Soil microstructure alterations induced by land use change for sugarcane expansion in Brazil

L. P. Canisaresa*, M. R. Cherubinb, L. F. S. Silvab, A. L. C. Francoc, M. Cooperb, S. J. Mooneyd, C. E. P. Cerrib

a Agronomic Institute of Campinas, Campinas, SP, 13012-970, Brazil.
b “Luiz de Queiroz” College of Agriculture, University of São Paulo, Piracicaba, SP, 13418-260, Brazil.
c School of Global Environmental Sustainability & Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA.
d School of Biosciences, University of Nottingham, Sutton Bonington Campus, Leicester, LE12 5RD, UK

*Corresponding Author: L.P. Canisares. E-mail: lucaspeccic@gmail.com

Running Title: Soil microstructure alterations by land use change.
Summary

Land use change (LUC) alters soil structure and consequently, the functions and services provided by these soils. Conversion from extensive pasture to sugarcane is one of the most large-scale land transitions in Brazil due to the growth of the domestic and global demands of bioenergy. However, the impacts of sugarcane expansion on the soil structure under extensive pasture remains unclear, especially when considering changes at the microscale. We investigated if LUC for sugarcane cultivation impacted on soil microstructure quality. Undisturbed soil samples were taken from two soil layers (0-10 and 10-20 cm) under three contrasting land uses (native vegetation – NV, pasture – PA and sugarcane – SC) in three different locations in the central area of southern Brazil. Oriented thin sections (30 µm) were used for micromorphological analysis. The total area of pores decreased following the LUC in the following order; NV > PA > SC in both soil layers. The area of large complex packing pores (>0.01 mm²) also decreased with the LUC sequence: NV>PA>SC. Qualitative and semi-quantitative micromorphological analysis confirmed porosity reduction was driven by the decrease in complex packing pores and that biological features decreased in the same LUC sequence as the quantitative parameters. Therefore, LUC for sugarcane expansion reduced microscale soil porosity, irrespectively of soil type and site-specific conditions, indicating the adoption of more sustainable management practices is imperative to preserve soil structure and sustain soil functions in Brazilian sugarcane fields.

Keywords: Soil micromorphology, sugarcane, soil physical quality, complex packing pores, bioenergy production
Introduction

The growing interest in biofuels has resulted in a new demand for arable land for bioenergy crop production. Land use change (LUC) is one of the greatest threats to soil quality (Cherubin et al., 2016a; Bonilla-Bedoya et al., 2017), as it can have significant impacts on soil biodiversity (Franco et al., 2016), carbon storage (Mello et al., 2014) and ecosystem services (Foley et al., 2011). Brazil is the world’s largest sugarcane producer with 8.59 million ha of cultivation area and production of 29 Mt of sugar and 33 billion L of ethanol (CONAB, 2019). Conversion from extensive and degraded pastureland to sugarcane production is the main scenario of LUC used to support sugarcane expansion in Brazil (Adami et al., 2012; Strassburg et al., 2014).

However, the intensive mechanization used in sugarcane fields, including soil tillage by ploughing and disking and heavy machinery traffic during mechanical harvesting degrades soil structure, affecting multiples processes and functions in these soils (Cherubin et al., 2016; Robot et al., 2018). Soil structure is typically defined by the arrangement of soil particles and aggregates and the pores among the structural units, which regulates multiple processes and services such as: water retention and conductivity, soil aeration, soil organic matter turnover, nutrient cycling (Six et al., 2004), soil erodibility (Barthès & Roose, 2002) and plant growth. Therefore, parameters related to soil structure are considered key indicators of soil quality (Bünemann et al., 2018). Soil microstructure relates to the compositional arrangement of soil at a smaller scale (i.e. at the micron scale) and can be assessed by the use of thin sections, also known as micromorphology (Bullock et al. 1985). Although microstructure assessment by thin section can be time-consuming and generally does not provide 3D structural information, it provides more detail than other approaches where visualization of the soil micro-fabric is concerned.
Although traditional soil physical properties (e.g. bulk density, soil porosity, soil penetration resistance, soil aggregation etc.) along with visual assessment methods can efficiently infer the stability, and even resilience of soil structure (Cherubin et al., 2016b, 2017; Castioni et al., 2018), these methods cannot reveal the precise spatial arrangement of soil structure and the geometrical form of pores and aggregates. Imaging methods, such as micromorphology, can be used to further study the dynamics of soil structural development across the time and/or space and help improve understanding concerning the impact of soil structure on soil functioning (Guimarães et al., 2013; Silva et al., 2015; Souza et al., 2015; Pires et al., 2017). Whilst other imaging methods such as X-ray Computed Tomography (CT) have become more popular for the analysis of soil pore space in recent years, particularly as they facilitate faster acquisition of images and 3D visualisation, micromorphology is still an important technique for the analysis of soil structure as it permits the microscopic visualization of some soil properties, such as those derived from organic matter, e.g. fecal deposits, that are currently not straightforward to image by X-ray CT (Helliwell et al., 2013).

Considering the intense mechanization applied to sugarcane soils, we conducted a field study to evaluate the impact of LUC for sugarcane expansion on soil microstructure characteristics using soil thin sections. The hypothesis was that the intensity of sugarcane cultivation had a significant impact of the alteration on soil microstructure and subsequent soil quality.

Materials and methods

Study sites

Undisturbed soil samples for 0 – 10 and 10 – 20 cm soil depth were taken in the central region of southern Brazil at three different locations within the main sugarcane-
producing region of the country, as follows: Lat_17S near the city of Jataí – Goiás State (17°56’16”S 51°38’31”W), Lat_21S near the city of Valparaíso – São Paulo State (21°14’48”S 50°47’04”W) and Lat_23S near the city of Ipaussu – São Paulo State (23°05’08”S 49°37’52”W) with soil orders was classified as Oxisol, Alfisol/Ultisol and Oxisol by the USDA Soil Taxonomy (Soil Survey Staff, 2014), respectively. The climate was classified according to Köppen-Geiger’s system as mesothermal tropical (Awa), humid tropical (Aw) and tropical (Cwa), respectively. The mean annual temperature and precipitation is 24.0 ºC and 1600 mm (Awa) at Lat_17S, 23.4 ºC and 1240 mm (Aw) at Lat_21S and 21.7 ºC and 1479 mm (Cwa) at Lat_23S, with the rainy season in the Spring-Summer (October to April) and the dry season during the Autumn-Winter (May to September). More detailed climate information (mean monthly temperature and precipitation) are available in Cherubin et al. (2015).

In each site, we sampled a LUC sequence, including native vegetation (NV, baseline), pasture (PA) and sugarcane (SC) areas. Selected physical and chemical soil properties are found in Table 1. The land use and management history of each site, as well as chemical and physical characterization of the soils are further described in Cherubin et al. (2015; 2016). For all sugarcane areas, the soil was prepared by ploughing and diskng previously to cropping. The SC fields at Lat_17S, Lat_21S and Lat_23S was in the third, third and fourth ratoon, respectively. In SC fields fertilizer was applied annually and harvesting was performed using a 20 Mg harvester and transported by a tractor and wagon (10 + 30 Mg). A controlled traffic system was not used in these areas.

Soil sampling and preparation

One undisturbed soil sample (7 x 12 x 6 cm) was collected in the Lat_17S, Lat_21S and Lat_23S for NV, PA and SC in two soil layers (0-10 and 10-20 cm), totaling 18
samples (3 sites x 3 land uses x 2 soil depths). For sugarcane, the soil was sampled in the inter-rows. The soils were air dried for 35 days and then placed in an oven at 40 °C for 48h. The dry samples were impregnated with a polyester resin, styrene monomer and fluorescent dye (Tinopal BASF®) by capillarity in a vacuum chamber. After impregnation, vertically oriented soil thin sections (c. 30 μm thick) were obtained for qualitative and semi-quantitative description (Bullock et al., 1985; Stoops, 2003; Cooper et al., 2017) and quantitative image analysis (Cooper et al. 2016). Figure 1 illustrates the sampling procedure adopted in the field.

Micromorphological analysis

The thin sections were analyzed using a Zeiss petrographic microscope. The qualitative description of thin section was made following the classifications described in Bullock et al. (1985) and Stoops (2003) only for thin sections from Lat_23S. This method provides reference images for a semiquantitative assessment of porosity and the description of pore morphology. The pores were classified as packing pores, i.e. those that result from the loose packing of soil components; channel pores, i.e. tubular smooth pores with a cylindrical or arched cross section which are uniform over much of the length; vughs, i.e. more or less equidimensional, irregularly shaped, smooth or rough, usually not interconnected; and planar pores, i.e. flat, accommodating or not, smooth or rough, resulting from shrinkage or compaction (Stoops, 2003). The soil coarse/fine (c/f) fabric was classified as either porphyric (i.e. coarse grains embedded in fine material), enaulic (i.e. fine material appears as micro-aggregates between coarser components) or combinations of these as described in Stoops (2003).

Micromorphometrical analysis
Ultraviolet light was used to enhance the contrast between the pore space and soil matrix, and images were obtained using a charged couple device photographic camera (DFW-X700, Sony®). For each soil sample, fifteen images of 180 mm² were randomly obtained (Figure 1). The images were digitalized with a resolution of 1024 x 768 pixels in 256 shades of gray in a 10x amplification giving a pixel size of 12.5 µm. Pore segmentation was undertaken in Noesis Visilog version 5.4 by means of a user defined threshold (maintained throughout the study), opening and closing filtering, and labelling, which correspond to the individualization of each object followed by its identification. The smallest segmented pore had a diameter of 37.5 µm, which is classified in the meso/macro-pore size range; the size class most sensitive to soil compaction (Richard et al., 2001).

The total area of pores (Tap) for each image was calculated as the percentage of the sum of the areas of the individual pores divided by the total area of the assessed image (Hallaire & Cointepas, 1993). Pore shape was classified into three groups as in Cooper et al. (2016): rounded, elongated and complex. Two indexes were used to determine the pore shape, as described in Eq. 1 and Eq. 2:

\[I_1 = \frac{P^2}{4\pi A} \]
\[(Eq. 1) \]

Where P is the perimeter of the pore and A is the area.

\[I_2 = \frac{\frac{1}{m} \sum_i (NI)_i}{\frac{1}{n} \sum_j (DF)_j} \]
\[(Eq. 2) \]

NI is the number of intercepts of the object in direction \(i \) \((i = 0°, 45°, 90°, \text{and } 135°) \), DF is the Feret diameter of the object in the direction \(j \) \((j = 0° \text{ and } 90°) \), \(m \) correspond to the number of \(i \) directions and \(n \) to the number of \(j \) directions. The I2 index was used complementary to I1 for a better pore segregation according to shape.
When morphometric shapes are compared with the micromorphological classification, rounded pores correspond to vughs, elongated pores to channel and planar pores, and complex pores to packing pores.

Data analysis

The mean soil porosity of each site was derived from 15 subsamples (every image from a single thin section), which were used as pseudo replicates (Hurlbert, 1984) to compare the difference in LUC porosity for each site; to compare the LUC effect on soil porosity for the central-southern region each site was considered as a replicate (n=3). Data normality was tested by Shapiro-Wilk’s test ($p > 0.05$), followed by an analysis of variance (ANOVA) and post hoc via a Duncan’s test ($p < 0.05$).

Results

Micromorphological analysis

Regardless of land use, the soils presented a dominant porphyric relative distribution with secondary areas presenting as porphyric-enaulic, enaulic-porphyric and enaulic related distributions. The porphyric-enaulic related distribution areas only occurred in agricultural land uses (PA and SC) whilst the enaulic-prophyric areas were only observed in NV soils (Table 3).

The soil micromorphological descriptions also showed a reduction in soil porosity in both layers due to the LUC from native vegetation to pasture (Table 3). Also, the pore morphology observed for native vegetation showed more complex packing pores than in the pasture. In the pasture soils, there was a reduction in complex packing pores and an increase in policoncave vughs in both layers whereas planar pores were generally identified in the subsurface layer (Table 3).
The porosity of soil under sugarcane was lower than pasture only for the 0-10 cm layer. The pore morphology analysis showed a further reduction of complex packing pores from pasture to sugarcane and an increase in spherical and policoncave vughs and channels (Table 3). When pedofeatures were analyzed, a reduction in biological features from native vegetation soil to pasture was observed. However, the bio-pores, characterized by the infilling of pores, and aggregates had no clear differences in diameter. The LUC from pasture to sugarcane also led to a reduction in biological features (pores, aggregates and coprolites) and the size of biological-derived aggregates in the 0.1-0.2 m layer (Table 3).

Micromorphometrical analysis

Considering all sites, the total area of pores (Tap) was 1.2 to 2.1 times higher in the surface layer (0-10 cm) of NV soils than pasture soils, whereas, sugarcane soil had a Tap 1.5 to 2.2 times lower than pasture soils (Table 2). The same pattern of change induced by LUC (Table 2) was observed at site scale, except for Lat_21S where PA did not differ from NV. For the subsurface layer (10-20 cm), LUC did not induce changes in Tap (Table 2) when considered at the regional scale. However, for Lat_23S, the NV had a higher porosity than PA and SC, and the Tap of NV was higher than PA, which was higher than SC at Lat_17S (Table 2).

For the top soil layer (0-10 cm), the soil pores at NV were rounded, elongated and predominantly, complex pores. A reduction in complex and larger pores was observed in accordance with a reduction in Tap with the LUC sequence; NV > PA > SC. This indicates the reduction of the Tap was driven by large and complex pores representing a loss of in the portion of complex packing pores, which is observed in Figure 2, where the 10-20 cm soil layer was less sensitive to this alterations at Lat_21S and Lat_23S (Figure 3 and 4).
Discussion

Impacts of conversion from native vegetation to pasture on soil microstructure

Land transition from native vegetation to pasture promoted reduction in porosity in surface and subsurface soil layers at Lat_23S e Lat_17S. However, considering the data at the regional scale, this conversion induced a reduction of the soil porosity only for the superficial layers (Table 2). These results are in agreement with a higher soil bulk density (BD), reduced macroporosity (MaP) and hydraulic conductivity (Kfs) of these same pasture soils found by Cherubin et al., (2016b). In addition, despite the contrasting scales of evaluation, our micromorphometric analysis confirmed the results obtained by on-farm visual evaluation by Cherubin et al. (2017), using the Visual Evaluation of Soil Structure (VESS) method (Guimarães et al., 2011). Based on VESS assessment, pasture soils presented larger, harder and less porous aggregates than native vegetation soils, resulting in lower overall soil physical quality in the 0-25 cm layer (Cherubin et al., 2017).

Cattle trampling may be the main driver of soil porosity reduction in pastures. Mulholland & Fullen (1991) observed higher BD and penetration resistance in pastureland soil after trampling using a thin section evaluation. Also, soils under native vegetation can have higher organic matter inputs than the anthropic land uses, increasing organic matter content (Franco et al., 2015), which is responsible for aggregate formation and stabilization (Six et al., 2004), providing better soil physical conditions (Cherubin et al., 2016b).

The quantitative pore shape results showed a reduction in larger complex pores (Figures 3 and 4). This reduction did not alter the soil microstructure between these LUC’s, but changes were identified in the qualitative pore morphology analysis showing a decrease
in complex packing pores and an increase in spherical and policoncave vughs and fissures from NV to PA (Table 3). These changes in the quantitative and qualitative pore morphology assessments are also reflected in the changes in the related c/f distribution with a transformation of enaulic and enaulic-porphyric related distribution in NV to a porphyric-enaulic related distribution in PA. This morphological evidence suggests an incipient compaction process in PA that caused by animal trampling and poor pasture management that may reduce the benefits of soil macrofauna bioturbation, which is partly responsible for the formation of these morphological features. Compaction causes a reduction in the total volume of pores, and this reduction not only alters pore morphology but changes the pore size distribution (Boivin et al., 2006). Therefore, the pore size and shape results obtained in this study can be useful indicators or proxies for pore connectivity and tortuosity properties, which are important for the evaluation of changes in key soil functions and services (Silva et al., 2015; Rabot et al., 2018), such as regulation of water fluxes and soil aeration, induced by land use change and soil management practices. Although, the observation in 2D is a limitation in this instance as assessment of pore connectivity in 3D is more appropriate for prediction of some soil functions e.g. soil hydraulic behaviour. Further investigations combining both the data from thin sections and X-ray imaging would improve our understanding concerning the soil structure changes induced by agricultural land uses, as well as to better establish the linkage between soil structure dynamics and the provision of soil functions and ecosystem services.

Impacts of conversion from pasture to sugarcane on soil microstruture

Our results indicated a reduction on total porosity, mainly in the surface soil layer (0-10 cm), when sugarcane was converted from pasture (Figure 2). The decrease of
packing pores observed in the micromorphological analyses (Table 3) confirms the reduction of porosity and complex pores observed in the quantitative image analyses.

Overall, land transition from pasture to sugarcane increases the mechanical compressive stresses applied on the soil surface, causing microstructural degradation due to the coalescence of aggregates by compaction. The effect of this microstructural degradation in this study is evidenced by the significant reduction in the complex pore areas due to LUC, and in some sites, by the increase of less connected and more rounded pores (Figures 3 and 4). This pore morphology change was also observed in the decrease in the percentage of complex packing pores and increased percentage of spherical and policoncave pores from PA to SC (Table 3). Microstructure changes from a microgranular to blocky structure, both with well developed aggregates, and an increase in porphyric c/f distributions, were also observed. These modifications in microstructure, c/f distribution and pore morphology occur due to mechanical stress (Silva et al., 2015), and reduce soil aeration, water and nutrient uptake and crop yield (Lipiec et al., 1996). Soil compaction creates a restrictive environment for plant growth due the physical impediment for roots development (Lipiec & Hatano, 2003) and the reduction of soil aeration and consequentially, the redox potential (Eh) (Czyz, 2004), creating a poor bio-chemical environment (Husson, 2013). Otto et al. (2011) showed the inverse relationship between soil penetration resistance and diverse root parameters (root length, area and density). The background for these limitations for plant and root growth could lie in changes in microstructure and pore morphology due to LUC as we have shown in this study.

Our results highlighted the urgent need for more sustainable management practices to improve soil physical quality, especially those related to the improvement of soil microstructure and pore morphology, mitigating the negative impact of biofuel
production. As sugarcane planting typically occurs between September and March (in
the central region of southern region in Brazil), which is also the rainy season, it is
important to avoid, or at least restrict, machinery traffic under high soil moisture
conditions and to encourage the introduction of conservation agriculture cropping
systems that reduce or eliminate soil tillage (Barbosa et al., 2019) and recommend the
use of cover crops as an alternative to prevent soil structure degradation and mitigate
other agronomic issues, such as weeds, pests and soil fertility. In this context cover
crops can also be used to improve soil structure at scales as fine as considered here
through root modification of the soil porous architecture (Bacq-Labreuil et al. 2019).
As there is an increasing interest in sugarcane straw to cogenerate bioelectricity or
produce 2G ethanol, maintaining part of the sugarcane straw in the field is an important
practice to improve several soil physical quality properties, such as soil structure, pore
size and morphology, BD, resistance to penetration, among others (Castioni et al., 2018;
Castioni et al., 2019).

Other soil parameters, such as soil organic matter, soil fauna and soil texture
(Vreeken-Buijs et al., 1998; Six et al., 2004; Porre et al., 2016; Bonetti et al., 2017),
are important for soil structuring, and may contribute to the differences in changes in
pore morphology and size observed in this study. However, irrespectively of the site-
specific conditions (climatic, biological, chemical and physical), the results of the
micromorphological and micromorphometrical analysis, together with the physical
attributes provided by Cherubin et al. (2016b and 2017), show that the soil compaction
process occurs following LUC. More sustainable management practices are necessary
to maintain the soil physical properties (e.g. soil structure, pore morphology and size,
pore connectivity, etc.) that influence soil functions, (e.g. hydraulic conductivity, air
permeability, C storage, physical stability to resist against degradation, etc.) in Brazilian sugarcane fields to achieve the expected productivities.

Conclusions

Land use change from native vegetation to pasture to sugarcane degraded the soil microstructure, reducing the porosity of the soil and negatively influencing the pore shape and size distribution, irrespectively of the soil texture and site environmental conditions. As changes in soil microstructure and pore morphology affect important soil hydrological and physical attributes, which in turn can negatively affect crop yield, the adoption of more sustainable management practices in sugarcane fields (e.g. reduced soil tillage, cover crop incorporation, straw retention and machinery traffic control) is imperative to preserve and/or enhances soil structure, and consequently sustain soil function in a productive capacity.

Acknowledgements

L.P.C. and L.F.S.S. thank the Brazilian Federal Agency of Support and Evaluation of Graduate Education (CAPES) for the Ph.D. scholarship and post-doc fellowship, respectively. This study was financed in part by the CAPES - Finance Code 001.

A.L.C.F. and M.R.C. thank São Paulo Research Foundation FAPESP for the scholarships and research grant received while this research was carried out (Processes 2012/22510-8, 2013/24982-7, and 2018/09845-7). C.E.P.C. and M.C. thank National Council for Scientific and Technological Development (CNPq) – Brazil for their productivity research grants. For L.P.C and S.J.M. this work was undertaken as part of NUCLEUS: a virtual joint centre to deliver enhanced NUE via an integrated soil-plant systems approach for the United Kingdom and Brazil. Funded in Brazil by FAPESP—
São Paulo Research Foundation [Grant 2015/50305-8], FAPEG—Goiás Research Foundation [Grant 2015-10267001479], and FAPEMA—Maranhão Research Foundation [Grant RCUK-02771/16]; and in the United Kingdom by BBSRC/Newton Fund [BB/N013201/1].

Table 1. Soil physical and chemical characteristics of Lat_21S, Lat_17S and Lat_23S.

<table>
<thead>
<tr>
<th>Soil attributes</th>
<th>Soil layer</th>
<th>Lat_21S</th>
<th>Lat_17S</th>
<th>Lat_23S</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>NV(^1)</td>
<td>PA(^2)</td>
<td>SC(^3)</td>
</tr>
<tr>
<td>Sand (g/kg)</td>
<td>0-20</td>
<td>738</td>
<td>760</td>
<td>767</td>
</tr>
<tr>
<td></td>
<td>0-20</td>
<td>82</td>
<td>66</td>
<td>76</td>
</tr>
<tr>
<td>Silt (g/kg)</td>
<td>0-20</td>
<td>180</td>
<td>175</td>
<td>157</td>
</tr>
<tr>
<td>Clay (g/kg)</td>
<td>0-20</td>
<td>0.99</td>
<td>1.22</td>
<td>1.21</td>
</tr>
<tr>
<td></td>
<td>10-20</td>
<td>1.08</td>
<td>1.34</td>
<td>1.29</td>
</tr>
<tr>
<td>BD(^4) (g/cm(^3))</td>
<td>0-10</td>
<td>21.8</td>
<td>13.3</td>
<td>11.1</td>
</tr>
<tr>
<td></td>
<td>10-20</td>
<td>16.0</td>
<td>9.5</td>
<td>9.9</td>
</tr>
</tbody>
</table>

Values represent the mean of each land use. \(^1\) – Native Vegetation; \(^2\) – Pasture; \(^3\) – Sugarcane; \(^4\) – Bulk density. Adapted from Franco et al. (2015).
Table 2. Mean comparison of the total area of pores (Tap) in three land use in region scale (all evaluate sites) and for each location.

<table>
<thead>
<tr>
<th>Location</th>
<th>Layer (cm)</th>
<th>Tap (%)</th>
<th>Land use</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Native vegetation</td>
<td>Pasture</td>
<td>Sugarcane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Region Scale</td>
<td>0 – 10</td>
<td>36.5aA ± 8.7</td>
<td>22.3bA ± 1.3</td>
<td>12.8cA ± 2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 – 20</td>
<td>36.3aA ± 22.0</td>
<td>23.9aA ± 6.4</td>
<td>18.9aA ± 5.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lat_23S</td>
<td>0 – 10</td>
<td>37.2aA ± 14.8</td>
<td>22.2bA ± 8.2</td>
<td>10.2cB ± 9.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 – 20</td>
<td>33.4aA ± 12.8</td>
<td>25.1bA ± 12.2</td>
<td>24.8bA ± 12.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lat_21S</td>
<td>0 – 10</td>
<td>27.3aA ± 8.5</td>
<td>23.7aA ± 6.5</td>
<td>14.5bA ± 6.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 – 20</td>
<td>15.8aB ± 6.0</td>
<td>16.9aB ± 6.8</td>
<td>14.7aA ± 8.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lat_17S</td>
<td>0 – 10</td>
<td>45.1aB ± 8.3</td>
<td>21.1bB ± 3.1</td>
<td>13.8cB ± 3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 – 20</td>
<td>59.6aA ± 10.6</td>
<td>29.6bA ± 6.0</td>
<td>16.5cA ± 6.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Different lowercase letter indicates statistical difference between the land use, and uppercase letter indicates the statistical difference between layers by Duncan test with 5% probability.
Table 3 Micromorphological description of the different land uses of two soil layers at Lat_23S.

<table>
<thead>
<tr>
<th>Soil matrix Composition</th>
<th>Native Vegetation</th>
<th>Pasture</th>
<th>Sugarcane</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0-10 cm</td>
<td>10-20 cm</td>
<td>0-10 cm</td>
</tr>
<tr>
<td>Coarse material</td>
<td>25 %</td>
<td>25 %</td>
<td>30 %</td>
</tr>
<tr>
<td>Fine Material</td>
<td>35 %</td>
<td>40 %</td>
<td>40 %</td>
</tr>
<tr>
<td>Porosity</td>
<td>40 %</td>
<td>35 %</td>
<td>30 %</td>
</tr>
<tr>
<td>Porphyric</td>
<td>97 %</td>
<td>97 %</td>
<td>95 %</td>
</tr>
<tr>
<td>Porphyric-enaulic</td>
<td>-</td>
<td>-</td>
<td>5 %</td>
</tr>
<tr>
<td>Enaulic-poraify</td>
<td>2 %</td>
<td>2 %</td>
<td>-</td>
</tr>
<tr>
<td>Enaulic</td>
<td>1 %</td>
<td>1 %</td>
<td>-</td>
</tr>
</tbody>
</table>

* c/f Related Distribution

Coarse Material

The coarse material is composed by polycrystalline quartz, sub accommodated and poorly selected.

Fine Material

The fine material is composed by clay and iron oxides.

<table>
<thead>
<tr>
<th>Pores</th>
<th>Native Vegetation</th>
<th>Pasture</th>
<th>Sugarcane</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0-10 cm</td>
<td>10-20 cm</td>
<td>0-10 cm</td>
</tr>
<tr>
<td>Complex packing</td>
<td>60 %</td>
<td>60 %</td>
<td>50 %</td>
</tr>
<tr>
<td>Spherical and policoncave vughs</td>
<td>15 %</td>
<td>20 %</td>
<td>25 %</td>
</tr>
<tr>
<td>Channels</td>
<td>15 %</td>
<td>10 %</td>
<td>15 %</td>
</tr>
<tr>
<td>Fissures</td>
<td>10 %</td>
<td>10 %</td>
<td>10 %</td>
</tr>
</tbody>
</table>

Microstructure

Predominantly micro-granular with strong to moderate pedality and partially accommodated.

Complex microstructure composed by one predominantly micro granular with strong to moderate pedality and partially accommodated zone; and the other zone
Pedofeatures

<table>
<thead>
<tr>
<th>Biological features</th>
<th>30 %</th>
<th>30 %</th>
<th>25 %</th>
<th>25 %</th>
<th>15 %</th>
<th>20 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charcoal</td>
<td>5 %</td>
<td>5 %</td>
<td>1-5 %</td>
<td>1-5 %</td>
<td>1-5 %</td>
<td>1-5 %</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Biological pores diameter (mm)</th>
<th>0.6 to 3</th>
<th>0.2 to 2.2</th>
<th>0.1 to 3.7</th>
<th>0.4 to 2.5</th>
<th>0.5 to 3.4</th>
<th>0.4 to 1.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological aggregates diameter (mm)</td>
<td>0.1 to 0.7</td>
<td>0.1 to 0.5</td>
<td>0.2 to 0.6</td>
<td>0.1 to 0.7</td>
<td>0.1 to 0.5</td>
<td>0.2 to 0.4</td>
</tr>
</tbody>
</table>

| Coprolite | Present |

* c/f: Ratio between coarse (c) and fine (f) material.
Figure 1. Illustration of soil sampling procedure adopted in the field and details of orientation and scale of samples.
Figure 2. Binary microphotographs of representative thin section’s areas (180 mm²) of the 0 – 10 cm soil layer of native vegetation (A), pasture (B) and sugarcane (C); and the 10 – 20 cm soil layer of native vegetation (D), pasture (E) and sugarcane (F) where black is soil matrix and white is the pore space of microaggregates coalescence.
Figure 3. Pore shape and size distribution for 0-10 cm soil layer. R, Rounded; Elong, Elongated; Comp, Complex; SC, sugarcane; PA, pasture; NV, native vegetation.
Figure 4 Pore shape and size distribution for 10-20 cm soil layer. R, Rounded; Elong, Elongated; Comp, Complex; SC, sugarcane; PA, pasture; NV, native vegetation.