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Cover crops affect the partial nitrogen balance in a maize-forage cropping system 1 

 2 

ABSTRACT 3 

Part of the nitrogen (N) fertilizer applied to crops is lost to the environment, contributing 4 

to global warming, eutrophication, and groundwater contamination. However, low N supply 5 

stimulates soil organic N turnover and carbon (C) loss, since the soil N/C ratio in soil is quasi-6 

constant, ultimately resulting in land degradation. Grasses such as ruzigrass (Urochloa 7 

ruziziensis) grown as winter pasture or a cover crop in rotation with maize (Zea mays) can 8 

reduce N leaching, however, this may induce N deficiency and depress yields in the subsequent 9 

maize crop. Despite the potential to decrease N loss, this rotation may negatively affect the 10 

overall N balance of the cropping system. However, this remains poorly quantified. To test this 11 

hypothesis, maize, fertilized with zero to 210 kg N ha-1, was grown after ruzigrass, palisade 12 

grass (Urochloa brizanta) and Guinea grass (Pannicum maximum), and the N inputs, outputs 13 

and partial N balance determined. Despite the intrinsically poor soil quality associated with the 14 

tropical Ultisol, maize grown after the grasses was efficient in acquiring N, resulting in a 15 

negative N balance even when 210 kg ha-1 of N was applied after Guinea grass. Losses by 16 

leaching, N2O emission and NH3 volatilization did not exceed 13.8 kg ha-1 irrespective of the 17 

grass type. Despite a similar N loss among grasses, Guinea grass resulted in a higher N export 18 

in the maize grain due to a higher yield, resulting in a more negative N balance. Soil N depletion 19 

can lead to C loss, which can result in land degradation. 20 

 21 

Keywords: Cropping system; tropical forage; Nitrogen balance; Nitrogen loss; Nitrogen 22 
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Introduction 26 

The progressive increase in agricultural yields seen in many regions of the world in 27 

recent decades has been attributed to N fertilization, however, a considerable proportion of this 28 

N (ca. 40-60%) is subsequently lost to the environment (Rosolem et al., 2017), which, besides 29 

being costly to farmers, may worsen global warming and induce eutrophication (Shelton et al., 30 

2018). Since the soil N/C ratio is approximately constant (Raphael et al., 2016), N loss also 31 

implies a concomitant loss of soil C.  32 

Nitrate and dissolved organic N leaching, ammonia (NH3) volatilization from fertilizers 33 

and plant tissues, and denitrification (N2 + N2O) are globally considered to be the main soil N 34 

loss pathways, besides soil erosion. However, the amount of N lost as N2 from fertilizers and 35 

manures applied to agricultural lands is rarely quantified, due to the difficulties in measuring 36 

N2 emissions directly (Zaman et al., 2012). In Brazilian arable cropping regimes, losses from 37 

nitrate leaching can be appreciable, reaching up to 87 kg N ha-1 y-1 (Villalba et al., 2014). 38 

Similarly, large gaseous losses of N-NH3 may occur especially with some fertilizer types (e.g. 39 

urea, manures) in high pH soils or from stomatal emission from leaves of crops and grasses 40 

(Farquhar et al., 1980; Franco et al., 2008). Appreciable loss of N as gaseous NH3 may also 41 

occur after crop desiccation, and it has been shown that this loss increases with the amount of 42 

N accumulated in plant tissue (Castoldi et al., 2014). In field grown maize nearly 15% of the 43 

applied 15N was lost through the leaves as NH3 (Francis et al., 1997). Under conditions of high-44 

humidity where N-NO3
- leaching is limited, denitrification may occur (Subbarao et al., 2013). 45 

Typically, denitrification losses increase with N fertilizer application rates with an average 46 

N2O:N2 production ratio of 1:1 (Wang et al., 2018).  In well-drained agricultural soils, however, 47 

from a plant nutrition perspective N-N2O losses are low, ranging from 0.20 to 0.52 g ha-1 d-1 in 48 

pastures with Guinea grass (Panicum maximum) and palisade grass (Carmo et al., 2005). 49 

Although N-N2O emissions from crop residues may occur after harvest, the flux is assumed to 50 
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be very low in comparison with organic wastes applied to soil (e.g. manure, slurry, compost; 51 

Charles et al., 2017). In terms of crop N offtake, maize grains contain ca. 10% crude protein 52 

and therefore N export in grains can be estimated at 16 kg N t-1 (Oliveira et al., 2004). Forage 53 

grasses do not have a defined export value of N in rotational cropping systems, however, when 54 

they are used as cover crops none is exported. 55 

Biological fixation of atmospheric N (BNF) can be an important means of N entry into 56 

agricultural systems, mainly when legumes are present. Nevertheless, the contribution of 57 

grasses may also be important, as it has been reported that BNF accounted for 30 to 40% of the 58 

N in humidicola (U. humidicola) and signal grass (U. decumbens) (Boddey and Victoria, 1986). 59 

N can also enter the system in the form of oxides, deposited by rain or dust, or from electric 60 

discharge, although these levels are typically considered to be low (4.2 to 6.0 kg N ha-1 y-1; 61 

Shaw et al., 1989). However, in intensive production systems with high productivity, the 62 

addition of N fertilizer will remain necessary for a foreseeable future.  63 

It has been suggested that the introduction of deep rooted cover crops with vigorous 64 

early shoot and root growth offers one potential tool for reducing N losses and enhancing NUE 65 

in cropping systems (Rosolem et al., 2018; Shelton et al., 2018). Another potential mitigation 66 

strategy is the use of plant species that release chemical compounds that stimulate or suppress 67 

the activity of nitrifying microorganisms in the rhizosphere. High rates of biological 68 

nitrification inhibition (BNI) have been found in tropical pasture grasses, mainly Urochloa spp, 69 

which are adapted to growing in low-N environments (Subbarao et al., 2007; Subbarao et al. 70 

2009). However, it has been shown that BNI by Urochloa spp and decreased N loss is not as 71 

evident in N-rich environments (Castoldi et al., 2013), and that BNI-activity is relatively weak 72 

in species adapted to high-N such as Panicum spp (Subbarao et al., 2015).  73 

Forage grasses with vigorous root systems have been widely used in tropical and 74 

subtropical regions in integrated cropping systems as winter pastures or as cover crops. Usually, 75 
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forage grasses, mainly ruzigrass, are grown in consortium or in rotation with maize or soybean 76 

(Soratto et al., 2011). However, N deficiency symptoms and decreased maize yields have been 77 

observed when it is grown after ruzigrass (Marques, 2015) compared with palisade grass. 78 

Therefore, we hypothesized that growing forage grasses as cover crops in rotation with maize 79 

has a potential to decrease N loss from the system, but can also impair N uptake, eventually 80 

affecting the partial N balance in the cropping system. Furthermore, an over exploitation of soil 81 

N may lead to land degradation, which has not been previously studied in tropical agricultural 82 

systems. The choice of forage species with optimal exploration of the soil profile to capture N, 83 

and a high NUE is very important for sustainability. The objective of this work was to evaluate 84 

the effect of ruzigrass, palisade grass and guinea grass on N input, output and partial balance in 85 

a cropping system where maize was grown after these species. 86 

 87 

Materials and Methods 88 

 A field experiment was conducted in Botucatu, State of São Paulo, Brazil, 22º 49' 89 

27.58” S and 48º 25' 46.73” W, with an altitude of 770 m above sea level, for two seasons. The 90 

soil is a Typic Rhodudult (USDA, 2010), with clay texture (626 g clay kg-1) and less than 3% 91 

slope. The climate is Csa, humid subtropical, according to the Köppen classification (Peel et 92 

al., 2007), with an average annual rainfall of 1,400 mm, average temperature of the hottest 93 

month exceeding 22ºC and of the coldest month between 3 and 18ºC. The climatic data during 94 

the experiment were recorded in a meteorological station located about 500 m from the 95 

experiment (Fig. 1). Prior to use, the experimental area had been fallow for four years and was 96 

covered by pioneer plants, primarily grass weeds. Soil samples were taken from the topsoil (0 97 

to 20 cm) prior to the experiment commencing (Table 1). 98 
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The experimental design was a complete randomized blocks with subplots and four 99 

replicates. The grass forages ruzigrass (Urochloa ruziziensis, cv. Common), palisade grass 100 

(Urochloa brizantha, cv. Marandú) and Guinea grass (Panicum maximum, cv. Tanzania) were 101 

grown in the plots. After grass desiccation the residues were left on the soil surface, and maize 102 

(Zea mays L.) was planted in subplots with N added at rates of 0, 70, 140 and 210 kg N ha-1, as 103 

ammonium sulphate over the grass residues. 104 

The experimental area was desiccated with 1.8 kg ha-1 glyphosate (a.i.) prior to direct 105 

(no till) forage seeding. Forage grasses were planted over the residue straw without fertilizers 106 

in rows 0.2 m apart, at a density of 10 kg ha-1 of live seeds. Plots were 9.0 m wide × 20.0 m 107 

long. Grasses were grown for 11 months and then desiccated with 2.8 kg ha-1 (a.i.) glyphosate 108 

and 0.6 kg ha-1 (a.i.) of paraquat + 0.3 kg ha-1 (a.i.) diuron. After 11 days, maize was planted 109 

over the grass residues, using the hybrid 2B810 (Dow Agroscience), in rows 0.75 m apart, with 110 

a plant population of 65,000 plants ha-1. At planting, 100 kg ha-1 of K and 52 kg ha-1 of P were 111 

applied as potassium chloride and triple superphosphate, respectively, beside and below the 112 

seeds, plus 30 kg ha-1 of N as ammonium sulphate, banded on plots receiving N. The balance 113 

of N fertilizer, i.e., 40, 110 and 180 kg ha-1 was applied to the respective treatments when the 114 

plants were at the V4-V5 stage, 25 days after sowing, banded 0.2 m next to the sowing line. 115 

Crop management (weed, pest and disease monitoring) was undertaken in accordance with 116 

standard farm practice and the maize was harvested 133 days after planting. 117 

Nitrogen addition by fertilizer to the plots was as described above. The input of rainfall 118 

N was quantified by assessing the amount and N concentration in rainwater. Two rain gauges 119 

were installed in the experimental area, and immediately after each rainfall event, samples were 120 

collected, stored in glass vials and refrigerated until analysis. The nitrate content was quantified 121 

using ultraviolet spectroscopy (Eaton et al., 1993) and ammonium colorimetrically by the 122 
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salicylic blue method (Qiu et al., 1987), both using an UVmini-1240 spectrophotometer 123 

(Shimadzu Scientific Instruments, Kyoto, Japan). 124 

 Water drainage below 0.8 m depth was estimated by monitoring soil moisture with 125 

Diviner 2000® capacitance probes (Sentek, Adelaide, Australia). Access tubes were installed in 126 

each plot to 1.0 m deep, and soil moisture measurements were taken weekly at 0.1 m depth 127 

intervals, both for forage grasses and maize. Water was considered drained when it exceeded 128 

the point of saturation in all the soil profile. Water drainage was estimated with the aid of 129 

IrriMax® software (Sentek, Adelaide, Australia). Total drainage below 0.80 m was estimated 130 

by integrating the amount of water drained at each sampling time. To determine the nitrate 131 

content in the soil solution, porous cups were placed at a depth of 0.8 m in the soil. Immediately 132 

after rainfall events, a vacuum was applied to the cups and soil solution samples were collected 133 

2 to 3 days after rainfall. The samples were frozen at -15 oC until analysis. The soil solution 134 

NO3
- content was determined by ultraviolet absorption spectrophotometry as described above. 135 

Leaching was estimated by interpolating and multiplying the solution NO3
- concentration by 136 

the volume of drained water in each period and by integrating the results. 137 

The emission of N2O was quantified using static chambers with a diameter of 30 cm in 138 

plots with the forage grass species, and maize fertilized with 0 and 140 kg ha-1 N. Headspace 139 

air samples were collected 0, 5, 10 and 20 min after closing the chambers, with 20 ml nylon 140 

syringes (Bowden et al., 1990). N2O concentrations were determined by gas chromatography 141 

(Shimadzu – GC 2014, Greenhouse model, Shimadzu Scientific Instruments, Kyoto, Japan). At 142 

the time of sampling, soil temperature and soil moisture were determined. The date crops were 143 

planted were taken as a reference for scheduling gas collection (La Scala Junior et al., 2009). 144 

Thus, gas samples were collected at 1, 3, 5, 8, 15, 30 and 60 days after sowing and desiccation 145 

of the grasses and after maize sowing, always between 08:00 h and 10:00 h. In other periods of 146 

the year, samples were taken monthly. The results were scaled up to one hectare. 147 
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Volatilization of NH3 was quantified using open collectors with foam absorbers 148 

(Oliveira et al., 2008). Each absorber was composed of a foam and acrylic plate. The foam was 149 

8 × 8 cm, with a density of 20 kg m-3 and was soaked with 11 mL of a 0.5% phosphoric acid + 150 

4% glycerol solution. The foam was placed on 10 × 10 × 0.2 cm acrylic plates and surrounded 151 

by a layer of polytetrafluoroethylene tape, which is permeable to NH3 and impermeable to 152 

water. Until placed in the field, the absorbers were stored in plastic bags and refrigerated to 153 

avoid contamination. The collectors were placed just over the plant canopies, and adjusted as 154 

needed. During the forage phase of the experiment, the foam was replaced every two weeks in 155 

the first month and monthly until desiccation. After desiccation, a collection cycle was 156 

performed for 20 days, spaced every four days. In maize, two cycles of 15-day intervals were 157 

carried out five days after sowing and after N fertilization. In other periods of the cropping 158 

cycle, samples were collected monthly. After collection, the foam was placed in sealed 159 

containers and refrigerated at 4 oC or analyzed immediately. For analysis, samples were washed 160 

with 100 mL of 0.0005 N sulfuric acid, and an aliquot was analyzed in duplicate by the salicylic 161 

blue method (Qiu et al., 1987), in a UVmini-1240 spectrophotometer (Shimadzu Scientific 162 

Instruments, Kyoto, Japan). The amount of NH3 captured in the traps was extrapolated to one 163 

hectare. 164 

Forage grasses were cut 0.3 m above soil level 6 and 8 months after sowing. The cut 165 

material was removed from the plot, and considered exported material. The exported dry matter 166 

was estimated by randomly taking three 0.25 m2 sub-samples per plot. The sampled material 167 

was oven-dried to constant weight at 65 °C and weighed. A sub-sample was used to determine 168 

its N content. Maize grain yield was determined by harvesting 6.0 m of the three central rows, 169 

totaling 13.5 m2. Yield was estimated at a grain moisture of 13%. A grain subsample was taken 170 

to determine the N concentration in the tissue. Tissue N was analyzed after acid digestion, by 171 

distillation with sodium hydroxide and subsequent titration with 0.1 N sulfuric acid. 172 
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The partial N balance in the system comprised the whole period of forage grasses (11 173 

months) and maize cropped in succession (5 months), totaling 16 months, and was calculated 174 

according to the following equation (Equation 1): 175 

 176 

 177 

(1)                        𝑁𝐵𝑎𝑙 = (𝑟𝑎𝑁 + 𝑓𝑒𝑁) − (𝑁𝑂3
−+𝑁𝐻3+𝑁2𝑂 + 𝑔𝑟𝑁 +𝑚𝑎𝑁) 178 

 179 

 180 

where: NBal = N balance; raN = N from rain; feN = N from fertilizer; NO3
- = N loss by nitrate 181 

leaching; NH3 = N loss by ammonia volatilization; N2O = N loss by nitrous oxide emission; 182 

grN = N exported via grasses; maN = N exported via maize.  183 

 184 

 185 

Data were submitted to analysis of homogeneity of variance (Levene test) and normality 186 

(Shapiro-Wilk). Based on these assumptions, ANOVA was performed (p<0.05) considering a 187 

sub-plot model, with three treatment (grasses) in plots and four N rates in sub-plots, with four 188 

replicates. When significant, means of the species were compared by the Tukey test (p<0.05), 189 

and the response to N rates was submitted to regression analysis; in case of interaction, 190 

regression of N rates was calculated for each species. The SAS software version 9.2 was used 191 

for all the analysis (SAS Institute Inc., 2009). 192 

 193 

Results 194 

The total rainfall during the 16-month study period was 3,316 mm (Figure 1), giving a 195 

total wet deposition of 5.8 kg ha-1 of N in the production system, 3.0 kg ha-1 of N during the 196 

forage cycle and 2.7 kg ha-1 of N during the maize crop. Nitrogen input via fertilizers was 197 
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controlled by applying the fertilizer under adequate conditions of humidity and soil moisture as 198 

described earlier.  199 

Nitrogen losses such as NO3
- leaching, N2O emissions, and NH3 volatilization did not 200 

exceed 14 kg ha-1 in total, with no significant differences observed between treatments (Figure 201 

2). The quantities of N-NO3
- and N-N2O lost were ca. 1.0 kg ha-1 throughout the growing season 202 

of forage grasses and maize, regardless of grass species and N application rate. The 203 

volatilization of N-NH3 contributed, on average, ca. 12 kg ha-1 of N.  204 

The sum of N exported by forage grasses was 50, 49 and 50 kg ha-1 of N for ruzigrass, 205 

palisade grass and Guinea grass, respectively. Nitrogen export in maize grains was affected by 206 

N rates and forage species, with no interaction of the factors (Table 2). Nitrogen was exported 207 

in greater quantities by maize cropped after Guinea grass than after palisade grass and ruzigrass. 208 

Overall, the N export increased with fertilizer rates. In the absence of N, maize exported a little 209 

more than 30 kg ha-1 of N, while the average N export reached 159 kg ha-1 with the application 210 

of 210 kg ha-1 of N.  211 

In summary, the partial N balance in the production system was strongly affected by 212 

both forage grasses and fertilizer application rate, with interactions between these two factors 213 

(Figure 3 and Table3). The balance was negative in almost all treatments except for 210 kg ha-214 

1 of N after palisade grass. The production system with Guinea grass had the most negative 215 

balance, removing 21 kg ha-1 more N than was added to the system at the rate of 210 kg ha-1 of 216 

N. Without N fertilizer, the deficit was 94 kg ha-1. Ruzigrass and palisade grass were similar as 217 

to the N balance, and in the absence of N both resulted in soil N depletion of around 85 kg ha-218 

1. At the highest N rate applied to maize, the partial balance with ruzigrass and palisade grass 219 

was practically nil. On average, the production system with Guinea grass resulted in a higher N 220 

deficiency in relation to the systems with ruzigrass and palisade grass. It was also observed that 221 
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the higher N rate resulted in a less negative N balance as compared with the treatment without 222 

N. 223 

 224 

Discussion 225 

 In our study we did not quantify N2 losses by denitrification. Although N2 losses can 226 

be high under waterlogged conditions they are generally low in well drained, moderately 227 

acidic soils (Zaman et al., 2007) such as the one employed here. As N2 produced in 228 

denitrification is frequently correlated with N-N2O emissions we assume here that they were 229 

low based on our measured N2O fluxes.  230 

The deposition of 5.8 kg ha-1 of N in 16 months corresponds to around 4.3 kg ha-1 year-231 

1 of N added by rainfall, similar to the 4.2 kg ha-1 year-1 observed in Canada (Shaw et al., 1989). 232 

From a plant nutrition perspective, this is low, since it only represents 3.4% of the N 233 

requirement for maize yielding from 10-12 t ha-1 (Raij et al., 1996). Despite the high amount of 234 

rain accumulation during the experiment, N concentration in the water was very low, resulting 235 

in a small N input to the production system.  236 

Fertilizer was the main N input in our system. Ammonium sulphate, the N source used 237 

in the present experiment, is not conducive to N-NH3 volatilization (Chambers and Dampney, 238 

2009), which would only occur under soil alkalinity (Volk, 1959). However, ammonium added 239 

to the soil via fertilizer may undergo nitrification, and become susceptible to leaching. 240 

Losses due to N-NO3
- leaching and N-N2O emissions, although small in the present 241 

study and usually less than 1.0 kg ha-1, have been strongly debated in the literature considering 242 

their potential for environmental damage. Nitrate leaching in sandy soils can contaminate the 243 

water table and N-N2O is an important greenhouse gas. Losses by N-N2O emission are typically 244 

low in tropical regions, below 1.0 kg ha-1 year-1 in a Ultisol with grazed pastures of Guinea 245 

grass and palisade grass (Carmo et al., 2005). Nitrate leaching above 17 kg ha-1 was observed 246 
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in a production system with soybean, crotalaria (Crotalaria spectabilis), millet (Pennisetum 247 

americanum) and sorghum (Sorghum bicolor), without addition of N fertilizer (Rosolem et al., 248 

2018), and N loss strongly correlated with the amount of N present in the soil profile, since 249 

systems with more legumes resulted in higher losses. N leaching is also frequently related with 250 

the rainfall amount, which was high during the present experiment (Fig 1). However, losses of 251 

less than 5% of the fertilizer N were observed in Brazilian Ultisols with rates from 100 to 120 252 

kg ha-1 of N (Ghiberto et al., 2009; 2015), which were not related with rainfall (Rosolem et al., 253 

2017). In the present study, the deep-rooted grasses had probably depleted soil N in the profile, 254 

avoiding leaching (Rosolem et al., 2017). In addition, maize roots can reach depths of up to 1.5 255 

m (Ordóñez et al., 2018) and the demand for N is high, which may explain the low N-NO3
- 256 

leaching losses, even with fertilizer rates up to 210 kg ha-1 of N.  257 

Volatilization of NH3, despite being 12 times greater than N-NO3
- leaching and N-N2O 258 

emission together, was similar for all the forage grasses and was not affected by fertilizer 259 

application rate. An important part of N-NH3 volatilization observed here was probably derived 260 

from senescing plants after grass desiccation and at the end of maize cycle. These losses were 261 

reported to be proportional to the amount of N accumulated in plant tissue (Francis et al., 1997; 262 

Castoldi et al., 2014), and were estimated to range from 11 to 17 kg ha-1 in palisade grass and 263 

grain sorghum in rotation with soybean, in a N-rich production system (Castoldi et al., 2014). 264 

Stomatal emission of NH3 from live plant leaves (Farquar et al., 1980) were reported to account 265 

for nearly 15% of the applied fertilizer (Francis et al., 1997). In the present study, no fertilizer 266 

was applied to grasses, but in maize, even with N rates up to 210 kg ha-1 N, N-NH3 losses did 267 

not increase, probably because there was no N excess in the system, since the response of maize 268 

to N was linear (Table 2).  269 

On average, the amount of N exported in maize grains was higher after Guinea grass 270 

than after the other grasses. This grass species is adapted to fertile soils, and accumulated 68.0 271 
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kg ha-1 of N by the time of desiccation, against 61.1 and 29.7 kg ha-1 accumulated by palisade 272 

grass and ruzigrass (p<0.05), respectively. This N was not taken out from the field and was not 273 

considered in the partial balance, but it was available to maize as the grass residues decayed.   274 

Root exudates and rates of root turnover in Guinea grass are also likely to be different 275 

from Urochloa spp. For example, Guinea grass has been shown to have relatively weak BNI-276 

activity (Subbarao et al., 2015). In contrast, root exudates of Urochloas can reduce nitrification, 277 

altering the soil N dynamics compared with Guinea grass (Subbarao et al., 2009). The different 278 

amounts of N in grass residues could explain the higher export compared with ruzigrass, but 279 

does not explain the difference of Guinea grass compared with palisade grass. The lower N 280 

accumulation and export in maize grains observed after Urochloa compared with Guinea grass 281 

may result from the effect of Urochloa on soil N dynamics, impairing maize N uptake. It has 282 

been hypothesized that the nutrient cycling from the straw to the soil does not occur in a timely 283 

manner for maize (Rosolem et al., 2017). However, this may not be the case in this experiment, 284 

at least for Guinea grass.  285 

The almost-zero balance of the production system with ruzigrass and palisade grass at 286 

the rate of 210 kg ha-1 of N showed that they left less N available for maize, which resulted in 287 

lower N accumulation and export. The negative balances found in the absence of N for 288 

ruzigrass, palisade and Guinea grass may be evidence of another N input in the production 289 

system. Biological nitrogen fixation, not considered in this work, could be important here, since 290 

about 30 to 40% of the N in plants of humidicola and signal grass could have come from BNF 291 

(Boddey and Victoria, 1986); in the conditions of the present study, this would represent 30 to 292 

45 kg N ha-1 year-1 in fertilized systems. In the tissues of ruzigrass and palisade grass, N from 293 

BNF may be as high a 20 % (Reis et al., 2001), and in a test with 25 genotypes of Guinea grass, 294 

it was observed that they could acquire 16 to 49% of N by BNF (Miranda et al., 1990). A 295 

contribution of BNF around 35-40 kg ha-1 year-1 in cultivated pastures (Boddey and Victoria, 296 
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1986), in addition to rainfall, would represent around 45 kg ha-1 of N in our experiment, a 297 

significant contribution to meet maize demand, even with legumes in the system. Despite being 298 

seasonal, BNF could have occurred, adding N to the system, but it would unlikely to be the 299 

same for all three species. Therefore, further studies of BNF in production systems involving 300 

grasses of the genus Urochola spp and Pannicum spp are needed for a better understanding of 301 

the N cycling in this kind of agroecosystem.  302 

The most negative balance, observed in the production system with Guinea grass, is a 303 

result of the higher grain yield, since the greatest differences in the amount of exported N were 304 

in the grains (Table 2). The mineralization of N from the grass straw can also be a factor 305 

affecting maize yield. The N content and specific characteristics of each grass, such as lignin/N 306 

ratio, for example, can determine the rate of straw N release. Thus, N-release may not be 307 

synchronized with N-requirement by maize (Rosolem et al., 2017), depending on the grass 308 

species. The lignin/N ratio of the forage was on average 1.4, regardless of the N rate, in an N-309 

rich soil with maize intercropped with palisade grass and ruzigrass (Costa et al., 2014). 310 

However, the lignin/N ratio was reduced from 5 to 2 with the addition of 400 kg ha-1 of N to 311 

maize intercropped with Guinea grass, ruzigrass and palisade grass, and the N release time is 312 

reduced with low lignin/N ratio straw (Pariz et al., 2011).  313 

A negative balance in the production system represents a deficit of N for the crops in 314 

succession, and it is necessary to correct for this deficit according to the requirement of the crop 315 

to be grown. Therefore, a high productivity system with a negative balance will have a greater 316 

need for adding N to supply the deficit, requiring more investment. If the most negative balance 317 

is caused by losses, such as leaching of N-NO3
-, volatilization of N-NH3 and emission of N-318 

N2O, mitigation should be recommended. The use of specific species can help reduce loss 319 

(Byrnes et al., 2017), by using humidicola and a hybrid called Mulato (U. ruziziensis × U. 320 

brizantha cv. Marandú), which successfully reduced nitrification of N-NH4
+ from cattle urine 321 
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in pasture areas, resulting in lower losses by denitrification. However, this was not the case in 322 

the present study. The highest peak of N losses due to volatilization of N-NH3 occurs shortly 323 

after desiccation of the cover crops (Castoldi et al., 2014), but in the present experiment this 324 

was not sufficient to explain the N deficiency in the system. 325 

The N export was linear as a function of the applied N rates. In this sense, it is 326 

important to acknowledge the very high NUE in the production systems of the present 327 

experiment. About 70 to 90% of the N applied via fertilizer was used by the system, which 328 

contrasts strongly with maize forage rotation systems where only 35 % was used by maize 329 

(Couto-Vázquez and González-Prieto, 2016). Therefore, it can be inferred that maize was able 330 

to use N from the soil and from the mineralization of the forage straw, besides the N provided 331 

by fertilizer. It has also been demonstrated that that 86% of the N acquired by maize grown 332 

after humidicola came from the soil (Karwrt et al., 2017). 333 

In general, the N balance was negative regardless of the forage grass species or N rate. 334 

Thus, N input via BNF could be contributing to N supply, as discussed earlier. No significant 335 

N loss was observed in this study, but all the rotations can lead to soil N depletion in time, 336 

requiring the application of high N rates to keep the balance with C (Raphael et al., 2016) and 337 

be sustainable. 338 

 339 

Conclusions 340 

When grown after ruzigrass, palisade grass and Guinea grass, maize is efficient in 341 

acquiring soil N, even with the application of up to 210 kg ha-1 of N. The use of ruzigrass, 342 

palisade grass and Guinea grass in rotation with maize in a clay soil result in low and similar N 343 

losses by N-N2O emission and N-NH3 volatilization and do not lose N by N-NO3
- leaching. 344 

However, Guinea grass results in higher N export in maize grains due to a higher yield, resulting 345 

in a more negative N balance. A negative N soil balance year after year may in time deplete 346 
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soil N, and eventually soil C, compromising the sustainability of the system. This result is 347 

important because it shows that N under-fertilization may be as harmful for sustainability as 348 

over fertilization. 349 
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 569 

 570 

Table 1. Selected soil chemical characteristics before the experimental start in the layer of 0.0 571 

– 0.2 m depth, and total N in the soil profile to the depth of 0.80 m. 572 

SOM pH N-NH4
+ N-NO3

- P (resin) K+ Ca2+ Mg2+ H+Al V 

g dm-3 CaCl2 ---------- mg Kg-3 ------------ --------------mmolc dm-3--------- % 

20 5.9 5.4 6.3 15 1.2 34 23 37 60 

 

Soil depth 

 0.0-0.1 0.1-0.2 0.2-0.4 0.4-0.6 0.6-0.8 Total 

 Mg ha-1 

Total N 1.4 1.3 2.2 1.6 1.5 8.0 

SOM = (Walkley and Black, 1934); pH and H+Al = (Raij et al., 2001); P, Ca+2, Mg+2 and K+ = (Raij et 573 
al., 1986); N-NH4

+ and N-NO3
- = (Keeney and Nelson, 1982); Total N = .  574 

 575 

 576 

 577 

 578 

 579 

 580 

 581 

 582 

Table 2. Average (n=4) amount of nitrogen exported via maize grains cropped after ruzigrass, 583 

palisade grass and Guinea grass and fertilized with 0, 70, 140 and 210 kg ha-1 of N. 584 

N rate (kg ha-1) 
Species 

Average 
U. ruziziensis U. brizantha P. maximum 

--------------------------------------------- Kg ha-1 -------------------------------------------------- 

0 26 29 37 30 d 

70 54 61 77 64 c 

140 100 106 103 103 b 

210 150 153 173 159 a 

Average 83 B 87 B 98 A 89 

Average followed by different letter, lowercase in the column and uppercase in the row, differ 585 

at the 5% probability level (Tukey, p<0.05). 586 

 587 

 588 
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Table 3. Partial nitrogen balance in cropping systems where maize fertilized with 0, 70, 140 589 

and 210 kg ha-1 of N was cropped after ruzigrass, palisade grass and Guinea grass cultivated 590 

for 11 months.  591 

N rate  
Species 

Average  
U. ruziziensis U. brizantha P. maximum 

 --------------------------------------------- Kg ha-1 -------------------------------------------------- 

0 -84 -86 -94 -88 d 

70 -42 -49 -65 -52 c 

140 -18 -24 -20 -21 b 

210 2 -1 -21 -7 a 

Average -36 A -40 A -50 B -42   

Different letters, lowercase in columns and uppercase in rows, show significant differences 592 

(Tukey test, p<0.05). 593 

 594 


