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Abstract

Over the last decade, particle swarm optimization has become increasingly sophisticated because well-balanced exploration
and exploitation mechanisms have been proposed. The sequential quadratic programming method, which is widely used for
real-parameter optimization problems, demonstrates its outstanding local search capability. In this study, two mechanisms are
proposed and integrated into particle swarm optimization for single-objective numerical optimization. A novel ratio adaptation
scheme is utilized for calculating the proportion of subpopulations and intermittently invoking the sequential quadratic
programming for local search start from the best particle to seek a better solution. The novel particle swarm optimization
variant was validated on CEC2013, CEC2014, and CEC2017 benchmark functions. The experimental results demonstrate
impressive performance compared with the state-of-the-art particle swarm optimization-based algorithms. Furthermore, the
results also illustrate the effectiveness of the two mechanisms when cooperating to achieve significant improvement.

Keywords Particle swarm optimization - Ratio adaptation scheme - Sequential quadratic programming - Single-objective

numerical optimization

Introduction

Particle swarm optimization (PSO) is a well-known population-

based metaheuristic algorithm [1]. Many PSO-based variants
and their applications were proposed in the last decade [2—
12]. PSO applied for large-scale group decision-making [13],
adsorption control of pipeline robot [14], health estimation
for electric vehicle [15], substitution box construction based
on quantum-inspired quantum walks [16], feature-related
time consumption reduction for surface electromyography
[17], and credit risk assessment for personal auto loan [18].
Li et al. [19] indicated that the research directions of the
PSO algorithm can be divided into four categories: parame-
ter tuning, topology choices, learning strategy improvements,
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and integration with other algorithms. Among the large num-
ber of PSO-based investigations, hybridization is a popular
approach because it can combine several complementary
PSO variants or algorithms into a solid framework. In [20],
a hybrid genetic algorithm with PSO for multimodal func-
tions was proposed. In [21], search mechanisms of swallow
swarm optimization (SSO) were implemented with PSO
to formulate the hybrid particle swallow swarm optimiza-
tion (HPSSO) algorithm. In [22] a hybrid feature selection
algorithm based on PSO was proposed; this variant uses
a local search strategy, which is embedded in the PSO, to
select the less correlated and salient feature subset. In [23],
a hybrid PSO algorithm that utilizes an adaptive learning
strategy (ALPSO) was proposed; a self-learning-based can-
didate generation strategy and a competitive learning-based
prediction strategy were employed to ensure the exploration
ability and the exploitation of the algorithm, respectively. In
[24], the variable neighborhood search (VNS) was used to
solve the clustered vehicle routing problem (CluVRP) was
employed for the PSO to ensure solution intensity and bring
the solution to the local optima. In [25], the inertia weight
PSO (iwPSO) [26] and social learning PSO (SLPSO) [27]
were combined to form a PSO on single-objective numerical
optimization (PSO-sono). The PSO-sono approach demon-
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strates outstanding performance on CEC2013, CEC2014,
and CEC2017 benchmark functions.

The essence of hybridization is to select complemen-
tary algorithms and exert their respective strengths; how-
ever, unsuitable subpopulation size may limit the strengths.
According to our observation, subpopulation allocation con-
siderably influences the algorithm performance due to the
economy of scale in diverse stages of evolution. Further-
more, the exploitation capability increases the convergence
rate, especially of particles near the global optimum. Hence,
employing a proper local search method can improve evolu-
tion efficiency. The sequential quadratic programming (SQP)
method was proposed by Wilson [28] due to its outstanding
local search capability, and it is widely used in real-parameter
optimization problems [29—-33]. The SQP method can be used
to seek the local minimum satisfying the constraints. Theo-
ries related to the SQP method can be found in [28, 34-36].

In this study, the PSO-sono was further reformed using
a novel ratio adaptation scheme (NRAS) for calculating
the proportion of subpopulations and applying the SQP
method intermittently to the best particle generated either
by iwPSO or SLPSO, illustrating impressive performance.
The proposed PSO-based variant is called SQPPSO-sono,
and it performs more competitively than the state-of-the-art
algorithms: PSO-sono [25], ensemble particle swarm opti-
mizer (EPSO) [37], pyramid particle swarm optimization
(PPSO) [38], modified particle swarm optimization (MPSO)
[39], terminal crossover and steering-based particle swarm
optimization (TCSPSO) [40], and heterogeneous compre-
hensive learning particle swarm optimization (HCLPSO)
[41]. All the compared algorithms were tested on CEC2013,
CEC2014, and CEC2017 benchmark functions. The experi-
mental results demonstrate that SQPPSO-sono not only has
outstanding performance in most cases, but also better local
search capability when it cooperates with NRAS. The main
highlights of this work are the following:

e The SQP method and NRAS are introduced in the
SQPPSO-sono approach, and the two mechanisms coop-
erate and significantly promote enhanced performance.

e The SQP method can result in a sharp convergence rate in
the early optimization process due to application on the
current best particle. It enhances the local search capa-
bility of SOPPSO-sono and promotes rankings compared
with other algorithms.

e NRAS is proposed and inspired by an effective butterfly
optimizer using the covariance matrix adapted retreat
phase [36], for dividing subpopulations.

e A large test suite including all the benchmark functions
from CEC2013, CEC2014, and CEC2017 test suites is
used for algorithm validation. To some extent, the over-
fitting problem can be avoided owing to the large number
of tests for real-parameter single-objective optimization
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compared with employing only one test suite including a
few benchmark functions.

The remainder of this paper is organized as follows.
“Particle swarm optimization and PSO-sono” represents the
PSO and PSO-sono. “The sequential quadratic programming
based particle swarm optimization” represents the novel
strategy and the proposed SQPPSO-sono algorithm. The inte-
gration and implementation of NRAS and the SQP method
are described in detail. “Performance evaluation” presents
the experimental results and the parameter settings of the
compared algorithms. Comparisons with the recent state-
of-the-art PSO-based algorithms, analysis, discussions, and
future research directions are presented in this section as well.
“Conclusions” concludes and summarizes the paper.

Particle swarm optimization and PSO-sono

PSO-sono is a variant of PSO, with the following improve-
ments: (1) A sorted particle swarm with hybrid paradigms
improves the optimization performance; (2) Novel adapta-
tion schemes for the ratio of each paradigm and constriction
coefficients during evolution; (3) A fully-informed search
scheme based on the current best particle in each generation
assists PSO to jump out of the local optimum and improve
performance.

Particle swarm optimization

The velocity and position, which are the basic properties
of the particles of the classical PSO, are updated for each
particle [42]. The velocity and position of the ith particle at
generation ¢ are recorded as V;(¢) and X; (), respectively,
and the formulas can be presented as follows:

VAT + 1) = VA@) + 1 #7195 (Pbest! (1) — X4(1))
+ea #1728 % (Gbest? (1) — X4 (1)) (1)
X4t 4+1) = x40+ Vaa + 1) ()

r lld and r2[‘.’ are randomly generated by uniform distribution
inrange [0,1],d = 1, 2, ..., dim, where dim is the dimension
size. Pbest?’ (t) is the ith particle’s previous best solution,
and Gbest()? is the whole swarm’s best solution, which are
as defined below:

Pbestd (1) = min{fit(X? (1)), it(X¢(2)), ....., fit(X4 (1))}
3
Gbest? (r) = min{fit(Pbest{ (1)),
fit(Pbest§ (1)), ....., fit(Pbesty, (1))} )
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Inertia weight PSO and social learning PSO

Meng et al. [25] proposed to combine two complementary
PSO variants, iwPSO and SLPSO, to promote the perfor-
mance of single-objective numerical optimization, named
PSO-sono. The iwPSO algorithm uses following equations
to calculate the particle’s velocity and position:

Vid(l +1) =wx Vl,d([) +cp % rl;i * (Pb€St;i(t) - de(t))
+ep %728 % (Gbest? (1) — X% (1)) )

where w is the inertia weight of the velocity. r l;i and r2§1 are
randomly generated by uniform distribution in range [0,1],
d =1,2,..,dim. Pbestf’(t) is the ith particle’s previous
best experience, and Gbest(r)? is the whole swarm’s best
experience.

The SLPSO algorithm uses Eqs.6 and 7 to update the
particle’s velocity and position:

X9+ Va@ + 1), if pi(t) < Ip;
{i — i i ’ i = 1
Xit+D { Xid(t), otherwise. ©)
where Vid (t + 1) satisfies:

140 = X{ (1) — x4(1)

CLt) = Xoen ) — X4(0)

VAC+ 1) =rl % V@) +r2d « I18(0) + 3¢ e % CL (1)

(7

where Xg () is a randomly selected better particle of the ith
particle with dth dimension in the th generation, the i th parti-
cleis automatically selected if it is the best particle. Yfemer(t)
is the center of the population. € is the social influence,
€ = 0.01 x ‘IHTTS. rOf, rl?, and rZ;’I are randomly generated
by uniform distribution in range [0,1], d = 1, 2, ..., dim. Ip;
denotes the learning probability of the ith particle, and it
obeys the following:

i~ 1\ (55D
Ipi = (1 - ) ®)
ps

The sequential quadratic programming
based particle swarm optimization

Compared with the PSO-sono, the proposed SQPPSO-sono
makes two significant improvements. The improvements
in the red boxes are shown in Fig.1. The framework of
SQPPSO-sono are given in Algorithm 1. Figure 1 indicates
that the NRAS and SQP methods are embedded into the
SQPPSO-sono algorithm at the beginning of the generation
and after the best particle is produced by iwPSO or SLPSO.

The NRAS method is applied after the initialization and cal-
culates the ratio r as a proportion of the subpopulation at the
beginning of each generation. Then, iwPSO and SLPSO are
run simultaneously according to the allocations, and a global
best particle is generated from both subpopulations. Later,
the SQP method is applied to further enhance the exploitation
capability by starting from the current global best particle.
When the termination condition is satisfied, the algorithm
stops running. The major contributions of the proposed algo-
rithm are summarized below:

e A novel ratio adaptation scheme is employed to calcu-
late the proportion of each subpopulation for iwPSO and
SLPSO rather than using the numbers of success parti-
cles to calculate the proportion of subpopulations.

e The SQP method is employed to execute local search
starting from the current global best particle, either gen-
erated by iwPSO or SLPSO, to search a better solution in
the current generation. If a better solution is found, then
the best particle is replaced by the better solution found
by the SQP method.

Novel ratio adaptation scheme

In PSO-sono, by sorting the particles based on their fitness
values, the population of particles is divided into two groups:
the better-particle-group (P S1) and the worse-particle-group
(PS2), which are evolved by iwPSO and SLPSO, respec-
tively. The ratio r is used for calculating the proportion of
the better particles in the entire population; thus, the propor-
tion of the worse particles is 1 — r. The ratio r in PSO-sono
is represented as follows:

nsp

(C))

= -,
nsp + nsy

where ns;, and ns, represent the amount of success parti-
cles in the better-particle-group and worse-particle-group,
respectively. Furthermore, a truncation readjustment of r is
involved when its value is in range [0.1, 0.9].

In SQPPSO-sono, anovel ratio adaptation scheme (NRAS)
is proposed, which is inspired by [36]. An adaptation scheme
of ratio is used for selecting strategy in [36], while here NRAS
is used for dividing subpopulations. Two factors are consid-
ered in calculating the ratio r:

e The quality of particles: the lower fitness value, the higher
quality of particle obtained.
e The diversity rate of particles in each subpopulation.
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Fig.1 Main workflow of SQPPSO-sono

The normalized quality values (nq) are calculated as follows:

fitness(X ps; best)

ng; = ,Vi=1,2
fitness (X ps; best) + fitness(X ps, best)
(10)
The diversity rate is calculated as follows:
PS;
divi = ) " dis(Xps; 2 Xps best), Vi = 1,2, (1)
7=2

where dis(X ps; ;, X ps; best) denotes the Euclidean distance
between the zth particle and best particle in PS;. The nor-
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malized diversity (nd) is calculated as follows:

diVi

= T, Vl == 1, 2
divy + divy

12)

l’ldi

In Eq. 9, only the fitness values of particles were considered to
adjust the subpopulation size for PSO-sono. This algorithm
may fall easily into a local optimum. However, the proposed
NRAS considers both fitness value and diversity of particles.

ki = (1 —ng;) +nd;,¥i =1,2 (13)
. ki

r =max | 0.1, min { 0.9, . 14

( ( k1+k2)) (1
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Strategy using sequential quadratic programming

In [25], PSO-sono applies the fully-informed search scheme
on the best particle in each generation to help the algo-
rithm jump out the local optimum. In contrast, the proposed
SQPPSO-sono algorithm replaces the fully-informed search
scheme with the SQP method to enhance the local search
capability. Due to function evaluations (FEs) are performed
in the SQP method, the function evaluations of the SQP
method are included in FEs to achieve a fair comparison.

The essence of the SQP method is to transform a nonlinear
problem into a linear problem [43]?. The principle of the SQP
method is to find a decent direction and models a quadratic
optimal problem. The nonlinear optimization problems can
be represented as follows:

h(x) =0

g(x) <0 (15)

minimize f(x), such that {

Algorithm 1 General framework of SQPPSO-sono

1: Define PS = PS;ypso + PSsrpso, ratio=0.5, Prob;; =0.1, T
=0, G =1 and set parameters.
:fori=1:PSdo
Initialize the ith particle, X; ¢.
: end for
: while termination condition is not satisfied do
T=T+1
if 7 == L5 then
Update ratio by, the novel ratio adaptation scheme (NRAS),
Equations 13 and 14.
9: T <0
10:  endif
11:  Sort the population in descending order.
12:  Separate the sorted population into two groups according to the
ratio.
13:  Update particles in the 1st group using Equations 2 and 5.
14:  Update particles in the 2nd group using Equations 2 and 7.
15:  if rand(0,1) < Prob;s then

16: Apply sequential quadratic programming (SQP) to the best
particle to find a solution.

17: if the solution is improved then

18: Prob;g =0.1

19: Update the best particle.

20: else

21: Probig =0.01

22: end if

23:  endif

24:  G=G+1
25: end while

The Lagrangian of the above formulation can be written
as follows:

L(x, ho ) = fx)+ATh(x) + T g(x), (16)

where A and p are Lagrangian multipliers. The SQP method
is an iterative operation, which repeatably builds the problem
for a given iterate x; by a quadratic programming sub-
problem. Moreover, xy, is used to construct a new iterate x4 .
The sub-problem can be established by linearizing the con-
straints of xi, and the sub-problem can be written as follows:

minimize f (x¢)(x — xx) + %(x —x)THf (o) (x — xp),

h(xi) + B () (x = xi) = 0
8(xk) + g () (x —xg) <0
(17

such that {

Here, H f (x) isthe Hessian of f atx € R".Because the SQP
method highly relies on the initial estimate [44], the proposed
SQPPSO-sono only applies the SQP method to the current
global best particle. Thus, the method is used to enhance the
local search capability for the proposed algorithm.

Performance evaluation

The recent PSO-based variants were selected in this study
to evaluate the performance of SQPPSO-sono, and tests
based on the CEC2013, CEC2014, and CEC2017 benchmark
functions were performed. The PSO-based variants, namely
PSO-sono, EPSO, PPSO, MPSO, TCSPSO, and HCLPSO,
were considered. For the sake of fairness, the FEs for each
variant with the same dimension size were set to identical
values.

Parameter settings

The general form of maximum FEs is 10*x D; hence, FEs
for all tested algorithms were set to 10 x 104, 30 x 104,
50 x 10%, and 10 x 10° for 10D, 30D, 50D, and 100D, respec-
tively. Table 1 lists the parameter settings for the proposed
SQPPSO-sono algorithm and the compared PSO variants.
We used the recommended default settings, tuned by origi-
nal investigators and yielding the best performance for the
state-of-the-art PSO variants.

Experimental results

To better measure the performance and reliability of the pro-
posed algorithm, the statistics of rankings for SQPPSO-sono,
PSO-sono, MPSO, PPSO, MPSO, TCSPSO, and HCLPSO,
which are tested on CEC2013, CEC2014, and CEC2017
benchmark functions, are presented in Tables 2, 3, and 4,
respectively. The top 3 (Ist, 2nd, and 3rd) rankings of the
mean, minimum, and median values are counted for the 10,
30, and 50-dimensional tests for all compared variants on
CEC2013 and CEC2014, while the statistics of 10, 30, 50,
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Table 1 Parameter settings for the compared PSO variants

Algorithm Default parameter settings

SQPPSO-sono Pop size = 100 (for 10, 30, 50 and 100D), w = 0.9

— 0.4, = 91 5 0.01

PSO-sono Pop size = 100 (for 10, 30, 50 and 100D), w = 0.9
— 04,e =92 50.01,r=0.5

EPSO Pop size for 10D = 20 (8/12), pop size for 30, 50
and 100D = 40 (15/25), default settings of its
components

PPSO Pop size = 64 (for 10, 30, 50 and 100D), p is set
to 0.008, 0.02, 0.04 and 0.008 for 10, 30, 50,
and 100D, respectively

MPSO Pop size = 50 (for 10, 30, 50 and 100D), w = 0.9
— 0.4, cw =4 *r* (1 -r), ris arandom value
andr € (0,1)

TCSPSO Pop size = 50 (for 10, 30, 50 and 100D), w = 0.9
—04,cl=c2=2

HCLPSO Pop size = 40 (for 10, 30, 50 and 100D), w = 0.99

—0.2,c1=25—-0.5,c2=05—25,c=3
— 1.5

and 100-dimensional tests are given for CEC2017. The great-
est number of rankings of top 3 are given in boldface. The
convergence characteristics graphs of SQPPSO-sono and the
compared PSO variants are presented in Figs. 7 and 8. Due to
page limitations, only the evolutionary processes of f;, over
50 runs of the 100-dimensional test are presented herein.

To better verify the effectiveness of the NRAS and the SQP
method when cooperating with SQPPSO-sono individually,
the validations of SQPPSO-sono without using the NRAS
and the SQP method were performed. Both validations were
tested on CEC2013, CEC2014, and CEC2017 benchmark
functions for 30 dimensions. Two ablation experiments were
conducted to further illustrate the effectiveness of both meth-
ods. The experimental results are presented in Tables 5, 6,
and 7.

The experimental results for the 10, 30, and 50-dimensional
tests on CEC2013 and CEC2014 are presented in Tables SF-1
to SF-6 in the supplementary file, respectively. Addition-
ally, the experimental results for the 10, 30, 50, and 100-
dimensional tests on CEC2017 can be found in Tables SF-7
to SF-10 of the supplementary file. These tables summarize
the outcomes based on the minimum, median, and mean val-
ues, along with their standard deviations, obtained from the
last generation of 50 independent runs for each function.
Furthermore, the tables include rankings for the minimum,
median, and mean values. The smallest minimum, median,
and mean values among all recent PSO-based variants are
highlighted in boldface, as are the top 1 rankings for the
minimum, median, and mean values. To emphasize reliability
and enable effective comparisons, the tables retain additional
decimal places, showcasing robust variant performances for
certain values, rather than using scientific notation.
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The Wilcoxon signed-rank test (WST) was performed
for SQPPSO-sono versus PSO-sono, MPSO, PPSO, MPSO,
TCSPSO, and HCLPSO. Tables SF-1 to SF-10 of the sup-
plementary file also list the outcomes of the WST at the
5% significance level, when contrasting SQPPSO-sono with
PSO-sono, MPSO, PPSO, MPSO, TCSPSO, and HCLPSO.
In the tables, ‘<’ and ‘>’ indicate that SQPPSO-sono con-
ducts worse or better on f;, than PSO-sono, MPSO, PPSO,
MPSO, TCSPSO, and HCLPSO. ‘<’ and ‘>’ indicate that
SQPPSO-sono conducts significantly worse or better than the
compared variants, and ‘=" implies that there is no difference
in the performances of the compared variants. In most cases,
SQPPSO-sono surpasses PSO-sono, MPSO, PPSO, MPSO,
TCSPSO, and HCLPSO.

Comparison and analysis

In CEC2013 benchmark functions, fi — fs, fe — f20,
and f»; — fag are unimodal, multimodal, and composition
functions, respectively. In CEC2014 benchmark functions,
f1—f3, fa— fi6, f17— f22,and f23— f30 are unimodal, mul-
timodal, hybrid, and composition functions, respectively. In
CEC2017 benchmark functions, f1 — f3, fa— fio, f11 — f20,
and f>1 — f30 are unimodal, multimodal, hybrid, and com-
position functions, respectively.

In Table 2, SQPPSO-sono shows the largest number of 1st
rankings (7 times) for mean values on the 50-dimensional
test; the largest number of 1st rankings (10, 9, and 10 times)
for minimum values on the 10, 30, and 50-dimensional tests;
the largest number of 1st rankings (9 and 9 times) for median
values on the 30 and 50-dimensional tests; the overall number
of 1st rankings of SQPPSO-sono for the 30-dimensional test
is 25 and is equivalent to HCLPSO; the overall number of 1st
rankings of SQPPSO-sono for the 50-dimensional test is the
best (26 times), whereas the overall number of 1st rankings
of HCLPSO for 10-dimensional test is the best (26 times);
SQPPSO-sono only ranks 3rd.

In Table 3, SQPPSO-sono has the largest number of 1st
rankings for mean, minimum, and median values on the 30
and 50-dimensional tests; thus, the overall number of 1st
rankings (both 28 times) of SQPPSO-sono on the 30 and 50-
dimensional tests are also the best. HCLPSO has the overall
number of Istrankings (27 times) on the 10-dimensional test,
which is the best, while SQPPSO-sono has the second largest
number of 1st rankings (25 times).

In Table 4, SQPPSO-sono has the largest number of Ist
rankings on all dimensional test except for the rankings (9
times) of mean values, which is the second best, on the
10-dimensional test. The overall number of 1st rankings of
SQPPSO-sono for 10, 30, 50, and 100-dimensional tests are
35, 37, 35, and 38 times, respectively, which are the best
among all compared algorithms.
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Table 2 Statistics of rankings for SQPPSO-sono, PSO-sono, EPSO, PPSO, MPSO, TCSPSO, and HCLPSO on CEC2013 benchmark functions

Dim Criteria SQPPSO-sono PSO-sono EPSO PPSO MPSO TCSPSO HCLPSO
10D Mean [Rankings Ist | 2nd | 3rd] 414|6 24| 4 7111] 2 710/ 3 1112 2|04 12/ 6| 6
Min [Rankings Ist | 2nd | 3rd] 10| 5| 3 7145 94| 1 7132 212|2 6/ 1|3 51 3|8
Median [Rankings 1st | 2nd | 3rd] 74| 6 3163 9191 7134 2103 31112 9| 6|7
TOTAL [Rankings Ist | 2nd | 3rd]  21]13[15 12/14]12 25124/4 21|69 51317 1112]9 26/15/21
30D Mean [Rankings 1st | 2nd | 3rd] 710/ 1 1173 4]13]| 2 6/3|8 0] 11 11015 9/ 4|9
Min [Rankings Ist | 2nd | 3rd] 9/4/6 415| 4 51112 71216 o112 113 7121 4
Median [Rankings 1st | 2nd | 3rd] 9114 4| 6|3 3|11] 3 7155 0] 110 110/ 3 9|28
TOTAL [Rankings 1st | 2nd | 3rd] 25| 5|11 9|18|10 12|35| 7 20]10]19 0] 3|3 31111 25| 8|21
50D Mean [Rankings 1st | 2nd | 3rd] 712|2 2| 3|2 4113]7 73| 6 0]0| 3 111]12 7| 6] 6
Min [Rankings Ist | 2nd | 3rd] 10| 3| 4 3154 4197 71 4|5 0] 2|2 0]0]2 715|2
Median [Rankings 1st | 2nd | 3rd] 913 4| 4|4 411117 5| 5|6 o] 1)1 110/ 4 71 4|5
TOTAL [Rankings 1st | 2nd | 3rd] 26/ 6|9 912|10 12|33]21 19112117 0|36 2| 1|8 21]15|13

Table 3 Statistics of rankings for SQPPSO-sono, PSO-sono, EPSO, PPSO, MPSO, TCSPSO, and HCLPSO on CEC2014 benchmark functions

Dim Criteria SQPPSO-sono PSO-sono EPSO PPSO MPSO TCSPSO HCLPSO
10D Mean [Rankings 1st | 2nd | 3rd] 634 118]3 411213 50113 0] 116 21114 12| 5|6
Min [Rankings Ist | 2nd | 3rd] 13 4|5 5171 31419 710] 1 212|7 52| 2 4] 8|2
Median [Rankings 1st | 2nd | 3rd] 6] 5|2 1183 41101 5 71 0] 4 0] 0] 10 21114 11] 6] 2
TOTAL [Rankings Ist | 2nd | 3rd] 2511211 7123|7 11126/17 191118 2] 323 9] 4/10 27(19]10
30D Mean [Rankings 1st | 2nd | 3rd] 9| 3|2 0] 4] 4 3112|10 51014 0]2]2 5/0]'1 8197
Min [Rankings Ist | 2nd | 3rd] 93] 1 31418 3114| 6 71 0] 2 0] 116 7112 3|58
Median [Rankings 1st | 2nd | 3rd] 10| 4| 2 114]5 21111 6/ 0|3 0]2]1 5101 81717
TOTAL [Rankings Ist | 2nd | 3rd] 28|10] 5 4112117 8137|127 18] 0|9 0] 519 1711 4 19]21]22
50D Mean [Rankings 1st | 2nd | 3rd] 92| 4 112|5 6| 12|17 3113 0]0]1 6] 0|2 51138
Min [Rankings Ist | 2nd | 3rd] 9 4|2 113]5 4199 6] 1]2 0] 4|3 8100 31819
Median [Rankings 1st | 2nd | 3rd] 10/ 2| 4 113]6 4112] 8 31113 0]0]1 6] 0|2 6[12] 6
TOTAL [Rankings 1st | 2nd | 3rd] 28| 8/10 3] 8|16 14|33)24 12| 3] 8 0] 4|5 201 0] 4 14(33)23

According to the statistics of different dimensional tests on
CEC2013, CEC2014, and CEC2017, SQPPSO-sono demon-
strated impressive performance on the high-dimensional test
and outperformed better performance in most cases. To better
review the rankings, the radar maps are given in Fig. 2.

In Table 5, the 30-dimensional test on
CEC2013 of SQPPSO-sono performs better on f, — f3,
fe — f1, fo — f13, f17 — fio, and fo4 — f27, 16 functions
in total, whereas SQPPSO-sono without using the NRAS or
the SQP method only performs better on 4 and 8 functions in
total, respectively. The 30-dimensional test on CEC2014 of
SQPPSO-sono performs better on f1 — f2, fa, f13 — f15,
f175 f19 — f20, f22. f24 — fa28, and f3p, 16 functions in
total, whereas SQPPSO-sono without using the NRAS or
the SQP method only performs better on 7 and 7 func-
tions, respectively. The 30-dimensional test on CEC2017 of
SQPPSO-sono performs better on f>, fa, fe, f3, f11 — fi2,
fi4s 17, f205 f22, f26 — f27, and fa9 — f30, 14 functions

in total, whereas SQPPSO-sono without using the NRAS or
the SQP method only performs better on 10 and 6 functions
in total, respectively. The experimental results not only illus-
trate the effectiveness of the NRAS and the SQP method but
also demonstrate the success cooperation of the NRAS and
the SQP method and contains the large test suite with all
types of functions including unimodal, multimodal, hybrid,
and composition functions.

In Table 6, ablation experiments are conducted to bet-
ter illustrate the effectiveness of the NRAS method. Three
fixed pairs of proportions are evaluated for iwPSO and
SLPSO: 30-70%, 50-50%, and 70-30%. When compared
with these fixed proportions, SQPPSO-sono outperforms
with better mean values for multiple CEC2013, CEC2014,
and CEC2017 benchmark functions. Specifically, for the 30-
70% proportion, SQPPSO-sono performs better in 19, 20,
and 20 functions; for the 50-50% proportion, it excels in
20, 22, and 23 functions; and for the 70-30% proportion,

@ Springer
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Table 4 Statistics of rankings for SQPPSO-sono, PSO-sono, EPSO, PPSO, MPSO, TCSPSO, and HCLPSO on CEC2017 benchmark functions

Dim Criteria SQPPSO-sono PSO-sono EPSO PPSO MPSO TCSPSO HCLPSO
10D Mean [Rankings Ist | 2nd | 3rd] 91116 2133 514/ 8 40 1 1113 110 4 12/10] 4
Min [Rankings st | 2nd | 3rd] 1543 7157 1316 5 6/ 1] 1 6/2|2 8 1] 1 11]2] 4
Median [Rankings 1st | 2nd | 3rd] 11/ 4|3 3151 919|8 51112 31114 310/5 9|11] 3
TOTAL [Rankings Ist | 2nd | 3rd] 35| 9|12 12/13]11 27129121 15|24 10[4/9  12[1]10  32)23|11
30D Mean [Rankings 1st | 2nd | 3rd] 11|10/ 6 114|5 5|14] 6 412|3 0]2|1 0/0]0 9|89
Min [Rankings 1st | 2nd | 3rd] 15| 3| 4 31914 8|5|8 7131 112|5 0/0]0 413|5
Median [Rankings 1st | 2nd | 3rd] 1117 2173 7] 10| 6 710]2 012|3 0/0/0 5/9]8
TOTAL [Rankings 1st | 2nd | 3rd] 37| 4|17 6/20|12 20]29|20 185/ 6 116]9 0/0]0 18]20]22
50D Mean [Rankings 1st | 2nd | 3rd] 10| 1] 4 3143 4113 8 623 012|2 0/0]0 7| 8|10
Min [Rankings 1st | 2nd | 3rd] 16| 2| 4 216]9 7174 115]5 0133 0] 110 55|15
Median [Rankings 1st | 2nd | 3rd] 9|54 3]5|3 6] 8|11 6] 3|2 013 01010 6| 8|7
TOTAL [Rankings 1st | 2nd | 3rd] 35| 8|12 8|15]15 17]28|23 13]10]10 0] 6|8 0] 110 18]21]22
100D Mean [Rankings 1st | 2nd | 3rd] 11 3]0 710] 3 4|15] 9 316/ 3 0]0] 1 0/0/0 56|14
Min [Rankings 1st | 2nd | 3rd] 16| 2| 4 21 6|3 4]13] 6 4,119 0] 0] 4 0/0]0 5174
Median [Rankings 1st | 2nd | 3rd] 11 3] 1 710] 3 4|15]9 316/ 3 o] 1)1 0] 0] 0 5] 513
TOTAL [Rankings 1st | 2nd | 3rd] 38| 8|5 16/ 6|9 12|43|24 10|13]15 0] 116 0] 0] 0 15]18|31

it achieves better results in 21, 22, and 26 functions. The
NARS method shows a significant improvement in terms of
efficiency.

In Table 7, ablation experiments were conducted to bet-
ter illustrate the effectiveness of the SQP method. Two
local search mechanisms, the interior point method [45]
and CMA-ES [46], were applied for SQPPSO-sono. When
compared with the interior point method, SQPPSO-sono per-
formed better in 17, 19, and 21 functions on CEC2013,
CEC2014, and CEC2017 benchmark functions, respectively.
When compared with CMA-ES, SQPPSO-sono performed
better in 15, 17, and 18 functions on CEC2013, CEC2014,
and CEC2017 benchmark functions, respectively. Although
the SQP method emerged as the winner in pairwise compar-
isons, it has also provided us with inspiration for developing
hybrid local search mechanisms in the future.

In Figs.7 and 8, SQPPSO-sono produces extremely sharp
convergence rates in the very early generations of the opti-
mization process for fi, f3 — fa, fio — fi5. fi7 — f18, f2s,
f28, and f30. A characteristic of SQPPSO-sono is that it
maintains sharp convergence rates in the very earlier (nearly
at the beginning of the) generations and keeps almost flat
in the later generations of the evolutionary process. How-
ever, this feature also has drawbacks. When optimizing some
of the problems, it is difficult to jump out once the pro-
cess falls into local optima. For example, the optimization
of f2, f5 — fe. f8, f10. f20, f22, and f27 has significant
improvement spaces. Due to the early intervention of the
SQP method, the algorithm may prematurely fall into local
optima on some benchmark functions. One of the research
directions is to identify a method that complements the SQP

@ Springer

method and works together to form a synergistic mechanism,
allowing for a jump-out approach. The local search capabil-
ity is strongly enhanced in the current search strategy used
by SQPPSO-sono; however, the search behavior, particularly
keep population diversity in the earlier generations of the run,
needs to be improved further in the future.

From Table SF-1, in the 10-dimensional test on CEC2013
benchmark functions, SQPPSO-sono owns the smallest min-
imum, median, and mean values on f; — f> and fj¢; and the
smallest mean value on fy, the smallest minimum values on
f3, fs — f3, fi6, and frg, and the smallest median values
on f3 — fs and f>7. From Table SF-4, in the 10-dimensional
test on CEC2014 benchmark functions, SQPPSO-sono owns
the smallest minimum, median, and mean values on f; — f2,
f17 — fis, and f30; and the smallest mean and median val-
ues on fpo; and the smallest minimum values on f4 — f7
and f5 — frg. From Table SF-7, in the 10-dimensional test
on CEC2017 benchmark functions, SQPPSO-sono owns the
smallest minimum, median, and mean values on f; — f3,
fa, f12 — fi15, and fig; and the smallest mean value on fi9;
the smallest minimum values on f3, fs, f9, f11, f20 — f21,
and f24; and the smallest median values on f3, f9, and fi;.
In general, SQPPSO-sono is less competitive on CEC2013,
CEC2014, and CEC2017 composition functions. However,
SQPPSO-sono continues to demonstrate outstanding perfor-
mance on hybrid functions.

From Table SF-2, in the 30-dimensional test on CEC2013
benchmark functions, SQPPSO-sono owns the smallest min-
imum, median, and mean values on f> — fi1, fo — f7, fio0,
and f16; and both smallest minimum and median values on
fr6 and frg. From Table SF-5, in the 30-dimensional test
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Rankings for Mean Values on CEC2013 Rankings for Minimum Values on CEC2013

——PS0-sono MPSO —+—EPSO ——TCSPSO HCLPSO —+—PPSO ——SQPPSO-sono ——PS0-sono MPSO —+—EPSO ——TCSPSO HCLPSO —+—PPSO ——SQPPS0-sono

Rankings for Mean Values on CEC2014 Rankings for Minimum Values on CEC2014

——PS0-sono MPSO —+—EPSO ——TCSPSO HCLPSO —+—PPSO —+—SQPPSO-sono ——PS0-sono MPSO —+—EPSO ——TCSPSO HCLPSO —+—PPSO ——SQPPS0-sono

Rankings for Mean Values on CEC2017 Rankings for Minimum Values on CEC2017

——PS0-sono MPSO —+—EPSO ——TCSPSO HCLPSO —+—PPSO ——SQPPSO-sono —e—PS0-sono MPSO —+—EPSO ——TCSPSO HCLPSO —+—PPSO ——SQPPS0-sono

Fig. 2 Radar map of the rankings for mean and minimum values on the 50-dimensional tests. The circumference and radius scale represent the
benchmark functions and rankings, respectively
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on CEC2014 benchmark functions, SQPPSO-sono owns the
smallest minimum, median, and mean values on f1 — f1, f17,
f20 — f21, and fre; and the smallest minimum value on fi5;
the smallest mean and median values on f1g; and the smallest
median value on fp9. From Table SF-8, in the 30-dimensional
test on CEC2017 benchmark functions, SQPPSO-sono owns
the smallest minimum, median, and mean values on f,
f3— fa, f12 — f15, f18, and f3p; and the smallest mean val-
ues on fg and f9; the smallest minimum values on f7, fi6,
frs5,and f>¢6; and the smallest median and minimum values on
fr2 and f>g. Compared with HCLPSO, TCSPSO, and EPSO,
SQPPSO-sono is less competitive on CEC2013, CEC2014,
and CEC2017 composition functions, respectively. However,
the smallest values of SQPPSO-sono cover all types of func-
tions on CEC2013, CEC2014, and CEC2017 benchmark
functions.

From Table SF-3, in the 50-dimensional test on CEC2013
benchmark functions, SQPPSO-sono owns the smallest min-
imum, median, and mean values on f> — f1, fe, f10, and
f16; and the smallest mean value on f7; the smallest min-
imum values on fi2, fi8, f26, and fog; and the smallest
median values on f7, fi3, and f3. From Table SF-6, in
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Generation Number of SQPPSO-sono

g.3 Sources of best particle in the process of evolution of single run for 30-dimensional test

the 50-dimensional test on CEC2014 benchmark functions,
SQPPSO-sono owns the smallest minimum, median, and
mean values on f1 — f1, f13, f17, and foo — f>1; and the
smallest mean value on fig; the smallest minimum value on
f15; and the smallest median values on fis and fr¢. From
Table SF-9, in the 50-dimensional test on CEC2017 bench-
mark functions, SQPPSO-sono owns the smallest minimum,
median, and mean values on fi, f3 — fa, f12, f14, f18, and
f30; and the smallest mean values on fi3, fis5, and fjo; the
smallest minimum values on f5, f7 — f3, f17, f21 — f24,
and f>g; and the smallest median values on both fi3 and
f19. In general, the SQPPSO-sono performance on CEC2017
composition functions was remarkably better than that of
CEC2013 and CEC2014 composition functions.

From Table SF-10, in the 100-dimensional test on CEC2017
benchmark functions, SQPPSO-sono owns the smallest min-
imum, median, and mean values on f1, f3— fa1, f12, fia— f15,
f18, and f>g; and the smallest mean values on f13, f>5, and
f30; the smallest minimum values on fs, f7 — f3, fi17, f21,
fr3— fr4,and f>9; and the smallest median values on f13, f>5,
and f30. In general, SQPPSO-sono demonstrates outstand-
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ing performance in the 100-dimensional test on all types of
functions.

In summary, SQPPSO-sono demonstrated superior per-
formance across unimodal, multimodal, hybrid, and com-
position functions in the 30, 50, and 100-dimensional tests
conducted on CEC2013, CEC2014, and CEC2017 bench-
mark functions. SQPPSO-sono is less competitive on the
10-dimensional test on CEC2013 and CEC2014. In particu-
lar, SQPPSO-sono exhibited better performance on unimodal
functions; this can be attributed to the application of the SQP
method which amplified the local search capability.

Search behavior of SQPPSO-sono

In Fig.3, the best fitness values with their sources from a
single run are plotted using different colors; green represents
the best particle from the iwPSO group; blue represents the
best particle from the SLPSO group; red represents the best
particle from replacement by a better solution generated by
the SQP method. The search modes can be summarized as
follows:

e Both iwPSO and SLPSO conduct an effective search in
the whole optimization process.

e EitheriwPSO, SLPSO, or both conduct effective searches
in the very early generations; then, the SOQP method con-
ducts an effective search in the later generations and lasts
until the end.

e EitheriwPSO, SLPSO, or both conduct effective searches
in the very early generations; then, the SQP method con-
ducts an effective search for a long while, and iwPSO or
SLPSO suddenly conducts an effective search for a while.
The SQP method later conducts an effective search until
the end.

e The SQP method conducts an effective search almost at
the beginning of the optimization process. Either iwPSO,
SLPSO, or both conduct an effective search at some point
and cooperate with the SQP method to achieve a sharp
convergence rate.

From the above search modes, the evolutionary process in
step descent, like cliff fall, is common; it is consistent with
Fig.7 and 8, and the convergence rate is very sharp. From the
figures, in the various evolutionary stages, the SQP method
plays an important role in enhancing the local search capa-
bility in the very early optimization process and sometimes
even at the beginning of the optimization process; thus, it
provides an ideal condition to enhance the global search of
SQPPSO-sono. In the future, one possible research direction
could be to reduce the frequency of usage for the SQP method
and increase the usage of the global search method, proba-
bly using niching methods [47]. According to the laboratory
observations, the interior-point method [48, 49] significantly

outperforms the SQP method on a few optimization prob-
lems; thus, another possible research direction is to design
and ensemble a local search strategy using both the SQP and
interior-point methods.

The 2-dimensional tests are conducted for SQPPSO-
sono without single methods. The 2-dimensional particles in
diverse generations (0, 10, 20, 30) on f4, f3, and f>¢ are plot-
ted in Figs.4, 5, and 6. From the figures, it can be observed
that the particles are more scattered during the evolution-
ary process when SQPPSO-sono does not employ the SQP
method; the particles are also more scattered in the later gen-
erations for SQPPSO-sono without the SQP method as a local
search mechanism. The SQPPSO-sono without the NRAS
leads to more gathering of particles due to loss of population
diversity, while using the NRAS can maintain the population
diversity even in the later generations of the evolution. The
figures show forceful evidence that the proposed methods are
effective. Thus, the global and local search capabilities of the
proposed SQPPSO-sono have been well balanced (Figs. 7,
8).

Algorithmic computational complexity

The computational complexity of the proposed SQPPSO-
sono algorithm was determined as delineated in the CEC2017
benchmark competition, which was proposed by [50]. All the
experiments were conducted on the below system:

CPU: Intel Core i7-1165G7 @ 2.80 GHz 1.69 GHz
RAM: 16GB

OS: Windows 10

Software: Matlab 2018b

In Table 8, the computation complexity of the SQPPSO-sono
algorithm on 10, 30, 50, and 100 dimensions are presented. In
this table, Ty is the time calculated by performing the below
statements:

x = (double)0.55;
fori =1 : 1000000
X=X4+x; x=x/2; x =X *X;
x =sqrt(x); x =log(x); x =exp(x); x = x/(x + 2);
end

Ty is the time to perform benchmark function fig indi-
vidually with 200,000 evaluations in D dimensions. 75 is the
execution time of the SQPPSO-sono algorithm on function
Jf1g for 200,000 evaluations with D dimensions. The time
(’fz) is the mean values, averaged over 5 runs, of 7. As pre-
sented in Table 8, 71, fg, and ((fz — T1)/To) scaled linearly
with the number of dimensions. The computation complexity
comparisons of the SQPPSO-sono algorithm with the com-
pared PSO-based variants are presented in Table 9 for 30
dimensions. The same system and the same procedure are
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Benchmark Function 4 of CEC2017 The SQPPSO-sono on Function 4
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Benchmark Function 26 of CEC2017
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Fig.6 Plot of 2-dimensional particles in diverse generations (0, 10, 20, 30) on benchmark function 26 of CEC2017

used to calculate, for each compared algorithm, the compu-
tation complexity.

In Table 9, the computation complexity of SQPPSO-
sono ranks 3rd (excluding SQPPSO-sono without NRAS and
SQP), behind PSO-sono and PPSO. The NRAS method is
less efficient than the mechanism of the proportional alloca-
tion of subpopulations in SQP-sono, as (T, —Ty) /Tp is only
83.3907 without using the NRAS method. The SQP method
is highly efficient than the fully-informed search scheme
employed by SQP-sono, as (T, — T1)/Ty is 129.5536 and
145.3576 with and without the SQP method. Although the
computation cost of SQPPSO-sono is slightly higher than
PSO-sono, its performance is much more efficient and reli-
able than PSO-sono. Such a little performance sacrifice is
very worthwhile. Among all variants, the computation cost
of SQPPSO-sono is still very competitive.

Conclusions

This paper proposed a sequential quadratic programming
(SQP)-based novel strategy for particle swarm optimization
on single-objective numerical optimization (SQPPSO-sono).
To promote the performance of the strategy, we propose a
novel ratio adaptation scheme (NRAS) that divides the sub-
population size considering fitness value and diversity of

particles. In SQPPSO-sono, the NRAS method is responsible
for dividing subpopulations and the SQP method, replac-
ing fully-informed search scheme, is intermittently invoked
to enhance the exploitation capability. The NRAS considers
both the quality and diversity of particles during evolution to
balance the exploration and exploitation capabilities effec-
tively. Meanwhile, the SQP method is applied to exploit
the area around the current global best particle after its
generation even in the earlier iterations. The strategic tim-
ing and targeted application of this method significantly
enhance the algorithm’s efficiency. To evaluate the effec-
tiveness of the NRAS and the SQP method, SQPPSO-sono
with a single mechanism, either using the NRAS or the
SQP method, was validated; the experimental results illus-
trate that SQPPSO-sono has greater performance with both
mechanisms than using individual mechanism. All com-
pared algorithms are tested on CEC2013, CEC2014, and
CEC2017 benchmark functions with diverse dimensions.
The experimental results demonstrate that SQPPSO-sono has
outstanding performance in most cases. The future research
directions of SQPPSO-sono include reducing frequency of
usage for the SQP method, increasing the global search
mechanisms, and designing an ensemble strategy that can
dynamically switch according to the landscapes in various
evolutionary stages using both the SQP and interior-point
methods.
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Table 8 Computational

complexity of the To n I (I —T)/To

SQPPSO-sono algorithm. The 10D 0.0128 0.2970 1.4459 89.5104

comparison is conducted

according to the suggestion of 30D 0.0128 0.7517 24147 129.5536

the CEC2017 competition 50D 0.0128 1.4419 4.4662 235.6047
100D 0.0128 5.6440 11.8194 481.0824

Table 9 Computational - -

complexity of SQPPSO-sono, 30D To n ik (T2 —T)/To

PSO-sono, EPSO, PPSO, .

MPSO, TCSPSO. and HCLPSO SQPPSO-sono without NRAS 0.0128 0.7517 1.8191 83.3907

on 30 dimensions. The SQPPSO-sono without SQP 0.0128 0.7517 2.6123 145.3576

comparison is conducted SQPPSO-sono 0.0128 0.7517 2.4147 129.5536

according to the suggestion of PSO-s0no 0.0128 0.7517 2.0373 100.1527

the CEC2017 competition
EPSO 0.0128 0.7517 4.3061 276.8997
PPSO 0.0128 0.7517 1.7580 78.3988
MPSO 0.0128 0.7517 3.7501 233.5902
TCSPSO 0.0128 0.7517 4.2032 268.8832
HCLPSO 0.0128 0.7517 3.5118 215.0224
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