WS ,C

•,•,•
)
=

6

(−KX)3

τ∫
0

t(u)∫
0

(
P (u, v) · C

)
· ordP

(
N ′(u)

∣∣
C
+N(u, v)

∣∣
C

)
dvdu

and

S
(
WS ,C

•,•,• ;P
)
=

3

(−KX)3

τ∫
0

t(u)∫
0

(
P (u, v) · C

)2
dvdu+ FP

(
WS ,C

•,•,•
)
.

Then it follows from [AZ22; Ara+23] that

(2.5)
AY (F)

SY (F)
⩾ δP

(
Y
)
⩾ min

{
1

SY (S )
,

1

S
(
WS

•,•;C
) , 1

S
(
WS ,C

•,•,• ;P
)}.

Thus, if SY (S ) < 1, S(WS
•,•;C ) < 1 and S(WS ,C

•,•,• ;P ) < 1, then δP (Y ) > 1 and β(F) > 0.

Remark 2.6 ([AZ22; Ara+23]). In fact, if P = ZY , SX(S ) < 1, S(WS
•,•;C ) ⩽ 1 and S(WS ,C

•,•,• ;P ) ⩽ 1,
then we also have β(F) > 0.

Using this approach, we will show in Sections 3, 4, 5 that X∞ (in the notation of Families 3, 4 and 5)
is K-polystable. We use similar techniques to treat the case of X ′

∞ in Family 6 in Section 6 .

3. K-polystability of the Fano 3-fold X∞ in Family 3

Let X = X∞, where X∞ is described in Family 3. Let C∞ = C + L1 + L2, where C = {x0 + x3 =
0, x0x3 = x1x2}, L1 = {x0 = 0, x1 = 0} and L2 = {x2 = 0, x3 = 0}, and let γ : V → P3 be the blowup of

the lines L1 and L2, let ϕ : X̃ → V be the blowup of the proper transform of the conic C, and φ : W → P3

be the blowup of the conic C, and let δ : X → W be the blowup of the proper transform of the lines L1

and L2. Then we have the following G-equivariant commutative diagram:

X̃ //

ϕ

��

X

π
��

Xoo

δ
��

V γ
// P3 Wφ
oo

where X̃ → X and X → X are G-equivariant small resolutions of X. Recall from Section 2 that

G = Aut(X), and either Y = X̃ or Y = X.
Recall that Q = {x0x3 = x1x2} ⊂ P3, and let E, F1, F2 be the π-exceptional surfaces such that

π(E) = C, π(F1) = L1, π(F2) = L2. Let HC = {x0 + x3 = 0}, HC′ = {x0 = x3}, and denote by H a
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general plane in P3, and denote by Ẽ, F̃1, F̃2, Q̃, H̃C , H̃C′ , H̃ the proper transforms on X̃ of the surfaces

E, F1, F2, Q, HC , HC′ , H, respectively. Then Q̃ ∼ 2H̃ − Ẽ − F̃1 − F̃2 and H̃C ∼ H̃ − Ẽ. This gives

−K
X̃

∼ 4H̃ − Ẽ − F̃1 − F̃2 ∼ 2Q̃+ Ẽ + F̃1 + F̃2 ∼ Q̃+ 2H̃C + 2Ẽ.

Note that (−K
X̃
)3 = (−KX)3 = 30. The divisors H̃, Ẽ, F̃1, F̃2 generate the group Pic(X̃). We have

H̃3 = 1, H̃ · F̃ 2
1 = H̃ · F̃ 2

2 = F̃1 · Ẽ2 = F̃2 · Ẽ2 = −1, H̃ · Ẽ2 = F̃ 3
1 = F̃ 3

2 = −2, Ẽ3 = −4, and all remaining
triple intersections are zero.

Similarly, let E, F 1, F 2, Q, HC , HC′ , H be the proper transforms on X of the surfaces E, F1, F2, Q,
HC , HC′ , H, respectively. Then

−KX ∼ 4H − E − F 1 − F 2 ∼ 2Q+ E + F 1 + F 2 ∼ Q+ 2HC + 2E.

The divisors H, E, F 1, F 2 generate the group Pic(X) and their intersections can be computed as follows:

H
3
= 1, F

3
1 = F

3
2 = F

2
1 ·H = F

2
2 ·H = F

2
1 · E = F

2
2 · E = −1, E

2 ·H = −2, E
3
= −6, and all remaining

triple intersections are zero.
Description of the automorphism group. Let τ be the involution of P3 given by

[x0 : x1 : x2 : x3] 7→ [x3 : x2 : x1 : x0],

and Γ the subgroup of Aut(P3) consisting of automorphisms

[x0 : x1 : x2 : x3] 7→
[
x0 : λx1 :

x2
λ

: x3

]
for λ ∈ C∗. Then Γ ∼= C∗, the curve C∞ is ⟨τ,Γ⟩-invariant, and the ⟨τ,Γ⟩-action lifts to X. Hence, we
can identify ⟨τ,Γ⟩ with a subgroup in G = Aut(X). It is not difficult to verify that G = ⟨τ,Γ⟩ ∼= C∗⋊µ2.
Description of the G-invariant loci. Set O = [1 : 0 : 0 : 1] and O′ = [1 : 0 : 0 : −1].

Lemma 3.1. The only G-fixed points in P3 are O and O′.

Proof. Left to the reader. □

Let l = {x0 = 0, x3 = 0}, l′ = {x1 = 0, x2 = 0}, Cr = {x1x2 = rx0x3, x0 + x3 = 0}, C ′
r = {x1x2 =

rx0x3, x0 = x3} for r ∈ C∗. Then l = HC ∩ HC′ is the line that passes through the points C ∩ L1 and
C ∩L2, and l

′ is the line that passes through O and O′. Note that Cr is an irreducible conic in the plane
HC , and C

′
r is an irreducible conic in the plane H ′

C . All these curves are G-invariant, and C = C1. Set
C ′ = C ′

1.

Lemma 3.2. The curves l, l′, Cr, C
′
r are the only G-invariant irreducible curves in P3.

Proof. Let C be a G-invariant irreducible curve in P3. If C is pointwise fixed by Γ, then C = l′. We may
assume that C ̸= l′. Then Γ acts on C effectively, which implies that C is rational. Then τ must fix a
point P ∈ C, which is not fixed by Γ, which implies that C = OrbΓ(P ). On the other hand, the τ -fixed
points are [b : a : a : b] and [b : a : −a : −b] for [a : b] ∈ P1, which implies the required assertion. □

Thus, the planes HC and HC′ contain all G-invariant irreducible curves in P3 except l′. To complete
the description of G-invariant curves in X, we have to describe G-invariant irreducible curves in E, which
is done in the following lemma:

Lemma 3.3. The only G-invariant irreducible curves in Ẽ are Ẽ∩Q̃ and Ẽ∩H̃C , and the only G-invariant
irreducible curves in E are E ∩Q and E ∩HC .

Proof. Note that δ(E) ∼= F2 by [CS23, Lemma 2.6], and δ(E∩HC) is the (−2)-curve in E. Let ς : P3 99K P4

be the G-equivariant map

[x0 : x1 : x2 : x3] 7→
[
x0(x0 + x3) : x1(x0 + x3) : x2(x0 + x3) : x3(x0 + x3) : x0x3 − x1x2

]
,

and let Y be the closure of its image in P4. Then Y is the quadric {tw − tx + wx + yz = 0}, where
[x : y : z : t : w] are coordinates on P4. Then ς induces a G-equivariant birational map σ : P3 99K Y such
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that there exists the following G-equivariant commutative diagram:

W
φ

{{
υ

##
P3 σ // Y

where υ is the contraction of δ(HC) to [0 : 0 : 0 : 0 : 1]. Set S2 = υ ◦ δ(E). Then

S2 =
{
t+ x = 0, yz − tx = 0

}
⊂ Y,

and υ induces a G-equivariant birational morphism δ(E) → S2 that contracts δ(E ∩HC). Moreover, one
can check that the only G-invariant irreducible curve in the cone S2 is the conic {w = t+x = yz−tx = 0},
which is the image of the curve E ∩Q. This implies the required assertion. □

A G-irreducible divisor S on X is one that is not a nontrivial sum of two effective G-invariant divisors.
In order to use Remark 2.2, we need the following result.

Lemma 3.4. Let S be a G-invariant G-irreducible surface in X̃ such that S ̸= F̃1 + F̃2. Then S ∼
aQ̃+ bH̃C + cẼ for some non-negative integers a, b, c.

Proof. We may assume that S ̸= Ẽ, S ̸= H̃C , S ̸= Q̃. Then π(S) is a G-invariant surface of degree d ⩾ 1,

and S ∼ dH̃ −mẼ − n(F̃1 + F̃2) for some non-negative integers m and n. Let ℓ be a general ruling of

Q̃ ∼= P1 × P1 such that F̃1 · ℓ = F̃2 · ℓ = 1. Then Ẽ1 · ℓ = 1 and 0 ⩽ S · ℓ = d −m − 2n. Thus, we have
d ⩾ m− 2n. So, we can let a = n, b = d− 2n, c = d−m− n. □

We are ready to prove that X is K-polystable using the approach described in Section 2. Namely, let

F be a G-invariant prime divisor over X, and let Z, Z̃, Z be its centres on X, X̃ and X, respectively.
Then it follows from Lemma 3.1 that

(1) either Z is a G-invariant irreducible surface,
(2) or Z is a curve described in Lemmas 3.2 and 3.3,
(3) or Z is a point, and π(Z) is one of the points O or O′.

We start with the case of a G-invariant irreducible surface. Using Remark 2.2 and Lemma 3.4, we
obtain

Lemma 3.5. Let F be a G-invariant prime divisor on X. Then β(F) > 0.

Proof. By Remark 2.2 and Lemma 3.4, it is enough to show that β(Q̃), β(H̃C), β(Ẽ) are positive. We
will do this using the notations introduced in Section 2.

We start with Q̃. Let Y = X̃ and S = Q̃. Then −K
X̃
− uS ∼R (2− u)S + Ẽ + F̃1 + F̃2. This shows

that τ = 2. Moreover, we have

P (u) ∼R

{
(2− u)S + Ẽ + F̃1 + F̃2 if 0 ⩽ u ⩽ 1,

(2− u)
(
S + Ẽ + F̃1 + F̃2

)
if 1 ⩽ u ⩽ 2.

If u ∈ [0, 1], then N(u) = 0. If u ∈ [1, 2], then N(u) = (u− 1)(Ẽ + F̃1 + F̃2). Then(
P (u)

)3
=

{
2u3 − 6u2 − 18u+ 30 if 0 ⩽ u ⩽ 1,

8(2− u)3 if 1 ⩽ u ⩽ 2.

Now, integrating (P (u))3, we get SY (S ) = 43
60 , so that β(Q̃) = 17

60 > 0.

Now we deal with H̃C . Set Y = X̃ and S = H̃C . Then −K
X̃
− uS ∼R (2 − u)S + 2Ẽ + Q̃. This

gives τ = 2, because 2Ẽ + Q̃ is not big. Moreover, we have

P (u) ∼R

{
(2− u)S + 2Ẽ + Q̃ if 0 ⩽ u ⩽ 1,

(2− u)S + (3− u)Ẽ + Q̃ if 1 ⩽ u ⩽ 2.
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If u ∈ [0, 1], then N(u) = 0. If u ∈ [1, 2], then N(u) = (u− 1)Ẽ. We compute(
P (u)

)3
=

{
u3 − 6u2 − 12u+ 30 if 0 ⩽ u ⩽ 1,

(2− u)(u2 − 10u+ 22) if 1 ⩽ u ⩽ 2,

which gives SY (S ) = 11
12 , so that β(Q̃) = 1

12 > 0.

Finally, we set Y = X and S = E. Then −KX − uS ∼R (2 − u)S + 2HC + Q. This shows that

τ = 2, because 2HC +Q is not big. Moreover, we have

P (u) ∼R

{
(2− u)S + 2HC +Q if 0 ⩽ u ⩽ 1,

(2− u)
(
S +Q+ 2HC

)
if 1 ⩽ u ⩽ 2.

If u ∈ [0, 1], then N(u) = 0. If u ∈ [1, 2], then N(u) = (u− 1)Q+ 2(u− 1)HC . Then(
P (u)

)3
=

{
6u3 − 6u2 − 24u+ 30 if 0 ⩽ u ⩽ 1,

6(2− u)3 if 1 ⩽ u ⩽ 2,

which gives SY (S ) = 19
30 and β(Ẽ) = β(E) = 11

30 > 0. □

We now show that β(F) > 0 for F a G-invariant prime divisor with small center on X.

Lemma 3.6. Suppose that Z̃ is a G-invariant irreducible curve in H̃C . Then β(F) > 0.

Proof. The morphism γ ◦ ϕ induces a birational morphism H̃C → HC , which is a blowup of the points

HC ∩ L1 and HC ∩ L2. Set f̃1 = F̃1|H̃C
and f̃2 = F̃2|H̃C

. Then f̃1 and f̃2 are exceptional curves of the

morphism H̃C → HC . Let l̃ be the third (−1)-curve in H̃C , set h = H̃|
H̃C

, and set C̃ = Ẽ|
H̃C

. Then

γ ◦ ϕ(l̃) = l, so that l̃ ∼ h− f̃1 − f̃2. By Lemmas 3.2 and 3.3, we have the following possible cases:

• π(Z) = l and Z̃ = l̃,

• π(Z) = C1 = C and Z̃ = C̃ ∼ 2h− f̃1 − f̃2,

• π(Z) = Cr with r ̸= 1, Z̃ ̸⊂ Ẽ and Z̃ ∼ 2h− f̃1 − f̃2.

Set Y = X̃, S = H̃C , C = Z̃. Then it follows from the proof of Lemma 3.5 that

P (u)
∣∣
S

∼R

{
(2 + u)h− u(f̃1 + f̃2) if 0 ⩽ u ⩽ 1,

(4− u)h− f̃1 − f̃2 if 1 ⩽ u ⩽ 2,

and

N(u)
∣∣
S

=

{
0 if 0 ⩽ u ⩽ 1,

(u− 1)C̃ if 1 ⩽ u ⩽ 2.

We know from the proof of Lemma 3.5 that SY (S ) = 11
12 < 1. Let us compute S(WS

•,•;C ).

Suppose that Z̃ = l̃. If 0 ⩽ u ⩽ 1, then t(u) = 2 + u. If 1 ⩽ u ⩽ 2, thent t(u) = 4 − u. Moreover, if
0 ⩽ u ⩽ 1, then

P (u, v) ∼R

{
(2 + u− v)h− (u− v)(f̃1 + f̃2) if 0 ⩽ v ⩽ u,

(2 + u− v)h if u ⩽ v ⩽ 2 + u,

and

N(u, v) =

{
0 if 0 ⩽ v ⩽ u,

(v − u)(f̃1 + f̃2) if u ⩽ v ⩽ 2 + u.

Similarly, if 1 ⩽ u ⩽ 2, then

P (u, v) ∼R

{
(4− u− v)h− (1− v)(f̃1 + f̃2) if 0 ⩽ v ⩽ 1,

(4− u− v)h if 1 ⩽ v ⩽ 4− u,
9



and

N(u, v) =

{
0 if 0 ⩽ v ⩽ 1,

(v − 1)(f̃1 + f̃2) if 1 ⩽ v ⩽ 4− u.

This gives

S(WS
•,•;C ) =

1

10

1∫
0

u∫
0

4− u2 + 2uv − v2 + 4u− 4vdvdu+
1

10

1∫
0

2+u∫
u

(2 + u− v)2dvdu+

+
1

10

2∫
1

1∫
0

u2 + 2uv − v2 − 8u− 4v + 14dvdu+
1

10

2∫
1

4−u∫
1

(u+ v − 4)2dvdu = 1.

Hence, it follows from Remark 2.4 that β(F) > 0 in the case when Z̃ = l̃.

We may assume that π(Z) = Cr. Then Z̃ ∼ 2h− f̃1 − f̃2. If 0 ⩽ u ⩽ 1, then t(u) = 2+u
2 . Similarly, if

1 ⩽ u ⩽ 2, then t(u) = 4−u
2 . Moreover, if 0 ⩽ u ⩽ 1, then

P (u, v) ∼R

{
(2 + u− 2v)h− (u− v)(f̃1 + f̃2) if 0 ⩽ v ⩽ u,

(2 + u− 2v)h if u ⩽ v ⩽ 2+u
2 ,

and

N(u, v) =

{
0 if 0 ⩽ v ⩽ u,

(v − u)(f̃1 + f̃2) if u ⩽ v ⩽ 2+u
2 .

Similarly, if 1 ⩽ u ⩽ 2, then

P (u, v) ∼R

{
(4− u− 2v)h− (1− v)(f̃1 + f̃2) if 0 ⩽ v ⩽ 1,

(4− u− 2v)h if 1 ⩽ v ⩽ 4+u
2 ,

and

N(u, v) =

{
0 if 0 ⩽ v ⩽ 1,

(v − 1)(f̃1 + f̃2) if 1 ⩽ v ⩽ 2+u
2 .

Therefore, if Z̃ = C̃, then S(WS
•,•;C ) can be computed as follows:

1

10

2∫
1

(u− 1)(u2 − 8u+ 14)du+
1

10

1∫
0

u∫
0

4− u2 + 2v2 + 4u− 8vdvdu+
1

10

1∫
0

2+u
2∫

u

(2 + u− 2v)2dvdu+

+
1

10

2∫
1

1∫
0

u2 + 4uv + 2v2 − 8u− 12v + 14dvdu+
1

10

2∫
1

4−u
2∫

1

(u+ 2v − 4)2dvdu =
53

80
< 1.

Similarly, if Z̃ ̸= C̃, then S(WS
•,•;C ) = 39

80 < 1. Then β(F) > 0 by (2.3). □

Using computations made in the proof of Lemma 3.6, we obtain the following result:

Lemma 3.7. Suppose that π(Z) contains O. Then β(F) > 0.

Proof. Let us use notations introduced in the proof of Lemma 3.6. First, we let Y = X̃. Let P be the

preimage on Y of the point O. Then P is the unique G-fixed point in H̃C .

As in the proof of Lemma 3.6, we choose S = H̃C , and we choose C to be the curve in the pencil

|h − f̃1| that contains P . Since SY (S ) = 11
12 (see the proof of Lemma 3.5), it follows from (2.5) that

β(F) > 0 provided that S(WS
•,•;C ) < 1 and S(WS ,C

•,•,• ;P ) < 1.
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Let us compute S(WS
•,•;C ) and S(WS ,C

•,•,• ;P ). If 0 ⩽ u ⩽ 1, then t(u) = 2. If 1 ⩽ u ⩽ 2, then
t(u) = 3− u. Moreover, if 0 ⩽ u ⩽ 1, then

P (u, v) ∼R

{
(2 + u− v)h− (u− v)f̃1 − uf̃2 if 0 ⩽ v ⩽ u,

(2 + u− v)h− uf̃2 if u ⩽ v ⩽ 2,

and

N(u, v) =

{
0 if 0 ⩽ v ⩽ u,

(v − u)f̃1 if u ⩽ v ⩽ 2,

which gives (
P (u, v)

)2
=

{
4− u2 + 4u− 4v if 0 ⩽ v ⩽ u,

(2− v)(2 + 2u− v) if u ⩽ v ⩽ 2,

and

P (u, v) · C =

{
2 if 0 ⩽ v ⩽ u,

2 + u− v if u ⩽ v ⩽ 2.

Similarly, if 1 ⩽ u ⩽ 2, then

P (u, v) ∼R

{
(4− u− v)h− (1− v)f̃1 − f̃2 if 0 ⩽ v ⩽ 1,

(4− u− v)h− f̃2 if 1 ⩽ v ⩽ 3− u,

and

N(u, v) =

{
0 if 0 ⩽ v ⩽ 1,

(v − 1)f̃1 if 1 ⩽ 3− u ⩽ 3− u,

which implies that (
P (u, v)

)2
=

{
u2 + 2uv − 8u− 6v + 14 if 0 ⩽ v ⩽ 1,

(3− u− v)(5− u− v) if 1 ⩽ v ⩽ 3− u,

and

P (u, v) · C =

{
3− u if 0 ⩽ v ⩽ 1,

4− u− v if 1 ⩽ v ⩽ 3− u.

Observe that C is not contained in the support of the divisor N(u) for every u ∈ [0, 2], and P is not
contained in the support of the divisor N(u, v) for u ∈ [0, 2] and v ∈ [0, t(u)]. Now, by integrating we get

S(WS
•,•;C ) = S(WS ,C

•,•,• ;P ) =
47
60 < 1, so β(F) > 0 by (2.5). □

Recall that HC′ is the plane in P3 that contains O′ and C ′
r for every r ∈ C∗.

Lemma 3.8. Suppose that π(Z) = C ′
r for some r ∈ C∗. Then β(F) > 0.

Proof. As above, we use notations introduced in Section 2. Let Y = X̃, and let S be the proper transform

on Y of the plane HC′ . Then −K
X̃
−uS ∼R Q̃+(2−u)S . This gives τ = 2. If u ∈ [0, 1], then N(u) = 0.

If u ∈ [1, 2], then N(u) = (u− 1)Q̃. Thus, we have

P (u) ∼R

{
Q̃+ (2− u)S if u ∈ [0, 1],

(2− u)(Q̃+ S if u ∈ [1, 2].

Integrating, we get SY (S ) = 17
30 .

Set C̃ ′ = Q̃|S . Then C̃ ′ is a smooth irreducible G-invariant curve, and

N(u) =

{
0 if u ∈ [0, 1],

(u− 1)C̃ ′ if u ∈ [1, 2].

To describe P (u)|S explicitly, we have to say few words about the surface S .
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Set P1 = HC′ ∩ L1 and P2 = HC′ ∩ L2. Recall that l is the line containing P1 and P2. Let P be the
pencil on HC′ generated by 2l and C ′, let l1 and l2 be the lines in HC′ that are tangent to C ′ at the points
P1 and P2, respectively. Then

• the base locus of the pencil P consists of the points P1 and P2,
• the pencil P contains l1 + l2 and the conic C ′

r for every r ∈ C∗,
• the conics 2l and l1 + l2 are the only singular curves in P.

The morphism γ ◦ ϕ induces a birational morphism ξ : S → HC′ that resolves the base locus of the
pencil P. The morphism ξ is a composition of 4 blowups such that we have the following G-equivariant
commutative diagram:

S
ξ

zz ""
HC′ // P1

where HC′ 99K P1 is the rational map given by P, and S → P1 is a surjective morphism. The birational
morphism ξ is a composition of the blowup of the points P1 and P2 with the subsequent blowup of two
points in the exceptional curves contained in the proper transforms of l1 and l2. Note that S is a weak
del Pezzo surface of degree five.

We have Ẽ|S = g̃1 + g̃2, where g̃1 and g̃2 are two irreducible ξ-exceptional (−1)-curves such that

ξ(g̃1) = P1 and ξ(g̃2) = P2. Let f̃1 and f̃2 be the remaining ξ-exceptional curves that are mapped to the

points P1 and P2, respectively, and let l̃, l̃1, l̃2, C̃
′
r be the proper transforms on S of the curves l, l1, l2,

C ′
r, respectively. Then C̃

′ = C̃ ′
1 and 2l̃ + f̃1 + f̃2 ∼ l̃1 + l̃2 ∼ C̃ ′ ∼ C̃ ′

r for every r ∈ C∗, ant the curves f̃1,

f̃2, g̃1, g̃2, l̃, l̃1, l̃2 generate the Mori cone NE(S ) by [CT88, Proposition 8.5].

Note that F̃1|S = f̃1 + g̃1 and F̃2|S = f̃2 + g̃2. Using this, we get

(3.9) P (u)
∣∣
S

∼R

{
4−u
2 C̃ ′ + 2−u

2

(
f̃1 + f̃2

)
+ (2− u)

(
g̃1 + g̃2

)
if 0 ⩽ u ⩽ 1,

6−3u
2 C̃ ′ + 2−u

2

(
f̃1 + f̃2

)
+ (2− u)

(
g̃1 + g̃2

)
if 1 ⩽ u ⩽ 2.

Set C = Z̃. Let us compute S(WS
•,•;C ). Recall that C ∼ C̃ ′. Then (3.9) gives

t(u) =

{
4−u
2 if 0 ⩽ u ⩽ 1,

6−3u
2 if 1 ⩽ u ⩽ 2.

Moreover, if 0 ⩽ u ⩽ 1, then (3.9) gives

P (u, v) ∼R

{
4−u−2v

2 C + (2− u)
(
f̃1 + f̃2

)
+ 2−u

2

(
g̃1 + g̃2

)
if 0 ⩽ v ⩽ 1,

4−u−2v
2

(
C + f̃1 + f̃2 + g̃1 + g̃2

)
if 1 ⩽ v ⩽ 4−u

2 ,

and

N(u, v) =

{
0 if 0 ⩽ v ⩽ 1,

(v − 1)(f̃1 + f̃2 + 2g̃1 + 2g̃2) if 1 ⩽ v ⩽ 4−u
2 .

Similarly, if 1 ⩽ u ⩽ 2, then (3.9) gives

P (u, v) ∼R

{
6−3u−2v

2 C + 2−u
2

(
f̃1 + f̃2

)
+ (2− u)

(
g̃1 + g̃2

)
if 0 ⩽ v ⩽ 2− u,

6−3u−2v
2

(
C + f̃1 + f̃2 + 2g̃1 + 2g̃2

)
if 2− u ⩽ v ⩽ 6−3u

2 ,

and

N(u, v) =

{
0 if 0 ⩽ v ⩽ 2− u,

(v + u− 2)
(
f̃1 + f̃2 + 2g̃1 + 2g̃2

)
if 2− u ⩽ v ⩽ 6−3u

2 .
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Therefore, if C = C̃ ′, then we compute S(WS
•,•;C ) as follows:

1

10

2∫
1

(5u2 − 20u+ 20)(u− 1)du+
1

10

1∫
0

1∫
0

(2− u)(6− u− 4v)dvdu+
1

10

1∫
0

4−u
2∫

1

(4− u− 2v)2dvdu+

+
1

10

2∫
1

2−u∫
0

(2− u)(10− 5u− 4v)dvdu+
1

10

2∫
1

6−3u
2∫

2−u

(6− 3u− 2v)2dvdu =
43

60
,

If Z̃ ̸= C̃ ′, similar computations give S(WS
•,•;C ) = 27

40 , since Z̃ ̸⊂ Supp(N(u)) for u ∈ [0, 2]. Hence, it

follows from (2.3) that β(F) > 0, because SY (S ) = 17
30 < 1. □

The proof of Lemma 3.8 implies the following result:

Lemma 3.10. Suppose that π(Z) = O′. Then β(F) > 0.

Proof. Let us use all assumptions and notations introduced in the proof of Lemma 3.8 with one exception:

now we let C = l̃1. Set P = l̃1 ∩ l̃2. Then P = Z̃ and γ ◦ ϕ(P ) = O′.

Since C̃ ′ ∼ l̃1 + l̃2 and l̃1 + f̃1 + 2g̃1 ∼ l̃2 + f̃2 + 2g̃2, it follows from (3.9) that

P (u)
∣∣
S

− vC ∼R

{
(3− u− v)C + l̃2 + (2− u)f̃1 + (4− 2u)g̃1 if 0 ⩽ u ⩽ 1,

(4− 2u− v)C + (2− u)l̃2 + (2− u)f̃1 + (4− 2u)g̃1 if 1 ⩽ u ⩽ 2.

If u ∈ [0, 1], then t(u) = 3− u. If u ∈ [1, 2], then t(u) = 4− 2u. If u ∈ [0, 1], then

P (u, v) ∼R


(3− u− v)C + l̃2 + (2− u)f̃1 + (4− 2u)g̃1 if 0 ⩽ v ⩽ 1,

(3− u− v)
(
C + f̃1 + 2g̃1

)
+ l̃2 if 1 ⩽ v ⩽ 2− u,

(3− u− v)
(
C + l̃2 + f̃1 + 2g̃1

)
if 2− u ⩽ v ⩽ 3− u,

and

N(u, v) =


0 if 0 ⩽ v ⩽ 1,

(v − 1)
(
f̃1 + 2g̃1

)
if 1 ⩽ v ⩽ 2− u,

(v − 1)
(
f̃1 + 2g̃1

)
+ (v + u− 2)l̃2 if 2− u ⩽ v ⩽ 3− u,

which gives (
P (u, v)

)2
=


u2 + 2uv − v2 − 8u− 4v + 12 if 0 ⩽ v ⩽ 1,

u2 + 2uv + v2 − 8u− 8v + 14 if 1 ⩽ v ⩽ 2− u,

2(3− u− v)2 if 2− u ⩽ v ⩽ 3− u,

and

P (u, v) · C =


2− u+ v if 0 ⩽ v ⩽ 1,

4− u− v if 1 ⩽ v ⩽ 2− u,

6− 2u− 2v if 2− u ⩽ v ⩽ 3− u.

Similarly, if u ∈ [1, 2], then

P (u, v) ∼R

{
(4− 2u− v)C + (2− u)l̃2 + (2− u)f̃1 + (4− 2u)g̃1 if 0 ⩽ v ⩽ 2− u,

(4− 2u− v)
(
C + l̃2 + f̃1 + 2g̃1

)
if 2− u ⩽ v ⩽ 4− 2u,

and

N(u, v) =

{
0 if 0 ⩽ v ⩽ 2− u,

(v + u− 2)
(
l̃2 + f̃1 + 2g̃1

)
if 2− u ⩽ v ⩽ 4− 2u,

which implies that(
P (u, v)

)2
=

{
5u2 + 2uv − v2 − 20u− 4v + 20 if 0 ⩽ v ⩽ 2− u,

2(4− 2u− v)2 if 2− u ⩽ v ⩽ 4− 2u,
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and

P (u, v) · C =

{
2− u+ v if 0 ⩽ v ⩽ 2− u,

8− 4u− 2v if 2− u ⩽ v ⩽ 4− 2u.

Observe that d(u) = 0 for u ∈ [0, 2], since C ̸⊂ Supp(N(u)). Therefore, integrating, we get S(WS
•,•;C ) = 1.

Similarly, we compute

FP

(
WS ,C

•,•,•
)
=

1

5

1∫
0

3−u∫
2−u

(v + u− 2)
(
P (u, v) · C

)
dvdu+

1

5

2∫
1

4−2u∫
2−u

(v + u− 2)
(
P (u, v) · C

)
dvdu =

1

12

and S(WS ,C
•,•,• ;P ) = 1. Thus, it follows from Remark 2.6 that β(F) > 0, since SY (S ) < 1. □

Finally, we prove the following result

Lemma 3.11. Suppose that Z be a G-invariant irreducible curve in E. Then β(F) > 0.

Proof. We have δ(E) ∼= F2, see the proof of Lemma 3.3. Set s0 = Q ∩ E and s = HC ∩ E. Then δ(s) is
the unique (−2)-curve in δ(E), and δ(s0) is a section of the projection δ(E) → C disjoint from δ(s). The
morphism δ induces a birational map ξ : E → δ(E) that blows up two points in δ(s0).

Set f1 = F 1 ∩ E and f2 = F 2 ∩ E. Observe that f1 and f2 are the ξ-exceptional curves. Let g1 and
g2 be the proper transforms on E of the fibres of the projection δ(E) → C that pass through ξ(f1) and
ξ(f2), respectively. The curves f1, f2, g1, g2 are (−1)-curves, and the curves s, f1, f2, g1, g2 generates

the Mori cone NE(E). Note that s0 is a (0)-curve.
The curves s and s0 are the only G-invariant irreducible curves in E by Lemma 3.3. Moreover, if Z = s,

then β(F) > 0 by Lemma 3.6. Thus, we may assume that Z = s0.
Let Y = X, S = E and C = s0. Then it follows from the proof of Lemma 3.5 that

P (u)
∣∣
S

− vC ∼R

{
(1 + u− v)C + (2− u)(f1 + f2) + (2− 2u)(g1 + g2) if 0 ⩽ u ⩽ 1,

(4− 2u− v)C + (2− u)(f1 + f2) if 1 ⩽ u ⩽ 2.

Moreover, if u ∈ [0, 1], then t(u) = 1 + u and N(u)|S = 0. Furthermore, if u ∈ [1, 2], then t(u) = 4− 2u
and N(u)|S = (u− 1)C + 2(u− 1)s. If u ∈ [0, 1], then

P (u, v) =

{
(1 + u− v)C + (2− u)(f1 + f2) + (2− 2u)(g1 + g2) if 0 ⩽ v ⩽ 1,

(1 + u− v)C + (3− u− v)(f1 + f2) + (2− 2u)(g1 + g2) if 1 ⩽ v ⩽ 1 + u,

and

N(u, v) =

{
0 if 0 ⩽ v ⩽ u,

(v − 1)(f1 + f2) if u ⩽ v ⩽ 1 + u.

Similarly, if u ∈ [1, 2], then

P (u, v) =

{
(4− 2u− v)C + (2− u)(f1 + f2) if 0 ⩽ v ⩽ 2− u,

(4− 2u− v)
(
C + f1 + f2

)
if 2− u ⩽ v ⩽ 4− 2u,

and

N(u, v) =

{
0 if 0 ⩽ v ⩽ 2− u,

(v + u− 2)(f1 + f2) if 2− u ⩽ v ⩽ 4− 2u.

Now, we compute S(WS
•,•;C ) as follows:

1

10

2∫
1

(u−1)(6u2−24u+24)du+
1

10

1∫
0

1∫
0

8−6u2+4uv+4u−8vdvdu+
1

10

1∫
0

u+1∫
1

2(5−3u−v)(u+1−v)dvdu+

+
1

10

2∫
1

2−u∫
0

6u2 + 4uv − 24u− 8v + 24dvdu+
1

10

2∫
1

4−2u∫
2−u

2(4− 2u− v)2dvdu =
43

60
.
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But SY (S ) = 19
30 , see the proof of Lemma 3.5. Then (2.3) gives β(F) > 0. □

By Lemmas 3.1, 3.2, 3.5, 3.6, 3.7, 3.8, 3.10, 3.11, we have β(F) > 0 in all possible cases except maybe
when π(Z) = l′. But in this case, we have O ∈ π(Z), so β(F) > 0 by Lemma 3.7. Thus, we conclude that
X is K-polystable by [Zhu21, Corollary 4.14].

4. K-polystability of the Fano 3-fold X∞ in Family 4

Consider the following lines in P3: L = {x0 = 0, x3 = 0}, ℓ1 = {x1 = x0, x2 = 0}, ℓ2 = {x1 = 0, x2 = 0},
ℓ3 = {x2 = x3, x1 = 0}, where x0, x1, x2, x3 are coordinates on P3. Then L is disjoint from ℓ1, ℓ2, ℓ3,
the lines ℓ1 and ℓ3 are disjoint, ℓ2 ∩ ℓ1 = [0 : 0 : 0 : 1] and ℓ2 ∩ ℓ3 = [1 : 0 : 0 : 0]. Let π : X → P3 be the
blowup of the curve L+ ℓ1 + ℓ2 + ℓ3, and let χ : P3 99K P1 × P2 be the dominant rational map given by

[x0 : x1 : x2 : x3] 7→
(
[x0 : x3], [x1(x0 − x1) : x1x2 : x2(x3 − x2)]

)
.

Then χ is undefined along L∪ ℓ1 ∪ ℓ2 ∪ ℓ3, π resolves the indeterminacy of χ, and there exists a birational
morphism η : X → P1 × P2 that fits in the following commutative diagram:

(4.1) X
π

||

η

&&
P3 χ // P1 × P2.

To describe η, set H12 = {x2 = 0} and H23 = {x1 = 0}, and denote

Q =
{
x0x2 + x1x3 − x0x3 = 0

}
.

Then H12 is the plane containing the lines ℓ1 and ℓ2, H23 is the plane containing ℓ2 and ℓ3, and Q is the
unique smooth quadric in P3 that contains L, ℓ1, and ℓ3. Further, χ(H12) is the curve P1 × {[1 : 0 : 0])},
χ(H23) = P1 × {[0 : 0 : 1])}, and χ(Q) is the curve parametrised as ([u : v], [u2 : uv : v2]), where
[u : v] ∈ P1. Therefore, we see that η contracts the proper transforms of the surfaces H12, H23, Q to the
curves χ(H12), χ(H23), χ(Q), respectively. Note that these curves are contained in the preimage of the
smooth conic {xz = y2} via the projection P1×P2 → P2, where [x : y : z] are coordinates on P2. Observe
also that

χ(Q) =
{
uy = vx, vy = uz

}
⊂ P1 × P2.

Finally, note that χ(H12) and χ(H23) are the fibres of the projection P1×P2 → P2 over the points [1 : 0 : 0]
and [0 : 0 : 1], respectively. Hence, we have the following conclusion.

Corollary 4.2. The 3-fold X is isomorphic to the 3-fold X∞ described in Family 4.

Description of the automorphism group. Let τ be the involution of P3 defined by [x0 : x1 : x2 :
x3] 7→ [x3 : x2 : x1 : x0], and let Γ be the subgroup in Aut(P3) consisting of automorphisms

[x0 : x1 : x2 : x3] 7→ [λx0 : λx1 : x2 : x3] ,

where λ ∈ C∗. Set G = ⟨τ,Γ⟩. Then Γ ∼= C∗ and G ∼= C∗ ⋊ µ2. Since L+ ℓ1 + ℓ2 + ℓ3 is G-invariant, the
action of the group G lifts to X. Hence, we can identify G with a subgroup in Aut(X). One can check
that Aut(X) = G. Note that (4.1) is G-equivariant.
Description of the G-invariant loci. Consider the smooth quadric surface R = {x0x2 = x1x3}.

Lemma 4.3. There are no G-fixed point or G-invariant plane in P3. If S is a G-invariant irreducible
quadric surface in P3, then S = R or

S = {ax0x3 + bx1x2 + c(x0x2 + x1x3) = 0}
for some [a : b : c] ∈ P2 such that ab ̸= c2.

Proof. Left to the reader. □

For a ∈ C ∪ {∞}, set La = {x0 = ax1, x3 = ax2} ⊂ P3; then La is a G-invariant line lying on R. Note
that L0 = L and L∞ = ℓ2.

Lemma 4.4. If C ⊂ P3 is a G-invariant irreducible curve, then C = La for some a ∈ C ∪ {∞}.

Proof. See the proof of Lemma 3.2. □
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Denote by γ : V → P3 the blowup of the lines L, ℓ1, ℓ3, and by ϕ : X̃ → V the blowup of the proper
transform of the line ℓ2.

Let φ : W → P3 be the blowup of the lines L and ℓ2, and δ : X →W the blowup of the proper transform
of the disjoint lines ℓ1 and ℓ3. Then we have a G-equivariant commutative diagram:

(4.5) X̃ //

ϕ

��

X

π
��

Xoo

δ
��

V γ
// P3 Wφ
oo

where X̃ → X and X → X are G-equivariant small resolutions of the 3-fold X.
Let EL, E1, E2, E3 be the π-exceptional divisors that are mapped to L, ℓ1, ℓ2, ℓ3, respectively, let HL

be a general plane in P3 that contains L, let H2 be a general plane in P3 that contains ℓ2, let H be a
general plane in P3, let EL, E1, E2, E3, Q, R, H12, H23, HL, H2, H be the proper transforms on X of
the surfaces EL, E1, E2, E3, Q, R, H12, H23, HL, H2, H, respectively. Then H, EL, E1, E2, E3 generate

Pic(X), and their intersections can be described as follows: H
3
= 1, E

3
L = E

3
2 = −2, E

3
1 = E

3
3 = −1,

E
2
L ·H = E

2
1 ·H = E

2
2 ·H = E

2
3 ·H = E2 · E

2
3 = E2 · E

2
1 = −1, and other triple intersections are zero.

Note that −KX ∼ 4H − EL − E1 − E2 − E3 and

Q ∼ 2H − EL − E1 − E3, H12 ∼ H − E1 − E2, HL ∼ H − EL,

R ∼ 2H − EL − E2, H23 ∼ H − E2 − E3, H2 ∼ H − EL.

Note also that EL, E2, E1 + E3, Q, R, H12 +H23 are G-invariant and G-irreducible.

Lemma 4.6. Let S be a G-invariant prime divisor in X. If S ̸= EL, then there are non-negative integers
a1, a2, a3, a4, a5 such that S ∼ a1E2 + a2Q+ a3HL + a4H2 + a5(H12 +H23).

Proof. We may assume that S ̸= EL, S ̸= E2 and S ̸= Q. Then π(S) is a G-invariant surface in P3 of
degree d ⩾ 1, so that S ∼ dH −mEL − r(E1 + E3)− sE2 for some non-negative integers m, r, s.

Let ℓ be a general ruling of the quadric Q ∼= P1 × P1 that intersects L, ℓ1, ℓ3, let ℓ be its proper
transform on X. Then ℓ ̸⊂ S, which gives 0 ⩽ S · ℓ = d −m − 2r. Similarly, let ℓ12 be a general line in
the plane H12 that passes through the point H12 ∩ L, and let ℓ12 be its proper transform on X. Then
ℓ12 ̸⊂ S, which gives 0 ⩽ S · ℓ12 = d−m− r − s. Thus, if m ⩾ r, we can let a1 = d−m− r − s, a2 = r,
a3 = m− r, a4 = d−m− r, a5 = 0. If m < r, we can let a1 = d− 2m− s, a2 = m, a3 = 0, a4 = d− 2r,
a5 = r −m. □

Lemma 4.7. Let S be a G-invariant prime divisor in X such that −KX ∼Q λS + ∆ for some positive

rational number λ > 4
3 and some effective Q-divisor ∆ on the 3-fold X. Then S = E2, S = EL or S = Q.

Proof. Suppose that S ̸= E2 and S ̸= EL. Let us show that S = Q. Since S ̸= E1 + E3, we see that
π(S) is a G-invariant irreducible surface of degree d ⩾ 2, because P3 does not contain G-invariant planes
by Lemma 4.3. Then S ∼ dH −mEL − r(E1 + E3)− sE2 for some non-negative integers m, r, s. Then
4 ⩾ λd > 4

3d, so that d = 2 and

∆ ∼Q (4− 2λ)H + (mλ− 1)EL + (sλ− 1)E2 + (rλ− 1)(E1 + E3).

Let ℓ be a general line in P3 that intersects the lines ℓ1 and ℓ2, and let ℓ be its proper transform on
the 3-fold X. Then ℓ ̸⊂ Supp(∆), so that 0 ⩽ ∆ · ℓ = 2 − 2λ + rλ, which implies that r ̸= 0. Similarly,
intersecting ∆ with the proper transform of a general line in P3 that intersects L and ℓ2, we see that
(m, s) ̸= (0, 0).

Since r ̸= 0, the quadric π(S) contains ℓ1 and ℓ3. Hence, using Lemma 4.3, we get

π(S) =
{
ax0x3 + bx1x2 − a(x0x2 + x1x3) = 0

}
for some [a : b] ∈ P1 such that [a : b] ̸= [0 : 1] and [a : b] ̸= [1 : 1]. This gives ℓ2 ̸∈ π(S), so that s = 0.
Then m ̸= 0, so that L ⊂ π(S). Then [a : b] = [1 : 0] and S = Q. □
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We now turn to the proof that X is K-polystable. Let F be a G-invariant prime divisor over X, let Z
and Z be its centres on X and Y = X, respectively. Then it follows from Lemmas 4.3 and 4.4 that one
of the following four cases holds:

(1) Z is a G-invariant irreducible surface,
(2) Z is a G-invariant irreducible curve in the surface EL,
(3) Z is a G-invariant irreducible curve in the surface E2,
(4) π(Z) = La for some a ∈ C∗.

By [Zhu21, Corollary 4.14], to prove that X is K-polystable, it is enough to show that β(F) > 0. We use
the assumptions and notations introduced in Section 2, we first consider the case when Z is a surface.

Lemma 4.8. Let S be a G-invariant prime divisor in X. Then β(S) > 0.

Proof. By Remark 2.2 and Lemma 4.7, it is enough to show that β(E2), β(EL), β(Q) are positive. Observe
that β(EL) > 0 follows from the proof of [Den24, Lemma 4.2]. Nevertheless, let us compute β(EL). We
let S = EL. Then

−KY − uS ∼R 4H − (1 + u)S − E1 − E2 − E3 ∼R

(
3

2
− u

)
S +

1

2

(
Q+H12 +H23

)
+ 2HL,

Thus, it follows from (4.1) that τ = 3
2 . Moreover, we have

P (u) ∼R

{(
3
2 − u

)
S + 1

2

(
Q+H12 +H23

)
+ 2HL if 0 ⩽ u ⩽ 1,(

3
2 − u

) (
S +Q+H12 +H23

)
+ 2HL if 1 ⩽ u ⩽ 3

2 ,

and

N(u) =

{
0 if 0 ⩽ u ⩽ 1,

(u− 1)
(
Q+H12 +H23

)
if 1 ⩽ u ⩽ 3

2 .

Now, by integrating (P (u))3 we get β(EL) = 1− SY (EL) = 1− 37
56 = 19

56 .

Now, we deal with Q. Set S = Q. Since Q ∼ 2H − E1 − EL − E3, we have

−KY − uS ∼R

(
3

2
− u

)
S +

1

2

(
EL + E1 + E2

)
+

1

2
H2,

so that τ = 3
2 . Moreover, if 0 ⩽ u ⩽ 1, then N(u) = 0. Similarly, if 1 ⩽ u ⩽ 3

2 , then N(u) =

(u− 1)(EL + E1 + E2). Then

P (u) ∼R

{(
3
2 − u

)
S + 1

2

(
EL + E1 + E2

)
+ 1

2H2 if 0 ⩽ u ⩽ 1,(
3
2 − u

) (
S + EL + E1 + E2

)
+ 1

2H2 if 1 ⩽ u ⩽ 3
2 .

Now, by integrating we get β(Q) = 1− SY (Q) = 1− 129
224 > 0.

Finally, we proceed to study E2. Let S = E2. Then τ = 2, since

−KY − uS ∼R (2− u)S +
3

2

(
H12 +H23

)
+

1

2

(
E1 + E3

)
.

Moreover, if u ∈ [0, 1], then N(u) = 0. If u ∈ [1, 2], then N(u) = (u− 1)(H12 +H23), so

P (u) ∼R

{
(2− u)S + 3

2

(
H12 +H23

)
+ 1

2

(
E1 + E3

)
if 0 ⩽ u ⩽ 1,

(2− u)S + 5−u
2

(
H12 +H23

)
+ 1

2

(
E1 + E3

)
if 1 ⩽ u ⩽ 2.

Integrating, leads to SY (E2) =
51
56 , so that βX(E2) > 0. □

Let us now show that β(F) > 0 when the centre of F on X is small.

Lemma 4.9 ([Den24, Lemma 4.2]). Suppose that Z is a curve in EL. Then β(F) > 0.

Proof. Note that EL
∼= P1 × P1. Let s be a section of the natural projection EL → L such that s2 = 0,

and let l be a fibre of this projection. Then EL|EL
∼ −s+ l and H|EL

∼ l.
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Set CQ = Q ∩ EL and CR = R ∩ EL. Then CQ and CR are smooth irreducible G-invariant curves.

Furthermore, these are the only G-invariant irreducible curves in the surface EL. Therefore, we conclude
that either Z = CQ or Z = CR. Note that CQ ∼ CR ∼ s+ l.

We let S = EL, C = Z. Then SY (S ) = 37
56 < 1, see the proof of Lemma 4.8.

Let us compute S(WS
•,•;C ). We recall from the proof of Lemma 4.8 that τ = 3

2 . Moreover, it also
follows from the proof of Lemma 4.8 that

P (u)
∣∣
S

− vC ∼R

{
(1 + u− v)s+ (3− u− v)l if 0 ⩽ u ⩽ 1,

(2− v)s+ (6− 4u− v)l if 1 ⩽ u ⩽ 3
2 ,

and

N(u)
∣∣
S

=

{
0 if 0 ⩽ u ⩽ 1,

(u− 1)
(
CQ + l12 + l23

)
if 1 ⩽ u ⩽ 3

2 ,

where l12 = H12 ∩ EL and l23 = H23 ∩ EL. Note that l12 and l13 are fibres of the natural projection
EL → L over the points L ∩H12 and L ∩H13, respectively.

We have P (u, v) ∼R P (u)|S − vC and N(u, v) = 0 for v ∈ [0, t(u)], where

t(u) =

{
1 + u if 0 ⩽ u ⩽ 1,

6− 4u if 1 ⩽ u ⩽ 3
2 .

Thus, if C = CQ, then

S(WS
•,•;C ) =

3

28

3
2∫

1

(u− 1)(24− 16u)dvdu+

+
3

28

1∫
0

1+u∫
0

2(3− u− v)(1 + u− v)dvdu+
3

28

3
2∫

1

6−4u∫
0

2(2− v)(6− 4u− v)dvdu =
159

224
.

Similarly, if C = CR, then S(W
S
•,•;C ) = 151

224 . So, it follows from (2.3) that β(F) > 0. □

We now study G-invariant irreducible curves lying on E2.

Lemma 4.10. Suppose that π(Z) = L∞ = ℓ2; then β(F) > 0.

Proof. Observe that Z ⊂ E2. We will see soon that Z is a smooth G-irreducible curve, so we let S = E2,
S = Z. Then SY (S ) = 51

56 (see the proof of Lemma 4.8).

As in Lemma 4.3, let S = {x0x2 + x1x3 = 0}, and let S be its proper transform on X. Set CS = S|S
and CR = R|S . Using the map [x0 : x1 : x2 : x3] 7→ ([x0 : x3], [x1 : x2]), we can G-equivariantly identify
δ(S ) = P1 × P1 with coordinates ([x0 : x3], [x1 : x2]) such that the involution τ acts as ([x0 : x3], [x1 :
x2]) 7→ ([x3 : x0], [x2 : x1]), and Γ ∼= C∗ acts as(

[x0 : x3], [x1 : x2]
)
7→

(
[λx0 : x3], [λx1 : x2]

)
,

where λ ∈ C∗. Then the only G-invariant irreducible curves in the surface δ(S ) are the curves δ(CS) =
{x0x2+x1x3 = 0} and δ(CR) = {x0x2−x1x3 = 0}, which implies that CS and CR are the only G-invariant
irreducible curves in S , so that C = CS or C = CR.

The morphism δ in (4.5) induces a G-equivariant birational morphism σ : S → δ(S ) that blows up
the points ([0 : 1], [1 : 0]) and ([1 : 0], [0 : 1]), which are not contained in the curves δ(CS) and δ(CR). In
particular, we see that S is a sextic del Pezzo surface.

Set e1 = E1|S and e3 = E3|S . Then e1 and e3 are the σ-exceptional curves such that σ(e1) = ([0 :
1], [1 : 0]) and σ(e3) = ([1 : 0], [0 : 1]). Let s1 and s3 be the proper transforms on S of the curves {x2 = 0}
and {x1 = 0}, and l1 and l3 be the proper transforms of the curves {x0 = 0} and {x3 = 0}, respectively.
Then σ(s1) and σ(s3) are the sections of the natural projection δ(S ) → ℓ2 that pass through the points
δ(e1) and δ(e3), respectively, and σ(l1) and σ(l3) are the fibres of this projection that pass through the
points δ(e1) and δ(e3), respectively. Then CS ∼ CR ∼ s1 + l1 + 2e1 ∼ s3 + l3 + 2e3.

18



Recall that e1, e3, s1, s3, l1, l3 are all (−1)-curves in S , they generate the Mori cone NE(S ). Note
that H|S ∼ l1 + e1 and E2|S ∼ −s1 + l1, and we have H12|S = s1 and H23|S = s3. So, using the
description of P (u) and N(u) obtained in the proof of Lemma 4.8, we get

P (u)
∣∣
S

∼R

{
3e1 − e3 + (3− u)l1 + (u+ 1)s1 if 0 ⩽ u ⩽ 1,

(4− u)e1 + (u− 2)e3 + (3− u)l1 + (3− u)s1 if 1 ⩽ u ⩽ 2,

and

N(u)
∣∣
S

=

{
0 if 0 ⩽ u ⩽ 1,

(u− 1)(s1 + s3) if 1 ⩽ u ⩽ 2.

In particular, we see that C ̸⊂ Supp(N(u)|S ) for every u ∈ [0, 2].
Now, intersecting P (u)|S − vC with e1, e3, s1, s3, l1, l3, we find P (u, v) and N(u, v) for u ∈ [0, 2] and

v ∈ [0, t(u)]. If u ∈ [0, 1], then t(u) = 1,

P (u, v) ∼R

{
(3− 2v)e1 − e3 + (3− u− v)l1 + (u− v + 1)s1 if 0 ⩽ v ⩽ u,

(3− 2v)e1 − e3 + (3− 2v)l1 + (u− v + 1)s1 if u ⩽ v ⩽ 1,

and

N(u, v) =

{
0 if 0 ⩽ v ⩽ u,

(v − u)
(
l1 + l3

)
if u ⩽ v ⩽ 1.

If u ∈ [1, 2], then t(u) = 1
2 , N(u, v) = 0 and P (u, v) ∼R P (u)|S − vC . This gives

(
P (u, v)

)2 ∼R


4− 2u2 + 2v2 + 4u− 8v if u ∈ [0, 1], v ∈ [0, u],

4(1− v)(1 + u− v) if u ∈ [0, 1], v ∈ [u, 1],

2(1− 2v)(5− 2u− 2v) if u ∈ [1, 2], v ∈ [0, 0.5].

Now, by integrating we get S(WS
•,•;C ) = 9

28 , so that β(F) > 0 by (2.3). □

For a ∈ C∗, let Πa = {x0 − ax1 = x3 − ax2} ⊂ P3. Then La ⊂ Πa, the plane Πa does not contain
L, ℓ1, ℓ2, ℓ3, and neither ℓ1 ∩ ℓ2 nor ℓ2 ∩ ℓ3 lie on Πa. Set P1 = Πa ∩ ℓ1, P2 = Πa ∩ ℓ2, P3 = Πa ∩ ℓ3,
P4 = Πa ∩ L. Let Πa be the preimage on X of the plane Πa. Then φ ◦ δ in (4.5) induces a birational
morphism Πa → Πa that is a blowup of P1, P2, P3, P4.

Lemma 4.11. If a ̸∈ {1, 2}, no three of P1, P2, P3, and P4 are collinear, and none of them lies on La.
When a = 1, no three of P1, P2, P3, and P4 are collinear, P1 and P3 lie on L1, but P2 and P4 do not.

When a = 2, then P1, P3 and P4 lie on the line Π2 ∩ {x0 − x1 + x2 = 0}, but P2 does not, and none of
P1, P2, P3 or P4 lies on L2.

Proof. Left to the reader. □

Thus, if a ̸= 2, Πa is quintic del Pezzo surface, while if a = 2, Πa is a weak quintic del Pezzo surface.
In both cases, we let Y = X and S = Πa. Then

−KY − uS ∼R

(
3

2
− u

)
S +

1

2

(
Q+H12 +H23

)
+

1

2
HL.

Therefore, it follows from (4.1) that τ = 3
2 . Moreover, if 0 ⩽ u ⩽ 1, then N(u) = 0. Furthermore, if

1 ⩽ u ⩽ 3
2 , then N(u) = (u− 1)(Q+H12 +H23). Thus, we have

P (u) ∼R

{(
3
2 − u

)
S + 1

2

(
Q+H12 +H23

)
+ 1

2HL if 0 ⩽ u ⩽ 1,(
3
2 − u

) (
S +Q+H12 +H23

)
+ 1

2HL if 1 ⩽ u ⩽ 3
2 ,

By integrating we obtain SY (S ) = 227
448 .

Now, let e1, e2, e3, e4 be exceptional curves of the blowup S → Πa that are mapped to the points P1,
P2, P3, P4, respectively. Then E1|S = e1, E2|S = e2, E3|S = e3, EL|S = e4. Set h = H|S . Then

P (u)
∣∣
S

∼R

{
(4− u)h− e1 − e2 − e3 − e4 if 0 ⩽ u ⩽ 1,

(8− 5u)h− (3− 2u)
(
e1 + e2 + e3

)
− (2− u)e4 if 1 ⩽ u ⩽ 3

2 .
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Note that La ̸⊂ H12 ∪H23 for every a ∈ C∗. Moreover, one has La ⊂ Q if and only if a = 2.

Lemma 4.12. Suppose that π(Z) = La for a ∈ C \ {0, 1, 2}. Then β(F) > 0.

Proof. Let C = Z. Note that C ∼ h. Arguing as in the proof of [Den24, Lemma 4.1], we get

t(u) =


2− u if 0 ⩽ u ⩽ 1,
5−3u
2 if 1 ⩽ u ⩽ 7

5 ,

6− 4u if 7
5 ⩽ u ⩽ 3

2 .

Moreover, if 0 ⩽ u ⩽ 1, then P (u, v) ∼R (4 − u − v)h − e1 − e2 − e3 − e4 for v ∈ [0, 2 − u]. Similarly, if
1 ⩽ u ⩽ 3

2 and 0 ⩽ v ⩽ 3− 2u, then

P (u, v) ∼R (8− 5u− v)h− (3− 2u)
(
e1 + e2 + e3

)
− (u− 2)e4.

Finally, if 1 ⩽ u ⩽ 3
2 and 3− 2u ⩽ v ⩽ t(u), then

P (u, v) ∼R (17− 11u− 4v)h− (6− 4u− v)
(
e1 + e2 + e3

)
− (11− 7u− 3v)e4.

This gives S(WS
•,•;C ) = 753

1120 , so that β(F) > 0 by (2.3), since SY (S ) = 227
448 . □

Lemma 4.13. Suppose that π(Z) = L1. Then β(F) > 0.

Proof. Let C = Z. Then C ∼ h − e1 − e3. Moreover, if 0 ⩽ u ⩽ 1, then t(u) = 3 − u. Similarly, if
1 ⩽ u ⩽ 3

2 , then t(u) = 6− 4u. Furthermore, if 0 ⩽ u ⩽ 1, then

P (u, v) ∼R


(4− u− v)h+ (v − 1)

(
e1 + e3

)
− e2 − e4 if 0 ⩽ v ⩽ 1,

(4− u− v)h− e2 − e4 if 1 ⩽ v ⩽ 2− u,

(3− 2u− 2v)
(
2h− e2 − e4

)
if 2− u ⩽ v ⩽ 3− u.

Similarly, if 1 ⩽ u ⩽ 3
2 and 0 ⩽ v ⩽ 3− 2u, then

P (u, v) ∼R (8− 5u− v)h− (3− 2u− v)
(
e1 + e3

)
− (3− 2u)e2 − (u− 2)e4.

Finally, if 1 ⩽ u ⩽ 3
2 and 3− 2u ⩽ v ⩽ 6− 4u, then

P (u, v) ∼R (11− 7u− 2v)h− (6− 4u− v)e2 − (5− 3u− v)e4.

Therefore, we have

S
(
WS

•,•;C
)
=

3

28

1∫
0

1∫
0

u2 + 2uv − v2 − 8u− 4v + 12dvdu+

+
3

28

2−u∫
1

2−u∫
1

u2 + 2uv + v2 − 8u− 8v + 14dvdu+
3

28

3−u∫
2−u

3−u∫
2−u

2(3− u− v)2dvdu+

+
3

28

3
2∫

1

3−2u∫
0

12u2 + 2uv − v2 − 40u− 4v + 33dvdu+
3

28

3
2∫

1

6−4u∫
3−2u

2(6− 4u− v)(5− 3u− v)dvdu =
31

32
.

Thus, it follows from (2.3) that β(F) > 0, because SY (S ) = 227
448 . □

Lemma 4.14. Suppose that π(Z) = L2. Then β(F) > 0.

Proof. Let us introduce several curves on the surface S = Π2 as follows:

• let l12 be the proper transform of the line in Π2 that contains P1 and P2,
• let l23 be the proper transform of the line in Π2 that contains P2 and P3,
• let l24 be the proper transform of the line in Π2 that contains P2 and P4,
• let l be the proper transform on S of the line Π2 ∩ {x0 + x1 − x2 = 0}.

On S , we have l12 ∼ h− e1 − e2, l23 ∼ h− e2 − e3. l24 ∼ h− e2 − e4, l ∼ h− e1 − e3 − e4. Note that
e1, e2, e3, e4, l12, l23, l24 are all (−1)-curves in S , and l is the unique (−2)-curve in the surface S . By

[CT88, Proposition 8.5], these curves generate the Mori cone NE(S ).
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Now, let C = Z. Then C ∼ h. Moreover, intersecting the divisors under consideration with the curves
e1, e2, e3, e4, l12, l23, l24, l, we see that

t(u) =


7−3u
3 if 0 ⩽ u ⩽ 1,

10−6u
3 if 1 ⩽ u ⩽ 4

3 ,

6− 4u if 4
3 ⩽ u ⩽ 3

2 .

Furthermore, if 0 ⩽ u ⩽ 1, then

P (u, v) ∼R


(4− u− v)h− e1 − e2 − e3 − e4 if 0 ⩽ v ⩽ 1− u,
3−u−v

2

(
3h− e1 − e3 − e4

)
− e2 if 1− u ⩽ v ⩽ 2− u,

7−3u−3v
2

(
3h− e1 − 2e2 − e3 − e4

)
if 2− u ⩽ v ⩽ 7−3u

3 ,

and

N(u, v) =


0 if 0 ⩽ v ⩽ 1− u,
v+u−1

2 l if 1− u ⩽ v ⩽ 2− u,
v+u−1

2 l+ (u+ v − 2)
(
l12 + l23 + l24

)
if 2− u ⩽ v ⩽ 7−3u

3 .

Similarly, if 1 ⩽ u ⩽ 4
3 , then P (u, v) is R-rationally equivalent to

16−10u−3v
2 h− 6−4u−v

2

(
e1 + e3

)
− (3− 2u)e2 − 4−2u−v

2 e4 if 0 ⩽ v ⩽ 3− 2u,
22−14u−5v

2 h− 6−4u−v
2

(
e1 + 2e2 + e3

)
− 10−6u−3v

2 e4 if 3− 2u ⩽ v ⩽ 2− u,
10−6u−3v

2

(
h− e1 + 2e2 − e3 + e4

)
if 2− u ⩽ v ⩽ 10−6u

3 ,

and

N(u, v) =


v
2 l if 0 ⩽ v ⩽ 3− 2u,
v
2 l+ (v + 2u− 3)l24 if 3− 2u ⩽ v ⩽ 2− u,
v
2 l+ (v + 2u− 3)l24 + (u+ v − 2)

(
l12 + l23

)
if 2− u ⩽ v ⩽ 10−6u

3 .

Likewise, if 4
3 ⩽ u ⩽ 3

2 and 0 ⩽ v ⩽ 3− 2u, then

P (u, v) ∼R
16− 10u− 3v

2
h− 6− 4u− v

2

(
e1 + e3

)
− (3− 2u)e2 −

4− 2u− v

2
e4

and N(u, v) = v
2 l. Finally, if

4
3 ⩽ u ⩽ 3

2 and 3− 2u ⩽ v ⩽ 6− 4u, then

P (u, v) ∼R
22− 14u− 5v

2
h− 6− 4u− v

2

(
e1 + 2e2 + e3

)
− 10− 6u− 3v

2
e4

and N(u, v) = v
2 l+ (v + 2u− 3)l24.
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If 1 ⩽ u ⩽ 3
2 , then C ⊂ Supp(N(u)) and ordC (N(u)|S ) = (u− 1). Thus, we have

S
(
WS

•,•;C
)
=

3

28

3
2∫

1

(12u2 − 40u+ 33)(u− 1)du+

+
3

28

1∫
0

1−u∫
0

u2 + 2uv + v2 − 8u− 8v + 12dvdu+
3

28

1∫
0

2−u∫
1−u

3u2 + 6uv + 3v2 − 18u− 18v + 25

2
dvdu+

+
3

28

1∫
0

7−3u
3∫

2−u

(7− 3u− 3v)2

2
dvdu+

3

28

4
3∫

1

3−2u∫
0

24u2 + 20uv + 3v2 − 80u− 32v + 66

2
dvdu+

+
3

28

4
3∫

1

2−u∫
3−2u

(14− 8u− 5v)(6− 4u− v)

2
dvdu+

3

28

4
3∫

1

10−6u
3∫

2−u

(10− 6u− 3v)2

2
dvdu+

+
3

28

3
2∫

4
3

3−2u∫
0

24u2 + 20uv + 3v2 − 80u− 32v + 66

2
dvdu+

3

28

3
2∫

4
3

6−4u∫
3−2u

(14− 8u− 5v)(6− 4u− v)

2
dvdu.

This gives S(WS
•,•;C ) = 2885

4032 < 1. Then β(F) > 0 by (2.3), since SY (S ) = 227
448 < 1. □

This finishes the proof that X is K-polystable.

5. K-polystability of the Fano 3-fold X∞ in Family 5

Let X = X∞ be the 3-fold described in Family 5, and use the notation introduced in Section 2. Then
π : X → (P1)3 is the blowup of

C∞ =
{
x0y1 − x1y0 = 0, x0x1(x0z1 − x1z0) = 0

}
⊂

(
P1

)3
,

where ([x0 : x1], [y0 : y1], [z0 : z1]) are coordinates on (P1)3. Note that C∞ = C + L1 + L2, where
C = {x0y1 − x1y0 = 0, x0z1 − x1z0 = 0}, L1 = {x0 = 0, y0 = 0}, L2 = {x1 = 0, y1 = 0}.
Description of the automorphism group. Let us consider the automorphisms ι1, ι2, τλ of (P1)3

defined by

ι1 :
(
[x0 : x1], [y0 : y1], [z0 : z1]

)
7→

(
[x1 : x0], [y1 : y0], [z1 : z0]

)
,

ι2 :
(
[x0 : x1], [y0 : y1], [z0 : z1]

)
7→

(
[y0 : y1], [x0 : x1], [z0 : z1]

)
,

τλ :
(
[x0 : x1], [y0 : y1], [z0 : z1]

)
7→

(
[λx0 : x1], [λy0 : y1], [λz0 : z1]),

where λ ∈ C∗. As ι1, ι2 and τλ preserve C∞, their actions lift to X, and we can consider them as
automorphisms of X. The group G = Aut(X) is generated by these automorphisms, so that Aut(X) ∼=
(C∗ ⋊ µ2)× µ2, because ι2 lies in the centre of Aut(X).

We will view G as an infinite subgroup in Aut(P1 × P1 × P1) generated by automorphisms ι1, ι2 and
τλ for λ ∈ C∗.
Description of the G-invariant loci. Set C ′ = {x0y1 − x1y0 = 0, x0z1 + x1z0 = 0} ⊂ (P1)3.

Lemma 5.1. There is no point of P1 × P1 × P1 fixed by G. The only G-invariant irreducible curves in
P1 × P1 × P1 are C and C ′.

Proof. See the proof of Lemma 3.2 or the proof of [Ara+23, Lemma 5.112]. □

Let Rx,y = {x0y1 − x1y0 = 0}, Rx,z = {x0z1 − x1z0 = 0} and Ry,z = {y0z1 − y1z0 = 0}. Then Rx,y

and Rx,z +Ry,z are G-invariant and G-irreducible, and C = Rx,y ∩Rx,z ∩Ry,z. Let φ : W → (P1)3 be the
blowup of the curve C. Then W is a smooth Fano 3-fold in the Mori-Mukai Family №4.6, and fits into a
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G-equivariant commutative diagram:

(5.2) W
φ

xx   

ϖ

  
P1 × P1 × P1

χ
// P3

where χ is a birational map that is given by(
[x0 : x1], [y0 : y1], [z0 : z1]

)
7→

[
x0y0z1 − x0y1z0 : x0y0z1 − x1y0z0 : x0y1z1 − x1y0z1 : x0y1z1 − x1y1z0

]
andϖ contracts the proper transforms of Rx,y, Rx,z, Ry,z to disjoint lines {x−y = 0, z = 0}, {y = 0, t = 0},
{x = 0, z − t = 0}, respectively, where [x : y : z : t] are coordinates on P3.

Let δ : X → W be the blowup of the proper transforms of the curves L1 and L2, let γ : V → (P1)3 be

the blowup of L1 and L2, and let ϕ : X̃ → V be the blowup of the proper transform of C. Then we have
a G-equivariant commutative diagram

(5.3) X̃ //

ϕ

��

X

π
��

Xoo

δ
��

V γ
// P1 × P1 × P1 Wφ

oo

where X̃ → X and X → X are G-equivariant small resolutions of the 3-fold X. Recall from Section 2

that either Y = X̃ or Y = X.
Let E, F1, F2 be the π-exceptional surfaces such that π(E) = C, π(F1) = L1, π(F2) = L2, let Hx,

Hy, Hz be general fibres of the fibrations prx ◦ π, pry ◦ π, prz ◦ π, respectively, where prx, pry, prz are

projections of (P1)3 to the first, second, third factor, respectively. Let us denote by symbols E, F 1, F 2,
Rx,y, Rx,z, Ry,z, Hx, Hy, Hz the proper transforms of E, F1, F2, Rx,y, Rx,z, Ry,z, Hx, Hy, Hz on X.
Then

−KX ∼ 2Rx,y + E + F 1 + F 2 + 2Hz ∼ Rx,y +Rx,z +Ry,z + 2E.

Note that the divisors E, F 1 + F 2, Rx,y, Rx,z + Ry,z are G-invariant and G-irreducible, but the pencils

|Hx|, |Hy|, |Hz| do not contain G-invariant members.
We now prove that X is K-polystable. Suppose that X is not K-polystable. By [Zhu21, Corollary 4.14],

there exists a G-invariant prime divisor F over X such that

(5.4) β(F) = AX

(
F
)
− SX

(
F
)
⩽ 0.

Let Z and Z be its centres on X and X, respectively. WE first consider the case when Z is a divisor.

Lemma 5.5. Let S be a G-invariant prime divisor in X. Then β(S) > 0.

Proof. If β(S) ⩽ 0, then the divisor −KS − S is big by (2.1). On the other hand, arguing as in the proof

of [Ara+23, Lemma 5.113], we see that −KS −S is big only if S = Rx,y or S = E. Thus, to complete the

proof, it is enough to show that β(Rx,y) > 0 and β(E) > 0.

Set Y = X and S = Rx,y. Then τ = 2. Arguing as in the proof of [Ara+23, Lemma 5.114], we see

that N(u) = 0 for u ∈ [0, 1], and N(u) = (u− 1)(E + F 1 + F 1) for u ∈ [1, 2]. Then

P (u) ∼R

{
(2− u)Rx,y + E + F 1 + F 2 + 2Hz if 0 ⩽ u ⩽ 1,

(2− u)
(
Hx +Hy

)
+ 2Hz if 1 ⩽ u ⩽ 2.

Now, a direct computation shows that

SY
(
Rx,y

)
=

1

26

1∫
0

26− 2u3 − 6u2 − 6udu+
1

26

2∫
1

12(2− u)2du =
49

52
,

so that β(Rx,y) = 1− SY (Rx,y) =
3
52 > 0.

23



Now, we compute β(E). We set Y = X and S = E. Then it follows from (5.2) that the divisor
Rx,y +Rx,z +Ry,z is not big, which implies τ = 2. Moreover, we have

P (u) ∼R

{
(2− u)E +Rx,y +Rx,z +Ry,z if 0 ⩽ u ⩽ 1,

(2− u)
(
E +Rx,y +Rx,z +Ry,z

)
if 1 ⩽ u ⩽ 2,

and

N(u) =

{
0 if 0 ⩽ u ⩽ 1,

(u− 1)
(
Rx,y +Rx,z +Ry,z

)
if 1 ⩽ u ⩽ 2.

Now, we compute

SY (E) =
1

26

1∫
0

4u3 − 6u2 − 18u+ 26du+
1

26

2∫
1

6(2− u)3du =
35

52
,

so that β(E) = 1− SY (E) = 17
52 . This completes the proof of the lemma. □

We now consider the case when Z and Z are small. By Lemmas 5.1 , we only need to consider curves,
and either π(Z) = C and Z ⊂ E, or π(Z) = C ′ and Z ⊂ Rx,y.

Lemma 5.6. The curve Z is not contained in the surface Rx,y.

Proof. The proof is very similar to the proof of [Ara+23, Lemma 5.114]. Suppose that Z ⊂ Rx,y. Let

Cx,y = E ∩ Rx,y, and let C
′
be the proper transform on the 3-fold X of the curve C ′. Then it follows

from Lemma 5.1 that either Z = Cx,y or Z = C
′
.

Set Y = X, S = Rx,y, C = Z. Recall from the proof of Lemma 5.5 that SY (S ) = 49
52 . Thus, it follows

from (2.3) that S(WS
•,•;C ) ⩾ 1. Let us compute S(WS

•,•;C ).

Let ℓ1 and ℓ2 be the rulings of the surface S ∼= P1 × P1 such that prx ◦ π and pry ◦ π contract ℓ1, and
prz ◦ π contracts ℓ2. Then it follows from the proof of Lemma 5.5 that

P (u)
∣∣
S

− vC ∼R

{
(1 + u− v)ℓ1 + (1 + u− v)ℓ2 0 ⩽ u ⩽ 1,

(4− 2u− v)ℓ1 + (2− v)ℓ2 1 ⩽ u ⩽ 2,

and

N(u)
∣∣
S

=

{
0 0 ⩽ u ⩽ 1,

(u− 1)
(
Cx,y + f1 + f2

)
1 ⩽ u ⩽ 2,

where f1 = F 1|S and f2 = F 2|S . Thus, if 0 ⩽ u ⩽ 1, then t(u) = 1 + u. Similarly, if 1 ⩽ u ⩽ 2,
then t(u) = 4 − 2u. We have P (u, v) ∼R P (u)

∣∣
S

− vC for every v ∈ [0, t(u)]. Hence, if Z = Cx,y, then

S(WS
•,•;C ) can be computed as follows:

3

26

2∫
1

(16− 8u)(u− 1)du+
3

26

1∫
0

1+u∫
0

2(1 + u− v)2dvdu+
3

26

2∫
1

4−2u∫
0

2(4− 2u− v)(2− v)dvdu =
35

52
.

Similarly, if Z = C
′
, then S(WS

•,•;C ) = 27
52 < 1. This is a contradiction. □

Thus, we see that π(Z) = C, Z ⊂ E and Z ̸= E ∩Rx,y. Observe that δ
(
E
) ∼= P1 × P1. As in the proof

of Lemma 5.6, let Cx,y = E∩Rx,y. Set f1 = F 1∩E and f2 = F 2∩E. Then δ in (5.3) induces a birational

morphism E → δ(E) that contracts f1 and f2 to two distinct points on the curve δ(Cx,y), which is a

section the natural projection δ(E) → C. Denote by ℓ1 and ℓ2 the proper transforms on E of the fibres
of this projection that pass through the points δ(f1) and δ(f2), respectively. Note that E is a weak del
Pezzo surface, the curves f1, f2, ℓ1, ℓ2 are all (−1)-curves in E, and Cx,y is the only (−2)-curve in E. By

[CT88, Proposition 8.3], the curves Cx,y, f1, f2, ℓ1, ℓ2 generate the Mori cone NE(E).
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Now, set Y = X, S = E, C = Z. Then it follows from the proof of Lemma 5.5 that

P (u)
∣∣
S

− vC ∼R

{
(1 + u− v)C + (2− v)

(
f1 + f2

)
+ (2− u)

(
ℓ1 + ℓ2

)
if 0 ⩽ u ⩽ 1,

(4− 2u− v)
(
C + f1 + f2

)
+ (2− u)

(
ℓ1 + ℓ2

)
if 1 ⩽ u ⩽ 2,

and

N(u)
∣∣
S

− vC =

{
0 if 0 ⩽ u ⩽ 1,

(u− 1)
(
Cx,y + Cx,z + Cy,z

)
if 1 ⩽ u ⩽ 2,

where Cx,z = E∩Rx,z and Cy,z = E∩Ry,z. Thus, if 0 ⩽ u ⩽ 1, then t(u) = 1+u. Similarly, if 1 ⩽ u ⩽ 2,
then t(u) = 4− 2u. Moreover, if 0 ⩽ u ⩽ 1, then

P (u, v) ∼R

{
(1 + u− v)C + (2− v)

(
f1 + f2

)
+ (2− u)

(
ℓ1 + ℓ2

)
if 0 ⩽ v ⩽ u,

(1 + u− v)C + (2− v)
(
f1 + f2 + ℓ1 + ℓ2

)
if u ⩽ v ⩽ 1 + u,

and

N(u, v) =

{
0 if 0 ⩽ v ⩽ u,

(v − u)
(
ℓ1 + ℓ2

)
if u ⩽ v ⩽ 1 + u,

so that (
P (u, v)

)2 ∼R

{
7− 3u2 + 2uv + v2 + 6u− 10v if 0 ⩽ v ⩽ u,

(1 + u− v)(7− u− 3v) if u ⩽ v ⩽ 1 + u.

Furthermore, if 1 ⩽ u ⩽ 2, then

P (u, v) ∼R

{
(4− 2u− v)

(
C + f1 + f2

)
+ (2− u)

(
ℓ1 + ℓ2

)
if 0 ⩽ v ⩽ 2− u,

(4− 2u− v)
(
C + f1 + f2 + ℓ1 + ℓ2

)
if 2− u ⩽ v ⩽ 4− 2u,

and

N(u, v) =

{
0 if 0 ⩽ v ⩽ 2− u,

(v + u− 2)
(
ℓ1 + ℓ2

)
if 2− u ⩽ v ⩽ 4− 2u,

so that (
P (u, v)

)2 ∼R

{
10u2 + 8uv + v2 − 40u− 16v + 40 if 0 ⩽ v ⩽ 2− u,

3(4− 2u− v)2 if 2− u ⩽ v ⩽ 4− 2u.

Note that Z ̸⊂ Supp(N(u)) for u ∈ [0, 2]. Thus, integrating, we get S(WS
•,•;C ) = 87

104 . On the other hand,

we already know from the proof of Lemma 5.5 that SY (S ) = 35
52 < 1. Then β(F) > 0 by (2.3), which

contradicts (5.4). This shows that X is K-polystable.

6. Non-toric K-polystable singular Fano 3-fold in Family 6

All K-polystable smooth Fano 3-folds in the deformation family №3.13 are described in Family 6. This
deformation family also contains some interesting members, which are worth mentioning. It contains a
unique strictly K-semistable smooth member, whose automorphism group is isomorphic to Ga ⋊S3 (see
[Ara+23, Lemma 5.98]). Recall that the automorphism group of a K-polystable Fano variety is reductive.
The family contains a singular K-polystable toric Fano 3-fold which was already discussed in Family 6.
It also contains a non-toric complete intersection in P2 × P2 × P2 with one ordinary double point. In
Example 6.1 below we describe this Fano 3-fold. Its geometry deludes at first that it may be the missing
K-polystable limit. However, this can be proven wrong as we discuss below.

Example 6.1. Let Q be a smooth quadric 3-fold in P4, let ℓ1, ℓ2, ℓ3 be three general disjoint lines in Q,
let ζ : Q 99K P2 × P2 × P2 be the rational map given by the product of the linear projections Q 99K P2

from the lines ℓ1, ℓ2, ℓ3, and let X be the image of ζ. Then X is a singular Fano 3-fold in the deformation
family №3.13 that has one ordinary double point. Namely, in suitable coordinates, X ⊂ P2 × P2 × P2 is
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the complete intersection
x0y0 + x1y1 + x2y2 − x0y2 + x1y2 + x2y0 − x2y1 = 0,

y0z0 + y1z1 + y2z2 + y0z1 − y0z2 − y1z0 + y2z0 = 0,

x0z0 + x1z1 + x2z2 − x0z1 + x1z0 − x1z2 + x2z1 = 0,

The ordinary double point is at ([1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1]). The morphism θ : Y → Q is the blowup of
the lines ℓ1, ℓ2, ℓ3, and resolves the indeterminacy of the rational map ζ, fitting in a commutative diagram

Y
θ

��

π

��
Q

ζ // X

.

In the diagram, π contracts the strict transform of the unique line in Q that intersects the lines ℓ1, ℓ2,
ℓ3 to the singular point of X. Note that after flopping the π-exceptional curve, we obtain a similar
commutative diagram. Since

rkPic(X) = 3 = rkCl(X)− 1 = rkCl(X)− |Sing(X)|,
then by definition X is maximally non-factorial (see [Che+] for a discussion of these varieties and a
classification when X is a Fano threefold with precisely one node and Pic(X) = 1). The automorphism
group of X is Ga ⋊ S3, which is not reductive. Hence, X is not K-polystable. It can also be verified
numerically: if η : V → Y denotes the blowup of the flopping curve, and E the η-exceptional surface, then
β(E) = − 1

40 , so X is K-unstable. If the lines ℓ1, ℓ2, ℓ3 were contained in a hyperplane, X would have a
curve of singularities, its automorphism group would be PGL2(C)⋊S3, and it would still be K-unstable.

The non-toric K-polystable limit. Let us construct a singular non-toric K-polystable Fano 3-fold,
which admits a smoothing in the deformation family №3.13. Consider the smooth quadric 3-fold

Q =
{
xy + yz + xz + tw = 0

}
⊂ P4,

and the smooth conic C =
{
xy + yz + xz = t = w = 0

}
⊂ Q, where x, y, z, t, w are homogeneous

coordinates on P4.
Now, denote by P1 = [1 : 0 : 0 : 0 : 0], P2 = [0 : 1 : 0 : 0 : 0], and P3 = [0 : 0 : 1 : 0 : 0], and observe

these points lie on C. Let θ : Y → Q be the blowup of P1, P2 and P3, C the proper transform on Y of C,
and η : V → Y the blowup of C. Denote by E the η-exceptional surface. Then V is the unique smooth
Fano 3-fold in the deformation family №5.1, and E ∼= P1 × P1 with E|E ∼ OE(−1,−1).

This implies that −KY is nef and big, and C is the only curve in Y that has trivial intersection with
−KY . Hence, for m ∈ N large enough, the linear system |−mKY | gives a birational morphism π : Y → X
that contracts C. Then X is a singular Fano 3-fold with an ordinary double point at π(C).

The 3-fold X can also be described as a subscheme of P2×P2×P2. Indeed, consider the map ζ : Q 99K
P2 × P2 × P2 given by

[x : y : z : t : w] 7→
(
[z : t : w], [y : t : w], [x : t : w]

)
.

Then ζ ◦ θ is a morphism that contracts C to the point ([1 : 0 : 0], [1 : 0 : 0], [1 : 0 : 0]), and −KY is
rationally equivalent to the pullback of the divisor of degree (1, 1, 1) via ζ ◦ θ. Moreover, the image of
the 3-fold Y under ζ ◦ θ is contained in the locus defined by (1.2). Using standard symbolic computer
packages (e.g. Magma or Singular), it can be checked that (1.2) defines an integral 3-fold, with singular
locus ([1 : 0 : 0], [1 : 0 : 0], [1 : 0 : 0]), which is an ordinary double point. We see that ζ ◦ θ(Y ) is given by
(1.2), and X can be identified with ζ ◦ θ(Y ).

We have −KY ∼ π∗(−KX), so −K3
X = −K3

Y = 30. Using [PCS19, Lemma 5.16], we get

Aut0(X) ∼= Aut0(Y ) ∼= Aut0(V ) ∼= C∗,

so X is not toric. Since rkPic(X) = 3 = rkCl(X)− 1, X is maximally non-factorial [Che+].
Now, using [JR11, Theorem 1.4] and the classification of smooth Fano 3-folds, we see that if X admits a

smoothing, then this must be to a smooth Fano 3-fold in the deformation family №3.13 as both X and the
smoothing must have the same Picard rank and there is only one family of rank 3 whose smooth member
has anti-canonical degree 30. One such smoothing can be constructed explicitly as follows. Following
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Eisenbud–Buchsbaum theory [BE77], let Xa,b be the codimension three subscheme in P2 × P2 × P2 that
is given by vanishing of all 4× 4 diagonal Pfaffians of the skew-symmetric matrix

0 −2x1y1 − x2y3 − x3y2 2x1z1 − x2z3 − x3z2 bx3 x2
2x1y1 + x2y3 + x3y2 0 −2y1z1 − y2z3 − y3z2 by3 y2
−2x1z1 + x2z3 + x3z2 2y1z1 + y2z3 + y3z2 0 bz3 z2

−bx3 −by3 −bz3 0 a
−x2 −x2 −z2 −a 0

 .

In particular, these 5 equations are the vanishing of Pf1, . . . , Pf5, where

(6.2)



Pf1 = (b− a)x2y3 − (b+ a)x3y2 − 2ax1y1,

Pf2 = (b− a)y2z3 − (b+ a)y3z2 − 2ay1z1,

Pf3 = (b− a)x2z3 − (b+ a)x3z2 + 2ax1z1,

Pf4 = bx1y1z3 + bx1y3z1 + bx3y1z1 + bx3y2z3,

Pf5 = x1y1z2 + x1y2z1 + x2y1z1 + x2y3z2,

where ([x0 : x1 : x2], [y0 : y1 : y2], [z0 : z1 : z2]) are coordinates on P2 × P2 × P2.
There are two interesting relations in the ideal generated by these Pfaffian equations:

2aPf4 = −b(z2Pf1 − y3Pf3 + z3Pf1),

2aPf5 = −(z2Pf1 − y2Pf3 + x2Pf2).

Hence, as long as a ̸= 0 we obtain a complete intersection ideal generated by Pf1, Pf2, Pf3. If [a : b] ̸= [1 :
±1], then Xa,b is an integral 3-fold. Further, if [1 : ±1] ̸= [a : b] ̸= [0 : 1], then Xa,b is a smooth complete
intersection, which is a Fano 3-folds in the family №3.13. But X0,1

∼= X is not a complete intersection,
and its smoothing is clear from (6.2).

In the remaining part of this section, we will prove that the 3-fold X is K-polystable. The proof of this
result easily follows from [Ara+23, §5.23].
Description of the automorphism group. First, we set

G =
{
g ∈ Aut(Q)

∣∣ g(C) = C and g
(
{P1, P2, P3}

)
= {P1, P2, P3}

}
.

Then G ∼= S3 × (C∗ ⋊ µ2) and S3 × (C∗ ⋊ µ2) acts on the quadric Q as follows:

• if σ ∈ S3, then σ permutes coordinates x, y, z,
• if λ ∈ C∗, then λ acts by [x : y : z : t : w] 7→ [λx : λy : λz : λ2t : w],
• if ι ∈ µ2, then ι acts by [x : y : z : t : w] 7→ [x : y : z : w : t].

This action lifts to Y . Therefore, we can identify G with a subgroup of the group Aut(Y ). One can also
show that Aut(Y ) = G. Since Aut(X) ∼= Aut(Y ), we can identify G with a subgroup of Aut(X).
Description of the G-invariant loci. The conic C is G-invariant. Let Z = {x − z = y − z = xy +
yz + xz + tw = 0} ⊂ P4. Then Z is another smooth G-invariant conic that is contained in Q. Note that
C ∩ Z = ∅.

Lemma 6.3 ([Ara+23, Lemma 5.117]). The quadric Q does not contain G-invariant points, and the only
irreducible G-invariant irreducible curves in Q are the conics C and Z.

Let ϕC : YC → Q and ϕZ : YZ → Q be the blowup of the conics C and Z, respectively. Let FC and FZ

be the exceptional surfaces of the blowups ϕC and ϕZ , respectively. Then the action of the group G on
the quadric Q lifts to actions on YC and YZ , with surfaces FC and FZ being G-invariant prime divisors
over Q.

Lemma 6.4 ([Ara+23, Lemma 5.118]). Let F be a G-invariant prime divisor over Q such that CQ(F) is
not a surface. Then either CQ(F) = C and CYC

(F) = FC , or CQ(F) = Z and CYZ
(F) = FZ .
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We have the following diagram

V
η

uu

ϑ

))
X Y

θ ))

πoo YC

ϕCuu

ξ // P1

Q

where ϑ is the blowup of the fibres of the projection EC → C over the points P1, P2, P3, and ξ is a
quadric bundle that is given by the linear system |ϕ∗C(OQ(1))− EC |.

Lemma 6.5. One has β(E) = 1
10 .

Proof. Let E1, E2, E3 be ϑ-exceptional divisors that are mapped to P1, P2, P3, respectively. Set H =
(θ ◦ η)∗(OQ(1)). Then ξ ◦ ϑ is given by the linear system |H − E1 + E2 + E3 − E|. Let S be a general
surface in |H − E1 + E2 + E3 − E|. Take u ∈ R⩾0. Then

(π ◦ η)∗(−KX)− uE ∼R 3H − 2(E1 + E2 + E3)− uE ∼R 3S + E1 + E2 + E3 + (3− u)E,

which implies that (π ◦ η)∗(−KX) − uE is pseudoeffective if and only if u ⩽ 3. Moreover, the divisor
(π ◦ η)∗(−KX)− uE is nef for u ⩽ 2. Furthermore, if u ∈ [2, 3], the Zariski decomposition of the divisor
(π ◦ η)∗(−KX)− uE is

(π ◦ η)∗(−KX)− uE ∼R 3H − u(E + E1 + E2 + E3)︸ ︷︷ ︸
positive part

+(u− 2)
(
E1 + E2 + E3

)︸ ︷︷ ︸
negative part

.

Now, we can compute β(E). Note that H3 = 2, H ·E2 = −2, E3 = 2, E1 ·E2 = E2 ·E2 = E3 ·E2 = −1,
E3

1 = E3
2 = E3

3 = 1, and other triple intersections of the divisor H,E,E1, E2, E3 are zero. Now, by
integrating we get β(E) = 1

10 . □

Lemma 6.6. Let F be a G-invariant prime divisor in V . Then β(F) ⩾ 1
20 .

Proof. By Lemma 6.5, we may assume that F ̸= E. Let us use notations introduced in the proof of
Lemma 6.5. Then F ∼ aS + bE + c(E1 +E2 +E3) for some non-negative integers a, b, c such that a > 1.
Therefore, we have β(F) ⩾ β(S).

Let us compute β(S). Take u ∈ R⩾0. Then

(π ◦ η)∗(−KX)− uS ∼R (3− u)H + (u− 2)E + uF ∼R (3− u)S + 3E + E1 + E2 + E3,

so that (π ◦ η)∗(−KX)− uS is pseudoeffective if and only if u ⩽ 3. If u ∈ [0, 2], then uE is the negative
part of the Zariski decomposition of this divisor, which implies that that

vol
(
(π ◦ η)∗(−KX)− uS

)
= vol

(
(π ◦ η)∗(−KX)− uS − uE

)
= u3 − 18u+ 30.

Similarly, if u ∈ [2, 3], the Zariski decomposition of the divisor (π ◦ η)∗(−KX)− uS is

(π ◦ η)∗(−KX)− uS ∼R (3− u)H︸ ︷︷ ︸
positive part

+uE + (u− 2)(E1 + E2 + E3)︸ ︷︷ ︸
negative part

,

which gives vol((π ◦ η)∗(−KX)− uS) = 2(3− u)3. By integration we obtain β(S) = 1
20 . □

Lemma 6.7. Let F be a G-invariant prime divisor over X. Then β(F) ⩾ 1
20 .

Proof. Let ψ : Ỹ → Y be the blowup of the strict transform on Y of the conic Z. By Lemmas 6.4 and
6.6, we may assume that F is the ψ-exceptional surface.

Let H̃ = (θ ◦ ψ)∗(OQ(1)), let Ẽ1, Ẽ2, Ẽ3 be strict transforms on Ỹ of the θ-exceptional divisors that
are mapped P1, P2, P3, respectively. Then

(π ◦ ψ)∗(−KX)− uF ∼R 3H̃ − 2
(
Ẽ1 + Ẽ2 + Ẽ3

)
− uF,

and (π ◦ ψ)∗(−KX)− uF is nef for u ∈ [0, 1]. Thus, if (π ◦ ψ)∗(−KX)− uF is pseudoeffective, then

24− 8u =
(
(π ◦ ψ)∗(−KX)− uF

)
·
(
(π ◦ ψ)∗(−KX)− F

)2
⩾ 0.
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Hence, the divisor (π ◦ ψ)∗(−KX)− uF is not pseudoeffective for u > 3. Then

SX
(
F
)
⩽

1

30

1∫
0

(
3H̃ − 2

(
Ẽ1 + Ẽ2 + Ẽ3

)
− uF

)3
du+

1

30

3∫
1

vol
(
(π ◦ ψ)∗(−KX)− F

)
du =

=
1

30

1∫
0

4u3 − 18u2 + 30du+
2
(
3H̃ − 2

(
Ẽ1 + Ẽ2 + Ẽ3

)
− F

)3
30

=
5

6
+

16

15
=

19

10
,

which implies that β(F) ⩾ 1
20 . □

Now, using [Zhu21, Corollary 4.14], we see that X is K-polystable.
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