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Heterogeneous Mutual Knowledge Distillation
for Wearable Human Activity Recognition

Zhiwen Xiao, Member, IEEE , Huanlai Xing, Member, IEEE , Rong Qu, Senior Member, IEEE , Hui Li,
Xinzhou Cheng, Lexi Xu, Senior Member, IEEE , Li Feng, and Qian Wan

Abstract—Recently, numerous deep learning algorithms have addressed wearable human activity recognition (HAR), but they often
struggle with efficient knowledge transfer to lightweight models for mobile devices. Knowledge distillation (KD) is a popular technique
for model compression, transferring knowledge from a complex teacher to a compact student. Most existing KD algorithms considered
homogeneous architectures, hindering performance in heterogeneous setups. This is an under-explored area in wearable HAR. To
bridge this gap, we propose a heterogeneous mutual KD (HMKD) framework for wearable HAR. HMKD establishes mutual learning
within the intermediate and output layers of both teacher and student models. To accommodate substantial structural differences
between teacher and student, we employ a weighted ensemble feature approach to merge the features from their intermediate layers,
enhancing knowledge exchange within them. Experimental results on the HAPT, WISDM, and UCI HAR datasets show HMKD
outperforms 10 state-of-the-art KD algorithms in terms of classification accuracy. Notably, with ResNetLSTMaN as the teacher and
MLP as the student, HMKD increases by 9.19% in MLP’s F1 score on the HAPT dataset.

Index Terms—Data Mining, Human Activity Recognition, Knowledge Distillation, Model Compression, Wearable Sensors
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1 INTRODUCTION

HUMAN activity recognition (HAR) involves identifying
individuals’ actions by analyzing their interactions

with the environment [1]. This technology has found exten-
sive applications across diverse real-world domains, includ-
ing electroencephalography (EEG) detection [2], spectrum
map prediction [3], and healthcare applications [4]. With the
widespread use of mobile devices, such as smartphones and
watches, the collection of wearable HAR data has become
accessible and convenient. Consequently, wearable sensor-
based HAR has become one of the primary research focuses
in HAR [5]. Wearable HAR data consists of a sequence of
time-ordered data points gathered by wearable sensor(s),
for example, a triaxial accelerometer with three sensors
generating X-, Y-, and Z-axis data simultaneously. The series
is associated with one or more time-dependent variables,
encompassing both univariate and multivariate aspects. A
HAR algorithm captures both local and global patterns from
a given time series, including those associated with a single
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variable and those across multiple variables [6], [7], [8].
Over the years, a plethora of algorithms has been devel-

oped to tackle wearable-HAR-oriented challenges, primarily
employing traditional and deep learning techniques [5],
[8]. Traditional algorithms typically rely on statistical or
machine learning methods, with an emphasis on extracting
remarkable representations from HAR data. For instance, in
[9], a hierarchical hidden Markov algorithm was designed
to extract semantic relationships between contexts. In [10], a
system based on coordinate transformation, principal com-
ponent analysis (PCA) and online support vector machine
(SVM) was proposed to address various HAR problems. In
contrast, deep learning algorithms have the capability to un-
cover inherent relationships among representations through
the construction of an internal hierarchy of data [11]. For
example, Shu et al. [12] put forward a graph long short-term
memory (LSTM)-in-LSTM algorithms to build person-level
actions and group-level activity. Al-qaness et al. [13] pre-
sented a multi-level residual attention model to extract in-
trinsic connections among activities. Xia et al. [14] designed a
multiple-level domain model with a single inertial measure-
ment sensor for HAR. Xu et al. [15] devised a deformable
convolutional network model for extracting salient features
from the data. In [16], a fully-convolutional network(FCN)-
LSTM-attention-based network (FCNLSTMaN) was intro-
duced to extract local and global patterns of HAR data.

Existing deep learning models for wearable HAR face
the following challenges. Many of them were designed for
particular wearable HAR tasks, showcasing strong feature ex-
traction capabilities for problem-specific tasks. However, they lack
efficient knowledge transfer from heavy and complex models to
lightweight and simple ones, which is quite crucial for resource-
constrained mobile devices, like smartwatches and tablets. Hin-
ton et al. [17] introduced knowledge distillation (KD) to
transfer knowledge from a large-scale neural network to
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a smaller one, often referred to as the teacher-and-student
model. Unlike traditional compression and acceleration
techniques, e.g., parameter pruning/sharing and low-rank
factorization methods, KD makes a student model adaptly
replicate the knowledge embedded in a teacher model.
KD acts as a regularization technique for both the teacher
and student, fostering effective knowledge transfer between
them. Response-based, feature-based, and relation-based al-
gorithms are three main research streams [18]. Response-
based algorithms encourage knowledge transfer from the
output (i.e., logits) of a teacher to that of a student, e.g.,
resolution-aware KD [19], HAR contrastive distillation [20],
and lightweight HAR [21]. Feature-based algorithms facil-
itate knowledge transfer between intermediate layers of a
teacher and its student, as opposed to a direct transfer
from output to output, such as FitNet [22] and distillation
methods using layer-calibration and task-disentangle distil-
lation [23]. Unlike response- and feature-based algorithms,
relation-based algorithms pay attention to extracting the
connections among layers in teacher and student models,
e.g., relation-based metric learning [24]. However, most KD
algorithms face the following challenges:

• While these algorithms have demonstrated remarkable
performance, their success is often contingent upon the
assumption of homogeneity in the architectures of both
teacher and student models. Challenges emerge when
confronted with heterogeneous architectures, as existing
approaches may falter due to the distinct features inherent
in both teacher and student.

• Currently, there are limited number of heterogeneous
distillation algorithms that account for the diversity in
the teacher and student architectures. An exemplary algo-
rithm in this category is the effective one-for-All KD [25],
which transfers knowledge from the teacher’s intermediate
layers to the output of the student model. While this
approach underscores the importance of imparting the
teacher’s knowledge to the student, it overlooks the recip-
rocal nature of knowledge exchange, where the student’s
knowledge also contributes to the teacher’s understanding.
KD serves as a mechanism for fostering mutual learning
between teacher and student models [26], [27]. Effectively
promoting mutual learning between teacher and student
models seems a promising solution to heterogeneous dis-
tillation.

• To the best of our knowledge, there has been insufficient
research attention dedicated to heterogeneous distillation
in the wearable HAR field. This underscores the potential
for further exploration and development in this specific
domain.

To address the challenges above, we propose a het-
erogeneous mutual KD (HMKD) framework for wearable
HAR. Unlike the effective one-for-All KD, HMKD not only
establishes mutual learning within the intermediate layers
of both teacher and student models but also extends it to
the output layers of these models. This inclusive approach
promotes efficient knowledge flow between the teacher
and student, facilitating a comprehensive exchange of in-
formation. In this work, we choose two well-known dual-
network-based teacher models and two straightforward,
foundational student models. The two teacher models are

FCNLSTMaN [16] and ResNetLSTMaN [28]. FCNLSTMaN
comprises a fully-convolutional network (FCN) composed
of three ConvBlocks and an LSTMaN structure consisting of
two LSTM-based attention layers, as depicted in Fig. 1 (a).
ResNetLSTMaN comprises three residual blocks and two
LSTM-based attention layers, illustrated in Fig. 1 (c). On
the other hand, the two student models are convolutional
neural network (CNN) with three convolutional blocks in
Fig. 1 (b) and multi-layer perceptron (MLP) with three dense
(i.e., fully-connected) layers in Fig. 1 (d), respectively.

Our major contributions are listed as follows.

• We propose HMKD for wearable HAR, fostering
mutual learning not only within the intermediate
layers of both teacher and student models but also
at the output layers. This approach enhances the
knowledge transfer efficiency between the teacher
and its student.

• Given the substantial structural disparities between
the teacher and student models, we introduce a
weighted ensemble feature approach designed to
merge the features extracted from the intermediate
layers of these models. This approach aims to cir-
cumvent potential information loss when employing
intricate distillation links, particularly in scenarios
involving heterogeneous teacher and student mod-
els. Consequently, this method promotes knowledge
exchange within the intermediate layers of both
models.
Additionally, unlike most KD algorithms that use
Kullback-Leibler (KL) divergence as the distillation
function for teacher and student models [17], [18],
[19], we adopts the Jensen-Shannon (JS) divergence
function. This function quantifies the knowledge
variability between teacher and student. It also offers
a distinct perspective on evaluating and leveraging
the differences and similarities between the models
for enhanced KD.

• The experimental findings reveal that employing
FCNLSTMaN and ResNetLSTMaN as teacher mod-
els and CNN and MLP as student models, HMKD
demonstrates superior performance compared to
10 state-of-the-art (SOTA) KD algorithms on three
renowned wearable HAR datasets regarding the F1

value. Three HAR datasets include the smartphone-
based recognition of human activities and postural
transitions dataset (HAPT), wireless sensor data min-
ing (WISDM), and University of California Irvine ac-
tivity recognition using smartphones (UCI HAR). In
particular, with ResNetLSTMaN and MLP as teacher
and student, the F1 value of MLP increases by ap-
proximately 9.19% on the HAPT dataset.

The remainder of the paper is structured as follows.
Section 2 reviews the most relevant studies. The overall
structure of HMKD and its components are presented in
Section 3. Section 4 analyzes the experimental results. Sec-
tion 5 summarizes the findings and draws conclusions.

2 RELATED WORK

This section provides a review of pertinent studies on the
wearable HAR and KD.
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(a) FCNLSTMaN

(c) ResNetLSTMaN

(b) CNN

(d) MLP

Fig. 1. Architectures of the teacher and student models. (a) FCNLSTMaN [16]. It comprises a FCN consisting of three ConvBlocks and an LSTMaN
consisting of two LSTM-based attention layers. Each ConvBlock is composed of a 1-dimensional convolutional layer, a batch normalization (BN)
layer, and the leaky rectified linear unit (ReLU) function. (b) CNN with three convolutional blocks. (c) ResNetLSTMaN [28]. It comprises a ResNet
with three residual blocks and an LSTMaN consisting two LSTM-based attention layers. (d) MLP model with three dense layers. Note: ‘Conv 7 x
256’ represents a 1-dimensional convolutional layer with a kernel size of 7 and a channel size of 256.

2.1 Wearable HAR Algorithms
Numerous algorithms have been developed to tackle wear-
able HAR problems, falling into two main categories: tra-
ditional and deep learning-based approaches [5], [8]. Tra-
ditional algorithms typically employ statistical or machine
learning methods to extract shallow features from HAR
data, e.g., fuzzy temporal window approach, PCA, Bag-
ging, Bayes method, J48, decision tree, random forest, SVM,
logistic regression, gradient boosting machine, KNN, Ad-
aBoost, collaboration method, k-means, Markov regression,
and logic-based reasoning [9], [10], [29], [30], [31], [32], [33].

On the other hand, deep learning algorithms aim to ex-
tract inherent relationships among representations through
building an internal hierarchy of data [11]. For example,
Luo et al. proposed a binarized neural network, called
BinaryDilatedDenseNet, for low-latency and low-memory
HAR. In [34], a temporal convolutional method was de-
signed to address low-power activity recognition. In [35],
a multi-head convolutional attention method was used to
model multi-dimensional representations from the data.
Typical deep learning algorithms include LSTM-in-LSTM
[12], bi-directional LSTM [36], kernel density estimation-
based model [37], CNN-LSTM-based model [38], SelfHAR
[39], multiple-level domain model [15], multi-level residual
attention model [14], CSSHAR [40], stacked denoising au-
toencoder [41], selective kernel convolution [42], deformable
convolutional model [15], Lego convolutional model [43],
CapMatch [44], and ColloSSL [45].

2.2 Knowledge Distillation
KD, regarded as one of the widely used regularization tech-
niques, is designed to facilitate knowledge transfer from a
more complex network (teacher) to a simpler one (student).
Researchers categorize the existing KD algorithms into
three main groups based on the form of knowledge trans-
fer: response-based, feature-based, and relation-based [18].

Response-based algorithms enable the knowledge transfer
from the output (i.e., logits) of a teacher to that of a stu-
dent [17]. For instance, Xu et al. proposed a contrastive
distillation framework with regularized knowledge (Con-
DRK) for HAR. Zhao et al. [46] introduced a decoupled
KD method to transfer the target and non-target knowledge
from the output of a teacher to its student. The resolution-
aware KD [19], lightweight HAR [21], expert embedding
KD [47], correlation-based KD with a stronger teacher [48],
and collaborative KD [49] are representative response-based
approaches.

Feature-based algorithms facilitate knowledge transfer
between intermediate layers of a teacher and its student
[22]. For example, Peng et al. [50] presented a correlation
congruence KD framework to transfer the instance-level
information and the correlation between instances. Hao et
al. [51] devised a collaborative feature sharing approach for
multi-level knowledge sharing. Tian et al. [52] introduced a
contrastive representation distillation method to transfer the
structural knowledge of a teacher to its student.

Relation-based algorithms pay attention to understand-
ing and leveraging the relationships between layers to en-
hance the knowledge transfer process. For instance, in [53],
a relation-based metric learning model was designed to
improve the representation of image embedding. In [24],
a multi-level KD method based attention was devised to
extract intrinsic relationships between teacher and student
models. In [27], a cross-layer mutual distillation approach
was presented to facilitate the dense mutual learning be-
tween teacher and student.

3 THE PROPOSED HMKD

This section overviews the structure of the proposed HMKD
and details its key components, including teacher and stu-
dent models and heterogeneous distillation architecture.
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Fig. 2. Overview of the proposed HMKD. The teacher and student modules are critical components representing the neural network structures
in teacher and student models, respectively. For example, in the FCNLSTMaN teacher model, ‘stage 1’, ‘stage 2’, and ‘stage 3’ correspond to
‘ConvBlock 1’, ‘ConvBlock 2’, and ‘ConvBlock 3’, respectively, while ‘stage 4’ and ‘stage 5’ denote the first and second LSTM-based attention
layers, respectively. In the CNN student model, ‘stage 1’, ‘stage 2’, and ‘stage 3’ represent the first, second, and third 1-dimensional convolutional
layers, respectively.

3.1 Overview

HMKD establishes mutual learning not only within the
intermediate layers of both teacher and student but also ex-
tends to the output layers of the two models. This approach
promotes efficient knowledge flow between the teacher and
student, facilitating a comprehensive exchange of informa-
tion. The structure of the proposed HMKD is shown in
2. To handle the significant structural differences between
the teacher and student models, we design a weighted
ensemble feature approach to fuse the features extracted
from the intermediate layers of these models. This approach
enhances the knowledge exchange within the intermediate
layers of both models. To measure the knowledge variability
between teacher and student models, we employ the JS
divergence function, which offers a distinct perspective on
evaluating and leveraging the differences and similarities
between the models for enhanced KD.

3.2 Teacher Model

In this work, we choose two well-known dual-network-
based teacher models: FCNLSTMaN [16] and ResNetLST-
MaN [28].

3.2.1 FCNLSTMaN

FCNLSTMaN comprises a FCN and an LSTMaN in parallel,
as depicted in Fig. 1 (a).

Fully Convolutional Network FCN consists of three
Convblocks for local feature extraction, namely ‘ConvBlock
1’, ‘ConvBlock 2’, and ‘ConvBlock 3’. Each ConvBlock is
comprised of a 1-dimensional convolutional layer, a batch
normalization (BN) layer, and the leaky rectified linear unit
(ReLU) function. An arbitrary Convblock is defined as:

fConvB(x) = LeakyReLU(BN(CNN(x))) (1)

where, CNN(), BN(), and LeakyReLU() represent the 1-
dimensional convolutional, batch normalization, and leaky
ReLU functions, respectively. x is the input data.

LSTM-based Attention Network LSTMaN is com-
posed of two LSTM-based attention layers for global re-
lation extraction. Each layer embeds LSTM networks into
attention structure [54], as shown in Fig. 3. This structure
involves mapping a query, Query and a set of key–value
pairs, Key-V alue, to an output, OLatt. Query, Key, and
V alue correspond to the feature vectors extracted by the
three LSTM networks. OLatt is defined in Eq. (2).

OLatt = Softmax(Query ·KeyT ) · V alue (2)

where, Softmax() computes the possibilities of a given
vector. KeyT is the transpose of Key.

3.2.2 ResNetLSTMaN
ResNetLSTMaN integrates a ResNet and an LSTMaN in
parallel, illustrated in Fig. 1 (c).
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Fig. 3. Architecture of an LSTM-based attention layer [54]. Note: ‘Mat-
Mul’ represent the matrix multiplication operation, and ‘Softmax’ outputs
the probability of a give matrix.

Residual Network ResNet contains three residual
blocks, i.e., ‘residual block 1’, ‘residual block 2’, and ‘resid-
ual block 3’, to extract local features from the data. Each
residual block consists of three 1-dimensional convolutional
layers, the BN layer, and the ReLU function. In particular, a
residual structure is incorporated into each block to mitigate
the risk of information loss and gradient degradation during
training.

LSTM-based Attention Network Similar to FCNL-
STMaN, LSTMaN in ResNetLSTM also incorporates two
LSTM-based attention layers to capture global patterns in
the data. The first layer is responsible for extracting fun-
damental relationships from the data. Subsequently, the
second layer focuses on capturing intricate connections
among the relationships obtained in the previous step. This
hierarchical approach contributes to a more nuanced under-
standing and representation of the relationships within the
data.

3.3 Student Model
In this study, two basic yet fundamental student models are
considered: the CNN model depicted in Fig. 1 (b) and the
MLP model illustrated in Fig. 1 (d). More specifically, the
CNN model comprises three 1-dimensional layers, labeled
as ‘Conv 8 x 128’, ‘Conv 5 x 128’, and ‘Conv 3 x 128’. On the
other hand, the MLP model consists of three dense (fully-
connected) layers.

3.4 Mutual Knowledge Distillation
HMKD establishes mutual learning not only within the
intermediate layers of both teacher and student models
but also extends to the output layers of these models.
This inclusive approach promotes efficient knowledge flow
between the teacher and student, facilitating a comprehen-
sive exchange of information across different levels of the
models. The architecture of HMKD details in Fig. 2. Let
V Ti,j , i = 1, 2, ..., N , j = 1, 2, 3, 4, 5, denote the output of
the i-th output feature vector of j-th teacher module after
passing the corresponding classifier, where N is the size of
input samples. The classifier typically consists of an average

pooling layer and a dense layer. V Ti is the i-th output vector
of the teacher model. Let V Si,j , i = 1, 2, ..., N , j = 1, 2, be
the output of the i-th output feature vector of j-th student
module after passing the corresponding classifier. V Si stands
for the i-th output vector of the student model.

3.4.1 Weighed Ensemble Feature
Considering the substantial structural disparities between
teacher and student models, we design a weighted ensemble
feature approach to fuse the features extracted from the in-
termediate layers of these models. This approach promotes
knowledge exchange within the intermediate layers of both
models.

The teacher’s weighted ensemble feature, V TWEF,i, is
calculated as:

V TWEF,i =
5∑
j=1

αTj V
T
i,j (3)

where, αTj is the weighted coefficient of V Ti,j , as defined in
Eq. (4).

αTj =
V Ti,j∑5
j=1 V

T
i,j

(4)

The student’s weighted ensemble feature, V SWEF,i, is
defined in Eq. (5).

V SWEF,i =
2∑
j=1

αSj V
S
i,j (5)

where, αSj is the weighted coefficient of V Si,j . It is defined as:

αSj =
V Si,j∑2
j=1 V

S
i,j

(6)

3.4.2 Teacher’s Loss Function
The teacher’s loss function, LT , is combination of a super-
vised loss, LTsup, and a teacher distillation loss, LTTDL, as
defined in Eq. (7).

LT = LTsup + βT LTTDL (7)

where, βT is the constant coefficient of LT . Following [26],
[27], we set βT = 1.0 in this paper.
LTsup is defined in Eq. (8).

LTsup = −
1

N

N∑
i=1

yilog(V
T
i ) (8)

where, yi is the i-th ground truth label.
LTTDL is defined as:

LTTDL =
1

N

N∑
i=1

LTi,TDL (9)

where,

LTi,TDL = LKD(V TWEF,i/tKD, V
S
WEF,i/tKD)

+ LKD(V Ti /tKD, V Si /tKD)
(10)

where, tKD serves as a scaling coefficient for the features of
the teacher and student, playing a crucial role in facilitating
the knowledge flow between teacher and student models.
LKD(p, q) is based on the JS divergence function to measure
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the average difference between the outputs of teacher and
student models, as defined in Eq. (11).

LKD(p, q) =
KL(p+q2 , p) +KL(p+q2 , q)

2
(11)

where, KL(p, q) is the KL function.

3.4.3 Student’s Loss Function
The student’s loss function, LS , includes two components: a
supervised loss, LSsup and a student distillation loss, LSSDL.
It is calculated as:

LS = LSsup + βSLSSDL (12)

where, βS represents the constant coefficient of LS . As
suggested in [26], [27], we set βS = 1.0 in this paper.
LSsup is shown in Eq. (13).

LSsup = −
1

N

N∑
i=1

yilog(V
S
i ) (13)

LSSDL is calculated in Eq. (14).

LSSDL =
1

N

N∑
i=1

LSi,SDL (14)

where,

LSi,SDL = LKD(V SWEF,i/tKD, V
T
WEF,i/tKD)

+ LKD(V Si /tKD, V Ti /tKD)
(15)

Following mutual learning algorithms in [26], [27], we
utilize gradient descent to jointly optimize the teacher’s and
student’s parameters. Let θTk and θSk represent the teacher’s
and student’s parameters during the k-th training epoch,
respectively. θTk and θSk are defined in Eq. (16).

θTk = θTk−1 − ηT∇θTk−1
L(θTk−1),

θSk = θSk−1 − ηS∇θSk−1
L(θSk−1)

(16)

where, ∇θTk−1
and ∇θSk−1

denote the teacher’s and student’s
gradients during the (k-1)-th training epoch, respectively.
ηT and ηS represent the learning rates of the teacher and
student, respectively. The pseudo-code of HMKD is shown
in Algorithm 1.

4 EXPERIMENTS

This section introduces the experimental setup and perfor-
mance metrics. Following that, it delves into verification of
hyper-parameter sensitivity and the corresponding ablation
study. Finally, it assesses the overall performance of HMKD
and visualizes the representations learned.

4.1 Experimental Setting
4.1.1 Data Description
To assess the performance of HMKD, we select three well-
known wearable HAR datasets, as outlined below:

• HAPT: collected from 30 volunteers aged 19-48
years, is a smartphone-based recognition dataset for
human activities and postural transitions (HAPT)
[55]. The sensor signals, which include accelerometer

Algorithm 1 HMKD
Input: D = {Dtrain,Dval,Dtest}; .
Dtrain, Dval, and Dtest are the training, validation, and
testing datasets, respectively.

Output: Y T and Y S ; . Y T and Y S are the teacher’s and
student’s predictions, respectively.

1: Initialize the teacher’s and student’s parameters, θT0 and
θS0 ;

2: //Training and validation
3: for k = 1 to Epochs do . Epochs is the size of training

epochs.
4: Feedforward Dtrain into the teacher and student;
5: Obtain LT and LS using Eq. (7)(12);
6: Update θTk and θSk using Eq. (16);
7: if k > 1 then
8: Validate the teacher and student using Dval;
9: end if

10: end for
11: //Testing
12: Obtain Y T and Y S using Dtest.

and gyroscope with noise filters, were sampled in
fixed-width sliding windows of 2.56 seconds with
a 50% overlap (128 readings per window). Each
sample is represented as a 561-feature vector, en-
compassing time and frequency domain variables.
The dataset includes six basic activities: Walking
(Wk), Walking Upstairs (Wu), Walking Downstairs
(Wd), Sitting (St), Standing (Sd), and Laying (Ly).
Additionally, it features six static postures, namely
Stand-to-Sit (DtS), Sit-to-Stand (StD), Sit-to-Lie (StL),
Lie-to-Sit (LtS), Stand-to-Lie(DtL), and Lie-to-Stand
(LtD).

• WISDM: the Wireless Sensor Data Mining (WISDM)
[56] lab collected accelerometer data at a rate of
every 50ms, with a signal sample rate set to 20Hz.
The dataset comprises 1,098,207 examples of mul-
tiple physical activities, each characterized by six
attributes: user, activity, timestamp, x-acceleration, y-
acceleration, and z-acceleration. The dataset includes
six activities: Walking (Wk), Jogging (Jg), Upstairs
(Us), Downstairs (Ds), Sitting (St), and Standing (Sd).

• UCI HAR: the Human Activity Recognition using
smartphones dataset from the University of Califor-
nia Irvine Machine Learning Repository (UCI HAR)
[57] was gathered from 30 volunteers aged 19-48
years. Each volunteer wore a smartphone (Samsung
Galaxy S II) on their waist and performed six activ-
ities: Walking (Wk), Walking Upstairs (Wu), Walk-
ing Downstairs (Wd), Sitting (St), Standing (Sd), and
Laying (Ly). The dataset includes 3-axial linear accel-
eration and 3-axial angular velocity measurements
recorded at a constant rate of 50Hz, with the signal
sample rate set to 20Hz.

We collect the detailed information of the three datasets in
Table 1.
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TABLE 1
Details of three HAR datasets.

Dataset Sample Rate Activities Classes Samples

HAPT 50Hz

Walking (Wk), Walking Upstairs (Wu), Walking Downstairs (Wd),
Sitting (St), Standing (Sd), Laying (Ly),

Stand-to-Sit (DtS), Sit-to-Stand (StD), Sit-to-Lie (StL),
Lie-to-Sit (LtS), Stand-to-Lie(DtL), and Lie-to-Stand (LtD)

12 10,929

WISDM 20Hz Walking (Wk), Jogging (Jg), Upstairs (Us),
Downstairs (Ds), Sitting (St), and Standing (Sd) 6 1,098,207

UCI HAR 50Hz Walking (Wk), Walking Upstairs (Wu), Walking Downstairs (Wd),
Sitting (St), Standing (Sd), and Laying (Ly) 6 10,299

(a) HAPT (b) HAPT (c) HAPT (d) HAPT

(e) WISDM (f) WISDM (g) WISDM (h) WISDM

(i) UCI_HAR (j) UCI_HAR (k) UCI_HAR (l) UCI_HAR

Fig. 4. Training loss values obtained by various teacher and student models during training on three HAR datasets.

4.1.2 Data Preprocessing

Following [5], [8], [9], [10], [16], we utilize the fixed time
window method to integrate activity data gathered from
diverse sensors. Each sensor involves employing filtering
technologies like Kalman, low-pass, and wavelet filters for
noise elimination and achieving stable sampling and data
frequency. Simultaneously, the sequence data within a fixed
time window is fed to HAR models as input, which aims for
effective sensor data fusion within a specific time window to
enhance activity recognition robustness. The representation
of sensor data at the m-th timestamp is denoted by Dm,
while WZ represents the size of the fixed time window. The
time series data gathered within this fixed time window is

represented as xi, defined in Eq. (17).

xi = [D1, D2, ..., DWZ ], i = 1, 2, ..., N (17)

As recommended by [5], [8], [10], [16], [44], [56], [57], we set
WZ on the HAPT, WISDM, and UCI HAR datasets to 561,
48, and 561, respectively.

4.1.3 Data Partition

As suggested in [5], [8], [15], [16], [35], [37], [41], [42], [43],
[44], [58], each dataset is partitioned into two groups using
a 7:3 ratio. To determine the optimal hyper-parameters for
HMKD, the first group is further divided into training and
validation sets, with an 8:2 ratio. Meanwhile, the second one
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is designated as the testing set. This partition scheme facili-
tates a systematic approach to hyper-parameter tuning and
model evaluation, ensuring a comprehensive assessment of
the proposed approach.

4.1.4 Implementation details

In FCNLSTMaN and ResNetLSTMaN, we set the unit num-
ber of each LSTM-based attention layer to 128. In this
paper, RMSPropOptimizer is employed as the optimizer,
with the momentum term, initial learning rate, and decay
value set to 0.9, 0.001, and 0.9, respectively. The experiments
are conducted using a computer with Ubuntu 18.04 OS,
equipped with an Nvidia RTX 2080Ti GPU featuring 22GB,
and an AMD R5 1400 CPU with 32GB RAM. To depict
the specific training of HMKD, we outline the training loss
values acquired from distinct teacher and student models
throughout the entire training process on the three HAR
datasets in Fig. 4.

4.2 Performance Metrics

Following [5], [8], [13], [15], [16], [35], [41], [43], [44], we
consider two widely adopted metrics, namely, Accuracy
and F -measure (F1), in performance comparison. These
metrics are defined in Eqs. (18) and (19).

Accuracy =
NTP +NTN

NTP +NTN +NFP +NFN
× 100%

(18)

F1 =
Precision×Recall
Precision+Recall

(19)

where,

Precision =
NTP

NTP +NFN
× 100%

Recall =
NTP

NTP +NTN
× 100%

(20)

where, NTP and NTN denote the numbers of true pos-
itive and true negative instances, respectively. NFP and
NFN are the numbers of false positive and false negative
instances, respectively.

4.3 Hyper-parameter Sensitivity

We study the influence of hyper-parameter settings on
the performance of HMKD on the HAPT, WISDM, and
UCI HAR datasets.

4.3.1 HMKD with different tKD values

tKD operates as a scaling coefficient for the features of both
the teacher and student, playing a pivotal role in promoting
the knowledge flow between these models. As illustrated in
Table 2, the optimal setting for tKD is found to be 1.0. This
setting proves to be the most effective for HMKD, resulting
in the highest F1 value across each HAR dataset.

TABLE 2
F1 results obtained by HMKD with different tKD on three HAR

datasets.

Teacher Student tKD HAPT (%) WISDM (%) UCI HAR (%)

FCNLSTMaN

MLP

0.10 88.89 80.86 86.46
0.50 89.49 80.32 87.84
1.00 92.43 83.90 90.21
2.00 90.97 80.13 89.57
5.00 88.24 78.91 87.66

CNN

0.10 88.53 88.38 89.57
0.50 91.25 90.04 90.18
1.00 93.04 91.00 92.58
2.00 90.97 89.99 90.89
5.00 88.89 89.14 88.57

ResNetLSTMaN

MLP

0.10 88.54 80.92 87.34
0.50 90.02 83.93 89.62
1.00 92.77 85.69 91.72
2.00 90.04 83.93 88.94
5.00 89.49 82.89 88.23

CNN

0.10 89.49 88.74 89.12
0.50 90.73 89.99 90.89
1.00 93.15 92.13 93.90
2.00 89.49 89.31 90.18
5.00 88.89 88.92 89.02

TABLE 3
F1 results obtained by HMKD with different KD losses on three HAR

datasets.

Teacher Student Loss HAPT (%) WISDM (%) UCI HAR (%)

FCNLSTMaN

MLP

L1 90.04 81.06 88.89
L2 90.97 82.15 89.02
KL 92.04 83.05 89.12
CE 88.19 80.92 85.96
JS 92.43 83.90 90.21

CNN

L1 90.97 89.99 90.18
L2 91.25 90.04 90.18
KL 92.16 90.02 92.19
CE 88.89 89.14 88.57
JS 93.04 91.00 92.58

ResNetLSTMaN

MLP

L1 90.02 84.44 89.62
L2 91.63 84.68 89.57
KL 92.16 84.85 90.34
CE 87.13 81.79 86.33
JS 92.77 85.69 91.72

CNN

L1 90.73 90.02 90.89
L2 91.46 90.63 91.17
KL 92.85 91.38 92.58
CE 88.53 89.19 89.19
JS 93.15 92.13 93.90

4.3.2 HMKD with different KD losses
Selecting an appropriate KD loss function is crucial for
quantifying the average difference between the outputs of
teacher and student models. Table 3 presents the F1 results
achieved by HMKD using 5 different KD losses on three
HAR datasets, namely, KL, JS, L1 (Mean Absolute Error),
CE (Cross Entropy), and L2 (Mean Squared Error) losses.
Among them, JS outperforms the other four. Consequently,
JS loss is chosen as the preferred option to enhance the
knowledge transfer between teacher and student models.

4.4 Ablation Study
We investigate the effects of different components on
HMKD on three HAR datasets.

4.4.1 Effectiveness of Mutual Learning
To verify the effectiveness of mutual learning on HMKD, we
compare it with three variants in terms of F1, listed below.
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TABLE 4
F1 results obtained by vairous HMKD variants on three HAR datasets.

Teacher Student Method HAPT (%) WISDM (%) UCI HAR (%)

FCNLSTMaN

MLP

MLP 83.58 78.91 85.07
HUKD 88.24 79.49 88.49

HMKD w/o WEF 88.89 81.86 87.46
HMKD (Avg.) 91.63 82.72 89.49

HMKD 92.43 83.90 90.21
HMKD (Oline) 92.39 84.28 90.18

CNN

CNN 85.88 88.00 87.05
HUKD 88.24 89.19 88.49

HMKD w/o WEF 90.49 89.38 89.94
HMKD (Avg.) 92.77 89.49 90.89

HMKD 93.04 91.00 92.58
HMKD (Oline) 93.28 91.79 91.82

ResNetLSTMaN

MLP

MLP 83.58 78.91 85.07
HUKD 88.19 82.72 89.14

HMKD w/o WEF 89.00 83.89 89.23
HMKD (Avg.) 90.73 84.39 89.91

HMKD 92.77 85.69 91.72
HMKD (Oline) 91.46 86.39 90.89

CNN

CNN 85.88 88.00 87.05
HUKD 88.53 89.19 89.19

HMKD w/o WEF 90.89 89.89 89.57
HMKD (Avg.) 92.85 90.63 91.17

HMKD 93.15 92.13 93.90
HMKD (Oline) 93.69 93.01 92.89

• MLP: the pure MLP with three dense (fully-
connected) layers, without the incorporation of any
distillation method.

• CNN: the pure CNN with three convolutional layers,
without the incorporation of any distillation method.

• HUKD: a heterogeneous unidirectional KD method,
transfering knowledge from teacher to student.

Table 4 collects the results of the algorithms above on
three HAR datasets. Notably, the performance enhancement
of KD for the student is evident. KD facilitates knowledge
transfer from the teacher to the student, thereby regularizing
the student model and improving its feature extraction
capabilities. For instance, when FCNLSTMaN serves as the
teacher and MLP as the student, both HUKD and HMKD
contribute to an improvement in the F1 value of MLP on
the HAPT dataset, by 4.66% and 8.85%, respectively.

Meanwhile, HMKD outperforms HUKD on each HAR
dataset. This is because that HUKD neglects the reciprocal
nature of the distillation process, prioritizing the teacher’s
importance to the student’s model while overlooking the
student’s significance to the teacher. Conversely, HMKD
acknowledges and underscores the mutual learning aspect,
recognizing the importance of both the teacher and the
student in the distillation process. This perspective results
in the HMKD’s superiority over HUKD.

4.4.2 Effectiveness of Weighted Ensemble Feature
To study the impact of weight ensemble feature on HMKD,
we compare it with two variants as follows.

• HMKD w/o WEF: HMKD without weight ensemble
feature.

• HMKD (Avg.): HMKD with the average feature
method instead of weight ensemble feature.

Leveraging the weighted ensemble feature to enhance
knowledge transfer in the intermediate layers of the teacher
and student, HMKD demonstrates superiority over HMKD

w/o WEF on all datasets in Table 4. In contrast to the
average feature method, the weighted ensemble feature
takes into account the actual proportion of each feature in
the intermediate layers of the model, well representing the
corresponding features. This is why HMKD is better than
HMKD (Avg.) on all datasets.

4.4.3 Online vs. Offline
During the distillation process, if a teacher model is pre-
trained, it conducts online distillation for its student; other-
wise, it performs offline distillation for its student. HMKD
(Online) refers to the online distillation within the HMKD
framework.

Leveraging prior knowledge, HMKD (Online) demands
less training time and converges faster than HMKD, e.g.,
when ResNetLSTMaN and CNN serve as the teacher and
student, the training time of HMKD (Online) on the HAPT
dataset is approximately 40% shorter than that of HMKD.
As shown in Table 4, there is minimal difference in over-
all performance between HMKD (Online) and HMKD.
While HMKD (Online) shows slight improvement on a
few datasets compared to HMKD, the pre-trained teacher
model in HMKD (Online) tends to be time-consuming and
consumes significant computational resources. This is why
the offline HMKD approach is chosen.

In summary, the mutual learning, weight ensemble fea-
ture, and offline strategy are all crucial components for
HMKD.

4.5 Experimental Comparisons and Analysis
To verify the performance of HMKD, we compare it with a
number of KD algorithms against F1 value, listed below.

• MLP: the pure MLP with three dense (fully-
connected) layers, without the incorporation of any
distillation method.

• CNN: the pure CNN with three convolutional layers,
without the incorporation of any distillation method.

• FCNLSTMaN: the pure FCNLSTMaN, without the
incorporation of any distillation method.

• ResNetLSTMaN: the pure ResNetLSTMaN, without
the incorporation of any distillation method.

• ResponseKD: a vanilla response-based KD method for
HAR [17].

• FitNet: a hint-based KD method for HAR [22].
• CC: a correlation congruence-based KD method for

HAR [50].
• CRD: a contrastive representation distillation method

for HAR [17].
• RelaKD: a relational KD method for HAR [59].
• DKD: a decoupled KD method for HAR [46].
• MD: a mutual distillation method for HAR [26].
• DMD: a dense cross-layer mutual-distillation method

for HAR [27].
• DIST: a correlation-based KD method with a stronger

teacher for HAR [48].
• OFA: a one-for-all KD framework for HAR [25].

Table 5 shows the F1 results obtained by various KD
algorithms on three HAR datasets. Evidently, HMKD out-
performs all compared KD algorithms on each dataset. For
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TABLE 5
F1 results obtained by various state-of-the-art KD algorithms on three HAR datasets.

Teacher Student Method HAPT (%) WISDM (%) UCI HAR (%)

FCNLSTMaN

MLP

FCNLSTMaN 96.14 98.96 96.92
MLP 83.58 78.91 85.07

RsponseKD 84.86 80.13 85.86
FitNet 85.93 80.04 86.46

CC 86.87 80.32 86.89
CRD 88.53 80.58 86.46

RelaKD 88.67 80.86 86.99
DKD 88.19 79.49 85.96
MD 88.24 74.17 88.49

DMD 88.89 80.86 86.46
DIST 89.49 80.86 87.66
OFA 90.04 81.06 88.89

HMKD 92.43 83.90 90.21

CNN

FCNLSTMaN 96.14 98.96 96.92
CNN 85.88 88.00 87.05

RsponseKD 86.87 88.26 87.66
FitNet 88.19 88.92 88.49

CC 88.67 88.74 89.02
CRD 87.85 89.04 89.12

RelaKD 88.24 89.19 88.49
DKD 88.89 89.14 88.57
MD 85.21 89.31 87.84

DMD 89.49 88.38 88.94
DIST 88.53 89.19 89.57
OFA 90.97 89.99 90.18

HMKD 93.04 91.00 92.58

ResNetLSTMaN

MLP

ResNetLSTMaN 96.89 99.12 97.49
MLP 83.58 78.91 85.07

RsponseKD 85.05 80.92 85.59
FitNet 85.83 80.93 86.35

CC 87.13 77.12 87.00
CRD 86.32 82.93 88.23

RelaKD 88.19 82.72 89.14
DKD 87.13 81.79 86.33
MD 88.54 74.25 87.34

DMD 88.00 82.89 88.23
DIST 88.89 83.93 88.94
OFA 90.02 84.44 89.62

HMKD 92.77 85.69 91.72

CNN

ResNetLSTMaN 96.89 99.12 97.49
CNN 85.88 88.00 87.05

RsponseKD 86.39 88.26 87.84
FitNet 86.89 88.74 89.02

CC 88.19 89.31 89.57
CRD 87.34 89.19 90.21

RelaKD 89.49 87.84 89.12
DKD 88.53 89.19 89.19
MD 88.89 88.38 88.49

DMD 87.34 88.89 88.57
DIST 90.04 89.99 89.49
OFA 90.73 90.02 90.89

HMKD 93.15 92.13 93.90

instance, when FCNLSTMaN serves as the teacher and MLP
as the student, HMKD achieves the highest F1 value on the
HAPT dataset, namely 92.43%. OFA ranks the second, while
ResponseKD yields the least favorable performance.

The observations above can be attributed to the follow-
ing factors. HMKD establishes mutual learning not only
within the intermediate layers of both teacher and student
models but also extends to the output layers of them. This
approach promotes efficient knowledge flow between the
teacher and student, facilitating a comprehensive exchange
of information. OFA effectively enhances the knowledge

flow from the teacher to the student under heterogeneous
architectures, thanks to its ability to project intermediate
features into an aligned latent space and its adaptive tar-
get enhancement scheme. On the other hand, ResponseKD
establishes a simple link between the outputs of teacher
and student models through KL. However, this link may
pose challenges in transferring sufficient knowledge from
the teacher to the student.
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Fig. 5. Visualization of representations learned by t-SNE, MLP with t-SNE, and HMKD with t-SNE on three HAR datasets, where HMKD is based
on FCNLSTMaN as the teacher and MLP as the student, namely ’(T: FCNLSTMaN; S: MLP)’.

4.6 Representation Visualization

To examine the effectiveness of representation learning in
HMKD, we apply t-distributed stochastic neighbor embed-
ding (t-SNE) [60], an unsupervised nonlinear method, to
visually represent the learned features. The visualization of
representations learned by t-SNE, MLP/CNN with t-SNE,
and HMKD with t-SNE on three HAR datasets is presented
in Figs. 5, 6, 7, and 8. Figs. 5 and 6 correspond to HMKD
with FCNLSTMaN as the teacher, and MLP and CNN as
students, respectively, while Figs. 7 and 8 represent HMKD
with ResNetLSTMaN as the teacher, and MLP and CNN as
students, respectively.

In a comparative analysis with t-SNE alone, HMKD
showcases a superior clustering effect by efficiently group-
ing samples with similar characteristics, enhancing cluster-
ing coherence. For instance, as emphasized in Figs. 5 (a),
5 (b), and 5 (c), HMKD with t-SNE successfully clusters
HAPT instances that exhibit similar features, highlighting
the model’s ability to mine distinct patterns. Similar scenar-
ios are seen in Figs. 6, 7, and 8.

5 CONCLUSION

HMKD encourages mutual interaction between the teacher
and student models at intermediate and output layers. This
approach helps promote efficient knowledge sharing be-
tween teacher and student, enabling a thorough exchange of
information across various levels within the models. Given
the significant structural differences between teacher and
student models, the weighted ensemble feature approach
can amalgamate the features extracted from the intermedi-
ate layers of these models, which facilitates the knowledge
exchange within the intermediate layers of both models.
Experimental results show that compared with 10 SOTA
KD algorithms, HMKD showcases superior performance on
three HAR datasets, in terms of F1 score. Notably, when
employing ResNetLSTMaN and MLP as teacher and stu-
dent, the F1 score of MLP sees a growth of approximately
9.19% with the application of HMKD on the HAPT dataset.
These results indicate the potential of HMKD for addressing
various real-world HAR problems.
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Fig. 6. Visualization of representations learned by t-SNE, MLP with t-SNE, and HMKD with t-SNE on three HAR datasets, where HMKD is based
on FCNLSTMaN as the teacher and CNN as the student, namely ’(T: FCNLSTMaN; S: CNN)’.
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