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 28 

Abstract  29 

 30 

A gap remains due to the intangible and qualitative criteria used to measure product quality 31 

for supplier evaluation and selection. Improving product quality is a crucial strategy for 32 

achieving reduce, reuse, recycle, and recovery. Quality characteristics are described as 33 

functional relationships (called profiles), and with the advancements in measurement 34 

technology, high dimensional data are collected. Nonetheless, prior studies have not 35 

addressed sustainable supplier selection where a nonlinear profile characterizes the product 36 

quality. Hence, this study aims to provide a novel approach to measure product quality using 37 

the process yield index, presents multiple comparisons with the best and difference test 38 

statistics and proposes a Bonferroni correction method. This study applies a Monte Carlo 39 

simulation to find the selection power and the required number of profiles. The statistical 40 

properties are investigated, and a comparison study is performed. The results show that 41 

multiple comparisons with the best outperform the Bonferroni method regarding the 42 

sample size requirement and power, and the number of levels and profiles were found to 43 

impact the power of the statistical tests. The required number of profiles and the critical 44 

value are tabulated for decision-makers.  45 

 46 

Keywords: sustainable supplier selection; nonlinear profiles; multiple comparisons with the 47 

best; Bonferroni method; process yield indices  48 

 49 

 50 

 51 

 52 

 53 

 54 

 55 

  56 



3 
 

A Novel Approach to Measure Product Quality in Sustainable Supplier Selection 57 

 58 

1. Introduction 59 

 60 

Sustainable supplier selection (SSS) is an essential but complex issue and consists of 61 

attributes and variables (Zhang et al., 2012). Selecting the right suppliers can reduce costs 62 

and provide high-quality products (Gören, 2018). Inferior quality components supplied by 63 

upstream suppliers influence the quality of the final product and incur economic, 64 

environmental, and social losses. SSS is a crucial process in supply chain management (Li et 65 

al., 2019). Manufacturing firms are required to have the ability to choose the right suppliers, 66 

but most problems come from manufacturers selecting the wrong ones (Wang and Tamirat, 67 

2016). Different manufacturers have distinct requirements, and hundreds of criteria have 68 

been suggested (Zimmer et al., 2016). Govindan et al. (2015) and Ansari and Kant (2017) 69 

presented a multicriteria method to assist decision-makers in SSS and found ambiguity in the 70 

criteria after applying a qualitative method. The shortcomings of the qualitative approach 71 

and intangible criteria need to be readdressed.  72 

For instance, Gören (2018) used the Taguchi loss function to rate suppliers. Chen et al. 73 

(2019) employed a yield index for supplier selection and argued that improved product 74 

quality results in reduction, reuse, recycling, and recovery (4Rs) benefits. Product quality has 75 

been ranked among the top two factors and primary criteria for SSS in manufacturing firms 76 

(Govindan et al., 2015; Luthra et al., 2017). Improving product quality has been identified as 77 

a crucial strategy for achieving the 4Rs (Chen et al., 2019). Still, quality is measured using 78 

qualitative and intangible approaches such as the “six sigma program,” “ISO system installed,” 79 

“low defective rates,” and “quality award,” which require subjective decisions or are based 80 

on system standards (Ho et al., 2012). The process yield is the percentage of units passing 81 

inspection and reflects the product quality with respect to the design tolerance (Pearn and 82 

Wu, 2013). Process yield indices (PCIs) are standard quantitative criteria for quality 83 

measurement in the manufacturing industry. PCIs measure the process potential and 84 

process performance, which are necessary for supplier selection (Lin and Kuo, 2014). A 85 

quality measurement method is a necessity, and the process yield has been proposed as a 86 

measure of a supplier’s process to reduce the ambiguity resulting from the use of broad and 87 

intangible criteria. Hence, PCIs are applied to measure the quality of the components and 88 

raw materials from upstream suppliers.  89 

Industries demand that their products are high quality with the least number of defects 90 

due to the rapid improvement in manufacturing technology (Liu and Wu 2015). 91 

Manufacturers have to assess, compare, and choose the suppliers with the best capabilities 92 

and utilize the advancements in quality measurement technology to do so (Chou et al., 2014; 93 

Lin et al. 2018). Assessments are very frequently made in a given space or time, and the 94 

quality of products or processes are described by the relationships between a dependent 95 

variable and one or more independent variables, which are known as profiles (Maleki et al., 96 

2018). The collection of profile data is common in industry practices (Negash, 2019).  97 

This study provides a quantitative method for measuring quality that benefits decision-98 

makers using multicriteria methods. The proposed method reduces the frustration of 99 

suppliers affected by the subjective nature of the decisions. This study considers nonlinear 100 

profiles with two-sided specifications and applies multiple comparisons with the best (MCB) 101 

and difference statistics comparison techniques. Quantitative quality evaluation and 102 

selection procedures are adopted to evaluate suppliers. Prior studies have applied PCIs and 103 
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multiple comparison techniques. For instance, Lin and Pearn (2011) and Pearn and Wu (2013) 104 

provided examples using the ratio test statistic; Lin and Kuo (2014) found that MCB is 105 

superior to the ratio method, and Wang and Tamirat (2016) employed MCB to study CPU 106 

fans, which are laptop parts. Lin et al. (2018) implemented the Bonferroni method to 107 

manage the cumulative error rate when comparing multiple processes. These studies are 108 

limited to linear profiles or utilize traditional sampling methods (Cheng and Yang, 2018; Lin 109 

et al. 2018). Occasionally, profiles are better explained by a nonlinear equation rather than 110 

by a linear one (Guevara and Vargas, 2015; Maleki et al., 2018). 111 

Prior studies do not provide an approach to address the problems related to SSS where 112 

a nonlinear profile characterizes the product quality and imprecise quality measurements 113 

exist (Luthra et al., 2017; Wang and Tamirat, 2016). This study uses a nonlinear profile with 114 

two-sided specifications and applies multiple comparison methods: MCB and difference 115 

statistics. It develops two quantitative product evaluation and selection methods. To find the 116 

statistical properties of the novel methods, a 100,000 replication Monte Carlo simulation 117 

study was performed. This study utilizes the Bonferroni method to reduce the error in the 118 

case of difference methods. A novel product quality evaluation and selection method using 119 

the PCIs where the nonlinear profile describes the quality characteristic is proposed. The 120 

number of profiles and critical values are provided for practitioners. Hence, the objectives of 121 

this study are as follows:  122 

 To provide a quantitative supplier evaluation and selection method. 123 

 To apply high dimensional and complex data represented by nonlinear profiles to 124 

measure quality. 125 

 To determine the power of the proposed selection methods. 126 

A numerical example is utilized to show the decision-making steps for the new 127 

techniques. The statistical properties are investigated using a Monte Carlo simulation, and 128 

the two methods are compared. The results show that the MCB is more efficient than the 129 

difference test statistics. The remaining part of this study is organized as follows. A literature 130 

review is presented in section 2. Section 3 presents the proposed methods. In section 4, a 131 

simulation study is performed to determine the power and required sample size. Section 5 132 

shows a numerical example to illustrate the application of the new methods. The 133 

conclusions are put forward in the last part. 134 

 135 

2. Literature review 136 

This section includes sustainable supplier evaluation and selection, nonlinear profiles, and 137 

the process yield index for nonlinear profiles. 138 

2.1 Sustainable supplier evaluation and selection 139 

A high-quality product can avoid economic, ecological, and social losses, and supplier 140 

selection is an essential element for building strong sustainable supply chain management 141 

(Chen et al., 2019; Li et al., 2019). Gören (2018) argues that choosing the right supplier who 142 

can comply with requirements is essential in sustainable supply chain systems to reduce 143 

costs, increase productivity, and provide high-quality products. Bastas and Liyanage (2018) 144 

observed that with the rapid improvement in manufacturing technology, rising consumer 145 

power, and stiff competition in the market, poor product quality has the potential to cause 146 

economic, environmental, and social losses for manufacturing firms. Further, with a 147 

substantial rise in outsourcing initiatives, product quality is hugely tied with the raw 148 

materials and components from suppliers. Chai et al. (2013) discuss the supplier selection 149 

problem using multiple-objective and multiple-attribute decision-making. Govindan et al. 150 
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(2015) observed that the imprecise nature of the decision criteria causes uncertainty and 151 

lack of trust in the outcomes.  152 

Quality is a critical criterion for supplier evaluation and selection in manufacturing firms. 153 

Ho et al. (2012) noticed that 87% of peer-reviewed studies consider quality in supplier 154 

selection. Nonetheless, quality-related attributes are highly susceptible to subjective 155 

judgments. For instance, Deng et al. (2014) utilized the “rejection rate of the product,” 156 

“increase lead time,” “quality assessment,” and “remedy for quality problems.” These 157 

subjective and historical criteria may not reflect the current status. Li et al. (2019) consider 158 

ISO certification, among other subjective criteria. Memari et al. (2019) suggested technical 159 

capability and reputation as a measure of product quality. There is a need for further 160 

clarifying how to objectively measure quality.  161 

PCIs have been used as standard criteria in the manufacturing industry for quality 162 

measurement, and prior studies have indicated that PCIs are relevant to supplier evaluation 163 

(Pearn et al., 2004; Wang and Tamirat, 2016; Chen et al., 2019). For instance, Pearn et al. 164 

(2004) provided an example of the super twisted liquid crystal display manufacturing 165 

process and implemented a two-phase procedure. Linn et al. (2006) proposed price 166 

information and PCIs for multiple suppliers in a single chart. Polansky (2006) provided a 167 

method based on a permutation test when there are two or more suppliers. Wu et al. (2008) 168 

applied the bootstrap technique. Lin and Pearn (2011) presented group selection among 169 

multiple two-sided manufacturing lines using the ratio test statistic and provided an example 170 

of evaluating power inductor production. Tai and Wu (2012) compared two suppliers with 171 

multiple quality characteristics and selected the best one for the LED assembly process. 172 

Pearn and Wu (2013) provided an example of supplier selection in TFT-LCD manufacturing 173 

processes using the ratio test statistic.  174 

Also, using multiple comparisons with the best (MCB), Lin and Kuo (2014) performed a 175 

simulation study and found that MCB is superior to the ratio method, especially when the 176 

number of suppliers is large or the second-best supplier is nearly as good as the best supplier. 177 

Wu et al. (2015) developed an approach called the subtraction method with multiple 178 

independent characteristics for two-sided processes and suggested considering replacing a 179 

supplier only if the process capability of the competing supplier is better than that of the 180 

existing one. Wang and Tamirat (2016) employed MCB and provided an example related to a 181 

product called a CPU fan. Pearn and Tai (2016) investigated a group supplier selection 182 

problem for multiple line gold bumping processes and found that the subtraction method is 183 

more powerful than the ratio method. Pearn et al. (2018) considered group selection, 184 

applied the Bonferroni method, and found that the power of group selection increases when 185 

the number of production lines increases. Lin et al. (2018) implemented the Bonferroni 186 

method to manage the cumulative error rate when comparing multiple processes. However, 187 

prior studies are based on traditional data collection methods or linear profiles, ignoring the 188 

opportunity to use high dimensional and complex data as a form of nonlinear profiles.    189 

 190 

2.2 Nonlinear profiles 191 

Jin and Shi (1999) introduced profile applications to the force of the stamping process, and 192 

profile monitoring continues to receive a lot of attention (Chang et al., 2012). In various 193 

circumstances, products or processes are often described by a function known as a profile 194 

(Cano et al., 2015). Profile data involve a response attribute referred to as Y and one or more 195 

independent attributes that are referred to as X (Williams et al., 2007). Chou et al., 2014, 196 

indicated that profiles could be categorized as linear profiles and nonlinear profiles. Wang 197 
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and Tamirat (2016) stated that profiles represented by a simple linear regression model are 198 

the most investigated. A simple linear profile is given as follows.  199 

 𝑦𝑖𝑗 = 𝛼 + 𝛽𝑥𝑖 + 𝜀𝑖𝑗 
(1) 
 

where α and β are the intercept and slope parameters, respectively; 𝑥𝑖  is the ith level of the 200 

independent variable; 2(0, )ij N  ; i = 1, 2, 3, 4, …, I and j = 1, 2, 3, 4, …, J.   201 

Kang and Albin (2000) showed an example of monitoring a process in semiconductor 202 

manufacturing. Mahmoud and Woodall (2004) provided a case regarding a calibration 203 

process. Zou et al. (2007) proposed a multivariate exponentially weighted moving average 204 

scheme to monitor the linear profile. Cheng and Yang (2018) provided an example of a 205 

device called a “Babyfinder” designed to find an event of particular concern, like a stolen 206 

bicycle or heart failure for patients with a heart problem. However, in practice, profiles 207 

cannot always be represented by linear regressions (Guevara and Vargas, 2015). An 208 

alternative technique is a nonlinear model (Maleki et al., 2018). Negash (2019) explained 209 

that with an advanced measurement system that consists of sensors and transducers, profile 210 

data are collected at a high frequency and transformed into high-dimensional data. A 211 

nonlinear profile is modeled by the nonlinear function and an error term as follows.  212 

 𝑦𝑖𝑗 = 𝑓(𝑥𝑖𝑗 , 𝛽) + 𝜀𝑖𝑗 
(2) 
 

where f(·) is a nonlinear regression, 𝑥𝑖𝑗 is a single regressor variable, β is a vector of 𝑝 × 1 213 

parameters, and  2,ij N   . The nonlinear function f(·) is given as follows.  214 

 
𝑓(𝑥𝑖𝑗 , 𝛽) = {

𝑎1(𝑥𝑖𝑗 − 𝑐)
𝑏1
+ 𝑑, 𝑥𝑖𝑗 > 𝑐 

𝑎2(−𝑥𝑖𝑗 + 𝑐)
𝑏2
+ 𝑑, 𝑥𝑖𝑗 ≤ 𝑐 

 

 

(3) 
 

where 𝛽 = (𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑐, 𝑑); i = 1, 2, 3, …, I and j = 1, 2, 3, …, J. Williams et al. (2007) 215 

proposed the mean squared error to measure the within-profile variability 216 

 𝑀𝑆𝐸𝑖 =∑
(𝑦𝑖𝑗 − 𝑦̂𝑖𝑗)

(𝐽 − 𝑝)

𝐽

𝑗=1

 (4) 

where 𝑦̂𝑖𝑗 is the predicted value of 𝑦𝑖𝑗 and is based on the nonlinear function. 217 

 218 

2.3 Process yield index 219 

    Process capability indices are standard criteria for performance measurement in the 220 

manufacturing industry, such as process precision, process performance, and process 221 

accuracy (Lin and Kuo, 2014). Specification limits are used for the examination, and units are 222 

separated into two categories, namely, rejected or nonconforming and passed or 223 

conforming (Wu et al., 2009). The required fractions of rejected units or nonconformities are 224 

often counted in parts per million and are usually less than 0.01% (Pearn et al., 2018). For an 225 

advanced manufacturing system, evaluating yields by counting the number of 226 

nonconformities is not possible since any reasonably sized sample is most likely to have no 227 

defective units (Pearn et al., 2018). Hence, PCIs are used instead. For a nonlinear profile, the 228 

exact value of the PCI is defined as follows by Wang and Guo (2014). 229 

 𝑆𝑝𝑘𝐴 =
1

3
Φ−1 [

1

2
(1 + 𝑃)] =

1

3
Φ−1 ⟨

1

2
{1 +

1

𝐼
∑[2Φ(3𝑆𝑝𝑘𝑖) − 1]

𝐼

𝑖=1

}⟩ (5) 
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 230 

where 𝑃 =
1

𝐼
∑ 𝑝𝑖 =

1

𝐼
∑ [2Φ(3𝑆𝑝𝑘𝑖) − 1]
𝐼
𝑖=1

𝐼
𝑖=1 , 𝑝𝑖 = Φ(

𝑈𝑆𝐿𝑖− 𝜇𝑖

𝜎𝑖
) − Φ(

𝐿𝑆𝐿𝑖− 𝜇𝑖

𝜎𝑖
) =231 

Φ(
𝑈𝑆𝐿𝑖− 𝜇𝑖

𝜎𝑖
) + Φ(

 𝜇𝑖−𝐿𝑆𝐿𝑖

𝜎𝑖
) − 1 , 𝑆𝑝𝑘𝑖 =

1

3
Φ−1 {

1

2
Φ(

𝑈𝑆𝐿𝑖− 𝜇𝑖

𝜎𝑖
) +

1

2
Φ(

𝜇𝑖−𝐿𝑆𝐿𝑖

𝜎𝑖
)} , Φ(∙)  is the 232 

cumulative distribution function of the standard normal distribution, Φ−1(∙) is the inverse of 233 

Φ(∙), 𝑈𝑆𝐿𝑖 is the upper tolerance limit, 𝐿𝑆𝐿𝑖  is the lower tolerance limit, and 𝜇𝑖 and 𝜎𝑖 are 234 

the mean and the standard deviation, respectively. To estimate the PCI 𝑆𝑝𝑘𝐴, for a stable 235 

process, Wang and Guo (2014) used the estimator 𝑆̂𝑝𝑘𝐴. 236 

 𝑆̂𝑝𝑘𝐴 =
1

3
Φ−1 [

1

2
(1 + 𝑃̂)] =

1

3
Φ−1 ⟨

1

2
{1 +

1

𝐼
∑[2Φ(3𝑆̂𝑝𝑘𝑖) − 1]

𝐼

𝑖=1

}⟩ (6) 

 237 

where 𝑃̂ =
1

𝐼
∑ 𝑝̂𝑖 =

1

𝐼
∑ [2Φ(3𝑆̂𝑝𝑘𝑖) − 1]
𝐼
𝑖=1

𝐼
𝑖=1 , 𝑆̂𝑝𝑘𝑖 =

1

3
Φ−1 {

1

2
Φ(

𝑈𝑆𝐿𝑖−𝜇̂𝑖 

𝜎̂𝑖
) +

1

2
Φ(

𝜇̂𝑖−𝐿𝑆𝐿𝑖

𝜎̂𝑖
)} 238 

is acquired at the 𝑖th level and 𝜇̂𝑖 and 𝜎̂𝑖 represent the mean and the standard deviation of 239 

the sample, respectively. Wang and Tamirat (2016) found the simpler form of the 240 

distribution, and it is given as follows. 241 

 𝑆̂𝑝𝑘𝐴~𝑁(𝑆𝑝𝑘𝐴,
𝐺2[𝜙(3𝐺)]2

2𝐼2𝐽[𝜙(3𝑆𝑝𝑘𝐴)]
2) (7) 

 242 

where 243 

 𝐺 =
1

3
Φ−1 {

𝐼[2Φ(3𝑆𝑝𝑘𝐴) − 1] − (𝐼 − 2)

2
} (8) 

3. Proposed Method  244 

    This study uses MCB, difference test statistics, and the Bonferroni method to evaluate 245 

product quality and select the best supplier. In addition, it considers processes in which 246 

quality is described by nonlinear profiles with two-sided specifications. Figure 1 shows the 247 

procedure for this study. Section 3 provides the supplier selection procedures and decision 248 

rules. 249 

*Insert Figure 1 here* 250 

3.1. Multiple comparisons with the best 251 

Considering 𝐾 (𝐾 ≥ 2) suppliers, MCB constructs a joint confidence interval at the specified 252 

confidence level for the vector of differences from the unknown best population parameter 253 

(Horrace and Schmidt, 2000). MCB provides the confidence interval of the difference 254 

between the PCIs of each supplier and the best supplier (Lin and Kuo, 2014). The higher the 255 

process yield indices are, the better the supplier (Wang and Tamirat, 2016). If decision-256 

makers consider the yield index and other criteria together, the confidence intervals can be 257 

used to evaluate whether the yield index is large enough to compensate for other criteria 258 

(Lin and Kuo, 2014). 259 

Assume that 𝑆𝑝𝑘𝐴,(𝑙) is the PCI of supplier 𝑙, where 1 ≤ 𝑙 ≤ 𝐾; and it is no more than 𝐶, 260 

where 𝐶 is a constant value (Lin and Kuo, 2014). The decision-making procedure for the MCB 261 

method is given in five steps. 262 

Step 1: Collect n profiles from each supplier, and then calculate 𝑆̂𝑝𝑘𝐴 using Equation (6).  263 

Step 2: After calculating the 𝑆̂𝑝𝑘𝐴 of K suppliers, sort the estimators in ascending order as 264 

𝑆̂𝑝𝑘𝐴,(1) ≤ 𝑆̂𝑝𝑘𝐴,(2) ≤ ⋯ ≤ 𝑆̂𝑝𝑘𝐴,(𝐾).  265 



8 
 

Step 3: A subset, called subset 𝑆, is constructed to resolve the SSS problem, which contains 266 

the suppliers with estimated PCIs that are only slightly smaller than that of the best supplier 267 

(Wang and Tamirat, 2016). 268 

 𝑆 = {𝑙: Ŝ𝑝𝑘𝐴,(𝑙) ≥ Ŝ𝑝𝑘𝐴,(𝐾) − ℎ𝛼,𝐾√
𝐺𝑙
2[𝜙(3𝐺𝑙)]2

2𝐼2𝐽[𝜙(3𝐶)]2
, 1 ≤ 𝑙 ≤ 𝐾} (9) 

 269 

where Ŝ𝑝𝑘𝐴,(𝐾) is the supplier with the highest process yield, ℎ𝛼,𝐾 is the critical value that 270 

controls the overall confidence level with the minimum of 1 − 𝛼 , and 𝐺 =271 
1

3
Φ−1 {

𝐼[2Φ(3𝐶)−1]−(𝐼−2)

2
}. The critical value ℎ𝛼,𝐾  is defined as Equation (10). Table 1 shows 272 

the value of ℎ𝛼,𝐾 when comparing two to ten suppliers where 𝛼 = 0.01, 0.025, 0.05, and 0.10. 273 

 ∫ [Φ(𝑧 + √2ℎ𝛼,𝐾) − Φ(𝑧 − √2ℎ𝛼,𝐾)]
𝐾−1 𝑒−𝑧

2/2

√2𝜋
𝑑𝑧 = 1 − 𝛼

∞

−∞

 (10) 

 274 

*Insert Table 1 here* 275 

 276 

Step 4: The comparison is made between the PCIs of the supplier or suppliers in 𝑆 with the 277 

yield index of all suppliers (Wang and Tamirat, 2016). At a confidence level of at least 1 − 𝛼, 278 

the proposed simultaneous confidence intervals become the following: 279 

 280 

 𝐿𝐶𝐵𝑙 ≤ 𝑆𝑝𝑘𝐴,(𝑙) −
𝑚𝑎𝑥

𝑚=1,2,…,𝐾
𝑆𝑝𝑘𝐴,(𝑚) ≤ 𝑈𝐶𝐵𝑙, for l = 1, 2, …, K (11) 

 281 

where 282 

 𝐿𝐶𝐵𝑙 = 𝑚𝑖𝑛 (0,
𝑚𝑎𝑥

𝑚 ∈ 𝑆
𝐿𝐶𝐵𝑙

𝑚) (12) 

 𝑈𝐶𝐵𝑙 = 𝑚𝑖𝑛 (0,
𝑚𝑖𝑛

𝑚 ≠ 𝑙
𝑈𝐶𝐵𝑙

𝑚) (13) 

 𝐿𝐶𝐵𝑙
𝑚 = {

0,                                                                     𝑚 = 𝑙

Ŝ𝑝𝑘𝐴,(𝑚) − Ŝ𝑝𝑘𝐴,(𝑙) − ℎ𝛼,𝐾√
𝐺𝑙
2[𝜙(3𝐺𝑙)]2

2𝐼2𝐽[𝜙(3𝐶)]2
, 𝑚 ≠ 𝑙

 (14) 

 𝑈𝐶𝐵𝑙
𝑚 = {

0,                                                                      𝑚 = 𝑙

Ŝ𝑝𝑘𝐴,(𝑚) − Ŝ𝑝𝑘𝐴,(𝑙) + ℎ𝛼,𝐾√
𝐺𝑙
2[𝜙(3𝐺𝑙)]2

2𝐼2𝐽[𝜙(3𝐶)]2
, 𝑚 ≠ 𝑙

 (15) 

 283 

Step 5: Make a decision. 𝑙 is the best supplier with the highest PCI or 𝑆𝑝𝑘𝐴 with a given 284 

significance level of α if 𝐿𝐶𝐵𝑙 = 0. Otherwise, l is the inferior supplier if 𝐿𝐶𝐵𝑙 < 0. There is 285 

only one supplier in S if 𝐿𝐶𝐵𝑙 = 𝑈𝐶𝐵𝑙 = 0. 286 

Examining the value of 𝐿𝐶𝐵𝑙 is enough to find the best supplier. The value of 𝑈𝐶𝐵𝑙 is 287 

extra information, and the lower the value of 𝐿𝐶𝐵𝑙, the worse is the supplier (Lin and Kuo, 288 

2014, and Wang and Tamirat, 2016). 289 

 290 

3.2. Bonferroni method 291 

Multiple tests are necessary to evaluate and select a better supplier, but multiple tests can 292 

cause a significantly inflated overall type I error (Pearn et al., 2018). The Bonferroni method 293 

is a practical approach to solve the error inflation problem (Lin and Pearn, 2011). It is widely 294 
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used in experimental contexts, such as comparing different groups versus the baseline and 295 

studying the relationships between attributes (Armstrong, 2014). The Bonferroni method 296 

adjusts the p-values by dividing the p-values by the total number of tests performed. The 297 

purpose is to maintain the type I error at a certain level and minimize the probability of a 298 

type I error during multiple testing (Gelman et al., 2012, and Pearn et al., 2018). 299 

Assume that there are a total of 𝑔 tests and that 𝐸𝑖 represents falsely rejecting the 𝑖th 300 

test, where 1 ≤ 𝑖 ≤ 𝑔. If the significance level of the individual test is 𝛼/𝑔, the likelihood of 301 

falsely rejecting any test is less than or equal to 𝛼 using the Bonferroni inequality (Pearn et 302 

al., 2018).  303 
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  (16) 304 

There are five steps in the supplier selection procedure.  305 

Step 1: Collect n samples from each supplier, and then calculate 𝑆̂𝑝𝑘𝐴 using Equation (6).  306 

Step 2: Sort the estimators in ascending order as 𝑆̂𝑝𝑘𝐴,(1) ≤ 𝑆̂𝑝𝑘𝐴,(2) ≤ ⋯ ≤ 𝑆̂𝑝𝑘𝐴,(𝐾).  307 

Step 3: Calculate the test statistic 𝑊𝑖 , where 𝑊𝑖 = Ŝ𝑝𝑘𝐴,(𝐾) − Ŝ𝑝𝑘𝐴,(𝑚) , 1 ≤ 𝑚 ≤ 𝑘  and 308 

Ŝ𝑝𝑘𝐴,(𝑚) < Ŝ𝑝𝑘𝐴,(𝐾). 309 

Step 4: Hence, supplier 𝐾  has the highest estimated value of Ŝ𝑝𝑘𝐴,(𝐾) . The proposed 310 

selection method compares supplier 𝐾 with all other suppliers. The testing hypotheses are 311 

𝐻0: Ŝ𝑝𝑘𝐴,(𝐾) − Ŝ𝑝𝑘𝐴,(𝑚) ≤ 0  and 𝐻1: Ŝ𝑝𝑘𝐴,(𝐾) − Ŝ𝑝𝑘𝐴,(𝑚) > 0 , where 𝑚 = 1, 2,… , 𝐾 − 1.The 312 

testing is conducted after calculating the estimated yield indices (Lin et al., 2018). The test 313 

statistic 𝑊𝑖 = Ŝ𝑝𝑘𝐴,(𝐾) − Ŝ𝑝𝑘𝐴,(𝑚) is used to decide whether supplier 𝑚 is classified into the 314 

subset or not. The asymptotic sampling distribution and the probability density function of 315 

𝑊𝑖 are defined as follows: 316 

 

𝑊𝑖 = 𝑆̂𝑝𝑘𝐴,(𝐾) − 𝑆̂𝑝𝑘𝐴,(𝑚)

≈ 𝑁(𝑆𝑝𝑘𝐴,(𝐾) − 𝑆𝑝𝑘𝐴,(𝑚),
𝐺𝐾

2[𝜙(3𝐺𝐾)]
2

2𝐼2𝐽[𝜙(3𝑆𝑝𝑘𝐴,(𝐾))]
2

+
𝐺𝑚

2[𝜙(3𝐺𝑚)]
2

2𝐼2𝐽[𝜙(3𝑆𝑝𝑘𝐴,(𝑚))]
2) 

 

(17) 

 

𝑓𝑊𝑖
(𝑤𝑖)

=
1

√2𝜋 (
𝐺𝐾

2[𝜙(3𝐺𝐾)]2

2𝐼2𝐽[𝜙(3𝑆𝑝𝑘𝐴,(𝐾))]
2 +

𝐺𝑚
2[𝜙(3𝐺𝑚)]2

2𝐼2𝐽[𝜙(3𝑆𝑝𝑘𝐴,(𝑚))]
2)

× 𝑒𝑥𝑝

(

  
 
−

[𝑤𝑖 − (𝑆𝑝𝑘𝐴,(𝐾) − 𝑆𝑝𝑘𝐴,(𝑚))]
2

2 × (
𝐺𝐾

2[𝜙(3𝐺𝐾)]2

2𝐼2𝐽[𝜙(3𝑆𝑝𝑘𝐴,(𝐾))]
2 +

𝐺𝑚
2[𝜙(3𝐺𝑚)]2

2𝐼2𝐽[𝜙(3𝑆𝑝𝑘𝐴,(𝑚))]
2)
)

  
 

 

(18) 

   

where 𝐺 =
1

3
Φ−1 {

𝐼[2Φ(3𝐶)−1]−(𝐼−2)

2
}, 𝐼 is the total number of the levels, and 𝐽 is the total 317 

number of profiles. 318 
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By adjusting the significance level of each test at 𝛼 to 𝛼/[𝐾(𝐾 − 1)], the total error rate 319 

is given since Ŝ𝑝𝑘𝐴,(𝐾) is the largest and confirmed to be less than or equal to 𝛼/𝐾. Hence, 320 

the critical value is calculated using the following equation. 321 

 𝑃(𝑊𝑖 ≥ 𝑐𝛼| Ŝ𝑝𝑘𝐴,(𝑚) = Ŝ𝑝𝑘𝐴,(𝐾) = 𝐶, 𝑛) =
𝛼

[𝐾(𝐾 − 1)]
 (19) 

Step 5: Make a decision. If 𝑊𝑖 is greater than the critical value 𝑐𝛼, there is inadequate 322 

information to determine whether supplier m is significantly better than supplier K. For 323 

practitioners, Table 2 offers the critical values when comparing three to six suppliers with α 324 

= 0.05, n = 20(10)100, I = 4, and C = 1(0.1)2. 325 

 326 

*Insert Table 2 here* 327 

 328 

4. Statistical analysis and simulation study  329 

 330 

4.1. Power analysis 331 

 332 

The power is the probability of rejecting H0 when it is false, and it relies upon the number of 333 

suppliers (K), the levels (I), the profiles (J), and the significance level (α) (Wang and Tamirat, 334 

2016). To analyze the statistical power of the new methods, a simulation study was 335 

performed. The R programming language is utilized to write computer codes, and the 336 

nonlinear profile with a two-sided specification is employed to generate the data (see 337 

Equation 20). 338 

 
𝑦𝑖𝑗 = 𝐴 +

𝐹 − 𝐴

1 + (
𝑥𝑖𝑗
𝐷 )

𝐵 + 𝜀𝑖𝑗 

 

(20) 

where A = 0.8955, B = 2.022, D = 0.0525, and F = 0.3911. Williams et al. (2007) use dose-339 

response profiles, where A is the maximal response parameter, B is the rate parameter that 340 

specifies how fast the response changes from the minimum response to the maximum 341 

response, D is the dose required to elicit a 50% response, and F is the minimal response 342 

parameter that is commonly used in bioassay experiments, as described in Equation (20). 343 

Table 3 shows the lower and upper tolerance limits of the dependent variable at eight levels 344 

of the independent variable. 345 

 346 

*Insert Table 3 here* 347 

 348 

Each combination was simulated 100,000 times with the given significance level 𝛼 =349 

0.05, the number of profiles 𝐽 = 100, and the largest yield index value of 𝑆𝑝𝑘𝐴 = 1.50. Four 350 

combinations of the process yield index 𝑆𝑝𝑘𝐴 were examined: (1) for 𝐾 = 3, the combination 351 

is (𝑆𝑝𝑘𝐴 − 0.1, 𝑆𝑝𝑘𝐴, 1.5) ; (2) for 𝐾 = 4 , the combination is (𝑆𝑝𝑘𝐴 − 0.2, 𝑆𝑝𝑘𝐴 −352 

0.1, 𝑆𝑝𝑘𝐴, 1.5) ; (3) for 𝐾 = 5 , the combination is (𝑆𝑝𝑘𝐴 − 0.3, 𝑆𝑝𝑘𝐴 − 0.2, 𝑆𝑝𝑘𝐴 −353 

0.1, 𝑆𝑝𝑘𝐴, 1.5) ; and (4) for 𝐾 = 6 , the combination is (𝑆𝑝𝑘𝐴 − 0.4, 𝑆𝑝𝑘𝐴 − 0.3, 𝑆𝑝𝑘𝐴 −354 

0.2, 𝑆𝑝𝑘𝐴 − 0.1, 𝑆𝑝𝑘𝐴, 1.5). 355 

The power curves of MCB are shown in Figure 2 for 𝐾 = 3(1)6 when there are different 356 

levels, where 𝐼 = 4, 8. For example, when 𝐾 = 5 and 𝑆𝑝𝑘𝐴 =  1.0, 1.1, 1.2, 1.3, and 1.5, the 357 

power increases by 6.93% when the number of levels increases from 4 to 8. Similarly, the 358 

power curves for the MCB are given in Figure 3 for 𝐾 = 3(1)6 when there are various 359 



11 
 

numbers of profiles, where 𝐽 = 100, 150, and 200. For example, when K = 3 and 𝑆𝑝𝑘𝐴 = 1.2, 360 

1.3, and 1.5, the power values for 𝐽 = 100, 150, and 200 are 0.3061, 0.5439, and 0.6799, 361 

respectively. The results indicate that both the number of profiles and the number of levels 362 

impacted the power of the statistical test. That is, increasing the number of profiles and the 363 

number of levels improves the power of the statistical test.  364 

*Insert Figures 2 - 3 here* 365 

 366 

Figure 4 illustrates the power of the Bonferroni technique for 𝐾 = 3(1)6  with 367 

different levels (𝐼 = 4, 8) . For instance, when 𝐾 = 3  and 𝑆𝑝𝑘𝐴 =  1.1, 1.2, and 1.5 , the 368 

power difference between 4 levels and 8 levels becomes 5.66%. Figure 5 shows the power 369 

curves of the Bonferroni technique for 𝐾 = 3(1)6 with different numbers of profiles, where 370 

𝐽 = 100, 150, and 200. For instance, when K = 4, and 𝑆𝑝𝑘𝐴 = 1.1, 1.2, 1.3, and 1.5, the power 371 

for 𝐽 = 100 to 𝐽 = 200 improves by 11.65%. The results indicate that the ability of the 372 

statistical test is affected by the number of levels and the number of profiles. Hence, the 373 

higher the number of levels is, the higher the power of the statistical analysis. Further, 374 

increasing the number of profiles improves the power of the statistical test.  375 

 376 

*Insert Figures 4- 5 here* 377 

 378 

4.1.1 Power comparison  379 

To compare the MCB and Bonferroni methods’ power, the number of best suppliers 380 

(𝐾𝑁𝐵) and the magnitude difference (ℎ) are considered (Pearn et al. 2018). To compare the 381 

MCB and Bonferroni methods, multiple scenarios are considered. For example, when there 382 

are four suppliers(𝐾 = 4), the scenarios considered are the following: (1) one best supplier 383 

(𝐾𝑁𝐵 = 1) and three inferior suppliers, (2) two best suppliers (𝐾𝑁𝐵 = 2) and two inferior 384 

suppliers, and (3) three best suppliers (𝐾𝑁𝐵 = 3) and one inferior supplier. Table 4 presents 385 

the power comparison of the MCB and Bonferroni methods when 𝐶 = 1.33, ℎ = 0.33, 𝐼 =386 

4, 𝐽 = 100, and 𝐾 = 3(1)6. 387 

*Insert Table 4 here* 388 

 389 

The higher the statistical power is, the lower the probability of failure when rejecting 390 

the null hypothesis. If the statistical power is low, it can impact the validity of the conclusion. 391 

Table 4 shows that with a given number of profiles, MCB possesses higher power than the 392 

Bonferroni technique. MCB has a lower probability of failure when rejecting the null 393 

hypothesis. For the Bonferroni method, when the number of best suppliers is equal to or 394 

larger than 3, the power increases and gets closer to that of the MCB. Additionally, the 395 

lowest power for MCB always happens when 𝐾𝑁𝐵 = ⌈𝐾/2⌉ and the lowest power for the 396 

Bonferroni method occurs when𝐾𝑁𝐵 = 1. For example, when there are three suppliers, the 397 

minimum power of MCB happens with two best suppliers(𝐾𝑁𝐵 = 2), and when there are 398 

five suppliers, the lowest power of MCB occurs with three best suppliers(𝐾𝑁𝐵 = 3). Figure 6 399 

presents the power comparison of the MCB and Bonferroni methods when there are 𝐾𝑁𝐵 400 

best suppliers with 𝐶 = 1.33 , ℎ = 0.33 ,  𝐼 = 4 ,  𝐽 = 100 , and 𝐾 = 3(1)6 . This study 401 

determines that MCB achieves higher power than the Bonferroni technique when dealing 402 

with the SSS problem. To attain the same power as MCB, the Bonferroni method needs 403 

many more profiles.  404 

 405 

*Insert Figure 6 here* 406 
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 407 

4.2. Required sample size 408 

The sample size in this study is the number of profiles. Computer programs are written in the 409 

R language, and each combination was simulated 100,000 times. For MCB, to calculate the 410 

required number of profiles, the least favorable condition (LFC) is considered, where ⌈𝐾/2⌉ 411 

is the upper limit of 𝐾/2 and ⌊𝐾/2⌋ is the lower limit of 𝐾/2 (Wang and Tamirat, 2016). The 412 

lowest power occurs with ⌈𝐾/2⌉ best suppliers (Lin and Kuo, 2014). To identify all of the 413 

suppliers that have 𝑆𝑝𝑘𝐴 less than the best according to the magnitude of ℎ, the minimum 414 

required number of profiles with the given power is found using the following equation. 415 

 

𝑃𝑟{𝐿𝐶𝐵𝑖 > 0, 𝑖

= 1,2, … , ⌊𝐾/2⌋|𝑆𝑝𝑘𝐴1 + ℎ = ⋯ = 𝑆𝑃𝑘𝐴⌊𝐾 2⁄ ⌋ + ℎ = 𝑆𝑝𝑘𝐴⌈𝐾 2⁄ ⌉

= ⋯ = 𝑆𝑝𝑘𝐴𝐾, 𝑆𝑝𝑘𝐴𝐾 = 𝐶} ≥ 1 − 𝛽 

(21) 

 416 

Table 5 provides the required number of profiles given the significance level 𝛼 = 0.05; 417 

different combinations of power = 0.7, 0.8, and 0.9; different yield indices 𝐶 =418 

1.00, 1.33, 1.5, and 2.0; and different magnitude differences ℎ = 0.1(0.1)0.5. For example, 419 

when 𝐾 = 3, 𝐶 = 1.33, ℎ = 0.2, and the power is 0.7, the required number of profiles is 293. 420 

*Insert Table 5 here* 421 

For the Bonferroni method, the lowest power occurs when 𝐾𝑁𝐵 is equal to one, which is 422 

when only one best supplier exists (Lin et al., 2018). The number of profiles required for the 423 

Bonferroni method is calculated based on the setting when there is only one best supplier. 424 

All suppliers that are selected as the best suppliers are assumed to have the same process 425 

yield (𝐶), and the inferior suppliers are assumed to have a different equal process yield 426 

(𝐶 − ℎ). The minimum number of profiles required is obtained using Equation (22). 427 

 

𝑃(𝑊𝑖 ≥ 𝑐𝛼, 𝑖 = 1,2, … , 𝐾

− 1|𝑆𝑝𝑘𝐴1 = 𝑆𝑝𝑘𝐴2 = ⋯ = 𝑆𝑝𝑘𝐴𝐾−1 = 𝐶 − ℎ, 𝑆𝑝𝑘𝐴𝐾 = 𝐶)

≥ 1 − 𝛽 

(22) 

 428 

Tables 6 - 9 show the number of profiles required given the significance level 𝛼 = 0.05; 429 

different combinations of power = 0.7, 0.8, and 0.9; different yield indices 𝐶 =430 

1.0, 1.33, 1.5, and 2.0; and distinct magnitude differences ℎ = 0.1(0.1)0.5. For example, 431 

when 𝐾 = 5, 𝐶 = 1.0, ℎ = 0.1, and the power is 0.9, the minimum required number of 432 

profiles is 1646 with a critical value of 0.0514. Additionally, the supplier would be considered 433 

to be a best supplier candidate if the value of 𝑊𝑖 is less than 0.0514. 434 

 435 

*Insert Tables 6 - 9 here* 436 

 437 

Tables 5-9 present the results for the MCB and Bonferroni methods, and the results are 438 

as follows: 1) the higher the value of 𝐶, the greater is the required number of profiles; (2) 439 

the greater the number of suppliers, the higher is the required number of profiles; (3) the 440 

higher the power, the higher is the required number of profiles; (4) the smaller the 441 

magnitude difference ℎ, the higher is the required number of profiles; and (5) the minimum 442 

required number of profiles for the Bonferroni method is higher than the required number 443 

of profiles for MCB. More required profiles results in more information. However, more 444 

required profiles costs more effort, money, and time. Therefore, having a sufficient required 445 

number of profiles is essential to be able to make decisions without wasting any resources. 446 

 447 
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5. Numerical Example   448 

In the following, to demonstrate the application of the new methods, a numerical example is 449 

presented. The data are collected from a firm that assembles personal computers. To take 450 

advantage of cost and quality differences, the firm sources components from locations 451 

around the globe. This example focuses on one of its key components, a central processing 452 

unit cooling fan. The company has five suppliers for one of its models. Laboratory testing is 453 

used to collect the data from a laptop computer. The quality characteristic of interest is the 454 

relationship between the input voltage and speed as measured by the revolutions per 455 

minute (RPM). In the laboratory testing, the voltages are set at four levels (2.2, 2.5, 4.0, and 456 

5.0 volts). For a quality product, the corresponding results for the speeds are expected to be 457 

2400±200, 2700±200, 3700±200, and 4200±200 RPM, respectively. Assuming that the 458 

suppliers are aware that the significance level is 0.050, the maximum yield index value is C = 459 

1.50, which is equivalent to 7 defective items from one million units. Eighty random profiles 460 

are collected from each of the five suppliers’ processes.  461 

The 𝑆̂𝑝𝑘𝐴s for the five suppliers are 1.48, 1.37, 1.21, 1.05, and 1.00, respectively. The 462 

critical value for MCB, as mentioned in Table 1, is 2.4420. The critical value for the 463 

Bonferroni technique, as shown in Table 2, is 0.4118. For MCB, the suppliers can be 464 

categorized as a best supplier with the highest process yield index at a given significance 465 

level of 𝛼 if their LCB is equal to zero. For the Bonferroni technique, the suppliers can be 466 

categorized as a best supplier if the value of their testing statistic 𝑊𝑖 is less than 0.4118. 467 

Table 10 presents the decisions made by MCB and the Bonferroni method. 468 

Based on Table 10, the lower confidence bounds for supplier 1 and supplier 2 are equal 469 

to zero. Therefore, suppliers 1 and 2 are considered to be the best suppliers by MCB. The 470 

values of the test statistic 𝑊𝑖 for supplier 1, supplier 2, and supplier 3 are all below 0.4118. 471 

Based on the Bonferroni method, supplier 1, supplier 2, and supplier 3 are considered to be 472 

the best suppliers. The result shows that MCB can reject more suppliers with a lower yield 473 

index than the Bonferroni method. Thus, this result is consistent with the conclusion in the 474 

previous section 4.1. That is, MCB possesses more power than the Bonferroni technique, and 475 

to reach the same power level as the MCB, the Bonferroni needs more profiles. 476 

*Insert Table 10 here* 477 

 478 

6. Implications for practices and methodology 479 

This study presents a quantitative supplier selection methodology. The results address 480 

the gap in the literature because product quality is primarily measured using intangible and 481 

qualitative measures. It is crucial to work with the right supplier to make high-quality 482 

products, and quality is an essential criterion in manufacturing firms for SSS. In sustainable 483 

supply chain management, supplier evaluation and selection is a critical process, and quality 484 

plays an essential role. The proposed novel supplier selection methods guarantee that only 485 

high-quality products are sourced from upstream suppliers. Hence, the proposed methods 486 

play crucial roles in avoiding economic, environmental, and social losses. 487 

With a substantial rise in outsourcing initiatives, managers are more dependent on 488 

suppliers, supplier selection is increasingly emphasized in outsourcing, and component 489 

quality is a critical factor for manufacturers to succeed in the 4Rs. The imprecise nature of 490 

the measurement causes a lack of trust and uncertainty in the ability to choose the right 491 

suppliers. With the proposed methods, decisions are made statistically at a desired 492 

significance level. That is, the difficulties resulting from the use of intangible and qualitative 493 

methods are mitigated. 494 
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The quality of the supplier process is quantitatively assessed by the number of 495 

defective units produced; however, with modern manufacturing systems, a sensible sized 496 

sample is unlikely to have a faulty item (Lin et al., 2018). Hence, process yield indices are 497 

more suitable measures. For example, a yield index 𝑆̂𝑝𝑘𝐴 = 1.33 indicates that there will be 498 

66 defective items from one million units. Figure 7 presents a novel method to assess the 499 

performance of the supplier process. Data are collected using smart data sensors, and a 500 

nonlinear profile describes the quality. MCB and the difference statistic methods are applied. 501 

The efficiency of the MCB is found to be higher. MCB has a lower probability of failure when 502 

rejecting the null hypothesis when it is not true. The power of the statistical test is affected 503 

by the number of competing suppliers, the number of levels, and the profiles; however, it 504 

requires more profiles costs more effort, money, and testing time. Yet, carefully choosing 505 

the desired significance level is essential to be able to make decisions without wasting 506 

resources. This study contributes to enhancing the knowledge related to supplier evaluation 507 

and selection. If a manager has a specific requirement, the developed computer programs 508 

can be quickly adopted. 509 

The proposed methods are useful for monitoring the quality program implementation 510 

and quality improvement activities of suppliers. They can lead to efficiency improvements 511 

due to waste reduction in terms of reduce, reuse, recycle, and recover; can lead to reduce, 512 

scrap and rework activities; and can decrease required purchases by extending the useful 513 

lifetime of a product. Reusable, quality products can be sold or rented second hand. By 514 

recycling and recovering all components or only the critical components, consumers can 515 

repair the product if an element is damaged rather than buying a replacement. Hence, the 516 

proposed methods form an essential aspect for building strong sustainable supply chain 517 

management.  518 

** Insert Figure 7 here ** 519 

7. Conclusions 520 

Manufacturers are required to be able to produce high-quality products in a competitive 521 

and uncertain environment. Sustainable supplier selection (SSS) is the initial step in the 522 

process of creating high-quality products. It is a critical attribute for manufacturers who 523 

want to succeed in creating sustainable supply chain partnerships. Quality is an important 524 

variable in SSS; however, prior studies measure product quality using intangible and 525 

qualitative approaches. This creates ambiguity in the interpretation of quality and often 526 

frustrates suppliers. This study proposes a quantitative measure of the supplier’s process. 527 

This study takes advantage of technological advancements in measurement technology to 528 

employ high-dimensional and complex data represented by nonlinear profiles to measure 529 

quality. This study fills the gaps in prior studies using linear profiles and presents product 530 

quality evaluation and selection methods for processes using nonlinear profiles.  531 

The findings of the Monte Carlo simulation study indicated that the difference test 532 

statistics method possesses inferior performance compared to MCB. It required more 533 

profiles; and more profiles costs more effort, money, and time. For MCB, the lowest power 534 

happens when the number of best suppliers is equal to the upper limit of K/2. The minimum 535 

power happens when there is only one best supplier for the Bonferroni technique. In 536 

addition, increasing the number of levels of profiles is found to improve the selection power.  537 

The contributions are multifold: (1) to reduce the ambiguity resulting from broad and 538 

intangible criteria, a process yield index SpkA has been proposed to provide a numerical 539 

measure; (2) a single numerical index is used to compare the supplier’s product quality, and 540 

decisions are statistically made using a desired significance level; and (3) two multiple 541 
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comparison methods, the MCB and the Bonferroni methods, are proposed. The MCB 542 

considers the uncertainty of the best supplier, and the Bonferroni method maintains the 543 

overall error rate. To make the results convenient for decision-makers, tables are provided 544 

that gives the critical values and the minimum number of profiles. The new methods are 545 

simple to understand and implement and can help practitioners to deal with SSS problems 546 

with qualitative criteria in an effective way.  547 

This study has multiple limitations. The nonlinear profiles are limited to a single quality 548 

characteristic. Multiple or a vector of quality characteristics needs to be investigated in the 549 

future with an emphasis on correlation or autocorrelation. Quality is described by a 550 

nonlinear profile with two-sided specifications. The result may not be generalizable to 551 

product quality with one-sided tolerance limits, and profile analysis is performed assuming 552 

the independence of consecutive observations. 553 

 554 
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Table 1. The critical values of ,Kh , K = 2(1)10 at   = 0.010, 0.0250, 0.050, 0.100. 656 

K  2 3 4 5 6 7 8 9 10 

0.010 2.5760 2.7940 2.9150 2.9980 3.0600 3.1110 3.1520 3.1880 3.2190 

0.025 2.2420 2.4780 2.6070 2.6950 2.7610 2.8140 2.8580 2.8960 2.9290 

0.050 1.9600 2.2120 2.3490 2.4420 2.5120 2.5670 2.6130 2.6520 2.6860 

0.100 1.6450 1.9160 2.0620 2.1600 2.2340 2.2920 2.3410 2.3820 2.4170 

 657 

Table 2. The critical values for K = 3(1)6, C  = 1(0.1)2, n = 20(10)100, I = 4, and   = 0.05. 658 

K n 
C 

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 

3 

20 0.3973 0.4601 0.5218 0.5827 0.6429 0.7023 0.7612 0.8196 0.8776 0.9352 0.9924 

30 0.3244 0.3756 0.4261 0.4758 0.5249 0.5735 0.6216 0.6692 0.7166 0.7636 0.8103 

40 0.2810 0.3253 0.3690 0.4121 0.4546 0.4966 0.5383 0.5796 0.6206 0.6613 0.7017 

50 0.2513 0.2910 0.3300 0.3686 0.4066 0.4442 0.4815 0.5184 0.5551 0.5915 0.6277 

60 0.2294 0.2656 0.3013 0.3356 0.3712 0.4055 0.4395 0.4732 0.5067 0.5399 0.5730 

70 0.2124 0.2459 0.2789 0.3115 0.3436 0.3754 0.4069 0.4381 0.4691 0.4999 0.5305 

80 0.1987 0.2301 0.2609 0.2914 0.3215 0.3512 0.3806 0.4098 0.4291 0.4676 0.4962 

90 0.1873 0.2169 0.2460 0.2747 0.3031 0.3311 0.3589 0.3864 0.4137 0.4409 0.4678 

100 0.1800 0.2058 0.2334 0.2606 0.2875 0.3141 0.3405 0.3666 0.3925 0.4182 0.4438 

4 

20 0.4379 0.5070 0.5751 0.6422 0.7084 0.7740 0.8389 0.9033 0.9671 1.0202 1.0936 

30 0.3575 0.4140 0.4695 0.5243 0.5785 0.6320 0.6850 0.7375 0.7897 0.8415 0.8930 

40 0.3096 0.3585 0.4066 0.4541 0.5010 0.5473 0.5932 0.6387 0.6839 0.7287 0.7733 

50 0.2770 0.3207 0.3637 0.4062 0.4481 0.4895 0.5306 0.5713 0.6117 0.6518 0.6917 

60 0.2528 0.2927 0.3320 0.3708 0.4090 0.4469 0.4844 0.5215 0.5584 0.5950 0.6314 

70 0.2341 0.2710 0.3074 0.3433 0.3787 0.4137 0.4484 0.4828 0.5170 0.5509 0.5846 

80 0.2190 0.2535 0.2876 0.3211 0.3542 0.3870 0.4195 0.4517 0.4836 0.5153 0.5468 

90 0.2064 0.2390 0.2711 0.3027 0.3340 0.3649 0.3955 0.4258 0.4559 0.4858 0.5156 

100 0.1959 0.2268 0.2572 0.2872 0.3169 0.3462 0.3752 0.4040 0.4325 0.4443 0.4891 

5 

20 0.4584 0.5394 0.6118 0.6832 0.7538 0.8235 0.8926 0.9610 1.0290 1.0202 1.1636 

30 0.3804 0.4405 0.4996 0.5579 0.6155 0.6724 0.7288 0.7847 0.8402 0.8953 0.9501 

40 0.3294 0.3814 0.4327 0.4831 0.5330 0.5823 0.6312 0.6796 0.7276 0.7754 0.8228 

50 0.2947 0.3412 0.3870 0.4321 0.4767 0.5208 0.5645 0.6078 0.6508 0.6935 0.7359 

60 0.2690 0.3115 0.3533 0.3945 0.4352 0.4755 0.5153 0.5549 0.5941 0.6331 0.6718 

70 0.2490 0.2884 0.3271 0.3652 0.4029 0.4402 0.4521 0.5137 0.5500 0.5861 0.6220 

80 0.2330 0.2697 0.3059 0.3416 0.3769 0.4118 0.4463 0.4805 0.5145 0.5483 0.5818 

90 0.2196 0.2543 0.2885 0.3221 0.3554 0.3882 0.4208 0.4531 0.4851 0.5169 0.5485 

100 0.2084 0.2413 0.2737 0.3056 0.3371 0.3683 0.3992 0.4298 0.4602 0.4904 0.5204 

6 

20 0.4584 0.5641 0.6398 0.7144 0.7882 0.8611 0.9333 1.0049 1.0760 1.0202 1.2167 

30 0.3978 0.4606 0.5224 0.5833 0.6436 0.7031 0.7621 0.8205 0.8785 0.9362 0.9935 

40 0.3445 0.3989 0.4524 0.5052 0.5573 0.6089 0.6600 0.7106 0.7608 0.8108 0.8604 

50 0.3081 0.3568 0.4046 0.4519 0.4985 0.5446 0.5903 0.6356 0.6805 0.7252 0.7695 

60 0.2813 0.3257 0.3694 0.4125 0.4551 0.4972 0.5389 0.5802 0.6212 0.6620 0.7025 

70 0.2604 0.3015 0.3420 0.3819 0.4213 0.4603 0.4521 0.5372 0.5752 0.6129 0.6504 

80 0.2436 0.2821 0.3199 0.3572 0.3941 0.4306 0.4667 0.5025 0.5380 0.5733 0.6084 

90 0.2297 0.2659 0.3016 0.3368 0.3716 0.4060 0.4400 0.4738 0.5072 0.5405 0.5736 

100 0.2179 0.2523 0.2861 0.3195 0.3525 0.3851 0.4174 0.4494 0.4812 0.5128 0.5442 
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Table 3. Specification limits at eight levels. 659 

𝑗 1 2 3 4 5 6 7 8 

𝑥 0.003 0.009 0.028 0.084 0.25 0.76 2.27 6.8 

𝑈𝑆𝐿𝑗 0.6 0.62 0.64 0.9 0.98 1 1.05 1.1 

𝐿𝑆𝐿𝑗 0.2 0.22 0.24 0.4 0.48 0.5 0.65 0.7 

 660 

 661 

Table 4. Power comparison of MCB and Bonferroni having KNB best suppliers with C = 1.33, h 662 

= 0.33, I = 4, J = 100, and K = 3(1)6. 663 

K Method 𝐾𝑁𝐵 = 1  𝐾𝑁𝐵 = 2 𝐾𝑁𝐵 = 3 𝐾𝑁𝐵 = 4 𝐾𝑁𝐵 = 5 

3 
MCB 0.85698 0.81697 

   
Bonferroni 0.41762 0.74071 

   

4 
MCB 0.77465 0.68619 0.76679 

  
Bonferroni 0.22112 0.45574 0.70764 

  

5 
MCB 0.70543 0.59314 0.57541 0.70372 

 
Bonferroni 0.12690 0.27182 0.44827 0.67503 

 

6 
MCB 0.64571 0.48600 0.46689 0.50837 0.64455 

Bonferroni 0.07764 0.16921 0.28340 0.43339 0.64810 

 664 



20 
 

Table 5. Number of profiles for MCB. 

K 
C 

 
1.00 

 
1.33 

 
1.50 

 
2.00 

1 − 𝛽 | h 
 

0.1 0.2 0.3 0.4 0.5 
 

0.1 0.2 0.3 0.4 0.5 
 

0.1 0.2 0.3 0.4 0.5 
 

0.1 0.2 0.3 0.4 0.5 

3 

0.7 
 

450 129 51 27 16 
 

1209 293 132 73 45 
 

1620 377 199 114 69 
 

3180 731 357 211 131 

0.8 
 

517 154 63 31 21 
 

1292 340 161 90 50 
 

1818 461 212 126 77 
 

3741 908 393 234 169 

0.9 
 

606 166 80 41 22 
 

1596 372 178 109 54 
 

2255 532 265 153 94 
 

4621 1034 480 280 192 

4 

0.7 
 

597 149 72 35 21 
 

1576 371 166 96 58 
 

2157 505 216 128 84 
 

4445 1019 446 269 160 

0.8 
 

679 168 78 39 22 
 

1693 406 190 106 66 
 

2393 574 267 148 97 
 

4772 1176 487 278 193 

0.9 
 

791 192 88 47 27 
 

2082 453 202 119 77 
 

2897 700 280 159 110 
 

5117 1197 564 360 208 

5 

0.7 
 

637 169 79 39 23 
 

1690 413 193 108 67 
 

2414 586 267 149 98 
 

4830 1179 489 278 198 

0.8 
 

741 193 89 45 25 
 

2049 451 201 118 75 
 

2775 680 278 159 105 
 

5147 1215 575 312 203 

0.9 
 

912 209 96 51 29 
 

2333 507 212 127 80 
 

3304 743 354 172 121 
 

6369 1556 596 376 213 

6 

0.7 
 

779 190 87 46 25 
 

2039 473 201 112 70 
 

2819 640 271 162 102 
 

5200 1313 590 331 204 

0.8 
 

877 203 91 51 29 
 

2119 519 220 122 76 
 

3128 737 321 166 112 
 

5833 1503 619 365 226 

0.9 
 

969 222 102 55 32 
 

2430 590 260 133 86 
 

3462 806 374 190 121 
 

6597 1602 710 402 262 
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Table 6. Number of profiles and critical values for the Bonferroni method at C = 1.0. 
H 0.10 0.20 0.30 0.40 0.50 

K Power n 𝐶𝛼 n 𝐶𝛼 n 𝐶𝛼 n 𝐶𝛼 n 𝐶𝛼 

3 

0.7 976 0.0569 212 0.1221 105 0.1734 51 0.2488 31 0.3192 

0.8 1048 0.0549 232 0.1167 114 0.1165 58 0.2333 34 0.3048 

0.9 1192 0.0515 278 0.1066 127 0.1557 72 0.2094 42 0.2742 

4 

0.7 1152 0.0577 277 0.1177 123 0.1762 66 0.2411 39 0.3136 

0.8 1217 0.0562 289 0.1152 128 0.1731 75 0.2261 46 0.2887 

0.9 1475 0.0510 341 0.1061 144 0.1632 81 0.2176 52 0.2716 

5 

0.7 1377 0.0562 302 0.1199 131 0.1821 72 0.2456 43 0.3177 

0.8 1602 0.0521 360 0.1098 140 0.1761 78 0.2359 51 0.2918 

0.9 1646 0.0514 388 0.1058 165 0.1622 93 0.2161 53 0.2862 

6 

0.7 1463 0.0570 381 0.1117 149 0.1785 80 0.2436 48 0.2980 

0.8 1575 0.0549 387 0.1108 165 0.1696 88 0.2323 53 0.2993 

0.9 1755 0.0520 404 0.1084 179 0.1629 96 0.2224 58 0.2861 

 
Table 7. Number of profiles and critical values for the Bonferroni method at C = 1.33. 

H 0.1 0.2 0.3 0.4 0.5 

K Power n 𝐶𝛼 n 𝐶𝛼 n 𝐶𝛼 n 𝐶𝛼 n 𝐶𝛼 

3 

0.7 2527 0.0535 525 0.1173 233 0.1761 139 0.2279 87 0.2788 

0.8 2813 0.0507 600 0.1097 275 0.1621 157 0.2145 106 0.2610 

0.9 3039 0.0488 729 0.0996 339 0.1460 178 0.2014 110 0.2562 

4 

0.7 3009 0.0540 704 0.1116 312 0.1677 163 0.2320 111 0.2811 

0.8 3200 0.0524 790 0.1054 339 0.1609 178 0.2220 116 0.2750 

0.9 3498 0.0501 911 0.0981 352 0.1579 203 0.2079 131 0.2587 

5 

0.7 3568 0.0528 880 0.1062 360 0.1661 197 0.2245 118 0.2901 

0.8 3784 0.0513 927 0.1035 393 0.1590 210 0.2174 128 0.2785 

0.9 4035 0.0496 952 0.1022 431 0.1518 227 0.2091 140 0.2663 

6 

0.7 3958 0.0524 973 0.1057 393 0.1662 215 0.2247 133 0.2857 

0.8 4119 0.0514 1004 0.1040 404 0.1639 222 0.2211 143 0.2755 

0.9 4613 0.0486 1121 0.0984 479 0.1506 259 0.2047 164 0.2573 
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Table 8. Number of profiles and critical values for the Bonferroni method at C = 1.5. 

H  0.1  0.2  0.3  0.4  0.5 

K Power  n 𝐶𝛼  n 𝐶𝛼  n 𝐶𝛼  n 𝐶𝛼  n 𝐶𝛼 

3 

0.7  3180 0.0557  813 0.1102  374 0.1625  195 0.2250  125 0.2810 

0.8  3483 0.0533  857 0.1073  400 0.1571  206 0.2189  132 0.2734 

0.9  4062 0.0493  1034 0.0977  421 0.1531  234 0.2504  159 0.2491 

4 

0.7  4501 0.0516  984 0.1104  424 0.1681  259 0.2151  152 0.2808 

0.8  4802 0.0500  1146 0.1023  474 0.1590  269 0.2111  160 0.2737 

0.9  5013 0.0489  1190 0.1004  553 0.1472  281 0.2065  183 0.2556 

5 

0.7  4964 0.0523  1203 0.1062  486 0.1671  269 0.2246  178 0.2761 

0.8  5084 0.0517  1260 0.1038  513 0.1626  276 0.2217  196 0.2631 

0.9  5487 0.0498  1533 0.0941  607 0.1495  346 0.1980  207 0.2560 

6 

0.7  5240 0.0532  1336 0.1054  557 0.1632  310 0.2188  191 0.2787 

0.8  5589 0.0516  1427 0.1020  603 0.1569  340 0.2089  206 0.2683 

0.9  6358 0.0483  1524 0.0987  624 0.1542  360 0.2030  220 0.2597 

 
Table 9. Number of profiles and critical values for the Bonferroni method at C = 2.0. 

H  0.1  0.2  0.3  0.4  0.5 

K Power  n 𝐶𝛼  n 𝐶𝛼  n 𝐶𝛼  n 𝐶𝛼  n 𝐶𝛼 

3 

0.7  6780 0.0539  1592 0.1113  691 0.1689  389 0.2551  251 0.2802 

0.8  6939 0.0533  1643 0.1095  818 0.1552  422 0.2161  278 0.2662 

0.9  8756 0.0475  2052 0.0908  864 0.1510  486 0.2014  312 0.2513 

4 

0.7  8212 0.0540  2033 0.1085  899 0.1632  502 0.2183  299 0.2829 

0.8  8622 0.0527  2257 0.1030  969 0.1572  527 0.2131  343 0.2641 

0.9  9641 0.0499  2509 0.0977  1009 0.1540  588 0.2017  370 0.2543 

5 

0.7  8900 0.0552  2272 0.1092  950 0.1689  529 0.2263  362 0.2735 

0.8  9963 0.0522  2516 0.1038  1108 0.1564  617 0.2095  392 0.2629 

0.9  11653 0.0483  2632 0.1015  1214 0.1492  699 0.1969  434 0.2498 

6 

0.7  10265 0.0538  2767 0.1035  1151 0.1604  606 0.2211  393 0.2745 

0.8  11513 0.0508  2828 0.1024  1222 0.1557  629 0.2170  407 0.2698 

0.9  12235 0.0492  3128 0.0973  1333 0.1491  751 0.1986  457 0.2546 
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Table 10. The decision made by MCB and the Bonferroni method. 

K 𝑆̂𝑝𝑘𝐴 
 MCB  Bonferroni method 

 [LCB, UCB] Decision  𝑊𝑖 Decision 

1 1.480  [0, 0.25] Best  0 Best 
2 1.370  [0, 0.36] Best  0.11 Best 
3 1.110  [0.01, 0.62] Inferior  0.37 Best 
4 1.050  [0.07, 0.68] Inferior  0.43 Inferior 
5 1.000  [0.12, 0.73] Inferior  0.48 Inferior 
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Figure 1. Analytical flow 
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Figure 2. Power analysis of MCB at K = 3(1)6. 

. 
 



26 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

  

1.51.41.31.21.11.0

1.0

0.8

0.6

0.4

0.2

0.0

SpkA

P
ow

er

J=100

J=150

J=200

k=3

  
1.51.41.31.21.11.0

1.0

0.8

0.6

0.4

0.2

0.0

SpkA

P
o

w
e

r

J=100

J=150

J=200

k=4

 

1.51.41.31.21.11.0

1.0

0.8

0.6

0.4

0.2

0.0

SpkA

P
o

w
e

r

J=100

J=150

J=200

k=5

 
1.51.41.31.21.11.0

1.0

0.8

0.6

0.4

0.2

0.0

SpkA

P
o

w
e

r

J=100

J=150

J=200

k=6

 
Figure 3. Power analysis with the number of profiles of MCB at K = 3(1)6. 
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Figure 4. Power analysis of the Bonferroni at K = 3(1)6. 
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Figure 5. Power analysis with the number of profiles of the Bonferroni at K = 3(1)6. 
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Figure 6. Power comparison of MCB and Bonferroni having KNB best suppliers with C = 1.33, h = 

0.33, I = 4, J = 100, and K = 3(1)6. 
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Figure 7. Proposed methods  
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