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A boundary time-crystal is a quantum many-body system whose dynamics is governed by the
competition between coherent driving and collective dissipation. It is composed of N two-level
systems and features a transition between a stationary phase and an oscillatory one. The fact
that the system is open allows to continuously monitor its quantum trajectories and to analyze
their dependence on parameter changes. This enables the realization of a sensing device whose
performance we investigate as a function of the monitoring time T and of the system size N . We
find that the best achievable sensitivity is proportional to

√
TN , i.e., it follows the standard quantum

limit in time and Heisenberg scaling in the particle number. This theoretical scaling can be achieved
in the oscillatory time-crystal phase and it is rooted in emergent quantum correlations. The main
challenge is, however, to tap this capability in a measurement protocol that is experimentally feasible.
We demonstrate that the standard quantum limit can be surpassed by cascading two time-crystals,
where the quantum trajectories of one time-crystal are used as input for the other one.

Interacting nonequilibrium quantum systems can un-
dergo spontaneous time-translation symmetry breaking.
The phases associated with this phenomenon are called
time-crystals [1–3] and can be observed both in driven
Hamiltonian systems and in dissipative scenarios. In
spite of a variety of possible mechanisms underlying their
emergence, a common feature is the presence of asymp-
totic oscillations in some observable of the system [1–3].
Such oscillations either break a discrete time-symmetry,
by displaying a period which is a multiple of the driving
period [4–17], or a continuous time-symmetry [18–32], by
approaching a limit cycle under time-independent driving
[33]. The boundary time-crystal (BTC) is a paradigmatic
example of (continuous) dissipative time-crystal [18]. It
manifests in collective spin systems, in which the inter-
play between driving and dissipation leads to an oscil-
latory phase [18, 22]. Various time-crystal phases have
been reported in open quantum systems [7–17, 19, 21, 23–
28, 30–32], including recent experimental observations in
atom-cavity setups [14, 34].
Dissipative time-crystals provide an example of collec-

tive phenomena in which dissipation plays a constructive
role. This contrasts its more archetypal role in which
dissipation simply destroys quantum correlations, hence
being usually detrimental for, e.g., quantum metrology
protocols [36, 37]. Alternative quantum metrology ap-
proaches try to harness nonequilibrium phenomena in
order to enhance the sensitivity of parameter estimation
[38]. For instance, this is the case of protocols exploit-
ing dissipative phase transitions [38–46]. Another key
idea is to exploit the information contained in the emis-
sions of open quantum systems via continuous monitoring
protocols [38, 47–54]. Bounds to the fundamental sensi-
tivity achievable by these continuous sensors have been
derived [55, 56]. In general, they are difficult to saturate

FIG. 1. Continuous time-crystal sensor. We consider N
two-level systems subject to collective dissipation and driven
with a Rabi frequency ω. This can be realized both with
cavity [14, 34] or free space implementations [35]. We consider
two sensing protocols, a single time-crystal (protocol I) and a
two cascaded time-crystals (protocol II), where one system is
driven with Rabi frequency ω and the other with ωD. In both
cases the parameter ω is estimated by measuring the photon
output intensity IT over a time interval of length T or in the
stationary limit (T → ∞). The estimation error δω(T ) —
and whether it saturates the theoretical sensitivity bound Sω

— depends on the observation time and the protocol.

with bare photocounting or homodyne detection proto-
cols [cf. Protocol I in Fig. 1]. However, strategies have
been developed in order to improve the sensitivity of con-
tinuous sensors [57–59], as the use of auxiliary systems
[60, 61]. Connecting to the latter idea, Ref. [60] provides
a general protocol based on cascading the output [62–
64] of the sensor to a replica system that is continuously
monitored [cf. Protocol II in Fig. 1], which may enable
the saturation of the fundamental bound.

In this work we show how dissipative time-crystals can
be exploited for sensing applications, reaching a sensi-
tivity which can surpass the standard quantum limit.
Recent works have studied BTCs from the perspective
of critically enhanced sensing [44, 45], focusing on prop-
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erties of the system alone, while Ref. [65] considered a
discrete time-crystal for sensing time-dependent fields.
Here, we instead assess the performance of BTCs as con-
tinuous sensors. The rationale is that time-crystal oscil-
lations clearly manifest in the photocounting and homo-
dyne detection signals even for finite sizes [66] and that
this output is readily accessible in experiments. Firstly,
we analyze the fundamental (theoretical) bound on the
achievable sensitivity with these devices. Subsequently,
we consider two different sensing protocols, based on pho-
tocounting experiments, see Fig. 1. Protocol I entails the
direct monitoring of the signal while Protocol II relies on
indirect monitoring of the photocurrent through a cas-
caded replica of the BTC, acting as a decoder, in the
spirit of Ref. [60]. The time-crystal phase offers an en-
hanced sensitivity bound which scales linearly with the
particle numberN . This theoretical sensitivity cannot be
achieved by Protocol I. Protocol II, on the other hand,
allows to achieve the scaling ∼ N0.80, thus surpassing the
standard quantum limit [38].

The model. – The BTC is composed of N spin-1/2
particles and described by the master equation (ℏ = 1)

∂tρ̂ = −iω[Ŝx, ρ̂] + κD[Ŝ−]ρ̂ , (1)

with D[Ô]ρ̂ = Ôρ̂Ô† − {Ô†Ô, ρ̂}/2 and ρ̂ being the state

of the system. We further defined Ŝα = 1
2

∑N
j=1 σ̂

(j)
α

(α = x, y, z), with σ̂
(j)
α being the Pauli matrices and

Ŝ± = Ŝx ± iŜy. Eq. (1) thus encodes collective spin
decay with rate κ and a (resonant) driving with Rabi
frequency ω. It preserves the total angular momentum,
and we focus throughout on the fully symmetric sector.
The above model was introduced in the context of co-
operative resonance fluorescence, see, e.g., Refs. [67–70],
and was recently recognized as a simple dissipative model
displaying a time-crystal phase [18].

For collective systems such as that of Eq. (1), it is
customary to rescale the collective decay rate κ by the
system size in order to enforce a well-defined thermody-
namic limit [22, 71]. However, we focus on finite-size sys-
tems and thus consider a N -independent rate, which fur-
ther allows for a closer connection with experiments [35].
The system displays a stationary regime, characterized
by fast relaxation to the stationary state, and an oscil-
latory regime, featuring long-lived oscillations [70]. The
quality factor of the oscillations increases with system
size [70] and diverges in the thermodynamic limit, where
the system approaches the time-crystal phase [18, 22].
The two regimes are sharply separated by a critical Rabi
frequency, ωc = κN/2, as system size increases [70], the
long-lived oscillations emerging for ω > ωc.

Continuous sensing. – Our goal is to exploit the above
system as a continuous sensor for estimating the Rabi
frequency ω. To this end, we consider sensing proto-
cols based on photocounting, so that the quantity that is
measured is the time-integrated photon count or output

intensity IT up to a measurement time T . The latter is

defined as IT = 1
T

∫ T

0
dN(t), where dN(t) is a random

variable, taking the value 1 when a photon is detected at
time t and 0 otherwise [72], with average value given by
E[dN(t)] = κdtTr[Ŝ+Ŝ−ρ̂]. Here, E[·] represents the av-
erage over all possible realizations of the photocounting
process [72]. A relevant figure of merit for the sensitiv-
ity of a protocol is the estimation error, or error propa-
gation formula, which, for the above-introduced output
intensity, reads

δω(T ) =
√
E[I2T ]− E[IT ]2

∣∣∣∣∂E[IT ]∂ω

∣∣∣∣−1

. (2)

The first term on the right-hand side of the above equa-
tion is the standard deviation of the measurement, while
the second one represents the susceptibility of the inten-
sity on ω. In practice, the estimation error is the inverse
of the signal to noise ratio. The quantum Fisher informa-
tion of the system and emission field (QFI), FE, provides
a lower bound for continuous sensing protocols [39],

δω(T ) ≥ [
√
FE(ω, T )]

−1 , (3)

which applies to any protocol exploiting the information
provided by the joint system and output state [39, 55, 60].
Here, we focus on a long measurement time limit,

in which the system is described by its stationary
state ρ̂ss. Since IT obeys a large deviation princi-
ple [73, 74], the time-integrated intensity tends to its
mean [72], limT→∞ IT = κTr[Ŝ+Ŝ−ρ̂ss], and the stan-
dard deviation scales, away from phase transitions, as√
(E[I2T ]− E[IT ]2) ∼ σIT /

√
T . As a consequence, the

estimation error asymptotically behaves as

δω ∼ δω√
T

. (4)

Both the prefactor for the standard deviation σIT and
the one for the estimation error δω are time-independent
quantities (see also Supplemental Material [75]). The
QFI scales linearly with time [55, 75], and thus√

FE(ω, T ) ∼ Sω

√
T . (5)

The quantity Sω in the above equation is thus the
(theoretical) sensitivity bound for the estimation, i.e.,
(δω)−1 ≤ Sω.
Fundamental bound on sensitivity. – In Fig. 2 we ana-

lyze the theoretically achievable bound on the sensitivity,
Sω. Deep inside the stationary phase this bound is con-
stant, Sω ≈ 2/

√
κ, i.e., it does not depend on ω. This re-

sult is obtained via a Holstein-Primakoff approach (HP)
(see [75]), which shows that spins organize in a large
displaced state. Its fluctuations are annihilated by the
dissipator and hence they do not contribute to the prop-
erties of the emitted light at leading order. The QFI is
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FIG. 2. Sensitivity bound. (a) Sensitivity bound Sω

[cf. Eq. (5)], as a function of the Rabi frequency ω. (b) Sensi-
tivity bound Sω as a function of the system sizeN for different
values of the Rabi frequency. The black dashed line is a fit of
the six points with largest size, yielding Sω ∝ N1.0.

in this case dominated by the amplitude of the coherent
displacement.

In the vicinity of ωc we observe a sharp crossover with
the sensitivity bound becoming larger in the oscillatory
phase (ω/ωc > 1). This feature becomes more and more
pronounced the larger the system size. The sensitivity
in the time-crystal phase indeed grows linearly, Sω ∝ N
[see Fig. 2(b)], well into the time-crystal regime (while
at criticality the scaling is sublinear). From Fig. 2(a) it
is also clear that for fixed system size N the sensitiv-
ity bound saturates upon increasing ω/ωc. This shows
that increasing the system size and increasing the Rabi
frequency do not have the same effect on the sensitiv-
ity. Therefore, the N -dependency of the bound in the
time-crystal phase is a genuine many-body effect. Notice
that Sω ∝ N corresponds to a N2-scaling for the QFI,
meaning that the time-crystal phase theoretically offers a
Heisenberg limited sensitivity in the number of particles
[38].

The system size enhancement of the sensitivity can be
understood from the properties of the emergent many-
body oscillations. As shown in Ref. [66], these oscillations
translate directly into the photocounting signal, mani-
festing as an oscillatory detection signal. Increasing sys-
tem size with fixed ω/ωc has a twofold effect. First, the
quality factor of the oscillations increases linearly with N
[20, 22, 70], and thus the oscillations in the emitted field
have an increasingly better defined frequency. Second,
the amplitude of the oscillations also increases with sys-
tem size (as more atoms emit synchronously), and thus
the signal stands out more clearly from background noise
[66]. The combination of these effects creates stronger
correlations between the system and the emitted field,
which are a known source for enhancement of the QFI
[39, 55, 60]. An indirect signature of such strong correla-
tions is the fact that the reduced state of the system in
the time-crystal phase is close to the maximally mixed
state [66, 76], which witnesses that the total state of sys-
tem and emission field is highly correlated. Interestingly,

FIG. 3. Protocol I. (a) Red solid line: estimation error
δω [cf. Eq. (4)], as a function of the Rabi frequency ω for
N = 30. Black-dashed line: inverse sensitivity bound S−1

ω

[Eq. (5)]. These quantities are plotted in units of
√
κ. (b)

Left axis (red): absolute value of the derivative of the sta-
tionary intensity, as a function of the Rabi frequency. Right
axis (blue): prefactor of the scaling of the standard deviation
σIT , as a function of the Rabi frequency. Black broken lines
correspond to analytical results for the stationary phase [75].

the monitored state of the system in the time-crystal
phase also displays multipartite entanglement [77]. In
the following, we explore whether sensitivities close to
the bound can be achieved using sensing protocols based
on photocounting.
Protocol I. – The first protocol we consider is based

on counting the number of emitted photons in a time
window T . For long measurement times, a single (ideal)
measurement run yields the stationary state intensity,
while its standard deviation can be systematically stud-
ied using large deviations [75]. In Fig. 3(a) we present the
estimation error for this protocol. The smallest estima-
tion errors are attained in the stationary phase. Indeed
at the transition the estimation error increases steeply
and in the time-crystal phase it assumes values which are
much larger than the bound Sω. The “bad” performance
under this measurement protocol can be understood from
the data shown in Fig. 3(b). There we observe that in the
time-crystal phase the derivative of the intensity with ω
diminishes significantly while the standard deviation dis-
plays the opposite trend.
Interestingly, simple photocounting saturates the sen-

sitivity bound in the stationary phase. This can be un-
derstood by applying the HP approximation to methods
from large deviation theory, which allows us to obtain an
analytical approximation for the error [75]: δω ≈ 0.5

√
κ.

This value agrees with the numerical results of Fig. 3(b)
(see black-broken lines). The physical interpretation is
the same as for the QFI, i.e., to leading order the emit-
ted light displays the same properties as a state with
large coherent amplitude.
Protocol II. – In the second protocol, inspired by

Ref. [60], the emission of the system of interest, the sen-
sor, is cascaded [62, 63] into an auxiliary system with
same degrees of freedom, referred to as decoder (see
Fig. 1). This protocol builds on the emergence of dark
states in the cascaded system, a situation explored in de-
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FIG. 4. Protocol II. (a) Stationary intensity of the cascaded system varying ∆ω = ω − ωD and ωD. At the line ∆ω = 0 the
emitted intensity is zero. This quantity is plotted in units of κ. (b) Purity of the stationary state of the cascaded system. In
panels (a), (b) the red dashed line corresponds to the mean-field transition line. In both cases N = 10. (c) Estimation error
δω [cf. Eq. (4)] varying the Rabi frequency difference between the spin systems ∆ω, and for three different points in the phase
diagram. Color lines correspond to the inverse of the sensitivity bound S−1

ω [cf. Eq. (5)] displayed in Fig. 2(a). In this panel
we have considered N = 6. (d) Color points: estimation error δω varying system size N ∈ [6, 30] for ωD/ωc = 2. The black
dotted line corresponds to the sensitivity bound S−1

ω displayed in Fig. 2(b). The color dashed lines correspond to fits for the
eight data points with largest size, yielding the exponential laws depicted in the figure (see [75] for more details). (e) Left (red)
axis: derivative of the (stationary) emitted intensity with respect to ω as a function of ∆ω. Right (blue) axis: prefactor for the
standard deviation of the output intensity, as a function of ∆ω. In this panel ωD/ωc = 2.

tail in Ref. [64]. Optimal sensing is then achieved close
to the parameters in which the dark state is present [60].
We consider two BTCs in cascaded configuration: all out-
put light of the sensor (system 1) is fed into the decoder
(system 2), while no light of decoder returns to the sensor
[62–64]. Protocol II is described by the master equation:

∂tρ̂ = −i[ωŜ(1)
x + ωDŜ

(2)
x + Ĥc, ρ̂] + κD[Ĵ−]ρ̂. (6)

where Ĥc = −iκ(Ŝ
(2)
+ Ŝ

(1)
− − Ŝ

(1)
+ Ŝ

(2)
− )/2 and Ĵα = Ŝ

(1)
α +

Ŝ
(2)
α are the total angular momentum operators. Here,

Ŝ
(1,2)
α are macroscopic spin operators, each one associated

with N two-level systems.

Before analyzing the sensitivity of the second protocol
we briefly summarize the most important features of the
cascaded dynamical system. A crucial result is that the
stationary state of Eq. (6) is a dark state — for any ra-
tio ω/κ — as long as ωD = ω (see [75] for its analytical
expression). Interestingly, well into the stationary phase,
it is separable, while for ω/κ ≫ 1 it tends to the highly
correlated singlet state of the total angular momentum.
Once we break the condition ∆ω = ω − ωD = 0, the cas-
caded system emits light. In Fig. 4(a) we show its sta-
tionary emission intensity: limT→∞ IT = κTr[Ĵ+Ĵ−ρ̂ss].
For ωD/ωc > 1 and ∆ω > 0, the system emits much more
intensely than for ωD/ωc < 1. Looking at the purity of
the stationary state [Fig. 4(b)], it is possible to see a
clear separation between these two regions, the brighter
one being highly mixed, while the darker one displaying
an almost pure stationary state. Notice that the reduced
state of the sensor is exactly the same as for Eq. (1) [64].
Hence, the mixed bright phase corresponds to the sensor
being in the time-crystal phase, while the pure phase cor-
responds to the sensor being stationary. Using the HP
approximation [75], we find that the stationary phase is

assumed when ω, ωD < ωc and ∆ω < (ωc − ωD)/2. This
result is accurate even for small sizes [see red-dashed line
in Fig. 4(a-b)]. In this phase, each collective spin orga-
nizes itself in a coherent state with large amplitude plus
Gaussian bosonic fluctuations. Their stationary state is
a two mode separable state, in which each mode displays
analogous properties [75].

We proceed by analyzing the sensitivity of Protocol II,
which estimates ω from the output intensity of the cas-
caded system [see Fig. 1]. In Fig. 4(c) we provide the
estimation error as function of ∆ω for different points
of the phase diagram. A first observation is that in the
stationary phase there is no improvement with respect to
Protocol I. This can be understood again via HP in com-
bination with methods from large deviations (see [75])
which predicts the estimation error to be: δω ≈ 0.5

√
κ.

The physical interpretation of this result is the same as
for the individual system: the emitted light has essen-
tially the same properties as a coherent state. In con-
trast, in the cascaded time-crystal phase the sensitivity
increases. The estimation error is smaller than in the
stationary phase and it improves further with increasing
system size, as shown in Fig. 4(c-d). In panel (d) we
analyze the system size dependence considering two val-
ues of ∆ω close to the dark state condition. By fitting
the points for the largest system sizes N (dashed lines),
we obtain δω ∝ N−α. The exponents are α = 0.68 for
∆ω/κ = 0.01 and α = 0.80 for ∆ω/κ = 0.005. The sen-
sitivity thus surpasses the standard quantum limit in the
number of particles. For large system sizes the system
performs better closer to the dark state point ∆ω = 0.
The estimation error displays a non-monotonous behav-
ior with respect to ∆ω, which reflects the presence of an
optimal value for δω. This can be understood by analyz-
ing separately the two quantities that contribute to the
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estimation error [see Fig. 4(e)]: as system size increases,
the derivative of the stationary intensity develops an in-
creasingly sharper peak closer to zero. In contrast, the
(time rescaled) standard deviation of the intensity in-
creases monotonously with system size and ∆ω. The in-
terplay of these two effects makes the optimal estimation
error to be found for an intermediate ∆ω that depends
on N .
Conclusions. – We have investigated parameter esti-

mation through continuously monitoring quantum tra-
jectories of a BTC. We have shown that the time-crystal
phase in principle offers enhanced sensitivity, which man-
ifests through the Heisenberg scaling of the QFI (∝ N2)
in the number of particles, N . Investigating two proto-
cols, we have shown that a sensitivity surpassing the stan-
dard quantum limit can indeed be practically achieved in
a cascaded setup of two time-crystals. In view of recent
experiments [35], it would be interesting to consider other
continuous monitoring protocols, such as homodyne de-
tection and/or to include finite detection efficiency. Fi-
nally, in the presence of local decay, we expect the ob-
served phenomena to persist and become more robust as
the number of atoms increases due to the increasingly
large separation of timescales between collective and lo-
cal processes [75].

Acknowledgements. – We are grateful for financing
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[21] C. Lledó and M. H. Szymańska, New J. Phys. 22, 075002
(2020).

[22] F. Carollo and I. Lesanovsky, Phys. Rev. A 105, L040202
(2022).

[23] K. Seibold, R. Rota, and V. Savona, Phys. Rev. A 101,
033839 (2020).
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Espigares, Phys. Rev. A 98, 010103 (2018).

[75] See the Supplemental Material for details, which includes
Refs. [80, 81].

[76] J. Hannukainen and J. Larson, Phys. Rev. A 98, 042113
(2018).

[77] G. Passarelli, X. Turkeshi, A. Russomanno, P. Lu-
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