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Abstract: Ultrasonic Guided Waves (GW) actuated by piezoelectric transducers installed on 14 

structures have proven to be sensitive to small structural defects, with acquired scattering 15 

signatures being dependent on the damage type. This study presents a generic framework for 16 

probabilistic damage characterization within complex structures, based on physics-rich 17 

information on ultrasound wave interaction with existent damage. To this end, the 18 

probabilistic model of wave scattering properties estimated from measured GWs is inferred 19 

based on absolute complex-valued ratio statistics. Based on the probabilistic model, the 20 

likelihood function connecting the scattering properties predicted by a computational model 21 

containing the damage parametric description and the scattering estimates is formulated 22 

within a Bayesian system identification framework to account for measurement noise and 23 

modeling errors. The Transitional Monte Carlo Markov Chain (TMCMC) is finally employed 24 

to sample the posterior probability density function of the updated parameters. However, the 25 

solution of a Bayesian inference problem often requires repeated runs of “expensive-to-26 
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evaluate” Finite Element (FE) simulations, making the inversion procedure firmly demanding 1 

in terms of runtime and computational resources. To overcome the computational challenges 2 

of repeated likelihood evaluations, a cheap and fast Kriging surrogate model built and based 3 

on a set of training points generated with an experiment design strategy in tandem with a 4 

hybrid Wave and Finite Element (WFE) computational scheme is proposed in this study. In 5 

each “numerical experiment”, the training outputs (i.e. ultrasound scattering properties) are 6 

efficiently computed using the hybrid WFE scheme which combines conventional FE analysis 7 

with periodic structure theory. By establishing the relationship between the training outputs 8 

and damage characterization parameters statistically, the surrogate model further enhances the 9 

computational efficiency of the exhibited scheme. Two case studies including one numerical 10 

example and an experimental one are presented to verify the accuracy and efficiency of the 11 

proposed algorithm.  12 

Key words: Ultrasonic Guided Waves; Damage Identification; Bayesian Analysis; Wave 13 
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Nomenclature:  
 

k : the -thk frequency point;  

k : the reflection coefficients at k ;  

k : the transmission coefficients at k ; 
θ : the damage characterization parameters; 

 kR θ : the reflection coefficients predicted by the structural damage model at θ ; 

 kT θ : the transmission coefficients predicted by the structural damage model at θ ; 

 : all model parameters to be identified;  
D : is the available data (i.e. the scattering property estimates);   
M : the model class;  

re and tr : the error terms of the reflection and transmission coefficients;  

( , )p MD : the likelihood function of the dataD ;  

( )p  M : the prior PDF of the parameters; 

( , )p  M D : the posterior PDF; 

( )p MD : a normalization factor ensuring that the posterior PDF integrates to 1； 

 inx t ,  rex t ,  trx t : the incident, reflected and transmitted wave;  

inX , reX , trX : FFT coefficients of the incident, reflected and transmitted wave;  
n : the -thn  time step of measurement;  
N : the total number of time points for a wave;  

 
k kp r : the PDF of the reflection coefficient k  ;  

 
k kp  : the PDF of the transmission coefficients k ;  

2
in , 2

re and 2
tr : the variances of inX , reX and trX ;  

re and tr : the variances of the prediction errors re and tr .  
K , C and M  : the stiffness, viscous damping and mass matrices of the segment; 
q : the displacement and f denotes the forcing vectors;  
T  : the symplectic transfer matrix in hybrid WFEM scheme;  
D : frequency dependent dynamic stiffness matrix;  
R : the rotation matrix of the waveguide;  
S : the scattering matrix predicted by the hybrid WFEM scheme;  
Q: the vector of DoFs represented in the global coordinate system; 
F: the vector of internal nodal forces in the global coordinate system; 
Θ : vectors of independent input parameters; 
 iθ : -thi sample generated by using the DoE strategy;  

sn : the number of DoE samples;  

pn : the number of damage characterization parameters to be identified;  

 
sn Y : a vector of training data outputs corresponding to Θ ; 
 iY : the -thi  responses of the system corresponding to  iθ ;  
θ : arbitrary input vector;  

 m θ : the mean function at θ ;  
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  θ : a zero-mean Gaussian process with unknown covariance function;  
2
 : the process variance;  

    ,p qCorr θ θ : correlation function between training data  pθ and  qθ ;  

j : hyper-parameters;  

 ̂ θ and  ̂ θ : mean and standard deviation of the Kriging model;  

   k
re θ and  k

tr θ : the scattering coefficients predicted by Kriging model;  
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1. Introduction  2 

The importance of Structural Health Monitoring (SHM), which involves performance 3 

observation of a structure using response measurements, the extraction of damage-sensitive 4 

features and the analysis of these features to assess structural health condition, has been 5 

widely recognized [1,2]. One of the most fundamental tasks of SHM is implementing a 6 

detection and characterization strategy for damage usually defined as changes to the material 7 

and structural properties, which can adversely affect structural safety. Low-frequency damage 8 

detection methods that utilize dynamic responses or dynamic properties have been applied 9 

extensively in engineering structures and they have been proven to be useful in global 10 

monitoring [3,4]. However, several researchers have reported that the damage detection 11 

approaches based on the low-frequency characteristics are usually insensitive to small damage 12 

[5].  13 

Nowadays, ultrasonic GW-based SHM methodologies have been widely reported to be 14 

sensitive to small damage, convenient and efficient in detecting structural damage [6,7], such 15 

as fatigue cracks in metallic structures, debonding and delamination in composite structures. 16 

In real applications, actuators and sensors for damage identification using GWs are often 17 

placed according to pitch-catch or pulse-echo configurations [8,9]. The scattered waves need 18 

to be analyzed using certain damage identification algorithms to extract various characteristics 19 

containing essential information about the damage [10]. Over the past decades, tremendous 20 
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efforts have been directed to extract structural conditions using GWs, and various algorithms 1 

[10] including time-of-flight, time-reversal techniques, probability-based diagnostic imaging, 2 

phased-array beamforming, and artificial intelligence techniques, etc. have been applied.  3 

Though efforts have been devoted to damage detection using ultrasound GWs, there is 4 

still significant room for further exploration in damage quantification and characterization due 5 

to the lack of efficient techniques for predicting wave interaction with damage, especially for 6 

composite structures. Layered structures typically have to be explicitly FE modelled with 7 

individual elements per layer which results in unbearable computational times required to 8 

obtain damage signatures [11]. More recently, scattering properties including reflection and 9 

transmission coefficients have been viewed as promising candidates to provide a well 10 

understanding of wave interaction with damage and to characterize structural damage [12,13]. 11 

It has been shown that the quantitative relationship between wave scattering and damage 12 

intensity can be described by the scattering properties [14,15]. The physical background 13 

behind this is given by the fact that elastic wave energy is transmitted, reflected and converted 14 

to different wave modes when impinging to a structural inhomogeneity. On that basis, it is 15 

possible to relate the damage extent or size to the acquired wave scattering properties [16]. 16 

Two approaches are normally utilized to calculate the scattering coefficients in the frequency 17 

or time domain [17-19]. In the frequency domain, the coefficients as a function of frequency 18 

can be computed by dividing the frequency responses of the reflected/transmitted wave signal 19 

by that of the incident wave signal. In the time domain, these coefficients can be achieved by 20 

taking the ratio of the value of the reflected/transmitted wave peak and that of the incident 21 
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wave peak after they are processed by the Hilbert transform. In this study, the relationships 1 

between the damage and the scattering properties will be further exploited to formulate a 2 

damage characterization procedure.  3 

In the campaign of structural damage characterization, one critical issue that has been 4 

widely accepted is that uncertainties due to endogenous factors, e.g. measurement noise, 5 

model discrepancies, and external exogenous factors, such as environment variability and 6 

measurement noises, should be appropriately considered [20,21]. Improving reliability and 7 

robustness of damage detection approaches is uttermost important and to produce superior 8 

methods, further research has to be produced explicitly accounting for these uncertainties 9 

[22,23]. Bayesian statistics has been widely considered an excellent candidate for uncertainty 10 

quantification in GW-based damage detection. A Bayesian approach was developed to 11 

identify the damage location and wave velocity based on the time-of-flight (ToF) of the 12 

scattered waves in each actuator-sensor path measured by a continuous wavelet transform 13 

(CWT) [24]. A guided Bayesian inference approach was proposed to detect and quantify 14 

multiple flaws in structures without a priori knowledge on the number of flaws by employing 15 

the extended finite element method (XFEM) as the forward solver in the inverse detection 16 

framework [25]. Ng and his co-workers have formulated Bayesian damage detection 17 

framework by incorporating various technologies such as spectral finite element (SFE) 18 

method, advanced signal processing techniques, etc. [26-29]. A Bayesian method was used to 19 

characterize statistically the uncertain parameters in an ultrasonic inspection system from 20 

limited signal measurements to enhance the confidence on the probability of detection curve 21 
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[30]. The sparse Bayesian learning approach was employed to detect structural damage by 1 

Guided-wave signal processing and Gabor pulse model in [31]. A multilevel Bayesian inverse 2 

problem framework was proposed in [32] to deal with these sources of uncertainty in the 3 

context of ultrasound-based damage identification. Such calculations allow the quantification 4 

of uncertainties associated with damage detection results, information that is essential for 5 

making decisions about necessary remedial work [33]. Another essential feature of the 6 

Bayesian statistical framework is that, if required, engineering judgment can be incorporated 7 

into the damage characterization process to reduce the uncertainty of the results [34].  8 

Bayesian statistics considers probability as a multi-valued propositional logic for 9 

plausible reasoning [35,36], which is also viewed as a measure of the plausibility (a personal 10 

degree of belief in a proposition) of a proposition conditioned on information [37,38]. By 11 

making full use of the Bayesian system identification framework for accommodating 12 

measurement noise and modeling errors properly, this study presents the first attempt to 13 

formulate a generic methodology for probabilistic damage characterization based on wave 14 

scattering characteristics. The scattering coefficients are probabilistically modelled by using 15 

absolute complex ratio random variables. A Bayesian scheme makes inferences about the 16 

damage characterization parameters directly by processing the statistical information 17 

contained in the experimentally measured scattering properties. The Transitional Monte Carlo 18 

Markov Chain (TMCMC) [39] is finally used to sample the posterior Probability Density 19 

Function (PDF) of the updated parameters. Unfortunately, Bayesian inference based on GW 20 

scattering properties is expensive and time-consuming because it requires repeated numerical 21 
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simulations. To address this critical issue, the hybrid WFE methodology is hereby employed 1 

in order to efficiently simulate wave scattering when ultrasonic GW impinge a damaged 2 

segment within a structure of arbitrary layering. It is shown that WFE predictions are several 3 

orders of magnitudes faster than explicit FE modelling, even for 1D structures. Furthermore, a 4 

cheap and fast Kriging surrogate model will be employed in tandem with the WFE scheme in 5 

order to approximate the output as a function of model parameters. The Kriging predictor 6 

provides a surrogate mapping between the probability spaces of the model predictions for the 7 

scattering properties and the damage parameters in the likelihood evaluations. The procedure 8 

is verified using numerical and experimental data in different damage configurations.  9 

The manuscript of this study is organized as follows. Section 2 introduces the general 10 

framework of probabilistic damage characterization with ultrasonic GW scattering properties, 11 

while the challenges and solution strategy are also outlined. The Bayesian inference problem 12 

for damage characterization parameters is formulated by incorporating a hybrid WFE scheme 13 

within the surrogate approximation strategy in Section 3. Section 4 outlines the procedures of 14 

Bayesian inference for probabilistic damage characterization based on scattering properties. In 15 

Section 5, one numerical example is presented to illustrate the efficiency of the proposed 16 

damage identification method. An experimental verification is also exhibited in this section 17 

using a composite beam to further demonstrate the feasibility of the GW-based damage 18 

characterization paradigm.   19 
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2. Theoretical Background, Challenges and Solution Strategies  1 

An illustrative description of the envisaged considered system is presented in Fig. 1. The 2 

piezoelectric transducer excites propagating waves within the structure. The incoming GWs 3 

(+) impinge on the damaged structural segment and generate a set of outgoing (-) reflected 4 

and transmitted waves. The propagation of waves is often described in terms of “wave 5 

modes”. Antisymmetric (A) and Symmetric (S) Lamb waves are typically employed as the 6 

most robust information vectors during ultrasonic GW monitoring, with the S0 and A0 wave 7 

types being the ones propagating in the low-frequency spectrum. For the purpose of clarity, 8 

the phase velocity dispersion curves are shown in Fig. 2 as an example, with each curve 9 

representing a wave mode. Shear, as well as torsional wave modes are also computed by the 10 

employed WFE scheme and are included in Fig. 1 (even though not to be excited within this 11 

study) for the sake of completeness. 12 

 13 

Fig. 1: Illustration of the UGW monitoring system: (a) the first part of the waveguide, (b) 14 

the second part of the waveguide, (c) damaged coupling element. 15 
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 1 

Fig. 2: Schematic of GW phase velocity curves for a layered structure computed with the 2 

WFE approach.  3 

2.1 Bayesian formulation 4 

In realistic applications, the scattering properties for different GW modes describe how 5 

much of a wave is reflected or transmitted by an impedance discontinuity in the transmission 6 

medium. Similar to the concept of frequency response function or transmissibility function in 7 

structural dynamics [40-42], the scattering coefficients are also defined as ratio functions in 8 

the frequency domain and they are functions of frequency k . The reflection and transmission 9 

coefficients denoted by  ,k k  at k are determined by dividing the frequency spectra of the 10 

reflected/transmitted signal by that of the incident wave signal. The reflection/transmission 11 

coefficients predicted by the structural damage model are denoted as     ,k kR Tθ θ , defined 12 

by a set of damage parameters θ , which are to be identified. Each implemented damage 13 

scenario can be FE-modelled and the associated scattering coefficients can be numerically 14 

computed. The primary aim of this study is to make inferences about the damage 15 
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characterization parameters θ  by processing the information contained in scattering 1 

coefficient measurements  = ,k k D  within a Bayesian framework.  2 

A Bayesian inference procedure is based on the well-known Bayes’ theorem, with its 3 

general formulation given as [35]: 4 

 
( , ) ( ) ( , ) ( )

( , )
( ) ( , ) ( )

p p p p
p

p p p d

   


  


 
 

 
M M M M

M
M M M

D D
D

D D
 (1) 5 

where   denotes the value of the model parameters including the damage characterization 6 

parameters θ  and prediction-error parameters, D  is the available data (i.e. the scattering 7 

property estimates), and M is the model class. 8 

Eq. (1) introduces a process to update prior knowledge on the parameters  , by using data 9 

 = ,k k D and conditional to some given model class M . The likelihood function 10 

( , )p MD gives a measure of the agreement between the available experimental data 11 

 = ,k k D and the corresponding numerical model output     ,k kR Tθ θ . The posterior 12 

distribution ( , )p  M D expresses the updated knowledge about the parameters, providing 13 

information on which parameter ranges are more probable based on the initial knowledge and 14 

the measured scattering properties.  15 

The statistical inference can be executed by embedding the “deterministic” structural 16 

models within a class of probability models so that the structural models give a predictable 17 

(“systematic”) part and the prediction error is modeled as an uncertain (“random”) part [43]. 18 

In the context of Bayesian inference with scattering coefficients, the measured outputs and the 19 

numerical model outputs are connected as follows [43,44]:  20 
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  k k reR   θ  (2a) 1 

  k k trT   θ  (2b) 2 

In Eq. (2), re and tr  denote the error terms. It is worth mentioning here that re and tr  are 3 

assumed to be zero-mean white noise with constant variances to be identified at each k . 4 

Given that the measured scattering coefficients  = ,k k D follow a specific probability 5 

distribution, one can formulate the likelihood function ( , )p MD  by embedding Eq. (2) into 6 

the probabilistic model of D .  7 

The posterior distribution ( , )p  M D  can be achieved through a Laplace asymptotic 8 

approximation, which utilizes a Gaussian approximation as the posterior PDF. However, 9 

application of this approximation encounters difficulties when the amount of data is small, or 10 

the chosen class of models is unidentifiable. Also, such an approximation requires a non-11 

convex optimization in a high-dimensional parametric space, which is computationally 12 

challenging, especially when the model class is not globally identifiable and there may be 13 

multiple global maxima [45]. In recent years, focus has shifted from analytical 14 

approximations to using stochastic simulation methods in which samples consistent with the 15 

posterior PDF ( , )p  M D  are generated. Stochastic simulation can handle more general cases 16 

than the asymptotic approximation approach [46]. In such methods, all probabilistic 17 

information encapsulated in ( , )p  M D  is characterized by posterior samples. MCMC 18 

simulation methods were among the most popular methods for solving the Bayesian inverse 19 

problem efficiently. In this study, the TMCMC algorithm [39] will be employed within a 20 

Bayesian inference for probabilistic damage characterization.  21 
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2.2 Challenges and solution strategies  1 

       Bayesian inference presents a mathematically rigorous approach for quantifying the 2 

uncertainties of structural damage characterization parameters, which is useful for further risk 3 

assessment. However, there are some challenges which may hinder its practical 4 

implementation:  5 

 The likelihood function  ,p MD  is obtained by embedding the “deterministic” 6 

structural models within a class of probability models. Therefore, a probability model of 7 

the measured outputs (i.e.,  = ,k k D ) should be presented before implementing 8 

Bayesian inference. As scattering coefficients are defined as the absolute ratios of fast 9 

Fourier transform (FFT) of reflected/transmitted wave signal and incident wave signal, 10 

one has to infer the statistics of the magnitude of a complex-valued random variable 11 

composed of both real and imaginary parts.   12 

 In the procedure of Bayesian inference, one has to predict the scattering properties 13 

    ,k kR Tθ θ  repeatedly using physics-rich schemes containing the damage parameters 14 

to be updated. For simple cases such as slender connected beams, analytical solutions of 15 

the scattering coefficients are available. However, developing analytical models that 16 

describe the dynamic behavior of more complicated structures comprised of various 17 

damage scenarios can be a very challenging task. Therefore, one has to resort to 18 

numerical simulations to compute the scattering coefficients accurately. The 19 
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computational cost is highly dependent on the number of FE runs and frequency bands 1 

selected for identification. 2 

 The stochastic simulation approaches such as MCMC tools usually require a large 3 

number of numerical simulations. In each simulation, the scattering coefficients should be 4 

numerically evaluated by resorting to FE packages such as ANSYS and ABAQUS. In all 5 

iterative parameter updating methods, each iteration requires a FE analysis for the given 6 

set of updated parameters. If the structure of interest is composed of a large number of 7 

FEs (which is generally the case), the large number of computations involved in repeated 8 

FE runs can rule out many approaches due to the expense of carrying out an exhaustive 9 

number of runs. Worse still, stochastic simulation is usually implemented using 10 

proprietary programming language such as MATLAB, thus interfacing between different 11 

software environments such as MATLAB and ANSYS is an additional challenge, which 12 

may significantly limit their applicability for Bayesian uncertainty quantification.  13 

To address the aforementioned challenges, the following strategies will be proposed: 14 

 The complex Gaussian ratio distribution [40-42] has been employed to probabilistically 15 

model the statistics of ratio functions such as transmissibility functions and frequency 16 

response functions. In this study, the probabilistic distribution properties of the scattering 17 

coefficients estimates are also inferred based on the complex ratio statistics. Based on 18 

the probabilistic distribution of scattering coefficients, the likelihood function 19 

connecting the scattering properties predicted by the computational model containing the 20 

damage parameters to be updated and the scattering property estimates is formulated.  21 
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 An ultrafast hybrid WFE scheme will be employed to predict the scattering coefficients 1 

of a structural model with various types of damage [11,12]. Damage is modelled using 2 

standard FE methods whereas the waveguides are modelled using the WFE method. This 3 

relies on post-processing a standard FE model of a small segment of each waveguide 4 

using periodic structure theory. The degrees of freedom (DoF) at the interfaces of the 5 

WFE and FE models of the waveguides and the damage are compatible in order to avoid 6 

requirement for further computational treatment [47,48]. The models are coupled to 7 

yield the reflection and transmission matrices of the damage.  8 

 To overcome the computational challenges of repeated likelihood evaluations and the 9 

difficulty of interfacing different software environments, complex numerical simulations 10 

for predicting scattering properties are replaced by a cheap and fast Kriging surrogate 11 

model built using an experiment design strategy in tandem with a hybrid WFE scheme. 12 

Kriging model approximates a function based on a set of training points and can 13 

eventually predict the function at new points. In each “numerical experiment”, the 14 

training outputs (i.e. scattering properties) are efficiently computed using hybrid WFE. 15 

By establishing the relationship between the training outputs and damage identification 16 

parameters with a statistical method, the Kriging surrogate model obviates the need for a 17 

large number of repeated time-consuming FE runs. As a result, the WFE scheme is only 18 

required for training the outputs in the construction of the Kriging model, and is no 19 

longer involved in MCMC, thus significantly enhancing the efficiency of the presented 20 

methodology. 21 
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3. Bayesian Inference for Damage Characterization  1 

3.1 Scattering coefficient estimates and their probabilistic model  2 

3.1.1 Scattering coefficient estimates   3 

 4 

   (a)                                                                                  (b) 5 

Fig. 3: A schematic of UGW signal measured at the left side and the right side of damage 6 

segment: (a) incident and reflected wave; (b) transmitted wave.   7 

 8 

As is illustrated in Fig. 1, the incident wave impinges on the damaged structural segment 9 

and generates a set of reflected and transmitted waves. The propagation of waves is often 10 

described in terms of different wave modes. Fig. 3 gives a schematic of the time series of the 11 

incident wave, reflected wave and transmitted waves. The sampling time interval is assumed 12 

to be t  and the time duration for a specific mode is assumed to be dT .  13 

For a wave mode, the FFT coefficients of the reflected wave  rex t  at frequency k  in 14 

rad/s are defined as:  15 
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  
1

( )

0

( )
2

k

N
n t

re k re
n

t
X x n t e

N





 




  i   (3) 1 

where 1,2, ,n N  , 2 1 i , k k   , 1,2, , ( 2)k Int N  . Similar operations can be 2 

conducted for the transmitted wave  trx t  and incident wave  inx t , and their corresponding 3 

FFT coefficients are denoted by  tr kX   and  in kX  , respectively.  4 

In the field of wave propagation, the scattering coefficients can be estimated by taking 5 

the absolute ratio of the FFT of reflected/transmissive wave and the FFT of the incident wave 6 

as [17]:  7 

    k re k in kX X     (4a) 8 

    k tr k in kX X     (4b) 9 

In this work, all “ k ” shown in the bracket, in the subscript or in the superscript denote 10 

frequency k . 11 

3.1.2 Probabilistic models of scattering coefficients  12 

Assume that the variances of  in kX   and  re kX   are denoted by  2
in k   and  2

re k   while 13 

their correlation coefficient is given by k . Using the new theorem on circularly-symmetric 14 

complex Gaussian ratio distribution, one can prove that the PDF of    k re k in kU X X   is 15 

given by [40]  16 

   2
1 * 2 2 2 * * * 2( ) (1 )

kU k k k in re re k k k k in re k k inp u u u u u          


          (5) 17 

where   denotes the complex conjugate. It is worth reminding that “ k ” is ignored here for 18 

simplicity.  19 
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The complex-valued random variable   k
k kU e i , expressed in the polar coordinate 1 

system, and the PDF of the reflected coefficients k is equal to  2 

     
   

2 2 2 2 2 2

3 22 22 2 2

2 1

2
k

k in re k re k in

k

re k in k k in re

r r
p r

r r

    

    


 

    

  (6) 3 

where k  denote the magnitude of k . Assume that the correlation between  in kX   and  4 

 re kX   are negligible, i.e. =0 , then (6) can be simplified as:  5 

  
 

2 2

22 2 2

2
k

k in re
k

re k in

r
p r

r

 

 
 


  (7) 6 

Similarly, if the variance of the transmitted wave is denoted by 2
tr , then one can obtain the 7 

PDF of the transmission coefficients k  as follows:  8 

  
 

2 2

22 2 2

2
k

k in tr
k

tr k in

p
  

  
 


  (8) 9 

It is worth mentioning here again that Eq. (2), Eq. (7) and (8) will be used in Section 3.3 to 10 

derive the likelihood function. The probabilistic models of the measured scattering 11 

coefficients can connect the measured outputs and the model outputs properly so that the 12 

inherent randomness of measurements and modelling errors are well accommodated.  13 

3.2 Scattering coefficients predicted by an ultrafast hybrid WFE scheme 14 

In the context of Bayesian inference problem, likelihood evaluation usually requires repeated 15 

runs of “expensive-to-evaluate” explicit FE simulations to obtain physics-rich information 16 

about the GW scattering coefficients. The likelihood evaluation makes the inversion 17 

procedure firmly demanding in terms of runtime and computational resources. In this section, 18 
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hybrid WFE scheme will be employed to reduce the computational burden of conventional 1 

full FEM analysis scheme by several orders of magnitude. Furthermore, a fast Kriging 2 

surrogate model will be introduced in this section. The generation of the Kriging predictor 3 

model requires a dedicated experiment design strategy for extracting the set of training points. 4 

In each “computer experiment”, the training outputs of the scattering properties are efficiently 5 

computed through the hybrid WFE scheme. As a result, the relationship between the training 6 

outputs and damage parameters is established statistically to avoid the need for an exhaustive 7 

number of runs within the Bayesian inference.   8 

3.2.1 Hybrid WFEM scheme  9 

 10 

Fig. 4: Schematic of two waveguides attached at a damage segment with incident, reflected 11 

and transmitted waves: (a) The first waveguide; (b) The second waveguide; (c) An arbitrary 12 

coupling element (possibly containing damage) explicitly modelled with FEs.  13 

A hybrid WFEM approach will hereby be employed for numerically determining the 14 

reflection and transmission matrices for a given set of damage properties. The individual 15 

intrinsic characteristics of a given damage scenario can be expressed in terms of its 16 

frequency-dependent GW interaction signatures. Conveniently, different wave types have 17 

different interaction properties with each damage scenario for each wavelength. Healthy, 18 

periodic structures of arbitrary layering are hereby modelled as waveguides. The wave 19 
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behavior of such structures involves the propagation of elastic packets through the 1 

waveguides which impinge and interact with structural inhomogeneities. In Fig.4, the 2 

damaged segment is modelled using standard FE methods whereas the waveguides are 3 

modelled using the WFE approach. This relies on post-processing a standard FE model of a 4 

small segment for each waveguide using periodic structure theory. The DoF at the interfaces 5 

of the WFE and FE models of the waveguides and the joint are compatible. The models are 6 

coupled to yield the reflection and transmission matrices of the damage. The review presented 7 

in this section is heavily borrowed from [12,13].  8 

qR

qL

qI

Lx

 9 

Fig. 5: Schematic of a periodic healthy waveguide discretized by 3D linear FE. The interface 10 

left (qL) and right (qR) nodes are also depicted. 11 

The cross-section of the waveguide can be arbitrarily complex, as shown in Fig. 5. The 12 

WFE method starts with obtaining the FE model of a segment of the waveguide using any FE 13 

package with the only constraint being that the nodes and their DoF are ordered identically on 14 
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the left and right sides of the segment. Internal nodes can be eliminated via dynamic 1 

condensation or explicitly solved for the sake of enhanced accuracy. If the structure undergoes 2 

time harmonic motion at frequency k  and in the absence of external forces, the nodal 3 

displacements and forces are related through the frequency dependent Dynamic Stiffness 4 

Matrix (DMS) of the segment: 5 

  2
k k   K i C M q f   (9) 6 

where K , C , and M  are the stiffness, viscous damping and mass matrices, respectively;      7 

q  denotes the displacement and f  denotes the forcing vectors. The frequency dependent 8 

DMS of the waveguide’s periodic segment can be partitioned with regard to its left/right sides 9 

and internal DoF as [12,13]  10 
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         
         

D D D q f

D D D q 0

D D D q f

  (10) 11 

where L, R and I denote left/right sides and internal DoF.  12 

Using a dynamic condensation for the internal DoF, the problem can be expressed as 13 

 
1 1

1 1

L LLL LI II IL LR LI II IR

R RRL RI II IL RR RI II IR

 

 

      
          

q fD D D D D D D D

q fD D D D D D D D
  (11) 14 

Assuming that no external forces are applied on the segment, the displacement continuity and 15 

force equilibrium equations at the interface of two consecutive periodic segments s  and 1s   16 

give:  17 

 1 1;s s s s
L R L R
   q q f f   (12) 18 

Using Eqs. (11) and (12) the relation of the displacements and forces of the left and right sides 19 
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of the segment can be written as: 1 

 
1

1

s s
L L
s s
L L





         
      

q q
T

f f
  (13) 2 

and the expression of the symplectic transfer matrix T  can be written as 3 

 11 12

21 22

 
  
 

D D
T

D D
  (14) 4 

where 5 

 1 1 1
11 ( ) ( )LR LI II IR LL LI II IL

     D D D D D D D D D   (15a) 6 

 1 1
12 ( )LR LI II IR

  D D D D D   (15b) 7 
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 1 1 1
22 ( )( )RR RI II IR LR LI II IR

     D D D D D D D D D   (15d) 9 

With a wave propagating freely along the x  direction, the propagation constant 10 

ie xkL  relates the right and left nodal displacements and forces by:  11 

 ;s s s s
R L R L   q q f f   (16) 12 

By substituting Eqs. (12) and (16) into Eq. (13), the free wave propagation is described by the 13 

eigenproblem [12,13]:  14 

 
s s
L L
s s
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
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      

q q
T

f f
  (17) 15 

whose eigenvalue 
k

  and eigenvectors 
k

k

q

f




    
  

Φ
Φ

Φ
 solution sets provide a comprehensive 16 

description of the propagation constants and the wave mode shapes for each of the elastic 17 

waves propagating in the structural waveguide at a specified angular frequency k . Both 18 

positive going waves (with +

k
  and 

k
Φ ) and negative going waves ( -

k
  and 

k
Φ ) are sought 19 
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through the eigen-solution. Positive going waves are characterized by [12,13]:  1 
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  (18) 2 

stating that when a wave is travelling in the positive x  direction its amplitude should be 3 

decreasing, or that if its amplitude remains constant (in the case of propagating waves with 4 

complete absence of attenuation), then there is time averaged power transmission in the 5 

positive direction.  6 

The wave scattering at the inhomogeneity (damage) will next be considered. Assume 7 

waveguides are attached at a joint structural element containing an arbitrary inhomogeneity as 8 

shown in Fig. 4. The waveguides are modelled using the WFE method described above and 9 

the damage is modelled using standard FE description which allows for arbitrary complexity. 10 

Time harmonic behavior of the damage coupling FE part is described through [12,13] 11 

 i iii in

n nni nn

     
    

    

Q FD D

Q FD D

 
    (19) 12 

where Q and F are vectors of DoFs and internal nodal forces represented in the global 13 

coordinate system and the subscripts i  and n  represent interface and non-interface nodes, 14 

respectively. Since it is assumed that no external forces are applied at the non-interface nodes 15 

then =0nF  and the FE model of the joint can be condensed as [12,13] 16 

 ii i iD Q F   (20a) 17 

 1
ii ii in nn ni

 D D D D D      (20b) 18 

 1
n nn ni i

 Q D D Q    (20c) 19 

After straightforward manipulation, the scattering matrix follows as [12,13]:  20 
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1

f ii q f ii q

            S RΦ D RΦ RΦ D RΦ  (21) 1 

where R denotes the rotation matrix of the waveguide transforming the DoF from the local 2 

coordinate system to the global coordinate system; R being block-diagonal. As a result, the 3 

scattering properties including the reflection, transmission and conversion coefficients for 4 

different modes can be directly obtained from Eq. (21). One can refer to [12,13] for more 5 

information about the strategy.  6 

3.2.2 Kriging surrogate model in tandem with hybrid WFEM scheme 7 

Surrogates are metamodels representing a functional relation between the inputs (i.e., damage 8 

parameters to be identified in this study) and the model outputs (i.e., ultrasonic GW scattering 9 

coefficients in this study). While there is a plethora of approaches, the most commonly used 10 

metamodels are based on linear or polynomial regression, on a least-squares formulation or on 11 

Kriging and radial basis functions. Compared to the conventional response surface method 12 

requiring an understanding of the qualitative tendency of the entire design space, the Kriging 13 

model provides better flexibility of modelling response data with multiple local extreme 14 

values [49,50]. In engineering, Kriging is widely used because it is fast to train and is 15 

generally more accurate than other types of surrogate models. Originating from geographical 16 

space statistics [49], Kriging model is a data interpolation scheme to predict unknown values 17 

from data at known locations. Kriging is also known as Gaussian process or Bayesian 18 

emulator. As a virtually unbiased minimum variance estimation model, the local estimation 19 

characteristics of the Kriging model can predict the function value distribution satisfactorily 20 

by means of a correlation function. With the development of the Kriging toolbox based on 21 
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MATLAB-DACE [51], the Kriging model has been extensively applied in various fields 1 

structural optimization [52], reliability engineering [53,54], and structural model updating 2 

[55,56].  3 

Table 1: Procedures of constructing surrogate model for predicting scattering coefficients 4 

Step Procedures 
1 Establish the damage model and the model parameters pnθ  to be identified 
2 Formulate the hybrid WFEM as introduced in Section 3.2.1 
3  Use DoE to generate sn sampling inputs ( )(1) (2)={ , }sn TΘ θ θ θ  

4 

Calculate training data outputs at different k : 

for 1: fk n  

for 1: si n  

 Compute the reflection and transmission coefficients  ( )i
re kY  and 

 ( ）i
tr kY  at each input  iθ  using hybrid WFE scheme.  

     end 
end 

5 

for 1: fk n  

 Organize training data     ,k re kre   Θ Y  and 

    ,k tr ktr   Θ Y with              1 2= , , , sn
re k re k re k re k    

 Y Y Y Y and

             1 2= , , , sn
tr k tr k tr k tr k    

 Y Y Y Y . 

End 

6 

Formulate Kriging model for reflection/transmission coefficients at different k :  

for 1: fk n  

 Construct Kriging model    k
k reR   θ from     ,k re kre   Θ Y to 

characterize the relationship between the reflection coefficients and θ ; 
 Construct Kriging model  k

k trT   θ  from     ,k tr ktr   Θ Y  to 

characterize the relationship between the transmission coefficients and 
θ . 

End 

*Here 2 1 1fn k k   denotes the number of frequency points within the frequency band.  5 

To formulate a Kriging predictor model, it requires initial Design of Experiments (DoE). 6 

These samples are frequently referenced as the training set or support points. Appropriate 7 

DoE plays a vital role in constructing a high-fidelity Kriging model because DoE influences 8 
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the creation of the most informative training data. A common choice for the training design is 1 

the Latin Hypercube Design (LHD), which guarantees to spread design points evenly across 2 

each input parameter dimension. With the training set at hand, one can then calculate the 3 

predicted values of the surrogate model at various sample points in the parameter space by 4 

performing an “experiment” at each of those samples based on the hybrid WFE scheme 5 

introduced in Section 3.2.1. A number of output values obtained from the “experiment” 6 

running across the parameter domain are employed to fit a Kriging model using the DACE 7 

toolbox [51].  8 

We assume that vectors of independent input parameters       1 2= , s
T

nΘ θ θ θ with 9 

  1pni θ  are selected by using the LHD strategy. Here sn  and pn  denote the number of DoE 10 

samples and the number of damage characterization parameters to be identified. The hybrid 11 

WFE introduced in Section 3.2.1 is run at each point  iθ  in the training design, yielding a 12 

vector of training data outputs        1 2= , s

s

n
n

   Y Y Y Y  with   1pni Y   denoting responses 13 

of the system, i.e. the scattering coefficients in this study. A Kriging predictor for the output 14 

data consists of a second order polynomial and a random function. For any input vector θ , 15 

the Kriging predictor model consists of a Gaussian process   that is expressed as [50,53] 16 

      = +m   θ θ θ  (22) 17 

where  m θ  denotes the mean function, which is an optional regression model 18 

estimated from available data;   θ  is usually assumed to be a Gaussian stationary 19 

process with zero mean and unknown covariance. The covariance matrix of   θ  can be 20 

modeled as [53] 21 
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          2Cov ( ), ( ) , , 1,2, ,p q p q
sCorr p q n   θ θ θ θ ，  (23) 1 

where 2
  is the process variance and     ,p qCorr θ θ  is a parametric correlation 2 

function. A classical common choice for this correlation function is the exponential 3 

correlation function which permits control of both the range of influence and the 4 

smoothness of the approximation function [53]: 5 

         

1

, exp 0 2,
pn

p q p q
j j j

j

Corr





    


 
θ θ θ θ  (24) 6 

while j  are scale factors that can be estimated using maximum likelihood. Kriging provides 7 

an optimal unbiased linear predictor at any θ  as [53] 8 

             T 1ˆ ,
s sn nm       θ Θ θ r θ Θ R Θ Y m Θ,  (25) 9 

where       ,p q
pq CorrR Θ θ θ ;        

T
1, , snCorr Corr     r θ Θ θ θ θ θ, ， ， ; 10 

       1= s

s

n
n m m 

 m Θ θ θ ;        1 2= , s

s

n
n

   Y Y Y Y .  11 

Moreover, using Gaussian processes makes it possible to compute confidence intervals 12 

for the prediction through the variance [53]  13 

         T2 2 1ˆ ˆ, 1     θ Θ r θ Θ R Θ r θ Θ, ,  (26) 14 

Ultimately, the Kriging predictor   θ  leads to an estimate that is a Gaussian random 15 

variable with mean  ̂ θ  and standard deviation  ̂ θ , that is 16 

       ˆ ˆ, , ,    θ θ Θ θ Θ   (27) 17 

It is worth noting that the scattering coefficients are vector-valued functions in terms of 18 

frequency k , which inevitably change when frequency varies. Therefore, the relationship 19 
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between the model output and parameters θ  should be mapped by Kriging predictor model at 1 

k , denoted by:   2 

    k
k reR   θ   (28a) 3 

    k
k trT   θ   (28b) 4 

The details of Kriging surrogate model are omitted and interested readers are referred to [53]. 5 

The formulated algorithm is shown in Table 1.  6 

3.3 Formulation of Bayesian inference for damage identification 7 

Based on the probabilistic model for scattering coefficients introduced in Section 3.1, the 8 

coefficients predicted by the physics-rich model containing the parameters to be updated and 9 

the experimentally measured scattering properties can be connected statistically. On the basis 10 

of such connections, the likelihood function will be formulated hereby. Based on the 11 

framework of Bayesian system identification [35], the posterior distribution can be achieved 12 

by incorporating the prior information of the updated parameters and the likelihood function.  13 

As is derived in the Appendix A, the variances of the FFT coefficient of the reflected 14 

wave signal and the transmitted wave can be approximated by:  15 

   2 2 2=re in rekR  θ  (29a) 16 

   2 2 2=tr in trkT  θ  (29b) 17 

where  2 varin inX  ,  2 varre reX   and  2 vartr trX   denote the variations of the incident 18 

wave, the reflected wave and the transmitted wave, respectively; re and tr denote the 19 

variances of the prediction errors of reflection and transmission coefficients;      rk
k
eR θ θ  20 
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and    tk
k
rT θ θ  denote the computed reflection and transmission coefficients at θ , which 1 

are predicted by using the Kriging model introduced in Section 3.2.  2 

As a result, substituting Eq. (29) into Eq.(7) and Eq. (8) leads to 3 
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Conditioned on the set of measurements  1 2= , ,k k k k k   D  formed over 1 2[ , ]k k    , 6 

the likelihood function is given by 7 
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According to the Bayes’ theorem shown in Eq. (1), we can condition the prior on the training 10 

data and integrate over the prior distribution of the coefficients to obtain the posterior 11 

uncertainties of  ,= tr θ : 12 

       , expp p L   M MD            (32) 13 

with  L  denoting the negative-log likelihood function given by  14 
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As a result, the posterior distribution  ,p  M D   of the damage identification parameters and 16 

prediction-error parameters can be achieved using TMCMC algorithm [39].  17 
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4 Step-by-step description of the Proposed Methodology  1 

     The proposed methodology is outlined below and its flowchart is shown in Fig. 6:  2 

(a) Determine the scattering coefficients for the structure under investigation by GW 3 

measurements: 4 

 Excite the damaged structure and measure the incident wave  inx t , reflected wave  rex t  5 

and transmitted wave  trx t ;  6 

 Take FFT for incident wave  inx t , reflected wave  rex t  and transmitted wave  trx t  to 7 

obtain  in kX  ,  re kX   and  tr kX  ;  8 

 Estimate scattering coefficients k  and k  by taking the absolute ratio of FFT of 9 

reflected/transmitted wave (i.e.,  re kX   and  tr kX  ) and that of incident wave  in kX  ;  10 

(b) Construct Kriging surrogate model to numerically compute the relationship between the 11 

scattering coefficients and the damage characterization parameters θ :  12 

 Generate the sampling points of the parameters       1 2= , s
T

nΘ θ θ θ  using the proposed 13 

experiment design strategy; 14 

 Compute the reflection coefficients    i
re kY  and transmission coefficients    i

tr kY  at 15 

each sample input  iθ  using the hybrid WFE formulation introduced in Section 3.2.1; 16 

 Construct the Kriging model    k
k reR  θ and  k

k trT  θ  from the training set 17 

  , re kre  Θ Y and   , tr ktr  Θ Y to predict the reflection and transmission 18 

coefficients at any input θ ;  19 

(c) Formulate the likelihood function with the scattering coefficient estimates and those 20 
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predicted by the surrogate model in tandem with WFE according to Section 3.3;  1 

(d) Calculate the posterior uncertainty of θ  with TMCMC. 2 

 3 

Fig. 6: Flowchart of the Bayesian inference for damage characterization with scattering 4 

coefficients estimates and hybrid WFEM scheme  5 

Measure Incident, Reflected and 
Transmitted Wave  

Solve the Bayesian Inference Problem with TMCMC  

Construct Kriging Surrogate Model 
with Training Samples 

Obtain Training Output of Scattering 
Coefficients with Hybrid WFE 

Generate the Sampling Points with 
Experiment Design Strategy 

Take FFT for Incident, Reflected 
and Transmitted Wave 

Estimate Reflection and 
Transmission Coefficients  

Experimental Study 
(Section 3.1) 

Numerical Analysis 
(Section 3.2) 

  

 Formulate Likelihood Function 
 (Section 3.3) 
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5. Case Studies  1 

5.1 Numerical validation: 3-D beam structure  2 

 3 

Fig. 7: The FE model of the 3-D beam, depicting the damaged coupling element in an 4 

arbitrary position within the beam, as well as a portion of the healthy waveguide showing the 5 

cross-sectional meshing employed in order to accurately capture the full wave basis 6 

(including higher order Lamb modes) in a broadband sense  7 

The numerical case study refers to a 3D beam structure modelled through brick, solid 8 

linear elastic FEs. Simulated data of a 3-D beam shown in Fig. 7 are processed to further 9 

illustrate the computational efficiency of the proposed Bayesian inference algorithm. In this 10 

case, the Young’s modulus 70GPaE ; the area of the cross section 11 

-7 20.0009m 0.000 =6.3m m7 10 A ; the density of the mass 3 33 10 kg/m m  are the 12 

characteristics of the healthy parts of the beam. In the presented case, linear, 8-node 3D 13 

elements have been employed throughout the validation case studies. ANSYS (SOLID185) 14 

was used for formulating the mass, stiffness and damping matrices for the structures. The 15 

element size is 0.5mm, which is about 20 times smaller than the smallest desired wavelength 16 

damage 
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to be captured. Damage is assumed to occur in the middle of the beam. The mass and stiffness 1 

matrices of the healthy waveguide are denoted by undK  and undM , respectively. For the 2 

damage scenario, the stiffness scaling factors and mass scaling factor are introduced to model 3 

the damaged element, i.e., d undK K  and d undM M . For the damage scenario, it is 4 

assumed that 0.5   and 1  .  5 

 6 

                                        (a)                                                                      (b)   7 

 8 
                                        (c)                                                                          (d)   9 
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Fig. 8: Pseudo-experimental, explicit FE results obtained for (a) the reflection coefficients 1 

for the longitudinal mode; (b) the transmission coefficients for the longitudinal mode; (c) 2 

the reflection coefficients for the torsional mode; (d) the transmission coefficients for the 3 

torsional mode. There results will later be injected within Bayesian inference scheme in 4 

order to identify the damage characteristics that they represent. 5 

 6 

The beam is excited by a 5-cycle Hanning-windowed sinusoidal tone burst with the 7 

central frequency of 200 kHz. The desired modes including the longitudinal mode, torsional 8 

mode and bending mode are generated by modeling the effect of piezoelectric actuators on the 9 

beam. The incident wave, reflected wave and transmitted wave corresponding to different 10 

modes are simulated using full, explicit FE modelling. Based on the explicit simulations, the 11 

acquired reflection and transmission coefficients for the longitudinal (S0), torsional (T0) and 12 

bending (A0) modes can be estimated; the scattering coefficients of the first two modes are 13 

illustrated in Fig. 8. It is worth noting again that the obtained scattering coefficients are 14 

frequency-dependent, and only the frequency band around the excitation central frequency 15 

 150,250 kHz  will be utilized for damage identification.  16 

The parameters 0.5   and 1   are left as unknowns to be determined through the 17 

Bayesian estimation, i.e., the parameter set to be identified includes  ,in tr     , , . Before 18 

statistically inferring these parameters, the surrogate approximation between the scattering 19 

coefficients and damage characterization parameters  =  θ ,  should be realized. The 20 

possible ranges of parameters are set to be  0.5 ,1.5   and  0.5 ,1.5  . A thousand samples 21 
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of  =  θ , were generated as training points. The hybrid WFE is built using 8-node 3D 1 

linear elastic hexahedral element, leading to 432 DoFs for the damaged coupling element and 2 

216 DoFs for the damage segment and the waveguide, respectively. The hybrid WFEM is run 3 

for each training point to obtain the scattering coefficients of different dispersion modes at 4 

different discrete frequencies within  150,250 kHz , yielding two vectors with each one 5 

composed of thousands of training data outputs. With these sampling points and training 6 

outputs at hand, the Kriging predictor models are formed at each frequency point k .  7 

Table 2: Identified results for the 3-D beam   8 

 
Parameters 

TMCMC assisted by Surrogate 
Approximation 

TMCMC without using 
Surrogate Approximation 

MPV Mean c.o.v. (%) MPV Mean c.o.v. (%) 
  0.5105 0.511 0.18 0.508 0.509 0.22 

  1.003 1.002 0.33 1.008 1.006 0.38 

in  0.0008 0.00075 12.80 0.0007 0.0007 14.75 

tr  0.00243 0.023 11.47 0.0162 0.0169 15.53 

Time  1249.7 s 15855.8 s 

Based on the surrogate model and the pseudo-experimental scattering coefficients, the 9 

Bayesian approach is utilized for inferring the posterior distribution of  ,in tr     , , . The 10 

prior distributions of updating parameters are all taken to be of uniform distribution. The 11 

bound of stiffness scaling factor is equal to  0.5 ,1.5  , while the bound of the mass scaling 12 

factor is assumed to be  0.9 ,1.1  . It is worth noting that the variation of   is taken to be 13 

small so as to avoid making the identification problem ill-conditioned when treating   and   14 

as uncertain variables simultaneously.  15 



 

37 

 

By setting the TMCMC parameters to be 0.1tolCov  and 1000jN  , the Bayesian 1 

inference takes 13 stages to achieve the posterior uncertainties, and the sampling points at 2 

different stages are indicated in Fig. 9. The scatterplot matrices of  ,in tr     , ,  are 3 

present in Fig. 10 as a 4 × 4 plot matrix. Diagonal plots indicate the marginal distributions of 4 

the model parameters. The plots above/below the diagonal in Fig. 10 can indicate the 5 

correlation between two parameters. From the projections in the   and   space, the 6 

uncertainties in the   and   are strongly correlated. This result is consistent with the 7 

intuition that the mass parameter and stiffness parameter are strongly correlated. Table 2 8 

summarizes the results for simple measures such as the mean, the MPV and the c.o.v. of 9 

 ,in tr     , , . It is obvious that the mean is very close to the exact results, and the 10 

standard deviation of the marginal distribution of the model parameters is very small.  11 

 12 

(a)                                                     (b)                                               (c)  13 

 14 

                            (d)                                                  (e)                                                  (f)  15 
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Fig. 9: Convergence diagram of stochastic samples in the plane of   ,  at different stages in 1 

Bayesian inference for damage detection of the 3-D beam using TMCMC: (a) stage 1; (b) 2 

stage 2; (c) stage 3; (d) stage 5; (e) stage 10; (f) stage 13.  3 

 4 

Fig. 10: Scatterplot matrices of the identified parameters of the 3-D beam. Diagonal plots 5 

indicate the marginal distributions of the model parameters.  6 

 7 

The advantage of the proposed methodology in computational efficiency is next 8 

demonstrated by comparing the time costs for the cases with/without using hybrid WFEM 9 

scheme and surrogate model. We performed the Bayesian inference problem for all scenarios 10 

on a multicore server with Intel® Xeon® W-2123 Processor (8.25M Cache, 3.60 GHz) and 11 

32GB of RAM. In this case study, there are 432 DoFs and 216 DoFs for the damage segment 12 

and the waveguide. It would cost us around 1000s to build the surrogate model with WFE 13 

scheme. The time consumption of TMCMC assisted by Kriging model is around 1024 14 

seconds, while TMCMC without using surrogate model cost us more than 15000s and the 15 



 

39 

 

corresponding results are compared in Table 2. If explicit FE simulations without using 1 

hybrid WFEM are employed for Bayesian inference, it is highly non-trivial to achieve the 2 

results. For this 1-D wave propagation case, the time consumed by explicit FE method is 3 

around 1300 times of that cost by hybrid WFE scheme in each run. As a result, the 4 

computational efforts and the required memory space will increase explosively compared 5 

with hybrid WFEM scheme as one has to carry out a large number of runs of full FE scheme 6 

in stochastic simulation, with each run involving the calculation of the scattering coefficients 7 

at different frequencies. For more complicated structures and multiple damage scenarios, the 8 

curse of the computational burden will be even worse. Thus, compared with explicit FE 9 

solution, using surrogate approximation and hybrid WFE scheme can lead to a drastic 10 

reduction in the computational effort, without sacrificing in accuracy.  11 

5.2 Experimental verification using a composite beam with a crack  12 

To investigate the feasibility of the proposed method in real applications, a carbon fiber strip 13 

shown in Fig. 11 was tested in the laboratory. The geometry dimensioning of the specimen is 14 

950mm (length) × 7.7mm (width) × 1.0mm (thickness). The beam was tested without damage 15 

and with a crack (the width =2.0W mm  and the depth 3.2D mm  measured by caliper) to 16 

obtain the wave propagation velocity properties, as well as the scattering coefficients. The 17 

sketched dimensions of the beam and the configuration of different piezoelectric (PZT) 18 

sensors can be observed in Fig. 12.  It is worth mentioning here that the details of the material 19 
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are unknown and we will estimate the wave propagation characteristics from the experimental 1 

measurements. 2 

 3 

                            4 

Fig. 11: Experimental suite used comprised of a laptop, an arbitrary waveform generator, and 5 

an oscilloscope  6 

 7 

 8 

 9 

Fig. 12: Damage position and transducer locations within the carbon fiber strip (dimensions in 10 

mm)  11 

 12 

In the experimental test, one PZT was placed on the left end of the beam serving as the 13 

actuator while the other two PZTs serves as sensors in a pitch-catch configuration. 14 

Specifically, the specimen was excited with an ultrasonic sine-burst centered at different 15 

frequencies (from 50kHz-250kHz with a step frequency of 10 kHz) with each scenario 16 

consisting of 3 cycles and 8 Vpp amplitude, using a Keysight 33512B arbitrary waveform 17 

Crack depth 

Crack width 

Sensor 2 Sensor 1 Actuator 
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generator. The guided waves registered in the sensor transducers were acquired by a 1 

DSOX2014A oscilloscope applying a sampling frequency of 9.6 MHz. Each of these 2 

measurements corresponds to the average of 32 individual measurements, to reduce random 3 

noise. Regarding the piezo ceramic transducers, a rectangular width mode vibration type of 4 

transducer (Steminc part number: SMPL7W8T02412WL) was selected to principally excite 5 

elastic waves in the length direction, in order for edge reflections to be minimized. 6 

       For the ultrasonic GW testing, the first symmetric (S0) GW type was fully identified at 7 

different frequencies from 50 kHz to 250 kHz with a step frequency of 10 kHz. The S0 mode 8 

propagation velocity, at various frequencies, was obtained based on the measurements of the 9 

undamaged carbon strip before the data are processed for damage characterization. 10 

Considering that the S0 mode is non-dispersive, the calculation consisted on measuring the 11 

first minimum peak of the wave packet, subtracting both time of flights and dividing the 12 

distance between sensors by this time of flight difference as 13 

 
0SV d t   (34) 14 

where d  and t  denote the distance between two sensors and the time of flight difference 15 

which is indicated in Fig. 13(a). The considered distance is 325d mm , and it is measured 16 

from center to center of the PZT transducers. The velocity of the wave corresponding to 17 

different excitation central frequencies is shown in Fig. 13(b). Based on the velocity, the 18 

Young’s modulus for the tested beam can be calibrated according to the theory presented in 19 

[11], and their values are estimated as 70Gpa . The density of the beam is also tested by 20 

measuring the weight and the volume, and the calibrated density is 3=1.29kg/m .  21 
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    1 

(a) 2 

 3 

(b) 4 

Fig. 13: Signals obtained by both sensor transducers at 100kHz showed in (a) and the wave 5 

propagation velocities obtained for the S0 mode at different frequencies following the same 6 

method in (b) 7 
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            1 

(a)                                                      (b) 2 

Fig. 14: FEM of the damaged carbon strip (a) and periodic elastic waveguide (b).  3 

 4 
 5 
 6 

 7 

Fig. 15: Transmission coefficients estimated using the first symmetric (S0) GW signals 8 

excited at different frequencies from 140 kHz to 250 kHz with a step frequency of 10 kHz. 9 

 10 
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In this study, the DoE training points for W  and D  are generated as training samples 1 

using LHD. In each computer experiment, the numerical predictions of the transmission 2 

coefficients at different frequencies are calculated using the hybrid WFE scheme. The training 3 

data is then used for constructing the Kriging model reflecting the mathematical relationship 4 

between transmission coefficients and the crack parameters  W D, . The damaged coupling 5 

element could exhibit complex mechanical behaviour through damage inconsistencies and is 6 

fully modelled using solid 3D element in ANSYS. The FE models of the damaged segment 7 

and the waveguide are illustrated in Fig. 14. The damaged segment includes thousands of 8 

DoFs, varying for different training points due to the variation of the crack width and depth. 9 

The waveguide includes 480 DoFs. Given that no surrogate model is used, the manipulation of 10 

high dimensional DSMs at a number of frequencies can rule out Bayesian approaches due to 11 

the expense of carrying out huge number of runs in stochastic simulations.  12 

The acquired responses at “Sensor 2” with a crack were processed. The first crack-13 

scattered wave component, is the transmitted S0 mode. The incident wave and the transmitted 14 

wave were processed to determine the measured transmission coefficients. The transmission 15 

coefficients corresponding to different frequencies are presented in Fig. 15; these will be used 16 

to identify the crack size including the width W and the depth D . The parameter set to be 17 

identified includes  , trW D , . A uniform prior distribution was used with bounds 18 

   0.8 ,5 0.5 ,3.5mm mm mm mm  for  W D, and  0.05,0.25  for the prediction-error parameter 19 

tr . Using the posterior samples from the last stage of TMCMC, we proceed to calculate the 20 

uncertainty in some representative parameters. The mean values and the c.o.v. are presented 21 
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in Table 3. These values are also compared with the crack size measured by calipers in the 1 

second column of Table 3. Fig. 16 presents the 3× 3 scatterplot matrices of  , trW D , . The 2 

c.o.v. values of different parameters are of different orders of magnitude.  3 

Table 3: Identified results of the composite beam 4 

Parameters Measured 
values 

Identified values  
Mean Variance c.o.v. (%) 

D  (mm) 3.20 3.61  0.278 7.697 

W  (mm) 1.98 1.75  0.872  49.835 

tr  - 0.1553 0.0326 21.026 

 5 

 6 

Fig. 16: Scatterplot matrices of different parameters of the composite beam. Diagonal plots 7 

indicate the marginal distributions of the model parameters. 8 

 9 

As observed from Table 3 and Fig. 16, the calibration procedure yields a reasonable 10 

capture of the distribution function. However, there is still discrepancy between the identified 11 

crack size and the measured crack size. The differences are attributable to the model error 12 
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associated with the inconsistencies between the ideal structural model in FEM and the 1 

practical specimen in experiment, such as differences in damping and dispersion, and 2 

differences in crack shape and the actual one. More specifically, the posterior c.o.v. of the 3 

depth is much smaller than that of the width, indicating that the depth can be identified with 4 

higher accuracy. Finally, it is important to highlight the main limitations of this approach. It 5 

has potential issues as it is dependent on the damage model of the structure and the scattering 6 

properties measurements. If the transmission coefficients cannot be estimated correctly 7 

through physics-based approaches, or if several GW modes are mixed together, then the 8 

presented methodology can become computationally unbearable. One of our future endeavors 9 

is the employment of a 2D FFT within the identification scheme in order to simultaneously 10 

work with several GW modes (this can be done individually with the exhibited scheme as it 11 

currently stands). 12 

6 Concluding Remarks 13 

Ultrasonic GWs have played an important role in modern SHM technologies due to their high 14 

sensitivity to small damage and early damage initiation. We hereby presented the first attempt 15 

to investigate the possibility of using scattering coefficients for probabilistic damage 16 

identification, through the uniqueness of GW interactions with each damage scenario. In the 17 

context of damage detection with GWs, modelling error as well as measurement noise will 18 

inevitably affects the results. This emphasizes the importance of using a comprehensive 19 

statistical framework to account for the uncertainties in the parameters and their propagation 20 



 

47 

 

when in need for robust predictions consistent with experimental data. By making full use of 1 

the Bayesian system identification framework to account for measurement noise and 2 

modeling errors, this study aims at formulating a new, generic framework for probabilistic 3 

damage identification. This is achieved by integrating a hybrid WFEM scheme employed for 4 

scattering coefficient estimates, a Kriging predictor model as well a TMCMC stochastic 5 

simulation technique. The following conclusions are drawn from the presented study: 6 

 Defined as the ratio of Fourier transform of two measurements, the measured scattering 7 

coefficients can be well modeled as an absolute complex Gaussian ratio random variable 8 

with concise and explicit closed-form solutions. As a result, one can embed the 9 

“deterministic” structural damage characterization models within the class of probability 10 

model of scattering properties, so that the damage identification models give a predictable 11 

(“systematic”) part and the prediction error is modeled as an uncertain (“random”) part in 12 

the statistical inference problem. The likelihood function connecting the scattering 13 

properties predicted by the physics-rich scheme and the scattering coefficient estimates is 14 

formulated within a Bayesian system identification framework, while the TMCMC is 15 

utilized to sample the posterior PDF of the updated parameters.  16 

 The stochastic simulation becomes prohibitively expensive, and the difficulty in 17 

interfacing different software environment (e.g., stochastic simulation toolbox in 18 

MATLAB) with the FE analysis package (e.g., ANSYS) can limit the applicability of the 19 

proposed probabilistic damage characterization algorithm. Kriging surrogate modelling 20 

provides a surrogate mapping between the probability spaces of the damage parameters to 21 
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be identified and the model predictions of scattering coefficients; it is thus capable of 1 

replacing the extensive FE simulations required in the likelihood evaluations by very fast 2 

approximate estimates.  3 

 To create a Kriging predictor model, an experiment design strategy which generates 4 

samples referenced as the training set is required. For each training point, the hybrid 5 

WFE approach is employed to predict the numerical predictions for scattering 6 

coefficients. The hybrid WFE is proved to be approximately 1,300 times faster than 7 

explicit FE simulations, therefore rendering the presented identification strategy feasible. 8 

The method relies on post-processing a standard FE model of a small segment of each 9 

waveguide using periodic structure theory. The models for the periodic healthy 10 

waveguide and the one of the damaged joining elements are coupled to yield the 11 

scattering matrices for the considered damage scenario. 12 

 The accuracy and efficiency of the proposed methodology are validated by using the 13 

responses of one numerical example and one experimental study. The TMCMC assisted 14 

by surrogate model in tandem with the hybrid WFE can obtain satisfactory results with 15 

similar accuracy but save much computational effort and enhance the operability 16 

significantly, without resorting to interfacing different software. Results also show that 17 

we are able to identify damage in experimental scenarios, even with unknown material 18 

characteristics, but with a lower precision compared to the numerical case.   19 

 Compared with the time domain approaches, the frequency domain approach has unique 20 

features. First, the scattering coefficients as frequency-dependent quantities in nature 21 
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have very clear physical meaning, which can describe the quantitative relationship 1 

between wave scattering and damage intensity. Furthermore, the frequency domain 2 

approaches are more computationally efficient than the time domain approaches, as the 3 

FFT coefficients at different frequencies are independently distributed [36,38], which 4 

indicates the likelihood function can be formulated more efficiently by multiplying the 5 

PDF at different frequency points directly, while one ought to estimate the covariance 6 

matrix among the outputs corresponding to different time for the time domain approaches. 7 

In addition, scattering coefficients working in the frequency domain can utilize data to 8 

selected bandwidths to legitimately control the excitation frequency and exclude the 9 

information from the noise spectrum. 10 

 As a feasibility study, it is worth mentioning that the algorithm proposed in this study is 11 

not devoid of problems. As an example, wave mode conversion can take place when a 12 

GW impinges on the damage interface. While this phenomenon can actually increase the 13 

richness of information acquired for the present damage, it becomes computationally 14 

demanding to consider all conversion combinations and extract robust conclusions out of 15 

them. This is however a future research direction of intense interest. How to propagate 16 

the damage uncertainties due to mode conversion is, again, a future endeavor.  17 

 18 
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 9 

Appendix A: the variances of the reflection and transmission coefficients  10 

In the context of Bayesian inference with scattering coefficients, the measured outputs and the 11 

numerical model outputs are connected as follows:  12 

  k k reR   θ  (A1) 13 

  k k trT   θ  (A2) 14 

Based on the Kriging predictor model introduced in Section 3.2.2, the prediction of scattering 15 

coefficients at different frequency points at θ is given by   16 

    k
k reR  θ   (A3) 17 

  k
k trT  θ   (A4) 18 

Eq.(A1) and (A2) can be rearranged as  19 

 
 
 

   = kre k
re re

in k

X

X


 


θ  (A5) 20 
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 
 

  (θ)ktr k
tr tr

in k

X

X


 


  . (A6) 1 

As a result, one has  2 

    = θk
re in re reX X      (A7) 3 

  = (θ)k
tr in tr trX X     . (A8) 4 

From (A4), one can obtain the variances of reX and trX as follows:  5 

           
2

var =var θ vark
re in re reX X     

 (A9) 6 

         
2

var =var (θ) vark
tr in tr trX X     

. (A10) 7 

In real applications, it is usually assumed that the variation of the prediction error are 8 

constants, i.e.,  = varre re  and  = vartr tr  . By denoting that  2 varin inX  ,  2 varre reX  , 9 

 2 vartr trX  , (A5) can be expressed as:  10 

     2
2 2= k
re in re re     

 
θ  (A11) 11 

     2
2 2= k
tr in tr tr     

 
θ  (A12) 12 

 13 
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