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ABSTRACT
Background  Alzheimer’s disease (AD)-related 
neuropathological changes can occur decades before 
clinical symptoms. We aimed to investigate whether 
neurodevelopment and/or neurodegeneration affects the 
risk of AD, through reducing structural brain reserve and/or 
increasing brain atrophy, respectively.
Methods  We used bidirectional two-sample Mendelian 
randomisation to estimate the effects between genetic 
liability to AD and global and regional cortical thickness, 
estimated total intracranial volume, volume of subcortical 
structures and total white matter in 37 680 participants 
aged 8–81 years across 5 independent cohorts (Adolescent 
Brain Cognitive Development, Generation R, IMAGEN, Avon 
Longitudinal Study of Parents and Children and UK Biobank). 
We also examined the effects of global and regional cortical 
thickness and subcortical volumes from the Enhancing 
NeuroImaging Genetics through Meta‐Analysis (ENIGMA) 
Consortium on AD risk in up to 37 741 participants.
Results  Our findings show that AD risk alleles have an age-
dependent effect on a range of cortical and subcortical brain 
measures that starts in mid-life, in non-clinical populations. 
Evidence for such effects across childhood and young 
adulthood is weak. Some of the identified structures are 
not typically implicated in AD, such as those in the striatum 
(eg, thalamus), with consistent effects from childhood to 
late adulthood. There was little evidence to suggest brain 
morphology alters AD risk.
Conclusions  Genetic liability to AD is likely to affect risk 
of AD primarily through mechanisms affecting indicators of 
brain morphology in later life, rather than structural brain 
reserve. Future studies with repeated measures are required 
for a better understanding and certainty of the mechanisms 
at play.

INTRODUCTION
The earliest Alzheimer’s disease (AD)-related histo-
pathological changes are typically observed within 

the medial temporal lobes and disperse throughout 
the frontal, parietal and temporal neocortices and 
subcortical regions by the time a clinical diagnosis 
of AD is made.1 Amyloid-β accumulation in the 
brain may be apparent 20 years before the appear-
ance of clinical symptoms.2 Hence, the integration 
of biological data prior to the onset of clinical 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Little is known about the dynamic interplay 
between brain morphology and Alzheimer’s 
disease throughout the life course.

	⇒ Most prior research has predominantly focused 
on overall brain structure metrics, such as 
estimated total intracranial volume, mean 
thickness and total surface area.

WHAT THIS STUDY ADDS
	⇒ This is the first bidirectional Mendelian 
randomisation study to assess the effects 
between Alzheimer’s disease, and both 
global and regional measurements of cortical 
thickness, estimated total intracranial volume, 
total white matter and subcortical structure 
volumes, using different cohorts spanning the 
life course.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ Brain morphology is likely to play a role in 
changing the risk of Alzheimer’s disease 
through neurodegenerative pathways 
such as a loss of brain matter, rather than 
neurodevelopmental pathways such as building 
brain reserve.

	⇒ Future research should focus efforts on using 
different measures of structural and functional 
brain morphology, starting in mid-adulthood.
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symptoms is crucial in understanding the aetiology, timing and 
progression of the disease, and for the development of more effi-
cient strategies for early detection and screening of individuals 
for AD risk.

It has been argued that variability in AD risk may be mediated 
through both morphology (‘brain reserve’) and/or functional 
capacity to compensate for pathology (‘cognitive reserve’),3 
which may operate independently or synergistically. Conse-
quently, it has been hypothesised that genetic risk for AD may 
be mediated through determining the underlying brain reserve 
of an individual.4–6 Furthermore, the relationship between brain 
structures and AD may be bidirectional, as genes associated with 
brain morphology (such as thickness and surface area) have been 
shown to be involved in neurogenesis.7

Genetic instruments allow for the identification of factors that 
modify disease risk, establish effects of prodromal disease and 
can help us discover biomarkers that predict disease. Genome-
wide association studies (GWAS)8–11 for AD have identified 
approximately 30 single nucleotide polymorphisms (SNPs), each 
with a modest effect on the risk of AD, apart from the ε4 geno-
type in the APOE gene, whereby carriers may have up to 12-fold 
increased risk.11 Previous studies examining the association of 
genetic liability to AD with brain morphology have typically 
used polygenic risk scores (PRS) at liberal thresholds, which 
can increase bias due to horizontal pleiotropy.6 12 13 They also 
have small sample sizes, as genetic and neuroimaging data are 
rarely available in combination. Furthermore, SNPs associated 
with brain structure have been discovered using larger sample 
sizes7 14 than previous neuroimaging studies,15 16 allowing for 
the bidirectional investigation of the causal effects of structural 
brain measures on risk of AD, using Mendelian randomisation 
(MR). MR is a form of instrumental variable analysis which uses 
SNPs as instruments for exposures to estimate lifetime effects of 
phenotypes on disease risk (and vice versa).17

We investigated how genetic liability to AD affects brain 
morphology across the life course (from ages 8 to 81 years) using 
two-sample MR. This approach examines whether AD genetic 
susceptibility affects brain development or degeneration. Using 
two-sample MR, we also investigated whether brain morphology 
has a causal effect on the risk of AD, to establish whether greater 
thickness/volume provides a protective effect against advancing 
neuropathology and thus, reduces risk of an AD diagnosis (‘brain 
reserve’ hypothesis).

MATERIALS AND METHODS
Data
Alzheimer’s disease GWAS
We extracted SNPs from the largest GWAS of clinically diag-
nosed AD,9 which identified 27 SNPs to be associated with AD 

risk in participants of European ancestry. For each SNP, we used 
the effect estimates from the stage with the largest sample size 
(n=82 771 to 94 437 participants).

Brain structure GWAS
We used GWAS of brain structures (average thickness of 34 
gyral-based cortical regions of interest, mean thickness, esti-
mated total intracranial volume (eTIV), 9 subcortical volumes 
and the total volume of white matter) conducted within different 
cohorts across the life course. Regional thickness has been used 
to differentiate between mild cognitive impairment and individ-
uals with AD with excellent accuracy, specificity and reproduc-
ibility across independent cohorts.18 We conducted all GWAS 
described, except for the GWAS in the ENIGMA consortium 
which has been previously published.7 14 19 20 GWAS for regional 
cortical thickness and subcortical volumes were adjusted for 
global cortical thickness and eTIV, respectively. For the peri-
pubertal period, we used Generation R,21 22 the Adolescent Brain 
Cognitive Development study (ABCD)23 24 and IMAGEN.25 For 
early adulthood, we meta-analysed the Avon Longitudinal Study 
of Parents and Children (ALSPAC)26–28 and the second wave 
of data collection for the IMAGEN study.25 For adulthood, we 
used the UK Biobank (UKB)29 and stratified the sample into 
three equal-sized age tertiles, to examine age-specific effects 
(figures  1 and 2 and table  1). Finally, we used summary data 
from ENIGMA7 14 (n=37 741 participants, age range 3.4–91.4 
years), which includes the first release of UKB imaging data. All 
GWAS in the analyses were conducted in participants of Euro-
pean ancestry. Details of the cohorts, including the genotyping 
and neuroimaging procedures, are provided in online supple-
mental tables 1 and 2, respectively.

Statistical analyses
Estimating the causal effect of genetic liability to Alzheimer’s 
disease on brain structures
Two-sample Mendelian randomisation
Two-sample MR is an extension of MR,30 where the SNP effects 
on the exposure and on the outcome are extracted from sepa-
rate GWAS studies. To examine the effects of genetic liability to 
AD on structural brain measures, we extracted SNPs strongly 
associated with AD (p≤5×10–8).9 Where SNPs were not avail-
able, we used proxy SNPs (r2>0.80). SNPs were clumped 
using r2>0.001 and a physical distance of 10 000 kb. We also 
included rs7412 and rs423958 to tag the APOE ε4 allele. We 
used 23–25 SNPs as instruments for AD, the number varying 
by availability within each cohort (table  1). We harmonised 
the AD and brain structure GWAS in IMAGEN, Generation R, 
ABCD, ALSPAC and the UKB (online supplemental methods). 

Figure 1  Study cohorts in the age-stratified analysis of genetic liability to Alzheimer’s disease on brain morphology. ABCD, Adolescent Brain Cognitive 
Development; ALSPAC Avon Longitudinal Study of Parents and Children; y, years.
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We then employed univariable MR to estimate the effect of the 
AD SNPs on 9 subcortical volumes and the 34 cortical regions 
defined by the Desikan-Killiany atlas31 (as well as total volume 
of white matter where available) within each cohort. We used 
a random-effects inverse-variance weighted (IVW) regression 
analysis, which assumes no directional horizontal pleiotropy17 
and used the F-statistic as a measure of instrument strength.32 All 
effect estimates reflect SD changes in the outcome per doubling 
of genetic liability to AD.33 Using the metagen function,34 we 
applied random-effects models to meta-analyse the effects of the 
AD SNPs on structural brain measures for the three peri-pubertal 
cohorts: IMAGEN, ABCD and Generation R (figures 1 and 2). 
To examine how the age-level covariate was associated with the 
causal effect estimates across the three age-stratified tertiles of 
UKB, we extracted a p for trend across these groups, using the 
meta regress command in STATA V.1635 and using the mean age 
of each tertile as the exposure. Sample sizes differed by brain 
structure due to quality control and missing data.

Estimating the causal effect of brain structures on risk of Alzheimer’s 
disease
Two-sample Mendelian randomisation
Using the ENIGMA GWAS,7 14 19 20 we extracted SNPs asso-
ciated with eight subcortical volumes and the thickness of the 
regions of interest as defined by the Desikan-Killiany atlas.31 
The same parameters and harmonisation methods were used as 
in the previous analysis. Again, we employed univariable MR 
to examine the causal effects of each brain structure on risk of 
AD using a random-effects IVW regression. All effect estimates 
represent an OR for AD per SD increase in thickness or volume. 
There is overlap between ENIGMA and some of the individual-
level cohorts. However, it has been shown that sample overlap 
results in little bias in the presence of strong instruments (ie, 
F>10).36

Sensitivity analyses
We conducted sensitivity analyses to examine for potential 
violation of key MR assumptions. For MR to generate unbiased 
causal effect estimates, each genetic variant that is used as an 
instrumental variable must satisfy three assumptions: (1) that it 
is associated with the exposure (relevance assumption), (2) that 
it is not associated with the outcome through a confounding 

Figure 2  Study design for examining the bidirectional effects between Alzheimer’s disease and brain morphology. (A) Mendelian randomisation of 
Alzheimer’s disease genetic liability on structural brain morphology. (B) Mendelian randomisation of structural brain morphology on risk of Alzheimer’s 
disease. eTIV, estimated total intracranial volume.

Table 1  Descriptive statistics of the cohorts used in the analysis

Cohort N Number of Alzheimer’s disease SNPs F-statistic for Alzheimer’s disease SNPs Mean age (SD) Age range % female

Childhood

 � ABCD 5022 25 223.28 9.91 (0.6) 8.9–11 52.6

 � Generation R 1134 23 239.34 10.2 (0.6) 8.9–12 49.2

 � IMAGEN 1151–1154 23 224.67 14.4 (0.4) 13.3–15.7 50.6

Early adulthood

 � ALSPAC 358–632 25 231.7 20.5 (1.6) 18–24.5 22.4

 � IMAGEN 1577–1608 23 224.7 26.2 (0.7) 17.7–26.2 51.3

Adulthood

 � UK Biobank tertile 1 9377 24 231.5 55 (3.4) 45–60 57.0

 � UK Biobank tertile 2 9377 24 231.5 64.3 (2.2) 60–68 53.7

 � UK Biobank tertile 3 9376 24 231.5 72.0 (2.9) 68–81 46.0

ABCD, Adolescent Brain Cognitive Development; ALSPAC, Avon Longitudinal Study of Parents and Children; SNP, single nucleotide polymorphism.
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pathway (exchangeability assumption) and (3) is only associated 
with the outcome through the exposure (exclusion restriction 
assumption). IVW regression assumes no horizontal pleiotropy 
and provides unbiased causal effect estimates only when there 
is balanced or no horizontal pleiotropy. We compared estimates 
from IVW with those from Egger regression,37 38 weighted 
median39 and weighted mode,40 which relax this assump-
tion. Heterogeneity in the causal estimates was assessed using 
Cochran’s Q-statistic.37 Furthermore, to exclude the possi-
bility that the SNPs used to proxy for AD are instruments for 
brain structures and vice versa, we performed a directionality 
(Steiger) test.41 Where the hypothesised direction was false, we 
performed sensitivity analyses removing SNPs explaining more 
variance in the outcome than the exposure (details in online 
supplemental methods). Lastly, we excluded the two SNPs in the 
APOE locus from the AD instrument, to investigate whether the 
effects observed are primarily driven by the variants in the APOE 
gene. This study involves evaluating global patterns of effect esti-
mates; hence, we focus on effect size and precision.42 43 Adjusted 
p values, controlling for the false discovery rate are in provided 
online supplemental tables 4, 8, 9 and 11.

RESULTS
We used bidirectional two-sample MR30 to first examine the 
effect of genetic liability to AD (p≤5×10−8) on global and 
regional cortical thickness, eTIV, volumes of subcortical struc-
tures. We also included total white matter as an outcome where 
available. To boost the statistical power of the smaller childhood 
cohorts, we meta-analysed the causal effect estimates across 
ABCD,23 24 Generation R44 45 and IMAGEN25 (aged 8–16 years). 
For early adulthood, we used participants selected for neuroim-
aging in ALSPAC substudies46 (aged 18–24.5 years). For mid-to-
late adulthood, we stratified the UKB population into three age 
tertiles: 45–60 years, 60–68 years and 68–81 years. In total, we 
used 23–25 independent AD SNPs from the largest GWAS of 
clinically diagnosed AD,9 depending how many were available 
in each cohort used (table 1). Second, we examined the causal 
effects of brain morphology on AD risk, using genetic instru-
ments for each brain structure from the ENIGMA consortium 
GWAS. A summary of our study design is presented in figures 1 
and 2.

Of the 34 cortical regions and 10 subcortical structures exam-
ined, there was evidence to suggest that genetic liability to AD 
has an age-dependent effect on the thickness and volume of 
these measures, respectively, across mid-to-late adulthood, but 
the evidence for such effects in childhood through young adult-
hood is weak. When we examined the causal effects of the thick-
ness of 27 cortical regions (ie, those regions with genetic variants 
at 5×10–8), we found little evidence of an effect of greater thick-
ness on risk of AD. We only found evidence that hippocampal 
volume and thickness of lateral orbitofrontal and rostral anterior 
cingulate cortices affected AD risk. An overview of the findings 
is shown in table 2.

Causal effects of genetic liability to Alzheimer’s disease on 
brain structures
Childhood
Only weak evidence supported the association between genetic 
liability to AD and cortical thickness or subcortical volumes in 
school-aged children. A doubling in odds of genetic liability to 
AD was associated with a −0.02 SD (95% CI −0.04 to –0.01) 
smaller volume of the thalamus (Braak stage IV) (figure  3A) 
and −0.03 SD (95% CI −0.05 to –0.01) lower thickness of the 

caudal anterior cingulate (Braak stage IV) (figure  3A, online 
supplemental tables 1–4).

Early adulthood
There was little evidence to suggest that a higher genetic liability 
to AD is associated with cortical regions and subcortical struc-
tures. However, a doubling in odds of genetic liability to AD was 
weakly associated with a −0.03 lower thalamic volume (Braak 
stage IV) (figure  3A, online supplemental table 8) (SD−0.03; 
95% CI −0.06 to –0.004).

Mid-life to late life
We identified evidence of an age-dependent effect of AD genetic 
liability on smaller volume of the hippocampus (Braak stage II), 
accumbens (Braak stage II), amygdala (Braak stage II) and thal-
amus (Braak stage IV) (p for trend across age tertiles for each 
respective structure: 1.32×10–5, 0.001, 0.02 and 0.03; online 
supplemental tables 9 and 10). Furthermore, we found evidence 
of age-dependent effect of AD genetic liability on lower thick-
ness of the inferior temporal and middle temporal cortices (p for 
trend across age tertiles=0.001 and p=0.009, respectively; Braak 
stage IV, figure 3A). A doubling in odds of genetic liability to AD, 
for example, was associated with 0.02 SD (95% CI −0.04 to 
–0.01) lower thickness in the middle temporal cortex for partic-
ipants of aged 68–81 years and a trend in the same direction 
was observed for participants aged 60–68 years. On the contrary, 

Table 2  Summary of main findings

Exposure Outcome Timepoint Direction

Genetic 
liability to 
Alzheimer’s 
disease

Caudal anterior cingulate Childhood ↓
Thalamus ↓
Thalamus Early adulthood ↓
Cuneus Adulthood (45–60 

years)
↑

Inferior temporal ↑
Accumbens Adulthood (60–68 

years)
↓

Caudal middle frontal ↓
Caudate ↓
Putamen ↓
Thalamus ↓
Accumbens* Adulthood (68–81 

years)
↓

Amygdala* ↓
Caudate ↓
Entorhinal* ↓
Fusiform ↓
Hippocampus* ↓
Inferior temporal ↓
Lateral occipital ↑
Lateral ventricles ↑
Middle temporal* ↓
Parahippocampal ↓
Pericalcarine ↑
Postcentral ↑
Precentral ↑
Superior parietal ↑
Thalamus* ↓
Transverse temporal ↑

Hippocampus Alzheimer’s disease Across the life course 
(summary data)

↑

Only analyses where 95% CIs show some evidence of association are displayed.
*Indicates p<0.05 following correction for multiple testing.
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Figure 3  (A) The causal effects of genetic liability to AD on brain structures in Braak stages I–IV at different ages across the life course (see figure 3B for 
structures in Braak stage V and figure 3C for Braak stage VI). The childhood cohorts include meta-analysed effects of three peri-pubertal cohorts: ABCD, 
GEN R and IMAGEN. The early adulthood cohort includes ALSPAC and the later adulthood cohorts include UKB. Effect estimates for cortical regions and 
subcortical structures represent SD changes in thickness and volume. Cortical regions were adjusted for mean thickness and subcortical volumes were 
adjusted for estimated intracranial volume. Where an effect estimate is missing, that structural measure was not available in that cohort. (B) The causal 
effects of genetic liability to AD on brain structures in Braak stages V at different ages across the life course (see figure 3C for structures in Braak stage VI). 
The childhood cohorts include meta-analysed effects of three peri-pubertal cohorts: ABCD, GEN R and IMAGEN. The early adulthood cohort includes ALSPAC 
and the later adulthood cohorts include UKB. Effect estimates for cortical regions and subcortical structures represent SD changes in thickness and volume. 
Cortical regions were adjusted for mean thickness and subcortical volumes were adjusted for estimated intracranial volume. Where an effect estimate is 
missing, that structural measure was not available in that cohort. (C) The causal effects of genetic liability to AD on brain structures in Braak stage VI, and 
those not included in Braak staging, at different ages across the life course. The childhood cohorts include meta-analysed effects of three peri-pubertal 
cohorts: ABCD, GEN R and IMAGEN. The early adulthood cohort includes ALSPAC and the later adulthood cohorts include UKB. Effect estimates for cortical 
regions and subcortical structures represent SD changes in thickness and volume. Cortical regions were adjusted for mean thickness, subcortical structures 
and volume of cerebral white matter were adjusted for estimated intracranial volume. Where an effect estimate is missing, that structural measure was not 
available in that cohort. ABCD, Adolescent Brain Cognitive Development; AD, Alzheimer’s disease; ALSPAC, Avon Longitudinal Study of Parents and Children; 
GEN R, Generation R; UKB, UK Biobank.
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for the superior and transverse temporal cortices (Braak stage 
V, figure 3B), we identified AD genetic liability to be associated 
with greater thickness (p for trend across age tertiles=0.03 and 
p=0.003, respectively).

We also identified effects which did not show clear age-
dependent associations. Within the youngest UKB participants 
aged 45–60 years, a higher genetic liability to AD was associ-
ated with a greater thickness in the cuneus. In participants aged 
60–68 years, a higher genetic liability to AD was associated with 
a lower volume in the caudate (Braak stage V, figure 3B), and 
putamen (Braak stage V, figure 3B). In participants aged 68–81 
years, a doubling in odds of genetic liability to AD was associ-
ated with 0.05 SD (95% CI 0.07 to 0.02) lower thickness in the 
entorhinal cortex (Braak stage I), fusiform and parahippocampal 
cortices (Braak stage III, figure  3A). Additionally, AD genetic 
liability was associated with a thicker pericalcarine, postcentral, 
precentral cortex and a larger volume in the lateral ventricles 
(Braak stage VI, figure 3C).

Causal effects of brain morphology on risk of Alzheimer’s disease
We found little evidence of causal effects for the global measures 
of thickness and eTIV on AD risk (online supplemental table 
11). However, of the eight subcortical structures examined, 
we observed that a 1 SD increase hippocampal volume, instru-
mented by six SNPs, increased AD risk on average by 33% (95% 
CI 1.11 to 1.59). A 1 SD increase in the thickness of the lateral 
orbitofrontal cortex increased AD risk (OR 2.74; 95% CI 1.08 
to 6.93), while a 1 SD higher thickness in the rostral anterior 
cingulate cortex decreased AD risk (OR 0.40; 95% CI 0.19 to 
0.83) (figure  4). However, for these two structures, we have 
one instrument and could not perform sensitivity analyses for 
assessing heterogeneity or pleiotropy.

Sensitivity analyses
Detailed results of analyses examining potential pleiotropy are 
provided in online supplemental tables 1–18. The evidence of 
a causal effect of genetic liability to AD on the caudal ante-
rior cingulate in peri-pubertal childhood was consistent across 
pleiotropy-robust methods (SD −0.03; 95% CI −0.06 to 
–0.004 in MR-Egger and SD −0.03; 95% CI −0.05 to –0.01 

Figure 4  The causal effects of genetic predisposition to higher thickness and volume of cortical, subcortical and white matter measures, respectively on 
risk for AD. This figure shows the change in OR for AD per SD change in thickness and volume of cortical, subcortical structures, respectively. Effects for 
lateral ventricles is missing due to inability in obtaining access to summary statistics. The F-statistic is a measure of instrument strength. AD, Alzheimer’s 
disease; NA, not available.
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per doubling in odds of genetic liability to AD for weighted 
mode). The association with thalamic volume in school-aged 
children and early adulthood were consistent across most of the 
pleiotropy-robust methods (online supplemental tables 4 and 8). 
In the analysis of AD genetic liability on brain structures in UKB, 
the magnitude of effect sizes for the MR-Egger, weighted median 
and mode were consistent with the IVW estimates for all brain 
structures (online supplemental table 9). In the MR analysis of 
brain structures on AD risk, the observed detrimental effect of 
a larger hippocampus on AD was consistent across pleiotropy-
robust methods (online supplemental tables 11 and 18).

When we removed the APOE SNPs from our analyses in the 
peri-pubertal childhood cohort meta-analysis, the effect observed 
for AD liability on thalamic volume and the thickness of the 
caudal anterior cingulate cortex attenuated to the null (online 
supplemental table 19). The effect observed for AD liability on 
thalamic volume in early adulthood also attenuated to the null 
(online supplemental table 20). In UKB analyses, the associations 
with regional cortical thickness and subcortical structures largely 
remained (online supplemental table 21).

The directionality test indicated that, on average, the instru-
ments for AD explained more variance in AD than they did in 
the brain structures in UKB (online supplemental table 22). The 
directionality test for SNPs associated with the hippocampus, 
lateral occipital and rostral anterior cingulate cortices on AD 
showed that they explain more variance in these structures than 
they do in AD risk (online supplemental table 23).

DISCUSSION
Our findings suggest that AD risk alleles have an age-dependent 
effect on a range of cortical and subcortical brain measures across 
mid-to-late adulthood, but we found little evidence for such 
effects in childhood and early adulthood, with the exception of 
an observed effect of AD genetic liability on thalamic volume 
and the thickness of the caudal anterior cingulate. These results 
therefore suggest that genetic liability to AD operates largely 
through causing changes in brain morphology in later life (eg, 
potential neurodegeneration), rather than initial brain reserve. 
In the age-stratified analysis of UKB participants, a higher AD 
genetic liability was associated with an age-dependent decrease 
in the thickness of the middle temporal, inferior temporal 
cortices as well as volume of structures such as the hippocampus, 
accumbens and thalamus. Some effects were only apparent in the 
oldest participants (aged 68–81 years), such as the decrease in 
the thickness of the fusiform, entorhinal and parahippocampal 
cortices and the volume of the amygdala. When SNPs in the 
APOE gene region were removed, effects across all structures 
largely remained but as expected, became less precise. In the 
reverse direction, there was little evidence that the thickness 
and volume of cortical and subcortical structures, respectively, 
affected the risk of AD, except for a greater hippocampal volume 
increasing risk.

In adults, genetic liability to AD was associated with regions 
known to show significant atrophy early in disease progression, 
such as the entorhinal,47–49 inferior, middle temporal and para-
hippocampal cortices,50 as well as the hippocampus.51 Change 
in hippocampal volume is an important imaging phenotype to 
define preclinical stages of AD, where atrophy predicts conver-
sion from mild cognitive impairment to AD.52 We observed a 
trend of a higher genetic liability to AD being associated with a 
smaller hippocampus in the younger participants, of ages 45–68 
years. Additionally, there was strong evidence of an effect of 
genetic liability on a lower hippocampal volume in the oldest 

age participants (aged 68–81 years), using genetic instruments 
both including and excluding the APOE locus. A study also using 
the UKB identified strong evidence of an effect of the AD PRS 
(p≤5×10−8) and hippocampal subfield volumes in older indi-
viduals (aged 63–80 years), which was driven by SNPs in the 
APOE locus.51 Contrary to previous PRS studies,12 13 we found 
weak evidence that genetic liability to AD was associated with a 
lower hippocampal volume in childhood. However, in compar-
ison with the stringent threshold we used in our study (p<5×10–

8), these studies used liberal p-value thresholds for SNP inclusion 
(p≤0.132 and p≤0.0001) (increasing risk of bias due to hori-
zontal pleiotropy).12 13

The focus of previous PRS studies with brain MRI data on 
the hippocampus and the neocortex can be attributed to their 
well-recognised role in cognition and episodic memory.53 54 
However, there are other structures that are relevant for cogni-
tion that are less well studied in relation to genetic liability to 
AD,55 such as the thalamus. The medial temporal lobe connects 
to thalamic nuclei and the retrosplenial cortex, constituting the 
hippocampal-diencephalic system, whose integrity is important 
for normal episodic memory.56 In our study, we found the 
earliest, most robust effects of genetic liability to AD in the thal-
amus as early as childhood (aged 8–14 years) and in the caudate 
and accumbens from 60 years of age. A study investigating how 
the APOE genotype changes whole-brain large-scale structural 
networks in subjects with mild cognitive impairment,57 found 
APOE ε4 carriers showed pronounced atrophy in specific regions 
such as the thalamus and the hippocampus, both of which had 
strong structural covariance association with the left caudate 
nucleus. Furthermore, a longitudinal brain imaging study exam-
ining the effects of the APOE ε4 genotype found evidence of 
differences between carriers/non-carriers in rates of amyloid-β 
plaque accumulation across the adult lifespan only in the caudate 
at age 56 years and the putamen at age 63 years.58 APOE ε4 
carriers showed accelerated rates of amyloid-beta deposition in 
the entorhinal cortex at age 68 years. We observed that the oldest 
participants (aged 68–81 years) with higher genetic liability to 
AD showed, on average, lower entorhinal thickness.

Like other studies, we also found causal effects of genetic 
liability to AD on larger thickness in the lateral occipital, which 
is consistent with two previous studies in healthy individ-
uals where APOE ε4 carriers have a thicker occipital cortex in 
comparison with normal controls.59 60 The thickening of certain 
brain regions has been speculated to reflect brain swelling in 
response to glial activation in preclinical AD stages.61

Genetic liability to AD is hypothesised to affect brain struc-
tures through influencing neurodevelopment, resulting in struc-
tural differences in the brain which may increase tolerance to 
pathology (ie, altering brain reserve and increasing the age 
of disease onset), or by changing the rates or mechanisms of 
neurodegeneration.3 We observe an age-dependent decrease 
in the volume of structures such as the thalamus, caudate and 
accumbens in UKB participants. However, a longitudinal anal-
ysis would be required to test the variable neurodegeneration 
hypothesis and such a conclusion cannot be extrapolated from 
findings in cross-sectional data (as in our analyses). Walhovd et 
al examined the association between AD PRS and hippocampal 
volume in 1181 cognitively healthy people with a wide age range 
(4–95 years).4 They identified an effect of a higher AD PRS 
on reduced hippocampal volumes in young adults, which was 
consistent across age groups, suggesting the AD PRS results in an 
earlier onset of brain ageing instead of accelerated ageing through 
variable neurodegeneration. The MR of brain morphology 
on AD in our study provides little support for the notion that 
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brain structure alterations change the risk for AD, except for a 
larger hippocampal volume increasing the risk for AD, which 
is contrary to most existing research.4 62 63 This hippocampus 
finding from our MR study may be due to chance, or due to 
the small number of SNPs used (n=6). It is unlikely that these 
effects are a result of pathways independent of hippocampal 
volume (ie, horizontal pleiotropy), as the MR estimators which 
relax the assumptions about instrument validity are consistent 
with the IVW method, and there was little evidence of hetero-
geneity or pleiotropy in the causal effect estimates. Although we 
found little evidence of effects of brain morphology on AD risk, 
we observed that AD genetic liability influenced the volume of 
the thalamus from childhood to adulthood, which suggests that 
initial thalamic reserve could potentially play a role in AD risk. 
However, given that this structure is not typically implicated in 
the earliest AD-related brain atrophy, it is possible that this is a 
chance finding reflecting variability around the null. The caudal 
anterior cingulate was observed to be associated with genetic 
effects in childhood but not in adulthood. However, a recent 
recall-by-genotype study also reported an effect in this region in 
adults of the PROTECT cohort.64 In summary, the fewer effects 
observed in childhood and early adulthood compared with those 
later in the life course may be due to developmental noise, or a 
greater effect of genetic variation on more biological pathways 
in older individuals. It is also possible that genetic effects become 
more pronounced later in the life course due to the accumula-
tion of gene-environment interactions and/or potential epigen-
etic mechanisms. Future studies should seek to replicate this in 
large independent samples with repeated measures when more 
data become available.

The MR method requires that genetic variants must fulfil 
three key assumptions to be considered valid instrumental 
variables: (1) that the genetic variants are strongly associated 
with the exposure (relevance assumption), (2) that there is no 
confounding of the genetic instrument – outcome association 
(eg, by population stratification, or dynastic effects; the indepen-
dence assumption), and (3) that the genetic instruments affect 
the outcome only through the exposure (exclusion restriction 
assumption). Only the first assumption can be tested with the 
use of statistical parameters indicating instrument strength (vari-
ants associated with the trait at genome-wide significance and/or 
F-statistics in our analyses >10). The independence and exclu-
sion restriction assumptions are not testable but are falsifiable 
with sensitivity analyses. We adjusted our GWAS for ancestry-
informative principal components to control for population 
stratification. We were unable to account for dynastic effects 
in this study, but future within-family MR study designs should 
look to examine this. For the exclusion-restriction assumption, 
sensitivity analyses were performed to examine potential bias 
due to horizontal pleiotropy. That said, several brain measures 
had too few genetic proxies for pleiotropy sensitivity analyses 
to be performed and hence, these results should be considered 
with caution.

While previous studies have examined whether genetic liability 
to AD is associated with specific structural brain measures, our 
study is the first to examine these in such large samples, using 
an exploratory approach from childhood to old age. One of the 
main strengths of our study is that genetic variants are subject 
to little measurement error, contrary to observational neuro-
imaging phenotypes, and can serve as unconfounded indicators 
of particular traits values.17 Furthermore, using aggregate PRS 
precludes the examination of key potential sources of bias such 
as horizontal pleiotropy, which we have examined in detail here. 
We examined regions that have not been shown to be vulnerable 

to AD pathology, allowing us to discover novel regions affected 
by genetic liability to AD, such as the caudate. The large 
modern biobanks with neuroimaging and genetic data allowed 
us to recreate to the best of our ability a pseudo-longitudinal 
cohort. The precision of age-dependent dose effects suggest that 
our results are unlikely to be due to chance or other forms of 
bias. However, for studies such as ALSPAC, participants were 
selected for imaging for (1) a case-control study of psychotic 
experiences, (2) recall-by-genotype for schizophrenia, (3) testos-
terone study, making the ALSPAC sample unrepresentative of 
the general population. Another limitation is that different Free-
surfer versions were used across cohorts. However, we allowed 
for this technical variation using random-effects meta-analyses. 
Although we applied multiple correction strategies controlling 
the false discovery rate, our findings were consistent across 
multiple cohorts. Finally, the participants in our analyses were 
of European ancestry and the findings may not be generalisable 
to other populations.

Our study shows that genetic liability to AD is associated with 
age-dependent changes in brain morphology in non-clinical 
populations, starting as early as 60 years of age, potentially high-
lighting the earliest phenotypic manifestations of the disease and 
the optimal timing for intervention with any potential neuropro-
tective therapy. Brain imaging to detect AD focuses on hippo-
campal, whole brain and parietal volume. The findings of our 
study highlight the importance of brain volume in other regions 
— notably the striatum — for AD. The analysis of these regions 
could be incorporated into early diagnosis imaging analysis algo-
rithms for clinical use. The lack of evidence to support an effect 
of brain morphology on AD suggests that genetic liability to AD 
affects biological pathways leading to neurodegeneration rather 
than neurodevelopment. Future research should aim to use a 
longitudinal design and integrate their findings with biological 
and clinical data.
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