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Abstract: Assembling local mode shapes identified from multiple setups to form global mode 13 

shapes is of practical importance when the degrees of freedom (dofs) of interest are measured 14 

separately in individual setups or when one expects to exploit the computational autonomous 15 

capabilities of different setups in full-scale operational modal test. The Bayesian mode 16 

assembly methodology was able to obtain the optimal global mode shape as well as the 17 

associated uncertainties by taking the inverse of the analytically derived Hessian matrix of the 18 

negative log-likelihood function (NLLF) [1]. In this study, we investigate how the posterior 19 

uncertainties existing in the local mode shapes obtained from different setups propagate into 20 

the global mode shapes in an explicit manner by borrowing a novel approximate analysis 21 

strategy. The explicit closed-form approximation expressions are derived to investigate the 22 

effects of various data parameters on the posterior covariance matrix of the global mode 23 

shapes. Such quantitative relationships, connecting the posterior uncertainties with global 24 

mode shapes and the data information, offer a better understanding of uncertainty propagation 25 
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over the process of mode shape assembly. The posterior uncertainty of the global mode 1 

shapes is inversely proportional to ‘normalized data length’ and the ‘frequency bandwidth 2 

factor’, and propositional to ‘noise-to-environment’ ratio and damping ratio. Validation 3 

studies using field test data measured from the Metsovo bridge located in Greece provide a 4 

practical verification of the rationality of the theoretical findings of uncertainty quantification 5 

and propagation analysis in Bayesian mode shape assembly.  6 
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Uncertainty propagation; Approximation analysis 8 
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1 Introduction 1 

Operational modal analysis (OMA) which primarily identifies the natural frequencies, 2 

damping ratios and mode shapes has gained increasing popularity in both theoretical 3 

developments and practical applications. In full-scale operational modal tests, assembling 4 

mode shapes identified from multiple setups often arises due to a number of practical reasons 5 

[1-3] shown as follows:  6 

 The degrees of freedom (dofs) of interest are often measured separately as the number of 7 

sensors available is usually not adequate to cover the entire structure in one setup under a 8 

limited instrumentation budget. 9 

 The amount of data acquired may be too large to be processed simultaneously in a single 10 

setup even when the number of sensors available is large enough for modal testing, which 11 

poses challenges for computers with limited memory space or computation capacity. 12 

 One can exploit the computational autonomous capabilities of wireless sensor network by a 13 

distributed computing strategy in full-scale operational modal test. The wireless sensors are 14 

usually divided into several communities with each community composed of a cluster head 15 

node and several leaf nodes. Each cluster processes partial mode shape information 16 

corresponding to the dofs of the cluster nodes.  17 

In all these cases, the dofs of interest are usually divided into several sensor setups with 18 

common ‘reference’ dofs present across different setups. The acquired data for each setup is 19 

usually processed individually. Usually, one shares only a single fixed reference sensor across 20 

any two setups, whose mode shape component is then normalized to unit [4,5]. However, in 21 
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many cases, no fixed reference dofs are shared by all setups. Worse still, more than one 1 

reference dof is required when the reference dof lacks modal contribution in some particular 2 

modes. Therefore, it is challenging to assemble a group of local mode shapes which share 3 

more than one reference sensors or share unfixed references sensors.  4 

When addressing the issue of mode shape assembly, uncertainties existing in the local 5 

mode shapes stemming from measurement noise and modelling error will inevitably 6 

propagate into the assembled global mode shapes. The assessment and study of the 7 

uncertainty or variability has now been widely recognized as an important consideration in 8 

OMA [6-8]. A number of statistical approaches have been developed to quantify the 9 

uncertainty of OMA over the past decades [9-15]. Prominent references of statistical 10 

approaches include the development of frequency-domain maximum likelihood (ML) 11 

techniques [9-11] and stochastic subspace identification (SSI) based methods [12-15]. 12 

Bayesian statistics is considered to be another promising approach for uncertainty 13 

quantification as it views probability as a multi-valued propositional logic for plausible 14 

reasoning [16]. Beck and Katafygiotis proposed a Bayesian system identification framework 15 

[17], which lead to an increase in interest in the application of Bayesian statistics in various 16 

fields of structural dynamics, including structural model updating [18-22], damage detection 17 

[23], reliability updating [24,25], model selection [26,27], etc.  18 

Bayesian statistics has also played an important role in addressing the problem of OMA 19 

driven by the statistics of time histories, FFT, PSD, and transmissibility function [28-40]. In 20 

the field of OMA, the first-generation Bayesian OMA approaches in the time domain and 21 
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frequency domain were proposed by Yuen and Katafygiotis [28-30]. These works lay a 1 

mathematically rigorous theoretical foundation for OMA accommodating multiple 2 

uncertainties. Unfortunately, the original formulations suffer from some computational 3 

problems. More recently, the second-generation Bayesian OMA approaches have been 4 

proposed due to a novel contribution made by Au [31,32] through employing advanced 5 

mathematical techniques to address the computational challenges of the conventional 6 

Bayesian FFT approach [28]. The fast Bayesian OMA method has been successfully applied 7 

to a number of engineering structures. However, the work on uncertainty analysis for mode 8 

shape assembly is still relatively rare. Uncertainty quantification and propagation for global 9 

mode shapes has remained an important problem worth of further investigation in the field of 10 

OMA.  11 

Inspired by the ‘global least squares approach’ [2] which has great advantages over the 12 

‘local least squares method’, a Bayesian algorithm that has no need to share the same set of 13 

reference dofs in order to obtain proper scaling to form the overall mode shapes was proposed 14 

in [1]. The proposed algorithm is able to account for the weight for different setups properly, 15 

according to the various setups’ data quality. The probability distributions of the global mode 16 

shapes are updated from their initial prior distribution to the posterior distribution given the 17 

measured data and modelling assumptions. The most probable global mode shapes are 18 

represented by the peaks of the posterior distribution, while their posterior uncertainties are 19 

provided by the spread of the distribution around the most probable values (MPV).  20 
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In [1], the covariance matrix of the global mode shapes can be obtained by directly 1 

taking the inverse of the Hessian matrix using numerical methods. However, such implicit 2 

numerical implementation does not allow one to investigate intrinsic uncertainty propagation 3 

properties [38,39]. For example, it is highly non-trivial to identify how different data 4 

parameters (e.g., data duration, the number of data segments or the spectral bandwidth) will 5 

affect the overall uncertainty of the assembled global mode shapes. To realize the 6 

aforementioned objective, it is natural for one to seek a deeper understanding of the process of 7 

uncertainty propagation in mode shape assembly problem by resorting to an analytic solution.  8 

By employing an innovative approximation analysis strategy, explicit closed-form 9 

approximation of the posterior uncertainty of the local mode shape corresponding to a single 10 

setup have been derived analytically in the case of well-separated modes, small damping and 11 

sufficient data in [38,39]. Making full use of the work on uncertainty law of ambient modal 12 

identification [38,39], the primary focus of this paper is to further analytically derive explicit 13 

expressions for the approximated covariance matrix of the assembled global mode shapes in 14 

terms of different data parameters. The derived expressions are insightful, indicating how the 15 

posterior uncertainties of the local mode shapes quantified by using fast Bayesian FFT 16 

approach confined to different setups propagate into the assembled global mode shapes in an 17 

explicit manner. The implications of these results are also investigated and verified with 18 

simulated data and field test data.  19 

This paper is organized as follows: For the sake of completeness, the general formulation 20 

of the Bayesian mode shape assembly algorithm [1] is briefly reviewed in section 2. In section 21 
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3, the approximate posterior covariance matrix of the global mode shapes is derived 1 

analytically under asymptotic conditions. In section 4 and section 5, the theories are verified 2 

using simulated data of a 2-D shear building and the field test data of the Metsovo bridge 3 

located in Greece.  4 

2 Bayesian Uncertainty Quantification for Mode Shape Assembly 5 

Setup 01

Sensors

Setup nt......

Sensors

Setups

reference sensors

......Setup i

 6 

Fig. 1: Common architecture for operational modal test with multiple setups  7 

As shown in Fig. 1, the dofs of interest are divided into several groups which are 8 

measured separately with common ‘reference’ dofs present across different setups. It is 9 

assumed that there are tn setups included in the ambient vibration test, and the number of 10 

sensors measured in the - thi  setup is in . The total number of distinct measured dofs from all 11 

setups is denoted by ln , where   
1 1

1 1 1
t tn n

l i t i
i i

n n n n
 

   - = - since at least one dof in each setup 12 

is shared by at least another setup. For each setup, the modal properties can be identified by 13 

utilizing Bayesian approaches such as fast Bayesian FFT approach [31]. Suppose that ,r if  14 

(modal frequency), ,r i  (modal damping ratio), , ,S f r i ( Power Spectral Density (PSD) of modal 15 

excitation) and , ,r is  (PSD of prediction error) denote the spectrum variables of the -thr mode 16 

identified using the data information of the - thi  setup only, while ,
ˆ in

r i ψ  and 17 
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,

i i

r i

n nψC  denote the optimal values and covariance matrix of the -thr local mode shape 1 

confined to the measured dofs of the - thi setup ( 1,2, , )ti n  .   2 

2.1 Basic formulation of Bayesian mode shape assembly algorithm 3 

The mode shape assembly problem amounts to determining the global mode shapes that 4 

best fit the identified local counterparts. Let ln
r φ  be the - thr  global mode shape covering 5 

all measured dofs which are required to be identified, while ,
in

r i φ  be the components of 6 

rφ confined to the measured dofs in the - thi setup. The local mode shape ,r iφ can be 7 

mathematically related to the global mode shape rφ as [2]  8 

 ,r i i rφ L φ  (1) 9 

where i ln n
i

L  is a selection matrix, with elements ( , ) 1i p q L if the - thp sensor of 10 

the - thi setup  corresponds to the - thq dof of rφ and zero otherwise.  11 

It is worth noting that ,
ˆ

r iψ identified using Bayesian approach [31] is normalized to unity. 12 

Therefore, the measure-of-fit should be implemented based on the discrepancy 13 

between , ,r i r iφ φ and ,
ˆ

r iψ , both have been subjected to similar normalization involving unit 14 

norms. Since the - thi local mode shape ,
ˆ

r iψ can be well-approximated by a Gaussian 15 

distribution, the likelihood function
,, ,

ˆ( , )
r ir i r ip ψψ C φ expressing the contribution of 16 

,,
ˆ( , )

r ir i ψψ C is given by 17 

 
, ,

1
, , , , , , , ,

1
ˆ ˆ ˆ( , ) exp[ ( ) ( )( )]

2r i r i

T
r i r i r i r i r i r i r i r ip    ψ ψψ C φ φ φ ψ C φ φ ψ  (2) 18 

As vibration testing for different setups are conducted independently and data sets are 19 

independently collected, it is reasonable to assume that local mode shapes identified from 20 
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different setups are statistically independent, then the updated probability of the global mode 1 

shape given the measured local mode shapessatisfies:  2 

 
,0 0 , ,

1

ˆ( ) ( ) ( ) ( ) ( , )
t

r i

n

r r r r r i r i
i

p c p p c p p


     ψφ φ φ φ ψ C φ  (3) 3 

In the case where a non-informative prior is used, ( )rp φ can be written in terms of the 4 

‘negative log-likelihood function’ (NLLF) as ( ) exp( ( ))r as rp L  φ φ with  5 

    
,

1
, ,

1

1
ˆ ˆ( )

2

t

r i

n
T

as i r i r r i i r i r r i
i

L 



   ψL φ L φ ψ C L φ L φ ψ  (4) 6 

The above equation is subject to the constraint of =1T
r rφ φ . Determining the optimal rφ involves 7 

the minimization of (4) subject to the constraint of =1T
r rφ φ , which is not quadratic with 8 

respect to rφ . To avoid this computational difficulty, the objective function can be 9 

reformulated as [1],  10 

 
,

21 2
, , , , , ,

1 1

1
ˆ ˆ( ) ( )( ) (1 ) ( 1)

2

t t

r i

n n
T T

as r i i r r i r i i r r i r r r r i r i i r
i i

L     

 

        ψL φ ψ C L φ ψ φ φ L φ  (5) 11 

where the auxiliary variables 2
,r i  and ,r i denote Lagrange multipliers that enforce 12 

22
, 1r i i r  L φ ; r is Lagrange multiplier that enforce the unit norm condition =1rφ . The full 13 

set of parameters to be identified is , ,{ , , , : 1,2 , }as r r r i r i ti n   λ φ  .  14 

2.2 MPVs of the global mode shapes  15 

Sharing some common features with the ‘global least squares method’, the minimization 16 

problem (5) can be solved by an iterative solution strategy to address the difficulties 17 

stemming from the high-dimensional and nonlinear nature of the problem. The initial guess of 18 

the global mode shapes is taken as the eigenvector (with unit norm) of Θ with the smallest 19 

eigenvalue [3,4] 20 
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   , ,
1

ˆ ˆ
i

i

n
T T
i r i i r i n i i

i

 Θ L ψ D ψ I D L  (6) 1 

where iD is the sum of PSD matrices over all frequencies in the selected band in setup i . 2 

Given the initial guess of the global mode shapes, a sequence of iterations comprised of the 3 

following linear optimization problems can be implemented to solve the Bayesian mode shape 4 

assembly problem. Instead of optimizing the full set of parameters simultaneously, the 5 

optimal parameters can be optimized in two groups, one group at a time assuming fixed 6 

values for the parameters in all remaining groups, until convergence is reached [1]:  7 

(1) Optimal ,r i and ,r i  8 

The optimal values of ,r i and ,r i in terms of rφ and r are firstly derived analytically:   9 

 , ,

1 1
,

, 2

ˆ( )
ˆ

22

r i r i

T T
i r i r r i i r

r i
i ri r


 

  ψ ψL φ C L φ ψ C L φ

L φL φ
 (7a) 10 

 ,

,

,

1
1, 1

, ,1
,

ˆ ( )
ˆ ˆsgn( )

ˆ
r i

r i

r i

T
r i i r T

r i r i i r i rT
r i i r i r







 ψ

ψ

ψ

ψ C L φ
ψ C L φ L φ

ψ C L φ L φ
 (7b) 11 

where sgn( ) denotes the signum function.  12 

(2) Optimal rφ and r  13 

The global mode shape rφ and the auxiliary variable r can be solved using the following 14 

constrained equation [1]:  15 

 r r r r r Α φ b φ  (8) 16 

where
,

2 1 2
, , ,

1 1

1

2

t t

r i

n n
T T

r r i i i r i r i i i
i i

  

 

   ψL C L L L and 
,

1
, ,

1

1
ˆ

2

t

r i

n
T

r r i i r i
i

b  



   ψL C ψ . Eq. (8) accompanied 17 

by the constraint
2

1r φ form a constrained eigenvalue problem, which can be solved by 18 

constructing an augmented vector satisfying the standard eigenvalue equation [2]: 19 
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  rΛz z  (9) 1 

where
t

T
r r r

n r

 
   

  

Α b b

I Α
and   2 t

T n
rz  φ y with y being an auxiliary vector. The first 2 

tn components of the vector   2 t
T n

rz  φ y just correspond to the MPVs of the global 3 

mode shapes ˆ
rφ .  4 

2.3 Posterior covariance matrix of the global mode shapes  5 

The posterior distribution of rφ can be well approximated by a multivariate Gaussian 6 

distribution centered at the MPVs ˆ
rφ . The posterior uncertainty of the global mode shape can 7 

be obtained by inverting the Hessian matrix of NLLF calculated at the optimal values ˆ
rφ . In 8 

the original formulation of the algorithm [1], the Hessian matrix of the modified NLLF 9 

asL with respect to the global mode shapes and the auxiliary variables involved in (5) is 10 

employed for calculating the uncertainties of global mode shape. However, the Hessian 11 

matrix with respect to , ,{ , , , : 1,2 , }as r r r i r i ti n   λ φ   is vulnerable to suffering from 12 

singularity. It is more accurate to calculate the uncertainties of rφ  using the original NLLF of 13 

(4) which is invariant to the constraint of rφ :  14 

 

   

,

,

1
, ,

1

1
, ,

1

1
ˆ ˆ( )

2

1
ˆ ˆ=

2

t

r i

t

r i

T
n

r r r r
as i i r i i i r i

i r r r r

n
T

i r i r r i i r i r r i
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ψ

φ φ φ φ
L L ψ C L L ψ

φ φ φ φ

L φ L φ ψ C L φ L φ ψ

 (10) 15 

According to the derivation shown in Appendix I, the Hessian matrix of (10) with respect to 16 

rφ can be obtained as:  17 
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2

, , ,

-3 3 2

, , ,
1

1 2

,

4 + +

4 + +2

3

t

r r

T T T T
r i r r r i r i i r r r i r i r r i

n
T T T T T T

as r i r r r i r i r r i r i r r i r i i r r i
i

T T T
r i r r i r i r r i

L


       
         
  
   

φ φ

φ B φ φ A φ B B φ φ A φ B φ A

φ B φ φ A φ B φ φ B φ B φ η φ B B φ η

φ B φ η φ B φ φ B

     (11) 1 

where  r r

asL φ φ denotes the Hessian matrix and  2 

 
,

1
, r i

T
r i i i

 ψA L C L  (12a) 3 

 T
i i iB L L  (12b) 4 

 
,

1
, ,

ˆ
r i

T T
r i r i i

 ψη ψ C L  (12c) 5 

As a result, the posterior covariance of the assembled overall mode shapes can be computed 6 

by taking the inverse of (11).  7 

It is worth noting that the NLLF (10) is invariant to the scaling of rφ , and the Hessian of 8 

NLLF has a zero eigenvalue with eigenvector rφ . Therefore, similar to [3], we have to exclude 9 

the irrelevant contributions from the singular terms (zero curvature) when taking the inverse 10 

of  r r

asL φ φ . Let 1 2{ , , , }
ln      be the eigenvalues of  r r

asL φ φ in ascending order, while the 11 

corresponding eigenvectors are assumed to be 1 2{ , , , }
ln  υ υ υ . The covariance matrix

rφC can be 12 

evaluated properly via its eigen-basis representation with the first smallest eigenvalue ignored: 13 

 1

2

=
l

r

n
T

j j j
j

 



  φC υ υ   (13) 14 

3 Uncertainty Propagation Properties in Mode Shape Assembly  15 

3.1 Approximate covariance matrix of the local mode shapes  16 

It is worth recalling here that that ,r if , ,r i  , , ,S f r i  , , ,r is , ,
ˆ in

r i ψ  and
,

i i

r i

n nψC   denote modal 17 

frequency, modal damping ratio PSD of modal excitation, PSD of prediction error, the 18 
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optimal values and covariance matrix of the -thr local mode shape confined to the measured 1 

dofs of the - thi setup ( 1,2, , )ti n  . For the -thr mode of -thi setup, assume that the frequency 2 

band selected for analysis is , ,2 r i r if (i.e.,  ,1s r if  ), with being defined as the ‘bandwidth 3 

factor’ [38,39]. As a result, the number of FFT ordinates contained in the selected frequency 4 

band is equal to [38,39] 5 

 
   , ,

, , ,

, ,

2
=Int =Int 2

1
r i r i

f r i c r i

c r i n

f
N N

N T




 
 
 
 

  (14) 6 

where  Int  denote round number to make sure that fN  be an integer; , ,c r iN denotes the 7 

‘normalized data length’ which should satisfy , ,
, ,

= 1d
c r i

n r i

T
N

T
  with , , ,1n r i r iT f  and dT  8 

denoting the natural period and data duration, respectively.  9 

Given the conditions that the damping ratio ,r i  for the structure is assumed to be small, 10 

the 'noise-to-signal ratio' , , , , ,r i r i f r is S  is small, and the data duration dT  is assumed to be 11 

long, it has been proved that the Hessian matrix and the posterior covariance matrix to the 12 

leading order for the - thi local mode shapes identified using Bayesian FFT approach is given 13 

by [38,39]:  14 

    , ,

,

1
1

, ,
, ,

, ,

tan
ˆ ˆr i r i

r i i

c r i T
n r i r i

r i r i

N
L


 




    
ψ ψ

ψC I ψ ψ   (15a) 15 

   
,

, ,
, ,1

, ,

ˆ ˆ
tanr i i

r i r i T
n r i r i

c r iN

 
 ψC I ψ ψ   (15b) 16 

where , , , , ,r i r i f r is S  denotes ‘noise-to-signal ratio’ confined to -thi the setup. The data length 17 

factor 1tan   is shown in Fig. 2, which indicate the variation of the data length factors with the 18 
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increase of bandwidth factor. From Fig. 2, one can figure out that the bandwidth factor 1 

converges to stable values quickly.  2 
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 3 

Fig. 2: The data length factor for the local mode shape  4 

3.2 Approximated Hessian matrix of the Bayesian mode shape assembly algorithm  5 

The Hessian matrix shown in (11) is a linear combination of tn  terms with each term 6 

given by a complicated expression. The target of this section is to derive an explicit 7 

approximate expression of the posterior covariance matrix of the global mode shapes based 8 

on the asymptotic expressions (15a) and (15b) for the Hessian and covariance matrices of -thi  9 

local mode shape. By substituting (15a) into (12c) and using the normalization condition 10 

that , ,
ˆ ˆ 1T

r i r i ψ ψ , one can obtain that  11 
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ψ L ψ L

0

 (16) 1 

Substituting (15a) into (12a) leads to  2 
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1
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1
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, ,
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1
, ,

, ,
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ˆ ˆ
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ˆ ˆ

r i
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T
r i i i
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ψA L C L

L I ψ ψ L

B L ψ ψ L

 (17) 3 

Under the assumption of well-separated modes with high ‘signal-to-noise ratio’, ,
ˆ

r iψ can be 4 

approximated using the counterpart of assembled global mode shapes:  5 

 
1

,
ˆ

r i i r i r

ψ L φ L φ  (18) 6 

Therefore, (17) can be further rearranged as  7 

  
1 1

2, , , ,
,

, , , ,

tan tanc r i c r iT T T
r i i i r i i r r i i i

r i r i r i r i

N N 
   

 
  A B L φ L L φ φ L L Ω  (19) 8 

where  9 

  T T
i i i r r i r i r

   Ω B B φ φ B φ B φ  (20) 10 

Substituting (16) and (19) into (11) results in  11 

           
     

2
1

3, ,

1 , ,

+ +tan

4 4

t

r r r r

T T Tn
r i r r i r i r i r ic r i T

as as r i r
T T T Ti r i r i r i r i r r i r i r i r r i

N
L L


 






            
φ φ φ φ

φ B φ φ Ω φ B φ B φ Ω
φ B φ

φ Ω φ B φ φ B φ B φ B φ φ Ω
  (21) 12 

Substituting iΩ from (20) and noting that inside the bracket in (21) the first term is zero and 13 

the last two terms sum to zero, the above equation can be further remarkably simplified as  14 
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1

-1, ,

1 , ,

tant
r r

n
c r i T

as r i r i
i r i r i

N
L


 





 
  

  
φ φ φ B φ Ω  (22) 1 

As is seen from (22), each term corresponding to the - thi  setup is dependent on the 2 

‘noise-to-environment’ ratio , , , , ,=r i r i f r is S . It is worth mentioning here that , ,f r iS varies from 3 

one setup to another as its value depends on the adopted normalization of the mode shape. It 4 

can be argued that if local mode shape ,
ˆ

r iψ is scaled down (e.g., divided) by a factor then 5 

,f iS should be scaled up (e.g., multiplied) by the square of that same factor [38]. As is 6 

illustrated in the Appendix II, the ‘noise-to-environment ratio’ confined to the - thi setup can 7 

be approximately connected with the overall ‘noise-to-environment ratio’ ,r all corresponding 8 

to all measured dofs, which is given as follows:  9 

  -1

, ,
T

r i r i r r all  φ B φ  (23) 10 

Substituting (23) into (22) leads to the approximated Hessian matrix of the Bayesian mode 11 

shape assembly algorithm:  12 

    

 
 

1 1
-1, , , ,
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tan tant t
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 φ φ φ φ φ B φ Ω Ω

φ B φ
  (24) 13 

In real applications with data processed in multiple setups, ,r all can be estimated using Eq.(23). 14 

Here we replace ,r all by using the averaged value estimated from different setups, i.e., 15 

 , ,
1

1
=

tn
T

r all r i r r i
itn

 

 φ B φ . Similarly, the damping ratio and ‘normalized data length’ 16 

corresponding to different setups are also replaced by the mean values 
,

1

1
=

tn

r r i
itn

 

 and 17 

, , ,
1

1
=

tn

c r c r i
it

N N
n 
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3.3 Approximated posterior covariance matrix of the global mode shapes    1 

The posterior covariance matrix to the leading order can be obtained by taking the 2 

inverse of  r r

asL φ φ shown in (25).  r r

asL φ φ also has zero eigenvalues with eigenvectors parallel to 3 

the mode shape directions. This can be further illustrated by observing the first-derivative of 4 

the NLLF:  5 
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Substituting (16) and (19) into (26) results in   7 
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The above equation can be rearranged as,  9 
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Due to the optimality of ˆ
rφ ,   =0r

asL φ , which suggests that  11 
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where  13 
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   Ω Ω B B φ φ B φ B φ  (30) 14 

The above equation demonstrates that the matrix Ω  has a zero eigenvalue with eigenvector 15 

rφ . Therefore, the irrelevant contributions from the singular terms (zero curvature) should be 16 

excluded when taking the inverse of  r r

asL φ φ .  17 
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Let 1 2{ , , , }
ln      be the eigenvalues of Ω estimated at the MPV of rφ arranged in 1 

ascending order, while their corresponding eigenvectors are assumed to be 1 2{ , , , }
lnυ υ υ   . As a 2 

result, the approximate covariance matrix
rφC can be evaluated properly via its eigen-basis 3 

representation with the first smallest eigenvalue ignored,  4 

 , 1
1

2, tan

l

r

n
r r all T

j j j
jc rN

 








 φC υ υ      (31) 5 

Equation (31) provides insight related to the dependence of uncertainty on the various 6 

parameters. Specifically, the posterior uncertainty of the global mode shapes displays a 7 

decaying trend with the increase of bandwidth factor and time duration. However, the 8 

uncertainty is proportional to damping ratio and ‘signal-to-noise’ ratio.  9 

3.4 Approximated overall uncertainty of the global mode  shapes 10 

In [41], the idea of the Modal Assurance Criterion (MAC) in the deterministic case was 11 

extended to quantifying the uncertainty of the mode shape in a Bayesian context. Given the 12 

measured data, consider the MAC between the uncertain mode shape rφ  and its optimal value 13 

ˆ T
rφ . In a statistical sense, if the uncertainty in rφ  is small, it will be close to ˆ T

rφ , and the MAC 14 

will be close to unity. The MAC between rφ  and ˆ T
rφ  could be approximated by [41] 15 
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  lnT

r r
r j jT

jr r

M Z
φ φ

φ φ
  (32) 16 

where jZ  denotes independent and identically distributed (i.i.d.) standard Gaussian random 17 

variables; j  be the eigenvalues of Ω  estimated at the MPV of rφ arranged in ascending order. 18 
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According to [41], the expected MAC that quantifies the overall uncertainty of the global 1 

mode shape can be further approximated by the following equation:   2 
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- 12 -
2 2 2 2
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E M E Z φ   (33) 3 

where 2

r
φ
 is the sum of principle variances of 

rφC  (i.e., the trace of covariance matrix), which 4 

can be calculated by employing the approximated covariance matrix (i.e., Eq.(31)):   5 
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φ φC υ υ       (34)  6 

For the purpose of comparison, the expected MAC for the ‘exact’ covariance matrix of the 7 

global mode shapes computed by taking the inverse of the original Hessian matrix without 8 

resorting to the approximation strategy (i.e., (11)) are also presented here  9 
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φ φC υ υ   (36) 12 

4 Numerical Study 13 

A 15-story shear building with separated modes is adopted as a numerical example to 14 

illustrate the accuracy of the proposed theory. Classical Rayleigh damping with the damping 15 

ratios for the first two modes set to be 1% is assumed. The stiffness and mass for each dof is 16 

assumed to be 250000 /kN m and 100kg , respectively. The structure is excited by ambient 17 

excitation modelled using Gaussian white noise with auto-spectral intensity 2 31 5m s. . To 18 

verify the efficiency of the explicit approximation of Bayesian mode shape assembly method, 19 
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the 15 dofs are assumed to be covered by four setups, and the setup information is shown in 1 

Table 1. For each setup, the modal properties as well as their uncertainties are identified using 2 

fast Bayesian FFT approach [31]. The identified spectral variables including the most 3 

probable values ( ̂ ), the standard deviation ( ) and the coefficients of variances ( ˆ  ) are 4 

presented in Table 2. The partial mode shapes corresponding to different setups are to be 5 

assembled using the algorithm introduced in Section 2 and 3. The ‘exact’ values of the 6 

posterior variances of the global mode shapes are computed by taking the inverse of  r r

asL φ φ (i.e. 7 

Eq. (11)) neglecting the irrelevant contributions from the singular terms (zero curvature). For 8 

the special case with =6  and =1000sT , the optimal values and two times the posterior 9 

standard deviation of the first four mode shape components are illustrated in Fig. 3.  10 

Table 1: Setup information for the shear building 11 

Setup Measured dofs 
1 1, 2, 3, 4, 5 
2 4, 5, 6, 7, 8 
3 8,9,10,11,12  
4 11,12,13,14,15 

Table 2. Identified spectrum variables of the numerical study  12 

Mode   Variable 
Values 

̂    ˆ   (%) 

1 
6 

1f  0.8081 0.0035 0.44 

1  0.0104 0.0027 25.63 

fS  0.0154 0.0038 24.63 

 s  7.0630 0.0233 0.33 

2 6 

2f  2.4114 0.0032 0.13 

2  0.0122 0.0045 36.76 

fS  0.1012 0.0358 35.42 
s  7.2739 0.1422 1.95 

3 6 3f  3.9919 0.0046 0.11 
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3  0.0132 0.0035 26.68 

fS  0.1018 0.0257 5.21 
s  7.4578 0.0374 0.50 

4 6 

4f  5.5361 0.0086 0.16 

4  0.0201 0.0018 8.80 

fS  0.0844 0.0061 7.22 
s  7.4425 0.0115 0.15 

Note: here ̂ denotes the most probable values;  denotes standard deviation; ˆ  denotes 1 
coefficients of variances.  2 
 3 
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Fig. 3: The optimal values (square) and two times standard deviation (asterisk) of the 5 

assembled global mode shapes (numerical study)  6 

 7 

To verify the accuracy of the approximate formula of the posterior uncertainty of the 8 

global mode shapes, the expected MAC obtained from the ‘exact’ numerical algorithm 9 

calculated from (13) and the ‘approximate’ strategy calculated using (31) will be compared 10 

with each other. The effects of the bandwidth and noise level on the posterior uncertainty of 11 

the global mode shapes will also be observed here in detail. Assume that the bandwidth factor 12 
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varies from 2 to 12 at an increment of 1 while the data duration is fixed to be 900 seconds. 1 

The exact posterior overall uncertainty (  1- rE M ) and approximate overall uncertainty 2 

(  1- rE M ) with different bandwidth factor are compared in Fig. 4. To examine the effect of 3 

noise level, a number of values of  1- rE M and  1- rE M are obtained using the responses 4 

subject to different noise level, with its PSD ranging from 0 to 2 31m s  at an increment of 5 

2 30.1m s  while the bandwidth used for each mode is fixed at =6 . The results versus noise 6 

level are shown in Fig. 5. In Fig.4 and 5, the ‘exact’ values of posterior c.o.v. are denoted by 7 

markers, while the ‘approximate’ values of posterior c.o.v. are represented by solid lines.  8 

 9 

Fig. 4: Comparison of the overall uncertainty of the global mode shapes with ‘exact’ method 10 

denoted by markers and ‘approximate’ method denoted by solid lines versus bandwidth factor 11 

(numerical study)  12 
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 1 

Fig. 5: Comparison of the overall uncertainty of the global mode shapes with ‘exact’ 2 

method denoted by markers and ‘approximate’ method denoted by solid lines versus noise 3 

level (numerical study).  4 

From Fig. 4 and 5, one can figure out that, although there are discrepancies between the 5 

‘exact’ values and ‘approximate’ values, the order of the uncertainty of the global mode 6 

shapes estimated using two different kinds of approaches are in the same level, indicating that 7 

the proposed approximate formula approaches the posterior uncertainty of the assembled 8 

overall mode shapes with satisfactory accuracy. Furthermore, the posterior uncertainty of the 9 

global mode shapes displays a slight decaying trend with the increase of bandwidth factor, 10 

while an increasing trend is revealed with the increase of noise level. This is consistent with 11 

previous results [39] which state that the uncertainty reduces with more available information 12 

but increases with the higher ‘noise-to-signal’ ratio.  13 
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5 Experimental Study  1 

We next consider a real application of the Metsovo bridge located in Greece .  The 2 

bridge crosses the deep ravine of Metsovitikos river with 150m over the riverbed. The bridge 3 

is a 4-span continues concrete highway bridge. The total length of the bridge is 537 m with a 4 

span layout of (44.78+117.87+235+140) m. The bridge has 3 piers: M1 (45m) supporting the 5 

box beam superstructure through pot bearings is movable in both horizontal directions, while 6 

M2 (110m) and M3 (35m) piers connect monolithically to the structure. The sideview of the 7 

bridge is shown in Fig. 6.  8 

 9 

Fig. 6: The sideview of the Metsovo bridge  [45] 10 
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 1 

Fig. 7: Experimental setups of ambient vibration test for the Metsovo bridge [45] 2 

Ambient vibration test was conducted to measure the responses of the Metsovo bridge 3 

mainly due to road traffic, which ranged from light vehicles to heavy trucks, and 4 

environmental excitation such as wind loading by using a wireless measurement system. The 5 

wireless measurement system mainly consisted of 5 triaxial and 3 uniaxial accelerometers 6 

paired with a 24-bit data recording system, a GPS module for synchronization between 7 

sensors, and a battery pack. The wireless measurement system is connected with a laptop that 8 

can set sampling rate, recording duration, repeater recordings, etc. and visualize the 9 

measurements. The instrumentation is shown in Fig. 7.  10 

The entire length of the deck was covered by 13 sensor configurations which produced 11 

159 sensor locations. Each configuration recorded for 20 minutes at a sampling rate of 100 Hz. 12 

A typical example of indicative sensor configuration is illustrated in Fig. 8. The points 13 

stressed by green face correspond to reference sensors including one triaxial (i.e., station 11 in 14 

Fig.8) and three uniaxial sensors (i.e., station 39 in vertical direction and station 40 and 42 in 15 

horizontal direction), which were obtained by minimizing the information entropy using an 16 

optimal sensor location theory [42-44] to provide the highest information content for 17 
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identifying the modal parameters of the structure. The points in blue color denote the moving 1 

sensors of the specific sensor configuration. The three numbers above each point in Fig. 8 2 

correspond to the three measured dofs in the three directions measured by the triaxial sensors. 3 

The measurement stations arrangement for each setup is shown in Table 3. More details on 4 

the ambient vibration test of the Metsovo bridge are referred to [45,46].  5 

 6 

Fig. 8: Sensor configuration for the ambient vibration test of the Metsovo bridge 7 

Table 3. Measurement setups of the Metsovo Bridge 8 

Setup Measurement stations Reference stations 
1 13;40;14;41 

11(triaxial sensor); 
39 (uniaxial sensor); 
40(uniaxial sensor); 
42(uniaxial sensor) 

2 15;42;16;43 
3 17;44; 18;45 
4 19;46; 20;47 
5 21;48; 22;49 
6 23;50;24;51 
7 25;52; 26;53 
8 1;27; 2;28 
9 3;29;4;30 
10 5;31;6;32 
11 7;33;8;34 
12 9;35;10;36 
13 11;37;12;38 
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Ambient acceleration data of each configuration are processed to identify the modal 1 

properties including the modal frequencies, damping ratios, PSD of the modal excitation, PSD 2 

of the prediction error as well as the local mode shapes. The raw PSD computed using the 3 

acceleration of the transverse and vertical measurements are shown in Fig. 9(a) and 9(b), 4 

respectively. The ambient modal identification uses Bayesian operational modal analysis 5 

approach based on the FFT in specific frequency bands of interest. It is worth mentioning here 6 

that the acceleration data acquired by sensors in the vertical and transverse directions are 7 

processed separately to make sure that the separated modes assumption is satisfied.  8 
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Fig. 9: PSD of the accelerations in the transverse direction and vertical direction 13 
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Table 4 presents the frequencies and damping ratios for the first five transverse bending 1 

modes and the first four vertical bending modes when the measurements of the second sensor 2 

configuration was employed. The bandwidth factor and time duration are fixed at 6  and 3 

1200T s . Due to the fact that the modal properties were identified from each of the 13 sensor 4 

configurations separately, their values vary from one configuration to the other. The variation 5 

of the natural frequency is small, while the fluctuation in the remaining parameters is more 6 

significant.  7 

Table 4. Identified spectrum variables of the Metsovo Bridge with 6   8 

Modes Natural Frequency Damping Ratio 
̂    ˆ  (%) ̂    ˆ  (%) 

 
 

Transverse 
Modes 

1 0.3106  0.0013  0.41  0.0219  0.0057  26.00  

2 0.6200  0.0011  0.18  0.0118  0.0022  18.66  

3 0.9693  0.0018  0.18  0.0118  0.0029  24.44  

4 1.1431  0.0012  0.11  0.0082  0.0012  15.02  

5 1.7169  0.0016  0.09  0.0092  0.0011  11.95  

 
Vertical  
Modes 

1 0.6267  0.0008  0.13  0.0069  0.0014  20.55  

2 1.0591  0.0018  0.17  0.0184  0.0019  10.13  

3 1.4233  0.0017  0.12  0.0119  0.0014  11.34  

4 1.9632  0.0042  0.22  0.0330  0.0035  10.56  

Note: ̂ denotes most probable values; denotes standard deviation; ˆ  denotes coefficients 9 
of variances.  10 

 11 

In this vibration test, one triaxial and three uniaxial sensors (one vertical and two 12 

horizontal) remained in the same position throughout the measurements as reference dofs 13 

provide common measurement points amongst different configurations so as to enable the 14 
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assembling of the mode shapes from partial mode shape components. The mode shape 1 

assembly methodology introduced in Section 2 is adopted here to combine the mode shape 2 

components of each configuration to produce the full mode shapes at all 159 sensor locations 3 

covered by the 13 configurations. The first five transverse bending modes as well as the first 4 

four vertical bending modes were illustrated in Fig. 10 and Fig. 11, respectively. The 5th 5 

vertical local mode shapes were very poorly identified and thus they were excluded from the 6 

set. From comparisons between the identified mode shapes (left column) and those calculated 7 

using FEM (right column) shown in Fig 10 and 11, one can clearly figure out that the 8 

Bayesian mode shape assembly algorithm has satisfactory performance. 9 

 10 

Mode Identified Mode Shape  FEM results  
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2 

 
 

3 

 
 

4 
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Fig. 10: Comparison between the experimentally identified (left column) and nominal FE 11 

model predicted (right column) transverse bending mode shapes of the Metsovo bridge 12 
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Mode Identified Mode Shape  FEM results  
 
1 
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Fig. 11: Comparison between the experimentally identified (left column) and nominal FE 1 

model predicted (right column) vertial bending mode shapes of the Metsovo bridge 2 

 3 

The effects of the bandwidth factor and data length on the uncertainty behavior of 4 

modal properties were investigated in detail: (i) The bandwidth factor varies from 1 to 14 at 5 

an increment of 1 with the time duration being fixed at 1200 seconds. The values of  1-E MAC  6 

of the assembled global mode shapes are shown in Fig. 12. (ii) The data duration ranges from 7 

400 to 1200 seconds at an increment of 100 seconds with the bandwidth and the number of 8 

data sets being fixed at 8  .  The variation of the overall uncertainty of the assembled global 9 

mode shapes are compared in Fig.13. The ‘exact’ values of the posterior variances are 10 

computed by taking the exact inverse of  r r

asL φ φ using Eq. (11), while the ‘approximate’ 11 

posterior covariances can be calculated using Eq. (31). The results of the ‘exact’ and 12 

‘approximate’ values of  1-E MAC are denoted by discrete marked points and continuous 13 

lines, respectively. The first few modes of the ‘exact’ values are denoted by square, triangles, 14 
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circle, asterisk and diamond, respectively. From these figures, one can draw the following 1 

conclusions:  2 

 The closed-form formulas generally give a satisfactory approximation of the exact values 3 

for most of the cases. In some cases, however, the ‘approximated’ values of  1-E MAC  4 

deviate from the ‘exact’ values with quite significant error as the assumption for large cN  is 5 

violated when the bandwidth factor is small.  6 

 Ideally, according to the approximate formulas, the results for each mode should form a 7 

smoothed line when bandwidth factor and time duration varies. However, the observed 8 

deviation from a smoothed line is mainly due to the fluctuation in the MPV of modal 9 

parameters when different data durations are used. The posterior uncertainty of the global 10 

mode shapes displays a decaying trend with the increase of bandwidth factor and time 11 

duration. This can be expected from (31) that the uncertainty is inverse proportional to the 12 

bandwidth factor and the time duration dT .  13 

 The posterior uncertainty converges quickly with the increase of time duration and 14 

bandwidth factor. The phenomenon indicates that when the modal ‘signal-to-noise’ ratio is 15 

sufficiently high, increasing the time duration and frequency band does not significantly 16 

improve the mode shape assembly quality.  17 
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 1 

(a) First five transverse bending modes  2 

 3 

(b) First four vertical bending modes 4 

Fig.12: Posterior overall uncertainty of the assembled global mode shapes versus bandwidth 5 

factor (experimental study): the ‘exact’ values are denoted by markers and the ‘approximate’ 6 

values are represented by solid lines. 7 
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 1 
(a) First five transverse bending modes 2 

 3 

(b) First four vertical bending modes 4 

Fig. 13: Posterior overall uncertainty of the assembled global mode shapes versus time 5 

duration (experimental study): the ‘exact’ values are denoted by markers and the 6 

‘approximate’ values are represented by solid lines. 7 
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6 Concluding Remarks 1 

The mode shape assembly, assembling identified local mode shapes from different setups 2 

to form global mode shapes, is of critical importance as it allows exploiting the computational 3 

autonomous capabilities of different clusters and avoid simultaneous measurements of data of 4 

all setups when the sensors are limited. Inspired by the uncertainty law of ambient modal 5 

analysis [38,39], this paper provided a deeper understanding of the intrinsic uncertainty 6 

propagation behavior of global mode shapes obtained when using the Bayesian mode shape 7 

assembly approach. Explicit approximate formulas for the posterior covariance matrix in 8 

terms of spectrum modal parameters (e.g., natural frequency, damping ratio, PSD of modal 9 

excitation and prediction error) and data information parameters (e.g., the spectral bandwidth 10 

factor and the data duration of measurements) are derived analytically given that the damping 11 

ratio for the structure is assumed to be small, the 'noise-to-signal ratio' is small, and the data 12 

duration is long. A numerical example and a real application of the Metsovo bridge equipped 13 

with wireless sensors were employed to validate the theories. Satisfactory agreements are 14 

found between the ‘approximation’ and the ‘exact’ values of the posterior uncertainties, 15 

which indicates that the closed-from approximation formulas are able to represent the trends 16 

in uncertainty variations. Thus the approximate formulas can be used to provide new insights 17 

into how the posterior uncertainties in the local mode shapes identified using the fast 18 

Bayesian approach propagate into the assembled global mode shapes.   19 

This approximate analysis in this study also provides insights on the main contribution of 20 
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different parameters to the uncertainty of mode shape assembly. As is seen from Eq. (31), the 1 

posterior covariance of global mode shapes depends on the following dimensionless scales: 2 

the damping ratio, which is a property of the tested structure; the ‘bandwidth factor’ (i.e., the 3 

amount of information actually utilized); the ‘noise-to-environment’ ratio which is related to a 4 

modal noise-to-signal ratio; the ‘normalized data length’ which represent the amount of 5 

information available in the data; the selection matrix denoting the sensor configuration in 6 

ambient vibration test. In particular, the posterior covariance matrix of the global mode 7 

shapes is inversely proportional to ‘normalized data length’ and the ‘bandwidth factor’, and 8 

propositional to ‘noise-to-environment’ ratio and damping ratio. This indicates that the 9 

accuracy of global mode shapes can be improved by using better quality equipment, longer 10 

measurements and increasing the frequency bandwidth properly.   11 

This study highlights the strengths of the Bayesian approach applied in modal analysis, 12 

allowing the quantification and propagation of uncertainties with respect to different 13 

parameters. The results have implications on the extent to which one can reduce uncertainty 14 

and planning for ambient vibration tests when using the technique, as is illustrated in [38,39]. 15 

Furthermore, it is worth mentioning here that one can extend the framework by minimizing 16 

Eq.(31) to address the optimal sensor placement problem when multiple setups are considered 17 

in real vibration test. The optimal sensor placement for global mode shape estimation is left 18 

for future endeavor.  19 

 20 
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 6 

Appendix I: New derivation of the Hessian matrix of Bayesian mode shape assembly 7 

The NLLF of (4) can be expanded as 8 
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The derivative of asL with respect to rφ  denoted by  r

asL φ is given by  14 
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By differentiating (A3), one can obtain the derivative of  r

asL φ with respect to rφ , 1 
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Four different terms involved in (A4) can be further arranged as  3 
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Substituting Eqs. (A6a)-(A6d) into (A5) leads to  8 
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 Appendix II: Connecting ,r i  (the ‘noise-to-environment’ ratio confined to -thi setup) 3 

with ,r all (the ‘noise-to-environment’ ratio confined to all sensors) 4 

The PSD of modal excitation is dependent on mode shape, which arises from the 5 

relationship between the physical and modal response, and the scaling of the mode shape. 6 

Here the theory derived in [39] will be used to connect ,r i with ,r all . Based on the standard 7 

structural dynamics, one can figure out that the PSD of modal force pS is given by [39] 8 
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 (A8) 9 

where M is the mass matrix, FS is the PSD matrix of the forces applied on the structure and 10 

1={ , , }
i tn n  Φ  ， ，  is the true ‘full’ mode shape containing all dofs of the structure 11 

concerned. The PSD of modal force , ,f r iS  identified from the -thi setup is proportional to the 12 

sum of squares of the mode shape values at the measured dofs, i.e. [39] 13 
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   (A9) 14 

Here  1,2, ,j ij n   denote the vector involving the elements ofΦ corresponding to the dofs 15 

of the - thi setup. It can be reasoned that if 
in is scaled down (i.e., divided) by a factor then 16 
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, ,f r iS should be scaled up (i.e., multiplied) by the square of that factor. This equation shows 1 

that , ,f r iS is proportional to the sum of squares of the mode shape values at the measured dofs. 2 

Note that the equation only provides a conceptual understanding, and it is not useful for 3 

computing , ,f r iS because pS is not available in reality.  4 

Similarly, the modal excitation PSD , ,f r allS identified from all ln measured dofs should be 5 

scaled by 2

1

ln

j
j

 , i.e.   6 
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Combing (A9) and (A10), one can obtain that 8 
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From (A11), one can figure out that , ,f r iS satisfies: 10 
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It is not difficult to figure out that that 12 
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Substituting (A13) into (A12), the ‘noise-to-environment’ ratio corresponding to the 14 

- thi setup can be estimated as  15 
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Table Captions 2 

 Table 1: Setup information for the shear building 3 

 Table 2. Identified spectrum variables of the numerical study  4 

 Table 3. Measurement setups of the Metsovo Bridge 5 

 Table 4. Identified spectrum variables of the Metsovo Bridge with 6   6 

 7 
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Figure Captions 1 

 2 

 Fig. 1: Common architecture for operational modal test with multiple setups  3 

 Fig. 2: The data length factor for the mode shape  4 

 Fig. 3: The optimal values (square) and two times standard deviation (asterisk) of the 5 

assembled global mode shapes (numerical study)  6 

 Fig. 4: Comparison of the overall uncertainty of the global mode shapes with ‘exact’ 7 

method denoted by markers and ‘approximate’ method denoted by solid lines versus 8 

bandwidth factor (numerical study)  9 

 Fig. 5: Comparison of the overall uncertainty of the global mode shapes with ‘exact’ 10 

method denoted by markers and ‘approximate’ method denoted by solid lines versus noise 11 

level (numerical study)  12 

 Fig. 6: The sideview of the Metsovo bridge 13 

 Fig. 7: Experimental setups of ambient vibration test for the Metsovo bridge 14 

 Fig. 8: Sensor configuration for the ambient vibration test of the Metsovo bridge 15 

 Fig. 9: PSD of the accelerations in the transverse direction and vertical direction 16 

 Fig. 10: Comparison between the experimentally identified (left column) and nominal FE 17 

model predicted (right column) transverse bending mode shapes of the Metsovo bridge 18 

 Fig. 11: Comparison between the experimentally identified (left column) and nominal FE 19 

model predicted (right column) vertical bending mode shapes of the Metsovo bridge 20 

 Fig. 12: Posterior overall uncertainty of the assembled global mode shapes versus 21 

bandwidth factor (experimental study): the ‘exact’ values are denoted by markers and the 22 

‘approximate’ values are represented by solid lines 23 

 Fig. 13: Posterior overall uncertainty of the assembled global mode shapes versus time 24 

duration (experimental study): the ‘exact’ values are denoted by markers and the 25 

‘approximate’ values are represented by solid lines 26 

 27 
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