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25 ABSTRACT

26 Selenium (Se) is an essential element for humans and animals. Rice is one of the most consumed 

27 cereals in the world, so agronomic biofortification of cereals with Se may be a good strategy to 

28 increase the levels of daily intake of Se by the population. This study evaluated agronomic 

29 biofortification of rice genotypes with selenium (Se) and its effects on grain nutritional quality. 

30 Five rates of Se (0, 10, 25, 50 and 100 g ha-1) were applied as selenate via the soil to three rice 

31 genotypes under field conditions. Selenium concentrations in the leaves and polished grains 

32 increased linearly in response to Se application rates. A highly significant correlation was observed 

33 between the Se rates and the Se concentration in the leaves and grains, indicating high translocation 

34 of Se. Application of Se also increased the concentrations of albumin, globulin, prolamin and 

35 glutelin in polished grains. Biofortifying rice genotypes using 25 g Se ha-1 could increase the 

36 average daily Se intake from 4.64 to 66 μg day-1. Considering that the recommended daily intake 

37 of Se by adults is 55 μg day-1, this agronomic strategy could contribute to alleviating widespread 

38 Se malnutrition. 

39

40 Keywords: biofortification, seed proteins, micronutrients, selenium, rice (Oryza sativa L.)

41
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42 1. INTRODUCTION

43 Selenium (Se) is an essential micronutrient for humans and animals.1-2 However, the 

44 concentration of Se in soils and foods varies greatly.1-4 The recommended daily intake of Se is 55 

45 μg kg-1 for human adults.5-7 It is estimated that more than 1 billion people suffer from Se deficiency 

46 globally,8,9 which can lead to numerous health issues including hypothyroidism, cardiovascular 

47 disease, viral diseases, male infertility, cognitive impairment, weakening of the immune system 

48 and increased incidence of various forms of cancer.6,7,10,11

49 Since most Se in the human diet is derived directly or indirectly from edible plants, Se 

50 deficiency in humans is attributed to agricultural production on soils with little phytoavailable 

51 Se.6,7,12-15 Despite the consequences of Se deficiency having been recognized for decades, strategic 

52 interventions to meet the shortfall of Se in food are still limited.16,17 Biofortification is the process 

53 of enriching edible crops with mineral nutrients based on management strategies that increase the 

54 phytoavailabilty of nutrients and/or genotypes that partition more nutrient into their edible 

55 portions.18 In the case of Se, biofortification of crops can be achieved through the application of 

56 Se fertilisers and/or adopting cultivars that partition more Se to their edible portions.12 Previous 

57 studies have indicated that the application of low concentrations of Se does not lead to a loss of 

58 crop productivity or harvest index.17,20,21 In addition, fertilisation with Se at low concentrations 

59 can mitigate oxidative stress and increase photosynthetic activity thereby resulting in greater plant 

60 growth.22 Selenium can also affect nitrogen metabolism in plants by regulating nitrate reductase 

61 activity and increasing nitrogen assimilation and protein biosynthesis.11,23 In our former study, 

62 Reis et al15 observed the interaction between nitrogen and Se in upland rice under field conditions 

63 showing that plants treated with nitrogen can accumulate more Se in seeds. In addition, Se can 
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64 affect sulphur metabolism and molybdenum concentration in plants, which is co-factor of nitrate 

65 reductase enzyme showing a direct effect on nitrogen metabolism.23,36

66 The application of Se along with NPK fertiliser is an effective way to address the low 

67 concentrations of Se typically found in human and animal food, as demonstrated by the results of 

68 decades of study in Finland.24-26 After the adoption of the Se-biofortification programme in 

69 Finland, the Se-status of the population has improved to optimal levels.26 

70 Rice is a major cereal crop consumed in large quantities across the globe.15 Therefore, it 

71 forms a suitable a target crop for biofortification programmes to improve human nutrition. This 

72 study evaluated the agronomic biofortification of upland rice with Se and its effect on grain 

73 nutritional quality. It provides important information regarding suitable Se application rates to 

74 achieve Se biofortified grains and the contribution this might have on dietary Se intakes.

75

76 2. MATERIALS AND METHODS

77

78 Experimental Conditions. The study was conducted from January 3rd to May 27th 2015 at the 

79 Research Farm of the Faculty of Engineering of Ilha Solteira (FEIS-UNESP), located in Selvíria, 

80 Mato Grosso do Sul, Brazil (20º22'S and 51º22'W, altitude of 335 m). The experimental area 

81 belongs to the Cerrado biome and has been cultivated for more than 25 years, with the last 10 years 

82 of cultivation occurring under a no-tillage system. According to the Köppen classification scheme, 

83 the climate of the region is type Aw, humid tropical, with a rainy season in the summer and dry 

84 season in the winter. The average annual rainfall is 1,232 mm, and the average temperature is 24.5 

85 °C.17 During the experiment, the average daily temperature varied between 27.2 ºC and 15.3 ºC, 

86 the average rainfall was 3.0 mm d-1, and the average relative humidity was 86%.
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87 The soil of the area was classified as Typic Dystrophic Red Latosol (LVd) and very clayey, 

88 corresponding to the Oxisol order. Soil analysis was performed according methods described by 

89 Raij et al.27 and the soil had the following chemical characteristics: phosphorus (resin), 29 mg 

90 dm-3; organic matter, 21 g dm-3; pH calcium chloride (CaCl2), 5.3; potassium, 3.5 mmolc dm-3; 

91 calcium, 38 mmolc dm-3; magnesium, 22 mmolc dm-3; H+ + Al, 29 mmolc dm-3; aluminium, 0 

92 mmolc dm-3; nickel, 0.1 mg dm-3; Se, 62 μg kg-1; cation exchange capacity, 92.5 mmolc dm-3; and 

93 base saturation, 69%.

94

95 Experimental Design and Treatments. Soil acidity correction was not performed due to the 

96 optimal base saturation for upland rice requirements. The experimental area was desiccated with 

97 glyphosate (4.0 L ha-1), carfentrazone-ethyl (200 mL ha-1) and 0.5% mineral oil 20 days before 

98 sowing. Upland rice genotypes were sown with a density of 70 kg ha-1. Rice seeds were treated 

99 with Standak commercial product (2 mL kg-1 of seeds). All plots received 250 kg ha-1 of NPK 

100 fertilisation using the formulation 08-28-16. The experiment was sown on January 5, 2015, and 

101 the seedlings emerged 7 days after sowing. When necessary, irrigation was performed by a central 

102 pivot with an average water depth of 14 mm and 72 h irrigation shift. Phytosanitary control was 

103 carried out during the plant development cycle with metsulfurom-methyl (3.3 g ha-1), 

104 chlorantraniliprole (50 mL ha-1), flubendiamide (60 mL ha-1), and imidacloprid + beta-cyfluthrin 

105 (0.8 L ha-1).

106 The study was conducted in a randomized complete block design, in a 3 × 5 factorial scheme, 

107 corresponding to three rice genotypes (ANa 5015, AN Cambará and ANa 7007) and five rates of 

108 Se (equivalent to 0, 10, 25, 50 and 100 g ha-1) applied in the form of sodium selenate. A total of 

109 four replicate plots were used per genotype and Se treatment, forming a total of 60 plots. Each plot 
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110 consisted of five rows, which were 5 m in length and with 35 cm spacing between the rows. All 

111 the Se required for each treatment across all four replicates was weighed and diluted in 2 L of 

112 water, generating a stock solution for each treatment. The stock solution was then subdivided into 

113 four portions of 500 mL each. Solutions were applied to the planting furrow at 30 days after 

114 seedlings emergence. In each plot, 100 mL of solution was applied to each line near de plants using 

115 a small malleable polyethylene bottle with a pierced cap. 

116  Selenium treatments were prepared from stock solution, which were diluted in 300 mL bottles for 

117 distribution in the sowing furrow 30 days after emergence of the seedlings. 

118

119 Leaves and seed harvest. The flag leaves from 20 plants from each plot were collected randomly 

120 15 days after treatment application. At the end of the experiment, the panicles were collected and 

121 weighed. The husk of seeds was removed and the grain was polished. After polishing, the grains 

122 were milled in a ball mill, and the flour was sent for elemental analysis as described below and 

123 analyses of storage protein concentrations.

124

125 Determination of Albumin, Globulin, Prolamin and Glutelin Fractions. The quantification of 

126 protein fractions was performed as described by Reis et al.15 Dried, ground samples (0.25 g) were 

127 weighed and placed in 15-mL Falcon tubes for the sequential extraction of the storage proteins.

128 For albumin extraction, 10 mL of deionized water was added to each tube, and the samples 

129 were shaken for 1 minute. After being shaken, the tubes were centrifuged at a temperature of 4 °C 

130 at 9.000 rpm for 20 minutes for phase separation. The supernatant was removed for albumin 

131 quantification. The precipitate was extracted with 10 mL NaCl 5% according to the procedures 

132 described above, and the supernatant was collected for globulin quantification. The precipitate was 
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133 resuspended again with 5 mL of 60% ethanol, and the supernatant was collected for prolamin 

134 quantification. Finally, the glutelin fraction was extracted with 10 mL NaOH 0.4% and quantified.

135 The concentrations of albumin, globulin, prolamin and glutelin were determined according 

136 to the method of Bradford29 with bovine serum albumin (BSA) used as the standard. For protein 

137 quantification, a 100 μL aliquot of supernatant and 5 mL of Bradford reagent were pipetted into 

138 test tubes. The absorbance reading was performed in a spectrophotometer at 595 nm, and the 

139 results were expressed in mg protein g-1 DM (dry mass).

140

141 Seed harvest. At the end of the experiment, the panicles were collected and weighed. The husk of 

142 seeds was removed and the grain was polished. After polishing, the grains were milled in a ball 

143 mill, and the flour was sent for elemental analysis as described below and analyses of storage 

144 protein concentrations.

145

146 Elemental Analysis. The leaves and seeds were dried and used for quantification of macro- and 

147 micronutrient concentrations. Polished grains collected at the end of the crop cycle were also 

148 analysed. Following sulphuric acid digestion of the grains, nitrogen concentrations were 

149 determined using the semi-micro-Kjeldahl method. For the quantification of other mineral 

150 elements, the material was subjected to nitric acid-hydrogen peroxide digestion according to 

151 Chilimba et al.13 The samples were digested in a microwave oven for 45 minutes under controlled 

152 pressure (20 bar) in 3 mL of 70% nitric acid (Merck), 2 mL of hydrogen peroxide (Merck) and 3 

153 mL of milli-Q water. Selenium and nutrient analysis was performed using Inductively Coupled 

154 Plasma Mass Spectroscopy (ICP-MS). 

155
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156 Statistical Analysis 

157 The normality and homoscedasticity of the data were assessed by the Anderson-Darling 

158 and Levene's tests. The data were subjected to analysis of variance by the F test (p ≤ 0.05) for 

159 treatments (Se rates and rice genotypes). The results were subjected to the Tukey test at the level 

160 of p ≤ 0.05. Correlations between the dependent variables (Se, sulphur, nitrogen, molybdenum, 

161 albumin, globulin, prolamin, and glutelin) were obtained using the Pearson correlation coefficient 

162 (CORR) procedure and illustrated as a heatmap graph. Analyses were conducted using R and 

163 Minitab softwares, and graphs were prepared using SigmaPlot 12.5.

164

165 RESULTS AND DISCUSSION

166

167 Concentration of sulphur (S), molybdenum (Mo), selenium (Se) and nitrogen (N). The 

168 concentrations of S, Mo and Se in leaves and polished grains of upland rice were influenced by 

169 the Se application rates and the genotype of rice evaluated, whereas N concentrations were 

170 influenced only by genotype (Figures 1 and 2). The cultivars ANa 5015 and AN Cambará did not 

171 show altered concentrations of S in leaves with increasing rates of Se application (Figure 1A). On 

172 the other hand, S concentration in leaves of the cultivar ANa 7007 decreased with increasing rates 

173 of Se application (Figure 1A). Beyond 50 g ha-1 applied Se, the concentration of S in the cultivar 

174 ANa 7007 was smaller than that in the other cultivars. In the polished grains, the concentration of 

175 S was different from that found in the leaves. In general, no difference was observed between 

176 cultivars for S concentration in polished grains, except at 25 g ha-1 applied Se in cultivar ANa 

177 7007, which had a lower grain S concentration. When 100 g Se ha-1 was applied, the cultivar AN 

178 Cambará showed higher S concentrations than the other cultivars (Figure 2A).
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179 Leaf N concentration was lower in ANa 5015 and greater in ANa 7007 than AN Cambará 

180 (Figure 1B). On the other hand, polished N concentrations for cultivars ANa 5015 and ANa 7007 

181 were statistically similar and greater than that of AN Cambará. 

182 Leaf Mo concentration increased in response to Se application in cultivars ANa 5015 and 

183 ANa 7007 at the rates of 25 and 10 g Se ha-1, respectively (Figure 1C). When 100 g Se ha-1 was 

184 applied, ANa 7007 showed a greater concentration of leaf Mo. The concentration of Mo in the 

185 polished grains of AN Cambará decreased with increasing rates of Se applied (Figure 2C). In 

186 general, the application of Se did not affect the concentrations of Mo in grains of ANa 5015 and 

187 ANa 7007, although the application of 25 g Se ha-1 to Ana 2015 did reduce the concentration of 

188 Mo in polished grains. Regardless of the Se application rate, ANa 7007 showed greater Mo 

189 concentration in the polished grains than other cultivars.

190 Selenium concentration in leaves (Figure 1D) and in polished grains (Figure 2D) increased 

191 in response to Se application rates. AN Cambará had greater concentrations of Se in the leaves 

192 relative to the other genotypes. Leaf Se concentration range was from 0.347 to 2.87 mg kg-1 in AN 

193 Cambara, 0.015 to 2.97 mg kg-1 in ANA 5015, and 0.014 to 2.49 mg kg-1 in ANA 7007 (Figure 1 

194 D). Grain Se concentration ranged from 0.239 to 1.297 mg kg-1 in AN Cambara, 0.143 to 2.16 mg 

195 kg-1 in ANA 5015, and 0.099 to 2.062 mg kg-1 in ANA 7007. The linear increase in grain Se 

196 concentration indicates high Se translocation from source (leaves) to sink (grains).  When 100 g 

197 ha-1 of Se was applied, leaf Se concentration of ANa 5015 was statistically equal to the leaf Se 

198 concentration in AN Cambará,  whereas grains of ANa 5015 had a greater Se concentration than 

199 other genotypes. Under the same Se application rate, ANa 7007 had a polished grain Se 

200 concentration similar to that of ANa 5015.
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201 While no evidence exists for the essentiality of Se in higher plants, a number of beneficial 

202 effects of Se on plant physiology have been recognized in several plant species.1,4,15 Selenium can 

203 be acquired by plant roots as selenate, selenite and from organic forms such as selenocysteine 

204 (SeCys) and selenomethionine (SeMet).2,12 When in the form of selenate, Se is taken up by root 

205 cells using sulphate transporters.2 A reduction in leaf S concentration and an increase in the 

206 concentration of Se were observed in the cultivar ANa 7007 (Figure 1). In addition, AN Cambará 

207 showed lower concentrations of S in the grains at the highest applied rate of Se (Figure 2), which 

208 suggests an antagonism between S and Se. This is also consistent with the reduction in the 

209 concentration of S with Se fertilisation reported in other plant species.1,2,4

210 In general, the cultivar AN Cambará showed the greatest response to the application of Se 

211 in terms of leaf Se concentration but showed a lesser response in grains (Figure 2D). This 

212 observation probably reflects differences between cultivars in the activity of sulphate transporters 

213 providing different functions (uptake, translocation, intracellular compartmentation) in plants31-33 

214 between cultivars. Selenium concentration increased in all tested rice cultivars in response to Se 

215 application rates. Agronomic biofortification with Se via soil appears a good strategy to increase 

216 the Se concentration in leaves and grains of upland rice. In general, the effect of genotypic variation 

217 on Se concentration in rice grains is clear. This observation suggests a need for more studies with 

218 a greater number of rice cultivars and Se sources.

219

220 Dietary Se intake. Brazilian eating habits vary widely due to social, economic and geographical 

221 differences, but foods such cow milk and eggs are commonly consumed throughout the country. 

222 The mean Se concentrations in Brazilian cow milk and eggs are 0.08 and 0.21 µg g-1, 

223 respectively.43,44 The daily intake of cow milk and eggs in the southeastern region of Brazil are 37 
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224 and 9 g, respectively.43,44 Multiplying Se concentration by the daily consumption of each of these 

225 foods, the total Se daily intake from them is about 5 µg Se  day-1 per capita. Subtracting this value 

226 from the recommended dietary allowance of 55 µg Se d-1, it is possible to establish a guide for the 

227 daily Se intake provided by rice grains of 50 µg d-1, which is represented by the red line in Figure 

228 3. When the average intake of rice by the Brazilian population (68.5 g d-1) is considered, the 

229 application of 25 g Se ha-1 to cultivar ANa 7007 would be sufficient to reach and exceed the 

230 recommended daily intake (Figure 3). 

231 According to the Codex Alimentarius, food biofortified with Se should not exceed 0.3 mg 

232 kg-1 Se.13 The application of 10 g Se ha-1 yielded a concentration of 0.373 mg Se kg-1 in polished 

233 grains, which is based on the average concentration of Se in the grains of the three cultivars. 

234 However, since the Brazilian population only consumes, on average, 25 kg of rice year-1 or 68.5 g 

235 day-1,4 the daily Se intake of rice biofortified at a rate of 10 g ha-1, would not exceed the 

236 recommended daily Se intake of 55 μg day-1 42 even though the Se concentration in grain exceeds 

237 the maximum concentration permitted by Codex Alimentarius. 

238 The consumption of 68.5 g d-1 of rice biofortified at the rate of 25 g ha-1 could provide an 

239 average daily Se intake of 34.52 μg day-1 for ANa 7007, 44.57 μg day-1 for AN Cambará and 66.80 

240 μg day-1 for ANa 5005. When 50 g Se ha-1 Se was applied, calculated daily Se intakes increase to 

241 78.44 g day-1 for ANa 7007, 63.91 g day-1 for AN Cambará and 77.04 μg day-1 for ANa 5005, 

242 which is greater than the recommended daily Se intake. This study is one of the first field studies 

243 informing agronomic strategies for the biofortification of upland rice with Se in the Brazilian 

244 Cerrados. However, since genotypic variation is large, further studies must be carried out using a 

245 greater number of upland rice genotypes to establish the best rate of Se application to be used for 

246 different cultivars.
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247 Considering the recommended daily intake of Se, the ideal rate for agronomic 

248 biofortification of upland rice appears to be 25 g Se ha-1. The application of this dosage in the 

249 cultivar AN Cambará gives an average concentration of 0.92 mg Se kg-1 in leaves and 0.65 mg Se 

250 kg-1 in the grain. When the Brazilian diet is considered, the average daily intake of Se would be 

251 44.47 g day-1 from AN Cambará (Table 1).

252

253 Storage Proteins in Grains. Total protein concentration and storage protein fractions differed in 

254 their responses to the rate of Se application and among the cultivars studied (Figure 4). ANa 7007 

255 had the greatest albumin concentration in the control treatment, whereas ANa 5015 had the lowest 

256 (Figure 4A). Selenium application rates beyond 25 g ha-1 increased the albumin concentration in 

257 ANa 5015. In AN Cambará, an increase was observed in the albumin concentration with the 

258 application of 10 g Se ha-1, followed by a reduction with increasing Se application rates. The 

259 cultivar ANa 7007 showed a general increase in albumin concentrations with the application of 

260 Se, up to a rate of 100 g ha-1, at which its concentration was lower than under the control treatment.

261 The cultivar ANa 5015 had a lower grain albumin concentration than the other cultivars 

262 (Figure 4A). The cultivars ANa 5015 and AN Cambará showed an increase in globulin 

263 concentration at the rate of 25 g Se ha-1. For AN Cambará, globulin concentration was higher with 

264 the application of 100 g Se ha-1. As with the albumin fraction, ANa 7007 had a greater 

265 concentration of glutelin, and ANa 5015 had the lowest concentration of glutelin in grains (Figure 

266 4C). A significant increase occurred in glutelin concentrations (main protein fraction in rice grains) 

267 when Se was applied to the cultivar ANa 5015. For this variety, the application of 25 g Se ha-1 led 

268 to the highest concentration of glutelin, with an increase from 206 mg g-1 DM (control) to 270 mg 

269 g-1 DM (25 g Se ha-1). For AN Cambará, a significant increase in glutelin occurred only for at 50 
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270 g Se ha-1 applied Se, ranging from 235.79 mg g-1 DM (control treatment) to 265.34 mg g-1 DM (50 

271 g Se ha-1).

272 In the control treatment, AN Cambará had a greater prolamin glutelin concentration than 

273 the other genotypes (Figure 4D). The application of Se increased the concentrations of prolamin 

274 in cultivars ANa 5015 and ANa 7007. Up to a rate of 25 g Se ha-1, all three varieties had statistically 

275 equal concentrations of prolamin. AN Cambará and ANa 7007 had a greater grain prolamin 

276 concentration with the application of 50 g Se ha-1.

277 Total protein concentration in the control treatment had a response similar to that presented 

278 by the albumin and glutelin fractions, with the cultivar ANa 7007 showing greater protein 

279 concentration and the cultivar ANa 5015 showing the smallest concentration (Figure 4E).

280 Considering the recommended daily intake of Se, the ideal rate for agronomic 

281 biofortification of upland rice appears to be 25 g Se ha-1. The application of this dosage in the 

282 cultivar AN Cambará gives an average concentration of 0.92 mg Se kg-1 in leaves and 0.65 mg Se 

283 kg-1 in the grain. When the Brazilian diet is considered, the average daily intake of Se would be 

284 44.47 g day-1 from AN Cambará (Table 1).

285 In the cultivar ANa 5015, the application of 25 g Se ha-1 yields an average concentration 

286 of 0.65 mg Se kg-1 in the leaves and 0.97 mg Se kg-1 in grains. With the application of 25 g Se ha-1, 

287 the grains contain approximately 10.69% albumin, 13.78% globulin, 3.74% prolamin and 71.81% 

288 glutelin (Table 1). When considering the Brazilian diet, the average daily intake would be 66.80 

289 μg Se d-1 from ANa 5015, which is above the recommended daily Se intake for the population.

290 For the cultivar ANa 7007, the application of 25 g Se ha-1 yields the lowest Se concentration 

291 in leaves among the varieties, with 0.44 mg Se kg-1 in leaves and 0.65 mg Se kg-1 in grains. The 

292 grains contain approximately 15.28% albumin, which is the highest albumin concentration among 
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293 the varieties (Table 1). In addition, the grains contain 11.81% globulin, 4.63% prolamin and 

294 68.26% glutelin. The mean daily intake of Se from the consumption of ANa 7007 would be 44.52 

295 μg day-1 of Se.

296 The positive relationship between Se concentration in rice leaves and grains and glutelin 

297 and prolamin concentrations in grains is shown in Figure 5. Similar results were observed by Fang 

298 et al.38 and Tao et al.39 who reported that an increase in Se concentrations in rice plants increased 

299 the glutelin concentration in grains. In the endosperm, glutelin is the main protein fraction, 

300 corresponding to approximately 80% of the protein, with lower concentrations of albumin and 

301 globulin (15%) and prolamin (5-8%). To obtain polished white rice, buffing is used to remove the 

302 bran (pericarp, tegument, aleurone layer and germ), which represents 8.5-14.8% of brown rice.40-

303 41 Thus, polishing is not recommended for rice and the whole grain should be consumed to avoid 

304 losses of proteins and Se. The effect of Se on nitrogen metabolism and an increase in the 

305 concentration of albumin, glutelin and prolamin in rice grains is consistent with previous 

306 observations by Reis et al.15.

307

308 CONCLUSIONS

309 Selenium concentrations in leaves and grains, and the concentrations of storage proteins in 

310 rice grains increased in response to the application of Se as selenate via soil. The application of 10 

311 g Se ha-1 provided increases in the grain Se concentration above 0.3 mg kg-1, the upper limit 

312 allowed by the Codex Alimentarius. However, if adults consumed 68.5 g d-1 rice the application 

313 of 10 g Se ha-1 would supply less Se through rice than their recommended dietary Se intake (55 μg 

314 day-1). The application of 25 g Se ha-1 to rice could increase the average daily intake of Se from 
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315 4.64 to 66 μg day-1. Thus, agronomic biofortification of rice with Se could prove a suitable strategy 

316 to increase human dietary Se intakes to reduce widespread Se malnutrition.

317
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For Peer ReviewFigure 1. Foliar concentrations of sulphur (A), nitrogen (B), molybdenum (C) and 

selenium (D) in response to Se application in three rice cultivars (ANa 5015, AN Cambará 

and ANa 7007). Means followed by the same lowercase letters are not significantly 

different among the compared cultivars. Means followed by the same uppercase letters 

compare the cultivars as a function of the Se doses according to the t-test (p ≤ 0.05). The 

error bars represent the standard error of the mean (n = 4).
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Figure 2. Concentration of sulphur (A), nitrogen (B), molybdenum (C) and selenium (D) 

in the grain in response to Se application in three rice cultivars (ANa 5015, AN Cambará 

and ANa 7007). Means followed by the same lowercase letters are not significantly 

different among the compared cultivars. Means followed by the same uppercase letters 

compare the cultivars as a function of the Se doses according to the t-test (p ≤ 0.05). The 

error bars represent the standard error of the mean (n = 4).
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Figure 3. Estimated daily Se intake by humans from rice cultivars (ANa 5015, AN 

Cambará and ANa 7007) biofortified through Se application via the soil, calculated 

based on their grain Se concentrations and a consumption of 68.5 µg rice d-1. The error 

bars represent the standard error of the mean (n = 4). The red line indicates the maximal 

Se intake by biofortified rice grains taking account the Se delivered from other food 

sources based on Brazilian eating habits.
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Figure 4. Concentration of albumin (A), globulin (B), prolamin (C), glutelin (D) and total 

protein (E) in response to Se application in three rice cultivars (Ana 7007, AN Cambará and 

ANa 5015). Means followed by the same lowercase letters are not significantly different 

among the compared cultivars. Means followed by the same uppercase letters compare the 

cultivars as a function of the Se doses according to the t-test (p ≤ 0.05). The error bars 

represent the standard error of the mean (n = 4).
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Figure 5. Heatmap of the Pearson correlation coefficients obtained from variables analysed in 

rice genotypes (ANa 5015, AN Cambará and ANa 7007) in response to Se application. * 

indicates significant correlation (p < 0.05). Abbreviations: Alb - albumin, Glo - globulin, Prot 

- total protein, N-L - N in leaves, Pro - prolamin, Glu - glutelin, Se-DI - Daily intake of Se, 

Se-S - Se in seeds, Se-L - Se in leaves, N-S - N in seeds.

Correlation coefficients
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