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A B S T R A C T

A baby’s gestational age determines whether or not they are premature, which helps clinicians decide on
suitable post-natal treatment. The most accurate dating methods use Ultrasound Scan (USS) machines, but
these are expensive, require trained personnel and cannot always be deployed to remote areas. In the absence
of USS, the Ballard Score, a postnatal clinical examination, can be used. However, this method is highly
subjective and results vary widely depending on the experience of the examiner. Our main contribution is
a novel system for automatic postnatal gestational age estimation using small sets of images of a newborn’s
face, foot and ear. Our two-stage architecture makes the most out of Convolutional Neural Networks trained
on small sets of images to predict broad classes of gestational age, and then fuses the outputs of these
discrete classes with a baby’s weight to make fine-grained predictions of gestational age using Support
Vector Regression. On a purpose-collected dataset of 130 babies, experiments show that our approach
surpasses current automatic state-of-the-art postnatal methods and attains an expected error of 6 days. It
is three times more accurate than the Ballard method. Making use of images improves predictions by 33%
compared to using weight only. This indicates that even with a very small set of data, our method is a
viable candidate for postnatal gestational age estimation in areas were USS is not available.

© 2018 Published by Elsevier B.V.

1. Introduction

According to the World Health Organisation (WHO), 10% of babies
are born prematurely each year, amounting to over 15 million
preterm babies annually [1]. Complications related to preterm birth
remain the leading cause of death for children under 5 years [2], with
over 1 million deaths just in 2013 [3]. Estimates suggest that over
75% of these deaths could be prevented with the right treatment [5].

Gestational age helps clinicians determine whether or not a new-
born is premature and their degree of prematurity [4]. This estimation
influences the treatment that the babies receive and could, conse-
quently, result in suboptimal care and a poor outcome if the estimation
is incorrect. In high-income countries, the gestational age of a baby
is calculated prenatally with extreme accuracy thanks to early dating
scans performed using USS and trained personnel [6]. However, in
regions where USS cannot be deployed due to the remoteness of the
area or lack of funding, the estimation of gestational age is a challenge.
In these countries, in which the rate of premature births can reach up
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to 18% [2], the most widely used method is the Ballard Score, a manual
scoring system that looks at neuromuscular and physical attributes of
newborns. This method requires significant training and, even then, it
is subjective and prone to errors, especially in low-income countries
[7,8]. The Ballard Score is primarily based on visual analysis of a baby’s
features at different developmental stages. Thus, the opportunity for
a computer-vision based analysis is promising. Nevertheless, the use
of existing technology, such as pre-trained models, is not a suitable
option due to a combination of three major reasons: 1) there are no
pre-trained models for ear and foot classification, both of which are
vital regions for the calculation of the gestational age, 2) the already
pre-trained models for that use mostly use faces from children and
adults, never newborns, and they are focused on age classification,
not gestational age classification which is vastly different and much
more nuanced.

We present a novel method for postnatal gestational age esti-
mation that eliminated the subjectivity issues present in the Ballard
Score. Our Small Sample Deep Learning approach was particularly
suited for small and skewed datasets, such as our 88-participant
dataset. Our system combined Convolutional Neural Networks (CNNs)
and linear regression. While the task is essentially a regression
problem, our proposed approach reduced the output space of the Deep
Learningcomponenttofivemajorcategories(extremelypreterm,very
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preterm, moderately preterm, term, and late term), each of which is
predicted with a certain probability. These probabilities were then
combined with the normalised weight of the babies using a sim-
ple linear regressor. Our method was particularly useful because it
allowed us to maintain the fine-grained prediction required by the
original regression task, while still being able to benefit from deep
learning’s ability to automatically learn features from the images.
Results were quite promising, with an expected error of 6 days and
a 30% improvement over prediction based on weight only.

The contributions of this paper are:

1. A novel method for small sample learning which combines
photographs and quantitative information in a two-stage pro-
cess in which, first, broad classes are calculated via convolu-
tional neural networks and, second, fine-grained classes are
then predicted using the output from the convolutional neural
networks.

2. An application of such method for the problem of gestational
age estimation, in which the photographs used are from a new-
born’s face, ear and foot and the quantitative information is the
weight. We also present an in-depth study of the system when
different regressors and different combinations of the data are
used. We have experimented with Linear Regression, Random
Forest Regression, linear SVR and polynomial SVR.

3. A larger, more developed dataset for gestational age estima-
tion. The new version of the dataset, The GesATional Dataset
V2 (see Fig. 1), contains 130 participants versus the 88 partic-
ipants from [9]. It still remains skewed, with over 50% of the
dataset contained in the categories of moderately preterm and
term, but includes a larger number of images from the ear and
face region, which were particularly challenging to record pre-
viously. Additionally, in-depth analysis and discussion of the
characteristics of the data, the improvements of the method,
and the experiments are presented.

Results show that even with data of only 130 babies, we are able to
segment and localise the regions of interest (face, foot and ear) with a
Ballard Score of 0.91, 0.88 and 0.90, respectively. This entails a respec-
tive improvement of 18%, 8%, and 23% over the results presented in
[9]. In terms of gestational age estimation, we are able to improve the
current manual state-of-the-art, the Ballard Score, by 21.8%, resulting
in gestational age estimations accurate to 7.98 days RMSE, and with

6 days of expected error. Additionally, we also improve the current
automatic state-of-the-art methods by almost one day.

This paper is structured as follows: Section 2 gives an overview
of the relevant literature in the fields of gestational age estima-
tion, pre and postnatal, general age estimation, and segmentation.
Section 3 describes in-depth the dataset (GestATional Dataset v2),
which has data from 130 babies. We also discuss the major challenges
that we have faced during the data collection and analysis process.
Section 4 describes in detail the characteristics of the improved two-
step method developed, while Section 5 summarises the experiments
that were undertaken, and Section 6 discusses the results obtained
and compares them with our previous results. Finally, Section 7
summarises this paper and discusses future work.

2. Related work

In this section, we briefly review relevant literature on three main
topics: Gestational Age Estimation, Age Estimation and Image-based
Segmentation.

2.1. Gestational Age Estimation

There are three major methods currently in use for gestational age
estimation: Ultrasound Scans (USS), Last Menstrual Period (LMP), and
clinical assessments such as the Ballard Score [10]. USS are prenatal
and accurate to within a day if performed early in pregnancy (i.e. dur-
ing the first trimester, [6]). However, USS machines are less accurate
if used outside the first trimester, they are expensive, and cannot be
deployed to many rural areas [10]. Additionally, they require trained
personnel to use them, and report biased estimations for very large
or small foetuses [10].

The LMP and Ballard methods, in comparison, are low-cost and
easy to deploy [11,12]. The LMP is an antenatal method that calculates
the gestational age of a baby from the mother’s last menstruation
until the birth of the baby [10]. On the other hand, the Ballard Score
(shown in Fig. 2) is a postnatal method that looks at two differ-
ent sets of measurements regarding the newborn: Neuromuscular
and Physical criteria. Neuromuscular criteria include posture, square
window, arm recoil, popliteal angle, scarf sign, and heel to ear mea-
surements, while Physical criteria include skin, ear/eye, lanugo hair,
plantar surface, breast bud and genital developmental assessments.

Fig. 1. Example of newborn images from our database.
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Fig. 2. The Ballard test [7]. Neuromuscular and Physical information is measured to give an estimate of the gestational age of the newborn postnatally. Physical information
marked in red (skin, lanugo, plantar surface and eye/ear) can be easily extracted and measure using computer vision.

However, these two methods can be very inaccurate. Using the LMP
entails estimation problems due to uncertainty, very often due to
bleeding not related to periods or delayed ovulation. The LMP method
can also be influenced by irregular menstruation due to nutritional
issues or maternal disease, often common in low and medium income
countries [10]. The Ballard Score is reported to be subjective, depen-
dent on the clinicians’ experience and, overall, inaccurate [7]. A clear
example of this can be found in [8], where trained clinicians admin-
istered the Ballard exam to over 1000 (mostly term) newborns and
obtained errors between 4 and 5 weeks when compared with USS
scans.

Few researchers have attempted to develop methods of auto-
matic gestational age estimation. Most research is in Anthropology
and focuses on using simple techniques, like linear regression, and
measurements of skeletal remains or brain weight [13], which are
nearly impossible to obtain in rural settings.

This paper presents an alternative to these methods. It is automatic
and combines the objectivity and accuracy of the USS scans, and
the accessibility of the LMP and the Ballard Score. In an effort
to automate and objectify the manual gestational age estimation
process, the extraction of core Ballard’s Physical criteria will serve
as the motivation of our system, as most of them (shown in red in
Fig. 2) can be easily measured in a much more objective manner
using computer vision.

2.2. Automatic Age Estimation

Automatic Gestational Age Estimation is in many ways related
to Automatic Age Estimation. Here we provide a general overview
of popular methods for age classification. The problem of Age
Estimation has recently gained popularity within the Computer
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Vision community, with many databases released and challenges
organised [14,15].

Being essentially a Computer Vision task, the current state-of-the-
art methods use Deep Learning in one form or another [16,17,19-21].
However, one thing that separates our problem from traditional age
estimation, and consequently makes these methods unsuitable, is the
ease with which data can be obtained. In [15], participants were given
thousands of images from different people, while [21] needed tens of
thousands of images to apply Convolutional Neural Networks (CNNs)
to classify images according to age. Similarly, [16] and [17] report
their findings in FG-NET [18] and MORPH [14], which collect images
from over one thousand and five thousand individuals, respectively.
In stark contrast, our current dataset consists of only 130 babies. For
this reason, we decided to apply the techniques of Deep Learning,
but had to overcome the challenge to create a new method that
would work for the type of real data that we were collecting (small
and skewed samples).

2.3. Image-based Segmentation

A vast amount of research has been done in the area of segmen-
tation, particularly in the area of biomedical imagery [22,23]. Again,
and unsurprisingly, the current state-of-the-art uses Deep Learn-
ing. One of the most popular contemporary approaches is the Fully
Convolutional Neural Network (FCN, [24]). FCN approaches segmen-
tation as a per-pixel classification problem and modifies traditional
CNNs by substituting the final fully-connected layers for 1×1 convo-
lutions. Due to their robust and accurate results in problems such as
object recognition [24], we have decided to apply FCNs in the first
stage of our system.

3. The GestATional Dataset

This paper presents an updated version of The GesATional Dataset
(referred to as Version 2 or V2 of the dataset), which originally had
88 participants [9,31]. Version 2 of the dataset includes participants
recruited from October 2015 to October 2017. It has been expanded
for this paper to include information from 130 participants. This
entails a 42% increment in terms of participants recruited. Recruit-
ment and data collection were crucial for this project. While the
ultimate goal is to deploy our image-based gestational age estima-
tion system in areas without USS, in order to obtain ground truth
data to learn our algorithms we needed to recruit participants for
whom the gestational age was determined by USS, our gold standard.
Participants were sorted into five different classes according to their
degree of prematurity using a standard World Health Organisation
categorisation scheme. These classes are shown in Table 1.

Participants were recruited by clinical staff at our local hospi-
tals (Nottingham University NHS Trust, Nottingham, UK). Clinical
researchers approached parents of newborn babies on the maternity
ward and the neonatal intensive care unit. Ethics approval for this
study was obtained from the National Health Service in the UK (NHS

Table 2
Mean, Median, Minimum, Maximum and Standard Deviation of the gestational ages
of the participants in weeks. Class-wise and overall statistics are shown.

Mean Median Min Max Std.

Extremely 26.55 26.57 24.43 28 1.15
Very 30.86 31 29.28 32 0.87
Moderately 34.78 35 32.14 36.86 1.62
Term 38.39 38.28 37 40 1.00
Late 41.06 41.14 40.14 42 0.62
All data 35.17 36.14 24.43 42 4.54

ethics committee approval, ref. 15/EM/0173), and from the School of
Computer Science at the University of Nottingham. After informed
consent had been taken, data collected from participants resulted in
two sets of data:

1. Images: of the participant’s face, foot and ear. In some cases,
particularly in the case of newborns aged 28 weeks of gestation or
less (extremely preterm), who are connected to machines, some
of these images were difficult or impossible to obtain. Of the 130
participants recruited to date, 126 supplied foot images, 116 sup-
plied ear images and 115 supplied face images. Additionally, each
participant had between 2 and 10 images taken from each dif-
ferent body part, depending on the risk involved in taking them.
More information about the number of babies and the number
of photographs from each class can be found in Table 1. Further-
more, statistics from the participants can be found in Table 2 and a
distribution of the participants according to their gestational age
in weeks can be found in Fig. 3.
2. Case Report Forms (CRF): with relevant information such as
the gestational age of the baby, days of life at the time of the
visit, current weight, Ballard Score as performed by the clinical
research team in charge of recruiting participants (blinded to the
gestational age of the baby), the medical history of the mother,
and information about the delivery. The information on this docu-
ment was used to collect the ground truth for the age estimation.
All data was anonymised to guarantee that information could not
be used to trace participants.

3.1. Data annotation

Since part of our system first needs to automatically locate the
different body parts within the image, landmarks were annotated in
the images, which were then used to train and test our segmentation
step. To annotate version 2 of the dataset, we employed 5 annotators
who spent over 500 h of work in the span of six months.

Foot images required 43 points, while face images needed 68
points and ear images needed 32 points. An example of an annotated
foot and an annotated ear are shown in Fig. 4.

Table 1
Comparison in data distribution (participants and photographs) between versions 1 and 2 of the GestATional dataset according to five classes of gestation, from extremely
premature to late term. w stands for gestational age in weeks.

GestATional v2 GestATional v1 [9]

Babies Images Babies Images

Face Foot Ear Face Foot Ear

Extremely (≤ 28)w 13 26 103 13 8 26 46 13
Very (28 to 32 w) 25 91 188 64 22 73 161 49
Moderate (33 to 36 w) 38 280 295 207 22 86 119 53
Term (37 to 40 w) 33 214 276 172 18 68 140 50
Late (≥ 40w) 21 95 214 83 18 50 166 17
Total 130 706 1074 539 88 303 632 207
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Fig. 3. Distribution of gestational ages from the 130 participants of The GestATional
Dataset v2.

3.2. Challenges

The sensitive nature of this project and the characteristics of the
participants needed resulted in a number of challenges that affected
both the data collection stage and computation stage. The team
behind the project encountered two main challenges:

1. Recruiting babies: Recruiting moderately preterm, term, and
late babies was straightforward and successful, since the babies
were not undergoing any invasive treatment and taking photos
did not incur any additional stress for them. However, understand-
ably, parents of extremely and very preterm babies were often too
worried about their child and about potentially interrupting their
serious treatment to take photographs. As a result, despite our
best effort our database is somewhat skewed towards moderately
preterm, term and late babies.
2. Taking high-quality photos: Not only were extremely and
very preterm babies difficult to recruit, they were also hard
to photograph, due to the babies being inside incubators and
connected to machines. This resulted in members of our team not

being able to collect images from babies belonging to these cate-
gories or in the images being blurry or heavily occluded by clothes,
patches, or machines. A visual example of the effects of this chal-
lenge is shown in Fig. 5. These photographs were too blurry or
had too much occlusion to be suitable to be used in our dataset.
The effects of occlusion were particularly noticeable when pho-
tographing faces (due to babies being connected to machines)
and ears (due to babies wearing hats to maintain heat). Fig. 5a
and c exemplifies the type of occlusion that many photographs of
extremely and very premature babies had.

The effects of these challenges are shown in Table 1, where
the differences between extremely preterm babies (13 participants,
adding up to a total of 13 ear images) and moderately preterm babies
(with 25 participants and 64 ear images) are shown in terms of the
number of images collected.

4. Small Sample Learning

Our Small Sample Deep Learning method presented in this paper
can be divided into two stages:

1. Segmentation: which uses FCNs [24] to localise the regions of
interest (foot, ear and face) within an image.

2. Gestational Age Estimation: Which uses a bounding box around
said regions of interest with a combination of CNNs and
Regression to generate a prediction on the gestational age of
a baby.

4.1. Segmentation

The first stage of the system, shown in Fig. 6, is carried out using
Fully Convolutional Neural Networks (FCNs) [24]. We have used FCNs
to segment the images taken by our team and localise where the
foot, ear and face are within each image. FCNs are currently compet-
itive with state-of-the-art methods for segmentation [24]. They use
the same architecture as a VGG network [25] with one major dif-
ference: the traditional fully-connected layers are replaced by 1×1
convolutions. This allows them to provide a per-pixel classification
and, consequently, segment the original image.

As shown in Fig. 6, the input of this stage are the pre-processed
images from our dataset. The output of the FCNs are binary masks in
which pixels that were predicted as part of the body parts that were

Fig. 4. Examples of an annotated ear and foot photographs.
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Fig. 5. Examples of challenging images. Major challenges include blurry images due to incubator conditions or heavy occlusion due to babies receiving treatment.

being classified are activated. The ground-truth used in this stage are
binary masks created using the polygons that resulted from manual
annotations. In these masks, pixels equal to 1 belong to feet, faces or
ears and pixels with a value of 0 are part of the background.

Once the predicted segmentation masks were obtained, a simple
post-processing stage was carried out to isolate the activated regions
that belonged to either the ear, face and foot of the babies. Since
some of the images showed the clinician’s hands or other parts of
the baby, such as their legs, we found that some patches of flesh
from these regions were sometimes predicted as ear, face and foot.
In a post-processing step the region with the largest area of activated
pixels was retained while discarding any other spurious regions
of activation. This successfully removed many incorrectly predicted
pixels.

4.2. Gestational Age Estimation

The second stage of our framework is the Gestational Age
Estimation stage. For this stage, we created a new architecture of
CNNs, called CVL17 [9], specifically designed for small and imbalanced
datasets. In [9], we described novel method of combining this archi-
tecture with linear regression to obtain an estimation of the ages in
days. The advantages of this process were threefold. It allowed us to:

• Take advantage of current state-of-the-art methods (CNNs)
to learn features, even when our input data does not fit the
criteria that CNNs usually require (i.e. large amounts of data
and balanced classes).

• Combine visual information and anthropometric measures,
such as the weight of the babies in the decision-making process.

• Provide an estimate of the gestational age in weeks, instead of
classes. These results are, by definition, more fine-grained.

In this paper, we present an improvement on our original
method based on experiments with more sophisticated regressors. In
particular, we have experimented with Random Regression Forests,
Linear Support Vector Regression (SVR) and Polynomial Support

Vector Regression, out of which SVR obtained the most successful
results.

Training of our Small Sample Deep Learning structure consists of
two phases:

I. Convolutional Neural Networks: CNNs were used to classify
images into five coarse classes (presented in Section 3). Since
our dataset was relatively small and there was a high imbal-
ance between babies born before 28 weeks and babies that were
35 weeks or older, we decided against grouping participants
according to their gestational age in weeks. This would have
resulted in 14 classes (from 26 weeks-old to 40 weeks-old) with
extremelysmallsamplesizes. Infact,someclasseswouldevenhave
had no examples at all. Grouping participants into five classes guar-
anteed more populated classes with a more balanced distribution
of images.
For the purpose of training small sets of data, we created our
own network using Caffe: CVL17, designed to work with a limited
and skewed set of data: it is “deep” enough that features can
be learned and, at the same time, it is “shallow” enough that it
can classify images confidently. As shown in Fig. 7, CVL17 takes
128×128×3 RGB images as input and it is formed of two types
of building blocks:

• Block A: convolution, relu, convolution, relu, pooling.
• Block B: convolution, relu, convolution, relu, convolution,

relu, pooling.

First, there are three blocks of type A, followed by three blocks
of type B. All convolutions involved in the architecture are 3×3
convolutions. All blocks reduce the dimension of the input feature
vector by half. Then, after a dropout layer, there are two fully-
connected layers. The first one has 100 outputs and the second one
has 5, which map to the 5 classes we want to recognise. We use
a SoftMaxLoss layer to measure error. Since we are using images
from three different regions, we train separate CNNs for the feet,
face and ear.

Fig. 6. In the first step of our framework, FCNs [24] are used to segment the images and find regions of interest. Newborn’s stock photo from [26].
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Fig. 7. Overview of the age estimation process when feet, face and ear photographs are combined. pe is the probability of the test image belonging to the extremely
preterm class, pv is the probability of the test image belonging to the very preterm class, pm is the probability of the test image belonging to the moderately preterm
class, pt is the probability of the test image belonging to the extremely term class, and pl is the probability of the test image belonging to the late term class.

II. Regression: Once the CNNs have been trained, the test images
are propagated through the networkand the probabilitiesobtained
as the output of the CNN are stored for each of the babies in the
test set and each of the regions. This produces a 5×1 probability
vector, as shown in Fig. 7, where pe is the probability of the test
image belonging to the extremely preterm class, pv is the prob-
ability of the test image belonging to the very preterm class, pm
is the probability of the test image belonging to the moderately
preterm class, pt is the probability of the test image belonging to
the extremely term class, and pl is the probability of the test image
belonging to the late term class. This process was repeated using
subject-independent 5-fold cross-validation to obtain predictions
for the whole dataset in a manner that avoids overfitting. The 5-
dimensional image-based probability vectors are combined with
the normalised weight of the participants and used as the input
of a regressor, which outputs an estimate of the gestational age
of the babies in weeks.
After obtaining very promising results with a simple linear
regressor in [9], we decided to explore more complex regres-
sors, which have consistently obtained better results in popular
computer vision problems. In this paper, we present extensive
experiments and an in-depth analysis on the performance of our
method when using Random Regression Forests [30], Linear Sup-
port Vector Regression and Polynomial Support Vector Regression
[29].

5. Experiments

This paper presents in-depth experiments, analysis, and discus-
sion on the performance of our system and dataset. Since two main
variables changed (the size of our dataset, now with over 40% more
data, and the choice of regressor, now four different possibilities), we
decided to test the effect of each one separately. As a consequence, we
carried out all of our testing scenarios in both versions of the dataset.

For all of our testing scenarios, we used 5-fold subject-independent
cross-validation. This guaranteed no overlap between photos from
babies used during training and photos from babies used during
testing. We used two-stage cross-validation. In the first stage, we do
subject-independent cross-validation to generate predictions made
by the CNN. We then treat these predictions as the features of our
second stage, where we evaluate the linear regressors again using
subject-independent cross-validation.

The purpose of these experiments was to prove the following
hypotheses:

1. Our combined methodology outperforms the use of each of its
components (end-to-end CNNs and regression) separately.

2. FCNs can be used to accurately locate faces, feet and ears
within the images of our database.

3. Increasing the number of images directly results in an overall
improvement across all metrics studied.
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Fig. 8. Examples of 6 rotations from the foot region of an extremely premature baby.

4. Combining the normalised weight of a baby and visual infor-
mation can improve the current state-of-the-art in terms of
postnatal methods.

5. The use of more sophisticated regressors can improve the
current automatic results (compared to those reported in
[9]).

Hypothesis 1 was tested with an ablation study in which we
compared each element of the methodology separately. Hypotheses
2 to 5 were tested by experimenting with four possible regres-
sors (Linear Regressor, Random Regression Forests, Linear Support
Vector Regressors, and Polynomial Support Vector Regressors)
in both versions of the dataset (V1, with 88 participants, and
V2, with 130). All results from these experiments are shown in
Section 6.

Due to the small number of images in our dataset, we needed the
characteristics of our images in terms of size, orientation and per-
spective to be as similar as possible. Assuring that all images had
the same properties would diminish and even eliminate any neg-
ative effect that variations on size and layout could bring into the
segmentation and estimation process. However, circumstances not

always allowed photographs to be taken under the exact same con-
ditions. Consequently, the raw photographs taken by our team were
pre-processed according to:

1. Size: With a size of 4 MB, raw images were too large to be
used as the input of FCNs. To solve this, images were resized to
10 KB.

2. Orientation: Images had inconsistent orientations. To solve
this, we rotated all images until they were landscape images
with the captured body part in an upright position.

3. Perspective: We originally intended to capture the right
foot and right ear from all babies. However, due to some
babies undergoing treatment, this was not always possible
and photographs of their left foot or ear were taken. To
solve this, images with left ears or feet were horizontally
flipped.

After this pre-processing step, all images had the same
characteristics and they were ready to be segmented.

Using the masks obtained from the segmentation step, bounding
boxes were created around the largest region of activated pixels

Table 3
Mean and Median Jaccard Index for segmentation of Face, Foot and Ear on The GesATional Dataset V1 and V2.

GestATional V1 GestATional V2

No Post Proc Post Proc. No Post Proc Post Proc

Mean Median Mean Median Mean Median Mean Median

Face 0.73 0.78 0.73 0.78 0.91 0.93 0.91 0.93
Foot 0.79 0.85 0.79 0.86 0.88 0.91 0.88 0.91
Ear 0.67 0.77 0.69 0.78 0.90 0.91 0.90 0.91
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Table 4
Ablation study for V1 (88 participants). End-to-end 19-class CNNs and Regression
CNNs perform poorly on their own. Our method, which combines both strategies vastly
improves the results even when only considering regions (face, foot, ear) separately.

End-to-End CNN Regression CNN Small Sample Learning

Data RMSE Std E RMSE Std E RMSE Std E

Face 32.31 0.42 24.5 5.34 3.91 2.23
Foot 18.74 0.63 22.79 2.98 2.66 2.22
Ear 20.64 2.51 21.67 3.21 3.35 1.97

within the masks. Bounding boxes were centred around these blobs
and resized to 128×128 pixels.

Additionally, we carried out some data augmentation to balance
the dataset. As shown in Section 3, both versions of our dataset are
limited and quite skewed. While deep learning methods represent
the state-of-the-art in terms of classification methods, they require
large quantities of data to perform adequately. Therefore, we decided
to rotate the bounding boxes within the images between −10 and
10 ◦. Depending on the gestational age of the participant, a different
number of rotations were added to our training dataset in an effort
to balance instances from all classes. Extremely preterm babies had
10 rotations added to the dataset, very preterm babies had four rota-
tions added, and moderately, term, and late preterm babies had two
rotations added. This way, the final number of images that were used
for training were more balanced. Examples of six rotations for the
foot of an extremely preterm baby are shown in Fig. 8.

5.1. Metrics

Segmentation is measured using the Jaccard Index, while Age
Estimation uses RMSE.

5.1.1. Jaccard Index
The Jaccard Index is widely used in segmentation problems,

particularly in Biology [27]. It measures the intersection over the
union of two sets of points [28]. It is calculated with:

J(P, GT) =
|P ∩ GT|
|P ∪ GT|

Where P is the prediction (pixel set returned by FCNs as belonging
to body parts), and GT is the ground-truth.

5.1.2. RMSE
The Root Mean Square Error was used because it allows us

to measure the error of our predictions in the same units as the
ground-truth, weeks.

RMSE =

√√√√ 1
n

n∑
i=1

(yi − ŷi)2

Where yi is the gestational age of the ith baby and ŷi is the pre-
diction for the gestational age of the ith baby according to our linear
regressor.

5.2. Setup

Experiments were carried out on a machine using an NVIDIA’s
Titan X GPU. For the Segmentation step, we ran each stage of the
FCNs for 30,000 iterations (93 min) with a learning rate of 10−4 and a
step of 0.9. For the Gestational Age Estimation step, we trained each
CNN for 20,000 iterations. Training with V1 of the dataset took 5 h
and 12 min, while training with V2 of the dataset took 5 h and 50 min.

6. Results and discussion

Results from our segmentation experiments are shown in Table 3,
which contains the mean and median Jaccard Index obtained
when segmenting each region with and without post-processing.
Furthermore, results from the gestational age estimation stage are
shown in Tables 4–6.

Table 4 shows an ablation study in which we test each element
of our methodology separately and compare it to our novel method-
ology for each region separately. These elements are: 1) CVL17 as
an end-to-end classifier with 19-classes (from gestational ages of
24 weeks to 42 weeks), and 2) CVL17 as an end-to-end regressor.

Finally, Tables 5 and 6 have shown the comparative results of our
method in V1 and V2 of the dataset, respectively. Note that in all of
these tables, Ft is Foot, F is Face, E is Ear and W is the normalised
Weight. We reported results using: Linear Regression, Regression
Random Forests (RRF) with 950 trees, Linear SVRs and third-degree
polynomial SVR. Through cross-validation, we tested RRF from sizes
1 to 1500 and found 950 trees to be the optimal configuration.

Table 5
Gest. Age Estimation on The GestATional Dataset V1 (88 participants). Baseline results (Weight and Ballard) are shown in bold and italics. Our best result (in bold) improves both.
Ft is Foot, F is Face, E is Ear and W is the normalised Weight.

Lin-Regression RRF Linear SVR Pol-SVR

Data used RMSE Std E RMSE Std E RMSE Std E RMSE Std E

Weight 1.50 1.00 1.25 1.03 1.92 1.15 1.77 1.05
Ballard 3.57 2.27 3.57 2.27 3.57 2.27 3.57 2.27
Ballard S 3.72 2.27 1.92 1.22 2.62 1.99 5.07 3.22
Posture 4.14 2.09 3.25 2.03 3.56 2.09 3.48 2.25
Face 3.91 2.23 3.11 2.21 3.20 2.13 2.95 2.20
Foot 2.66 2.22 3.38 2.30 3.42 2.06 3.48 2.25
Ear 3.35 1.97 3.75 2.00 3.84 2.32 3.90 2.79
Face + Weight 1.63 1.32 1.82 1.38 1.75 1.41 1.26 1.83
Foot + Weight 1.40 1.25 1.93 1.45 1.26 1.04 1.33 1.08
Ear + Weight 1.46 1.33 2.03 1.29 1.32 0.94 1.44 1.06
Face + Foot 2.81 2.67 2.98 2.96 2.62 2.03 3.09 2.74
Face + Ear 3.24 2.83 3.10 2.12 3.14 2.30 3.44 2.32
Foot + Ear 3.67 2.78 3.31 2.24 3.38 2.17 3.42 2.68
F + Ft + E 3.17 2.88 3.02 2.00 2.68 2.13 2.91 2.75
F + Ft + W 1.32 1.01 1.78 1.34 1.20 0.91 1.83 1.35
F + E + W 1.15 0.89 1.84 1.21 1.21 0.82 1.56 1.55
Ft + E + W 1.23 1.06 1.93 1.35 1.29 0.97 2.42 2.02
F+Ft+E+W 1.29 0.99 1.84 1.35 1.12 0.87 2.36 3.14
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Table 6
Gest. Age Estimation on The GestATional Dataset V2 (130 participants). Baselines shown in bold and italics. Our best result (in bold) improves both. Ft is Foot, F is Face, E is Ear
and W is the normalised Weight.

Lin Reg RRF Lin-SVR Pol-SVR

Data used RMSE Std E RMSE Std E RMSE Std E RMSE Std E

Weight 2.4 1.67 1.47 1.62 1.39 1.01 1.25 0.83
Ballard 4.55 2.42 4.55 2.42 4.55 2.42 4.55 2.42
Ballard S. 4.42 3.48 1.93 1.25 5.02 3.24 4.80 3.77
Posture 4.13 2.30 3.22 1.89 3.48 2.25 4.8 3.7
Face 3.31 2.78 3.32 2.47 3.21 2.40 3.32 2.69
Foot 3.48 2.57 3.48 2.66 3.31 2.65 3.34 2.79
Ear 2.70 2.22 2.75 2.17 2.7- 2.02 2.73 2.08
Face + Weight 1.5 1.35 1.91 1.48 1.43 1.31 1.40 1.71
Foot + Weight 1.82 1.43 2.10 1.63 1.73 1.40 1.73 1.28
Ear + Weight 1.41 1.03 1.77 1.30 1.39 0.97 1.31 1.06
Face + Foot 3.39 3.05 2.88 2.34 3.02 2.45 2.97 3.53
Face + Ear 3.19 3.04 2.83 2.10 2.72 2.16 2.89 2.57
Foot + Ear 2.68 2.2 2.05 2.82 2.62 2.15 3.00 3.35
F + Ft + E 3.09 2.85 3.12 1.99 3.06 2.17 3.84 2.92
F + Ft + W 1.34 1.00 1.86 1.57 1.47 1.37 1.67 1.31
F + E + W 1.17 0.9 1.69 1.28 1.16 1.1 1.82 2.15
Ft + E + W 1.3 1.01 1.9 1.28 1.31 1.11 2.00 1.69
F+Ft+E+W 1.22 1 1.65 1.23 1.14 0.88 1.8 1.45

Furthermore, we found third-degree polynomials to yield the opti-
mal results after testing SVR kernels from second to eight degrees.

Results from the segmentation step showed that FCNs improved
their performance when segmenting Version 2 of the dataset. By
increasing the size of the dataset, we achieved a Jaccard Index of
0.88 for feet (11% more accurate) and 0.91 for face segmentation
(24% more accurate). However, the most significant improvement
occurred in the segmentation of ears, for which FCNs obtained
a Jaccard Index of 0.9 for ears, entailing over a 34% increase in
segmenting accuracy.

Another point of interest was discovered when we compared the
performance of FCNs in both versions of the dataset. While Version 1
benefited from having a post-processing step that removed smaller
blobs (considered noise) and only retained the largest blob within
a masks, once the dataset increased in size, this step had become
unnecessary, as the FCNs did not predict these smaller blobs any
more. In summary, the increase in the size of the dataset allowed
for faster segmentation and an improvement of 18%, 9% and 23%

in terms of the Ballard Score when segmenting face, feet and ear,
respectively.

Additionally, the predicted masks were more accurate than the
simple masks that we used, as shown in Fig. 9. These results were suf-
ficiently accurate to localise the body parts of interest, and to obtain
their largest dimension (height or width), which is the most impor-
tant information to generate bounding boxes for CNN training. The
similarity between the median and mean of the Jaccard Index indi-
cates that the results are consistent across all images in the different
image datasets.

Results from the ablation study proved our original hypothesis
that established that our novel method which uses CNNs for broad
classes and then regression to fine-tune predictions outperforms the
use of each of those elements separately. This is a direct consequence
of the small number of samples in our dataset.

Looking closely at the results obtained at the gestational age
estimation stage and comparing the performance of both datasets
and all four different regressors, interesting points were raised.

Fig. 9. Foot segmentation. FCN result in c) in much smoother and a better fit than manually-annotated mask in b), outperforming ground-truth).
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First of all, we were able to improve current manual postnatal
methods, such as the Ballard score and weight regression. A com-
parison of the performance of these methods for both datasets when
using linear regression and linear support vector regression can be
found in Fig. 10b. As shown in these figures, both types of regressors
combined with photographs and normalised weight obtain dramatic
improvements over manual methods. Interestingly, this improve-
ment, which surpasses 30% in some cases, happens regardless of the
combination of regions used and in both versions of the dataset.

Secondly, and more importantly, we also surpassed the current
state-of-the-art method for automatic postnatal gestational age esti-
mation, presented in [9]. We improve [9] by 0.03 in the case of Version
1 of the dataset and 0.01 in the case of Version 2 of the dataset. Using
V1, we were able to achieve a RMSE of 1.12 with a standard error of
0.87 or 6.09 days. Using V2 of the dataset, we obtained an RMSE of
1.14 with a standard error of 0.88 (6.16 days). Further analysis of the
results, also brought to our attention that both of these new state-of-
the-art results where obtained using support vector regression with a
linear kernel. In general, Linear SVR outperformed all other methods
in all categories. On the other hand, regression forests and third-
degree polynomial support vector regression generally obtained less
accurate results.

Another interesting point is that, in general, the increase in train-
ing data improved or maintained the performance of our automatic
method but it made manual methods worse. The characteristics of
the training samples, especially the size and quality of the samples,
are crucial for accurate classification. Since there are many possible
variations within our participants, we hypothesized that an increase

Fig. 10. Manual vs automatic methods with a) Lin. Reg. (state-of-the-art) and b) Lin.
SVR (new architecture presented in this paper) with both versions of the dataset.

Fig. 11. Average RMSE across 5 folds when using 0% of the images (Ballard Score), 50%
of V1, 100% of V1 and 100% of V2. The input in this example is the combination of all
regions and the weight of the newborns.

in the dataset would entail an increase in accuracy, in which experi-
ments show to be true. An example of this is shown in Fig. 11, where
we report the RMSE of the estimations made using 0% of the train-
ing set (i.e. using the Ballard Score), and then using 50% of V1, 100%
of V1 and then 100% of V2 with all three regions and the weight as
input. As can be seen, as the size of the training set increases, so does
the accuracy, while the standard deviation decreases. This is further
supported by comparing overall performances between V1 and V2,
as shown in Fig. 10b.

Futhermore, it can be seen by comparing the results for V1 and V2
in Tables 5 and 6 that V2 of the dataset is harder to predict than V1, as
exemplified by the higher RMSE errors and standard error deviation
when using the Ballard Score and the weight. This entails that V2,
while larger, is harder to classify. Nevertheless, our automatic post-
natal method is able to obtain results 41.7% and 21.9% more accurate
than the weight and 65.3% and 74.9% more accurate than the Ballard
Score for V1 and V2, respectively.

Finally, by analysing the features learned at the network, it is clear
that features at the lower levels of CVL17 closely match Ballard’s
physical measurements. This is exemplified in Fig. 12, which shows
three random examples from the 48 activations obtained at the first
convolution layer. It can be seen that regions related to the texture
of the sole of the foot, the cartilage around the ears, the shape
and openness of the eyes, and the texture of the skin are activated.
These match the physical characteristics assessed in the Ballard Score
(measurements marked in red in Fig. 2). In other words, the network
is objectively extracting a subset of what clinicians are trained to
assess when carrying out the Ballard Score, and it is using them in
the classification process.

7. Conclusions and future work

The gestational age of a baby is crucial when determining the
best treatment for a newborn, especially when born prematurely. We
have extended work previously presented in [9] in which a system
that estimates the gestational age of babies postnatally using pho-
tographs of their face, foot and ear was introduced. Our system has
two steps: first, images are segmented using Fully Convolutional
Neural Networks to find where the relevant body parts appear in the
image. Second, CVL17, a Convolutional Neural Network, is used to
classify the photographs according to five classes (extremely preterm,
very preterm, moderately preterm, term, and late). The probability
vectors that result from these CNNs are then combined with the
weight of the newborn and used as the input of a regressor. This
allows us to output an estimation of the gestational age in weeks,
instead of classes.
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Fig. 12. Ear, Face and Foot activations from the first convolution within our CVL17 network shown in a heat map.

In this paper, we have presented an improved version of this sys-
tem which uses images from the feet, face and ear of 130 newborn
babies and a combination of FCNs, CNNs and Support Vector Regres-
sors, to calculate the gestational age of a baby with a RMSE of 1.14
and an expected error of 0.88 week. Results show that as the size
of our dataset increases, automatic results vastly outperform man-
ual measurements, such as the weight and the Ballard Score. This
further positions our system as a potential alternative to postnatal
manual methods commonly used in remote and underfunded loca-
tions where USS are not available and health care workers may not
be trained in clinical assessment of newborns. Furthermore, when
we analysed the features that are being learned at the lower lev-
els of the network, it became clear that our network is, in essence,
automatically learning the measurements that doctors are taught to
measure in the Ballard Score such as skin texture, planar surface
and ear cartilage formation. In other words, our system is able to

efficiently and accurately learn what doctors are taught to assess
without being affected by issues introduced by lack of experience or
subjectivity.

Now that we have further evidence on the effect of the size of
the dataset and the importance of the regressor used, future work
will focus on exploring new and more sophisticated deep learning
networksinordertoimproveourcurrentresults.Wewillalsocontinue
recruiting more participants with the aim of creating a database with
equal amounts of images for the three regions (face, foot and ear)
and all five classes of babies (extremely premature, very premature,
moderately premature, term and late). For this, we are in the process
of recruiting more participants during the next months, focusing on
the more challenging categories (i.e. extremely and very premature
babies). We are estimating that we will reach 150 babies by January of
2018, and plans are underway to recruit thousands of babies in India to
test the method in a setting most likely to benefit from this approach.
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This method could result in improved outcomes for the
millions of vulnerable babies in low-middle income countries where
clinical management is compromised due to incorrect or unknown
gestational age at birth. Furthermore, by uploading this information
to a cloud database we could obtain a more detailed picture of the
populations where preterm birth is more prevalent.
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