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A B S T R A C T 

The integration of energy storage technologies with renewable energy systems 

can significantly reduce the operating costs for microgrids (MG) in future 

electricity networks. This paper presents a novel energy management system 

(EMS) which can minimize the daily operating cost of a MG and maximize the 

self-consumption of the RES by determining the best setting for a central battery 

energy storage system (BESS) based on a defined cost function. This EMS has a 

two-layer structure. In the upper layer, a Convex Optimization Technique is used 

to solve the optimization problem and to determine the reference values for the 

power that should be drawn by the MG from the main grid using a 15 minute 

sample time. The reference values are then fed to a lower control layer, which 

uses a 1 minute sample time, to determine the settings for the BESS which then 

ensures that the MG accurately follows these references. This lower control layer 

uses a Rolling Horizon Predictive Controller and Model Predictive Controllers 

to achieve its target. Experimental studies using a laboratory-based MG are 

implemented to demonstrate the capability of the proposed EMS. 

© 20xx xxxxxxxx. Hosting by Elsevier B.V. All rights reserved.    

 

 Introduction  

The growth of renewable energy sources (RES) in the 

electrical grid together with the increasing use of electricity 

for transport and heating, ventilation and air-conditioning 

require a new vision for future transmission and distribution 

grids. Increasing the complexity and variability of generation 

introduces challenges for the electricity system, and 

innovative technologies are required to maintain stable and 

reliable system management [1].  

Microgrids (MG) which combine different kinds of 

distributed energy resources (DERs) such as distributed 

generators, distributed storage units, as well as different types 

of load and control devices are a promising structure for 

future electric networks [2],[3]. MGs are capable of 

managing and coordinating their own DERs in a more 

decentralized way, which reduces the need for centralized 

coordination and management. From this point of view, the 

optimization of the MG operation to minimize operating costs 

and increase the efficiency of its energy resources has now 

become extremely important [4], [5].  

Nomenclature 

𝐶𝑂𝑃_𝑀𝐺 Daily operating cost of the MG (£/day). 

𝐶𝑀𝐺_𝑏𝑢𝑦 Daily cost of the electrical energy purchased 

from the main electrical grid (£/day). 

𝐶𝑀𝐺_𝑠𝑒𝑙𝑙  Daily income from the exported electrical energy 

to the main electrical grid (£/day). 

𝐶𝐵𝐸𝑆𝑆_𝑜𝑝 Daily operation and maintenance cost of the 

BESS. 

𝑃 𝑈𝑡𝑖𝑙𝑖𝑡𝑦(𝑡) Daily electric power drawn by the MG from the 

main electric grid (kW). 

∆𝑇 UEML sampling time (h) (i.e. 15 /60 hour). 

𝑇𝑎𝑟𝑖𝑓𝑓𝑏𝑢𝑦(𝑡) Electricity purchase tariff for the energy drawn 

from the main grid (£/kWh). 

𝑇𝑎𝑟𝑖𝑓𝑓𝑠𝑒𝑙𝑙(𝑡) Tariff for selling the excess electric energy to the 

main electrical grid (£/kWh).  

𝑃𝐵𝐸𝑆𝑆(𝑡) The electrical power charged/discharged by the 

BESS at a time interval “t” (kW). 

𝑃𝑏(𝑡) The discharge/charge power from/to the battery 

at a time interval t (kW) : where a +ve value 

denotes battery discharging, and a -ve value 

denotes charging. 

𝐸(𝑡) Stored energy in the BESS at a time interval t 

(kWh). 
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𝐸(𝑡 − 1)  Stored energy in the BESS at a time interval t-1 

(kWh). 

𝜂𝑑  , 𝜂𝑐  Efficiencies of the battery discharging and 

charging respectively (%). 

𝐵𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 Battery capacity (kWh).  

𝜂𝐶𝑜𝑛𝑣 Power converter efficiency (%). 

𝑃𝑐𝑜𝑛_𝑐𝑜𝑛𝑠𝑡 Constant power losses in the power converter 

(kW). 

𝑆𝑂𝐶(𝑡) State of charge of the battery at a time interval t 

(%). 

𝑃𝑈𝑡𝑖𝑙𝑖𝑡𝑦(𝑡) Electric power drawn by the MG from the main 

electrical grid at a time interval t (kW): where a 

+ve means the MG imports power from the main 

grid, and a -ve means the MG exports power to 

the main grid. 

𝑃𝑙𝑜𝑎𝑑(𝑡) Electrical load demand of the MG at a time 

interval t (kW).  

𝑃𝑃𝑉(𝑡) Electric power generated by the PV system 

located at the MG at a time interval t (kW). 

𝑃𝑤𝑖𝑛𝑑(𝑡) Electric power generated by the wind turbine 

located at the MG at a time interval t (kW). 

𝑃𝐵𝐸𝑆𝑆 𝑚𝑎𝑥 Maximum power that can be produced by the 

BESS at time interval t (kW), +P means the 

maximum discharge power, -P means the 

maximum charge power. 

𝑆𝑂𝐶𝑚𝑎𝑥 Maximum state of charge limits of the BESS  

𝑆𝑂𝐶𝑚𝑖𝑛 Minimum state of charge limits of the BESS  

∆𝑃𝐵𝐸𝑆𝑆(𝑡) Variation of the BESS power output between two 

consecutive time slots (kW). 

∆𝑃𝐵𝐸𝑆𝑆𝑚𝑎𝑥
 Maximum acceptable change of the BESS power 

output for both charging and discharging stages 

(kW). 

𝑃𝑛𝑒𝑡𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑 Forecasted net demand of the MG (kW); (i.e. 

obtained from AR forecasting and used in LCL) 

𝑃𝑑𝑟𝑎𝑤𝑛𝑟𝑒𝑓 Reference value for the power drawn by the MG 

from the main electric grid in the next sample 

time (kW) (i.e. obtained from the UEML). 

𝐶𝐶𝑏𝑎𝑡 Capital cost of the BESS 

𝑁𝑐𝑦𝑐𝑙𝑒  Number of life cycles of the BESS 

𝐶𝑑𝑒𝑔 Factor to penalize the degradation process of the 

batteries due to high stress in the charging and 

discharging process. 

𝑃𝑏,𝑡𝑜𝑡𝑎𝑙(𝑡) Net power produced by the BESS (P discharge – 

P charge) 

Abbreviations 

EMS Energy management system 

MG Microgrid 

RES Renewable energy resources 

DERs Distributed energy resources 

MGEM Microgrids energy management 

UEML Upper energy management layer 

LCL Lower control layer 

MILP Mixed integer linear programming 

BESS Battery energy storage system 

ESS Energy storage system 

TOU Time of use tariff 

PV Photovoltaic 

SOC State of charge 

CREST Center for renewable energy systems 

Technology 

RHPC Rolling horizon predictive controller 

MPC Model predictive controller 

VSTEF Very short term energy forecasting 

ANFIS Adaptive neuro fuzzy inference system 

AR Autoregression forecasting algorithm 

CAN Controller Area Network 

 

To achieve interactive operation of RES and the other MG 

components, an Energy Management System (EMS) is 

required [6], [7]. The EMS controls the power flow within the 

MG by providing reference profiles for the controllers in the 

MG based on predefined objectives [8]. 

The current trend in microgrids is oriented towards 

encouraging local consumption of the energy generated by 

RES rather than exporting the surplus electric energy to the 

main grid [9]. This trend has received more attention 

following the development of new energy storage 

technologies and techniques for merging energy storage 

systems (ESS) into the MG architecture. Storage systems will 

play a key role in future electric grid operation [10]. Most 

grid operators are encouraging the use of ESS to address the 

increasing peak demand for electrical energy and congestion 

in the electricity grid [11], [12]. 

There is much research focusing on microgrid energy 

management (MGEM), particularly in optimizing system 

behavior. [13] introduces a power demand task scheduling 

policy that minimizes the MG operational costs over a fixed 

time horizon. The cost is a convex function of total 

instantaneous power consumption. Numerical results 

demonstrate the benefit of the proposed approaches 

compared to the default policy of serving demands. The 

authors in [14] focused on introducing a novel two-stage 

stochastic energy management to minimize the operational 

cost of a microgrid with various types of distributed energy 

resources. A scenario reduction method based on mixed-

integer linear optimization was used to obtain the set of 

reduced scenarios. The authors took the uncertainty of price, 

load, wind speed and solar radiation into account in order to 

obtain more realistic results. The use of a scenario reduction 

method based on MILP optimization is often used offline, 

which restricts its use for real-time applications especially 

when dealing with demand-side management. In [15], the 

authors developed an algorithm that decomposes and solves 

the online problem in a distributed manner and proves that 

the distributed online solution is asymptotically optimal. The 

problem is shown to be convex and can be solved with a 

centralized online algorithm. The authors in [16] focused on 

the development of optimization-based scheduling strategies 

for the coordination of MGs. Simultaneous management of 

energy demand and energy production are used within a 

reactive scheduling approach to solve the problem of 

uncertainty associated with generation and consumption. In 

[17] and [18], the authors introduced a new distributed 

control scheme, which can achieve stable and optimal load 

sharing among multiple permanent magnet synchronous 

generators (PMSGs) in a DC microgrid based on distributed 

model predictive control (MPC). This scheme has a two-layer 

structure. The upper layer controllers coordinate the 

operation of parallel-connected grid-side converters and 

provide power references for each PMSG. The lower layer 

controls the PMSG.  

The real-time EMS has received a lot of attention in the 

literature. A novel MGEM system based on a two-stage 

rolling horizon (RH) strategy for a renewable-based MG is 

proposed in [19] and implemented for an MG, which consists 

of two wind turbines, photovoltaic panels, a diesel generator, 

and an energy storage system. However, the authors used 

https://en.wikipedia.org/wiki/CAN_bus
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economic load dispatch (ELD) with a sample time of 5 

minutes in the rolling horizon stage. No results were 

presented to demonstrate the performance of the system using 

the ELD: the results presented have a 1 hour sample time. The 

authors in [20] applied a MPC approach to the problem of 

efficiently optimizing MG operation while satisfying a time-

varying request and operating constraints. The results show a 

significant improvement in the quality of the solution and the 

computational burden. Martin et al. [21] presented an EMS 

prototype for an isolated renewable-based MG which consists 

of two stages: a deterministic management model was 

formulated in the first stage followed by its integration into a 

Rolling Horizon (RH) control strategy. The advantage of this 

proposal is that it considers the management of energy 

sources and can potentially include flexible timing of energy 

consumption. In [22], a day-ahead Economic Load Dispatch 

(ELD) was performed for a microgrid with intermittent DGs 

and an ESS; it was adjusted every 15 minutes to ensure that 

the voltages were kept within acceptable limits, trying to 

maintain the dispatch of units as close as possible to the 

predetermined values. The effect of using a shorter sample 

time on the economic results has not been studied compared 

to other cases in which a longer sample time is used. A more 

detailed formulation is presented in [23] for a microgrid with 

wind turbines and a hydrogen-based ESS, where the ELD is 

performed over several time steps, but only the results 

obtained for the next time step are actually implemented in 

the microgrid, and then the ELD is re-calculated for the 

following stages using a Model Predictive Control. In [24], 

an adaptable MGEM is designed and implemented 

experimentally for an online scheme. In this case, the author 

aims to minimize the operating costs and the disconnection 

of loads by proposing an architecture that allows the 

interaction of forecasting, measurement and optimization 

modules. 

In [25] and [26], the benefits from optimal management 

of the ESS via multi-stage optimization are estimated to be a 

reduction of 5% in the operation cost, although this result 

strongly depends on the particular size and efficiency of the 

ESS considered , and the cost characteristics of the microgrid 

generators. A sample time of 1 hour has been used in this 

study. [27], [28] and [29] present an energy management 

strategy based on a low complexity Fuzzy Logic Control for 

grid power profile smoothing of a residential grid-connected 

microgrid including Renewable Energy Sources (RES) and 

Battery Energy Storage System (ESS). Although the 

proposed strategy shows good results, the effect of the 

proposed EMS on the battery lifetime and battery state of 

health have not been considered.  

This paper introduces and implements an energy 

management system for microgrids. The MGEM system aims 

to: (1) Minimize the daily operating costs of the MG and 

enhance the local self-consumption of the renewable energy 

resources (RES) of the MG: (2) Smooth the power profile for 

the power drawn by the MG from the main grid: (3) Control 

the BESS with high accuracy through the proper design and 

implementation of a suitable controller: the Rolling Horizon 

Predictive controller (RHPC) and the model predictive 

controller (MPC), to compensate for any change in load and 

generation through the day. Experimental studies are 

presented using a laboratory-based MG to demonstrate the 

capability of the proposed EMS for real-time control. 

The proposed MGEM system consists of a two-layer 

structure: the Upper Energy Management Layer (UEML), 

and the lower control layer (LCL).  

(1) In the UEML a cost function is defined which 

minimizes the daily operating cost of the MG. The 

optimization problem (including constraints) has to be solved 

using an appropriate optimization technique which 

determines the appropriate reference values for the power 

drawn by the MG from the main grid, to minimize the daily 

MG operating cost. The optimization process uses a 15 

minutes sample time and is repeated every 15 minutes in a 

rolling horizon manner. 

(2) In the LCL two types of controllers – a Rolling 

Horizon Predictive Controller (RHPC) and a Model 

predictive controller (MPC) - are used to determine the 

settings for the BESS so that the MG accurately follows the 

reference values obtained from the UEML and smoothes the 

power profile for the power drawn by the MG from the main 

grid. These controllers use a one minute sample time to 

ensure very accurate results. 

This paper contributes to the energy management of the 

MGs by introducing a very short sample time EMS. The 

structure of the two-layer EMS enables the algorithm to deal 

with frequent changes in the system using a very short sample 

time (i.e. 1 minute). This short sample time enables the 

proposed EMS to observe and respond to the small changes 

in load and generation throughout the day: this is a 

considerable challenge as a large amount of data must be 

processed and responded to in a short sample time. Much of 

the research published in the context of MGEM tends to use 

sampling times ranging from 15 minutes to 2 hours. The 

benefits of this EMS are that it reduces the dependency of the 

MG on the main electrical grid (by increasing self-

consumption of locally generated energy), reduces energy 

costs for end-users and the MG consumption profile can be 

shaped to reduce consumption peaks by appropriate selection 

of TOU tariff periods. Using RTPC/MPC as a part of the 

MGEM system has three benefits. It forces the MG to 

accurately follow the reference values for the power drawn 

from the main electric grid,  it smoothes the power profile for 

the power drawn by the MG from the main grid, and the 

RTPC/MPC can help the MG to follow the reference values 

received from the main grid directly when being operating as 

a part of a community microgrids.  

Also, a comparison between the performance of RHPC 

and MPC has been made to demonstrate the capability and 

the robustness of the RHPC to control the BESS with very 

high accuracy even when using a very short sample time. 

Furthermore, the RHPC does not require the complex 

optimization process that the MPC uses. 

The paper is arranged as follows: section II gives a full 

description of the MG used. Section III focuses mainly on the 

Upper Energy Management Layer of the proposed EMS. This 

section introduces the formulation of the optimization 

problem including the cost function and the constraints. It 

also introduces the optimization technique used to solve the 

proposed optimization problem. Section IV focus on the 

lower control layer in which the RHPC and MPC are used to 

control of the BESS. In section V, experimental results for 

the proposed strategy are provided.  
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 Microgrid architecture 

The MG used in this paper is assumed to be a UK based 

community fed from a Photovoltaic (PV) generation station, 

a wind turbine and a BESS. The MG is also assumed to be 

connected to the main electric grid to import the extra energy 

needed. The average load demand for the community used is 

assumed to be 1920 kWh and the load profiles are created 

using a model from the Centre for Renewable Energy 

Systems Technology (CREST) created by Richardson and 

Thompson [30] based on actual measurements. The PV 

generation station used is the 22 kW station at the Energy 

Technology Building located at the University of 

Nottingham: additional PV generation profiles used are real 

profiles available at the PVOutput website [31]. The wind 

turbine used in this research is a 100 kW turbine located in 

Belgium, and the real daily wind power generation profiles 

are available at the Elia website [32]. The energy 

management hierarchy of the MG is shown in Fig. 1. 

 Upper Energy Management Layer 

The function of this layer is to minimize the daily 

operating costs of the MG and enhance the self-consumption 

of the RES of the MG. This is achieved by the formulation of 

the optimization problem including the cost function and the 

constraints. The optimization problem (including constraints) 

is solved using a Convex optimization technique which 

determines the appropriate reference values for the power 

drawn by the MG from the main grid, to minimize the daily 

MG operating cost. This layer is updated every 15 minutes, 

in which more accurate forecasted load profiles, PV, Wind 

power generation are used, the updated BESS SOC value is 

measured, and new references values are obtained.   

 Cost function formulation 

The cost function is formulated to minimize the daily 

operating cost of the MG “C𝑂𝑃_𝑀𝐺” and to increase the self-

consumption of the RES located within the MG. This cost can 

be developed in terms of: (1) payments (i.e. the cost of 

purchased electricity from the main grid), (2) Incomes (i.e. 

considering the revenue of the excess energy sold to the main 

grid produced by the MG PV and wind generation after 

satisfying the MG’s demand and charging the BESS) [33], (3) 

Daily operation costs of the BESS. The daily operating cost 

of the BESS is calculated based on the daily operation 

scenario of the BESS and also the effect of the BESS 

degradation [34],[35].  

The daily operating cost of the MG is formulated as 

follows: 

C𝑂𝑃_𝑀𝐺 = 𝐶𝑀𝐺_𝑏𝑢𝑦 + 𝐶𝑀𝐺_𝑠𝑒𝑙𝑙 + 𝐶𝐵𝐸𝑆𝑆_𝑜𝑝        (1) 

𝐶𝑀𝐺_𝑏𝑢𝑦

= {
∆T × ∑ Tariffbuy(t) × P Utility(𝑡)

T

𝑡𝑜

 , P Utility(𝑡) > 0

                              0                                 , P Utility(𝑡) ≤ 0

         (2) 

𝐶𝑀𝐺_𝑠𝑒𝑙𝑙

= {
∆T × ∑ Tariffsell(t) × P  Utility(𝑡)

T

𝑡𝑜

    , PUtility(𝑡) < 0  

                              0                                 , P Utility(𝑡) ≥ 0

        (3) 

𝐶𝐵𝐸𝑆𝑆𝑜𝑝
=  ∑

CCbat ∗ 𝜂c ∗ ∆T ∗ Pb,charge(t)

2 ∗ Ncycle

T

𝑡𝑜

+ 
CCbat ∗ ∆T ∗ Pb,disch(t)

𝜂d ∗ 2 ∗ Ncycle

+ Cdeg

∗  Pb,total(t)                                                (4) 

 

 MG modelling and formulation of constraints  

The equations that represent the economic model of the 

MG, as well as all the constraints associated with its 

operation, are formulated as follows: 

3.2.1. MG active power balance equation 

The balance equation of the total active power in the MG 

is formulated as follows: 

P𝑈𝑡𝑖𝑙𝑖𝑡𝑦(𝑡) = P𝑙𝑜𝑎𝑑(𝑡) − PPV(𝑡) − Pwind(𝑡) − PBESS(𝑡)        (5) 

3.2.2. Battery energy storage system model  

The BESS used in this research is represented by the 

following equations [36], [37]:  

𝐸(𝑡) =  {
𝐸(𝑡 − 1) − 

∆T × Pb(t)

𝜂d

           , Pb(t) > 0

𝐸(𝑡 − 1) − ∆T × 𝜂c × Pb(𝑡)   , Pb(t) ≤ 0

      (6) 

 

SOC(t) =
E(t)

BCapacity
                                 (7) 

A power converter is a part of the BESS. It is used to 

control the battery and acts as an interface between the BESS 

and the MG. The following equation represents the model of 

the power converter used in this research: 

PBESS(t) =  {

 Pb(t) × 𝜂Conv − Pcon_const  , Pb(t) > 0

       
Pb(t)

𝜂Conv

+ Pcon_const          , Pb(t) ≤ 0
       (8)

             

 

The following equations represent the constraints used in 

this work. The constraints reflect the limits of the generation 

units within the MG and also define the operating range of 

the MG [33]. 

 Constraint of BESS power output 

 

−PBESS max ≤ PBESS(t) ≤  PBESS max                   (9) 

 Constraint of BESS State of charge (SOC) 

SOCmin ≤ SOC(t) ≤  𝑆𝑂𝐶max                           (10) 

 



5 

 

Upper Energy Management Layer             

Lower Controllers Layer                      

Short term energy forecasting

Real time predictive controller

Adaptive Autoregression  forecasting 
Algorithm 

Model predictive controller

Optimization process  
(Convex optimization)

Data processing

Rule base  
controller

AR model
Real time  

measurements 

P load𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑  

P pv𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑  

P wind𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑  PUtility_ref
∗
 

PBESS
∗
 

Data storage

 SOC level

Microgrid

QP 
optimization

Updating constraints

 SOC level

Data Storage

PBESS
∗
 PUtility  

BESS

Electrical load
100 kW WT

22 kW PV

RES local controller

MPPT 
controller

RES local 
controller

PUtility  

BMS

 SOC level

PBESS
∗
 

Microgrid AC busbar

PUtility  

Main electric 

grid 

PUtility_ref
∗
 

PUtility_ref
∗
 PUtil _Forec  

Fig. 1. The overall control hierarchy for the proposed MG 

 

 Constraint for the rate of change of BESS power  

This constraint reflects the max ramp up/down rate for the 

BESS power output between two consecutive time slots. 

∆PBESS(t) ≤  ∆PBESSmax
                             (11) 

This constraint is added to smooth the control of the BESS 

and avoid sharp changes in BESS power to keep the life time 

of BESS as long as possible. 

 Convex Programming 

Convex optimization is a subfield of optimization that 

studies the problem of minimizing convex functions over 

convex sets [38]. Convex minimization has a lot of 

applications in a wide range of disciplines, such as automatic 

control systems, data analysis and modeling, and structural 

optimization [39]. The Convex optimization technique is a 

recently introduced approach to optimization not previously 

applied to MGEM. It achieves more accurate results and also 

uses less computing time compared to linear programming or 

MILP programming techniques which are typically used to 

solve MG cost optimization problems [40]. The role of the 

optimization is to find the best solution for the objective 

function in the set of solutions that satisfy the constraints 

(constraints can be equations, inequalities or linear 

restrictions on the type of a variable) [41], [42]. In this 

research, convex optimization has been used to solve the 

linear optimization problem formulated. Since linear 

functions are convex, linear programming problems are also 

convex problems. The mathematical formulation of the 

convex problem is expressed as follows: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒    𝑓0(𝑥) 

subject to    𝑔𝑖 (𝑥) ≤ b i ,   i=1,…, m 

                 ℎ𝑖(x) = 0 ,     i=1,…., p 

where  𝑥 ∈  𝑅𝑛 , the functions 𝑓0(𝑥) 𝑎𝑛𝑑 𝑔𝑖 (𝑥)  must be 

convex, and the function 𝑓𝑚 (𝑥) must be “affine” [38] 

In this research, the Interior-point method is used since in 

practice it has been shown to achieve good results [43]. The 

main advantage of using the convex optimization technique 

is the processing time: it needs only 5 minutes to perform the 

optimization process and determine the best reference values 

Also, convex optimization can easily be programmed 

because it is very similar to linear programming. 

 Lower Control Layer 

The main functions of this layer are: (1) force the MG to 

accurately follow the reference values obtained from the 

UEML, (2) smooth the power profile for the power drawn by 

the MG from the main grid, (3) control the BESS with high 

accuracy to compensate for any change in load and 

generation through the day. This is achieved using a RHPC 

or a MPC that controls the settings of the BESS in real-time 

using a one minute sample time 
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4.1. Adaptive Autoregression Forecasting Algorithm  

Forecasting of the load demand and RES generation for 

the next samples time is called very short-term energy 

forecasting (VSTEF). An Autoregression (AR) algorithm is 

one of the most popular algorithms in VSTEF [44]. In this 

work, an Adaptive AR algorithm is used to forecast the net 

demand for the next sample time. AR is a simple method that 

can be used to obtain accurate forecasts for time series 

problems. Energy forecasting using the AR model is based on 

using a time series model that depends on stochastic 

calculations in which the future values are predicted based on 

the past values. As the model uses data from the same input 

variable at previous time steps to forecast the next value, it is 

named autoregression. Adaptive AR forecasting is used in 

this paper as it is a simple method, has a fast computing time 

(only 25ms to compute the forecasted value for the next 

minute), is adaptive and can be trained easily for the time 

series used. 

The AR model used in this research is defined by the 

following equation: 

yt = Ф + ψ1yt−1 + ψ2yt−2 + ⋯ + ψpyt−p + At         (12) 

where yt  is the forecasted value, ψ1, ψ2, … ψp  and Ф  are 

coefficients found by optimizing the model on training data, 

yt−1, yt−2, … . yt−p  are the past series values (lags), P is 

the order of the AR model and At  is white noise, assumed 

zero in this paper. Fig. 2 shows the operation of the adaptive 

autoregression forecasting algorithm to forecast the net 

demand of the MG for the next minute. The forecasted net 

demand by the AR algorithm is used as an input to the 

RHPC/MPC to determine the BESS settings.  

Adaptive Autoregression algorithm

PUtil _Forecasted (𝑡 + 1)   

Train the model 

(Weight defining)
AR model

Previous 30 measured values of the 

net demand of the MG

(measured at the interconnection 

point of MG with the main grid)
Historical data

 
Fig.  2. Adaptive Autoregression forecasting algorithm 

4.2. Rolling Horizon Predictive Controller 

The RHPC depends on a rolling horizon base strategy and 

a predictive technique. The operating principle of the RHPC 

is based on determining the correct setting of the BESS in the 

next time step (i.e. one minute) by predicting accurately the 

net demand of the MG (Load demand minus PV generation 

minus wind power generation) in the next time step and 

comparing it with the reference values for the power drawn 

from the main electric grid (obtained from the UEML). This 

process is repeated in a rolling horizon every sample time. 

Very short-term forecasting is used to complete this 

operation. The operating procedure of the RHPC is shown in 

Fig. 3 

Adaptive Autoregression 

Forecasting algorithm

Start

NoYes

The forecasted net demand of the MG for the next 

sample time (very near to the actual value)

P𝐵𝐸𝑆𝑆 (𝑡 + 1) =  PUtil _Forecasted  (𝑡 + 1) − Pdrawnref (𝑡 + 1)  
charging 

PBESS (𝑡 + 1) =  PUtil _Forecasted (𝑡 + 1) − Pdrawnref (𝑡 + 1)  
discharging 

Pdrawnref (𝑡 + 1)  

PBESS (𝑡 + 1) = PBESS _max _limit  

 

PBESS (𝑡 + 1) ≤ PBESS _max _limit  

PBESS (𝑡 + 1) = PBESS (𝑡 + 1) 

Yes No

Calculate the SOC of the BESS for 

the next minute

SOCmin ≤ SOC(t + 1) ≤  𝑆𝑂𝐶max  Yes

PBESS (𝑡 + 1) = PBESS (𝑡 + 1) PBESS (𝑡 + 1) = 0 

No

Deliver 

setting to the BESS
PBESS (𝑡 + 1) 

t=t+1 minute

PUtil _Forecasted (𝑡 + 1) 
≥   

PUtility_ref
∗
 

 From ULEM 

Fig.  3. Operating procedure of the RHPC 
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4.3. Model Predictive Controller 

MPC is an advanced method of process control. MPC has 

a long history in the field of control engineering where it has 

been used in chemical plants and oil refineries since 1980 

[45],[46]. Recently, it has also been used in power 

system applications and management [47],[48]. MPC is used 

to determine the optimal settings for the BESS which force 

the MG to follow the reference value [49]. The main 

advantage of MPC is that it optimizes the system for the 

current sample while keeping account of future changes that 

will happen. This is achieved by converting the system from 

a differential equation in continuous to a linear form in 

discrete time (13, 14)  

𝑥𝑘+1 = 𝐴 ∗ 𝑥𝑘 + 𝐵 ∗ 𝑢𝑘          k=0, 1,……N-1         (13) 

𝑦𝑘 = 𝐶 ∗ 𝑥𝑘 +   𝐷 ∗ 𝑢𝑘              k=0, 1,……N           (14) 

where 𝑢𝑘 is the system input at time instant k, 𝑥𝑘+1 , 𝑥𝑘 are 

the state variables at time instant k+1, k respectively, 

A, B, C, D are the state space model matrices in discrete form, 

and yk   is the measured output at time instant k. Equations 

(5), (7) and (11) have been converted to linear equations. 

After that, an optimization process over a finite time-horizon 

is solved. 

4.3.1 MPC Quadratic programming 

This section focuses on the formulation of the MPC 

control objective (or cost function) which minimizes the 

difference between the measured output and the reference set 

point. The Least Squares problem formulation can be used to 

estimate values of parameters of a mathematical model from 

measured data, which are subject to errors (15). 

𝛷𝑧 =
1

2
∑  ⃦ 𝑧𝑘 − 𝑟𝑘    ⃦2
𝑁

𝑘=1

𝑄𝑧                               (15) 

where 𝛷𝑧   is the control objective (or cost function), z𝑘   is 

the measured output at time instant k, r𝑘    is the reference set 

point at time instant k, and Q𝑧   is the weight matrix 

The input constraints are considered limits over the 

control input signal with maximum and minimum values. 

Also, a limitation over control signal change between two 

successive steps should be considered to ensure smooth MPC 

control.  

𝑢𝑚𝑖𝑛 ≤ 𝑢 ≤ 𝑢𝑚𝑎𝑥         

∆𝑢𝑚𝑖𝑛 ≤ 𝑢 ≤ ∆𝑢𝑚𝑎𝑥                            (16) 

To make the least squares form of the problem easier to 

solve using optimization solvers, it is converted to a 

Quadratic programming (QP) problem. QP is a special type 

of nonlinear programming which involves minimizing or 

maximizing an objective function subject to bounds, linear 

equality, and inequality constraints. This type of nonlinear 

programming arises when the objective function is quadratic 

and the constraints are linear. The problem in QP form can be 

shown as 

𝑚𝑖𝑛𝑈     𝛷𝑧 =
1

2
𝑈𝑇𝐻𝑧𝑈 + 𝑔𝑧

𝑇𝑈                (17) 

subjected to the constraints on U, where U is the control 

signal, 𝑈𝑇  is the vector transpose of U, 𝑔𝑧 is a real-valued, n-

dimensional vector, 𝐻𝑧 is a 𝑛 𝑥 𝑛 real matrix.   

4.3.2. BESS control using MPC 

The main function of the MPC is to force the MG to 

follow the reference values for the power drawn from the 

main grid- obtained from the ULEM. The MPC manipulates 

the input P𝐵𝐸𝑆𝑆(𝑘) to achieve an output PUtility(𝑘)as close as 

possible to the setpoint  PUtility_ref
∗ . The measured actual 

power drawn from the main electric grid PUtility(𝑘)is used as 

a measured output signal (mo), the BESS setting (P𝐵𝐸𝑆𝑆) as 

the input signal (Manipulated variable; mv), and  PUtility_ref
∗ 

is the reference value (r) for the power drawn from the main 

electric grid. Constraints over input variables 

(MVMAX, MVMIN) are used to manage the BESS operation. 

The constraints on the manipulated variable ( P𝐵𝐸𝑆𝑆 ) are 

updated every sample time to keep the BESS operation within 

its limits. The optimal control signal P𝐵𝐸𝑆𝑆(𝑘)  is determined 

by an optimization problem at each time instant (k) taking 

into consideration both the prediction horizon and control 

horizon parameters. A sample step of 1 minute, a prediction 

horizon of 15 steps and a control horizon of 15 steps are used. 

The prediction Horizon (P), is the number of future control 

periods that the MPC controller must evaluate by prediction 

when optimizing its control signal at interval k. The control 

horizon (C), is the number of moves to be optimized at the 

control interval k. Also, the closed loop performance is 

adjusted to be compatible with system changes. Fig .4 shows 

the proposed control approach for the MPC [50] 

Model predictive controller

Updating constraints

PUtility (k) 

Measure the real SOC of the BESS at sample  K

SOCmin ≤ SOC(k) ≤  𝑆𝑂𝐶max  Yes

MVMIN (𝑘) = PBESS _min _limit  

No

PBESS (k) 

SOC(k) >  𝑆𝑂𝐶max  Yes

MVMAX (𝑘) = PBESS _max _limit  

MVMAX (𝑘) = PBESS _max _limit  

MVMIN (𝑘) = 0 

No

MVMIN (𝑘) = PBESS _min _limit  

MVMAX (𝑘) = 0 

Predective 
model

Linerarization

Weights

PUtility_ref
∗
 

Setpoint (rk) Input (uk) 

System
Optimizer 

𝛷𝑧 =
1

2
∑  ⃦ 𝑧𝑘 − 𝑟𝑘    ⃦2
𝑁

𝑘=1

𝑄𝑧           

MVMIN (𝑘) 

Output (zk) 

 

Fig.  4. BESS control algorithm using Model predictive controller 

https://en.wikipedia.org/wiki/Process_control
https://en.wikipedia.org/wiki/Chemical_plant
https://en.wikipedia.org/wiki/Oil_refineries
https://en.wikipedia.org/wiki/Power_system
https://en.wikipedia.org/wiki/Power_system
https://en.wikipedia.org/wiki/Transpose
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Fig.  5. The complete architecture of the microgrid used in the experiment at the University of Nottingham Laboratory 

Table 1 

The components of the MG used in this experiment  and the used software development packages 

Equipment / Software Description 

2 busbars, 2000 A each One busbar is used as the MG busbar, and the other one represents the utility (i.e. main grid). 

6 disconnecting switches, 63 A each Used to protect the whole MG.  

3 Gendrives converters, 10 kW each Used as emulators to emulate the load profile, PV generation profile and wind power generation profile. 

Battery energy storage system (BESS) One BESS consists of a 24 kWh Li-ion battery and a 7 kW power converter to interface with the MG. 

CAN bus communication system,  
Speed 1 Mbps 

Controller Area Network (CAN) is the communication system used in this experiment, it represents the 
nervous system that enables the communication between all MG’s parts.  

1 PC Core i3-7100 CPU, 3.91 GHz, 8 GB RAM  

Nominal system voltage/ frequency 380 V /  50 HZ. 

LABVIEW software Used as a graphical user interface GUI and a control tool to implement the proposed control algorithm 

MATLAB software Used to run the optimization algorithm that is used in the high-level EM stage. 

 
 

Table 2. 

Parameters of the battery energy storage system used       

Parameter Rating Parameter Rating 

Nominal battery 

capacity 

24 kWh Converter rated 

power 

±7 kW 

Nominal battery 
voltage 

400 V Converter fixed 

losses (PC_conv) 

0.33 kW 

Battery efficiency 

(𝜂d) 

90 % Cdeg 10-9 £/w 

Converter 

efficiency (𝜂Conv) 

95% Ncycle 4000 

SOCmin 20 % CCbat 380 £/kWh 

𝑆𝑂𝐶max 90 %   

 

Table 3. 

Purchasing and selling electricity tariffs 

Type Time Value 

Off-peak purchasing 

tariff 

From 12 am to 7 am  5 pence/kWh 

Mid-peak purchasing 
tariff 

From 7 am to 4 pm  12 pence/kWh 

Peak purchasing tariff 

 

From 4 pm to 8 pm  21 pence/kWh 

Mid-peak purchasing 

tariff 

From 8 pm to 12 am  12 pence/kWh 

Fixed selling tariff All day 4.85 pence/kWh 
 

 Energy management results 

The complete EM strategy has been implement in real 

time including: (1) the UEML, which determines the 

reference values for the daily power drawn by the MG from 

the main electric grid, (2) the LCL, in which RHPC or MPC 

is used to determine the control settings for the BESS in real 

time using reference values obtained from the UEML, and a 

periodic measurement of the real SOC of the BESS and the 

real net demand of the MG. In this experiment, the load 

profile, PV generation and wind profiles have been scaled 

down to be suitable for use in the laboratory since the MG 

available at the laboratory has a limited rating for its 

components. 

5.1. Laboratory-based microgrid architecture and 

parameters. 

The experimental system was implemented in the 

University of Nottingham FlexElec Laboratory, using the 

microgrid shown in Fig. 4. The components of the MG used 

in this experiment and the software development packages 

used in this research are listed in Table 1. Also, the 

parameters of the battery energy storage system used are 

listed in Table 2. 

The microgrid is connected to an isolated busbar. The 

main source for this MG is a 90 kVA Triphase converter [51] 

which is a programmable source acting as the main grid 

connection. Three 10 kW bidirectional Gendrive power 

converters are connected between the main utility bus and the 

MG: these inject or absorb power and reactive power into the 

https://en.wikipedia.org/wiki/CAN_bus
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MG according to references received from a CANBUS 

communication interface [52]. They are used to emulate the 

load profiles, PV profiles, and wind power profiles by 

following references (generated using the load, PV, and wind 

power data described in section 2) sent from the central 

control platform. A 24 kWh battery system is also connected 

to the MG using a 7kW Triphase power converter. The 

reference for the battery again is received from the central 

control platform via a CANBUS interface. The central 

control platform is the hierarchical control structure 

presented in this paper, implemented using LABVIEW on a 

PC and communicating with all MG elements. 

5.2. Implementation of the MGEM in the Laboratory 

The UEML is implemented using LABVIEW software 

which includes embedded MATLAB functions to perform 

the convex optimization process. This optimization 

determines the best operating scenario for the MG for one day 

ahead to minimize the daily operating cost of the MG and 

increase the self-consumption of the RES. The reference 

settings for the power drawn from the main grid, obtained 

from the optimization process, are updated and passed to the 

LCL every 15 minutes using a CAN communication system. 

The optimization process uses a 15 minutes sample time. And 

is repeated every 15 minutes in a rolling horizon manner. The 

tariff schemes used in this optimization process are a TOU 

tariff for purchasing electric energy from the main grid, and 

a fixed tariff for selling electric energy to the main grid [53], 

[54]. The values of these tariffs are shown in Table 3. The 

forecasted daily profiles for the load demand and are feed to 

the optimization process using a sample time of 15 minutes. 

The forecasted load and generation profiles are obtained from 

another forecasting package (i.e. Adaptive neuro-fuzzy 

inference system (ANFIS) has been used as the forecasting 

tool in the UEML)[55], [56], [57]. All the forecasted profiles 

are of 15 minutes sampling time. The average MAPE of the 

daily forecasted profiles for the load demand, PV generation 

and Wind power generation are 11.2%, 19.6%, and 15.4%. 

The LCL includes two controllers: (1) RHPC, (2) MPC. 

Only one controller is used per experiment. 

The RHPC/MPC is implemented using LABVIEW 

software which includes embedded MATLAB functions to 

execute the rule base controller and AR forecasting 

algorithms.. The main function of the RHPC/MPC in this 

simulation is to make the MG accurately follow the reference 

values for the power drawn from the main grid in real time. 

Every sample time (i.e. one minute), the RHPC/MPC:  

- Receives the reference values for the power drawn by the 

MG from the main electric grid from the UEML. 

- Receives the measured SOC of the BESS using the CAN 

system. 

- Receives the measured net demand of the MG and uses the 

integrated adaptive AR algorithm to forecast the MG’s net 

demand for the next sample times. 

- Determines and delivers the accurate settings to the BESS 

every one minute 

Fig.  6 shows the experimental results obtained using the 

UEML and the LCL. Fig.  6a shows the real load profile, real 

PV and wind generation profiles for one day. These profiles 

have a one minute sample time. These profiles are fed to the 

MG system through the Gendrive emulators to emulate the 

real load consumption, PV, and wind generation. 

Both Fig.  6(b-1) and Fig.  6(c-1) show the reference 

values for the power absorbed by the MG from the main grid 

– obtained from the UEML–and also the measured power 

absorbed by the MG from the main grid through the day in 

case of using RHPC and MPC respectively. This power is 

measured at the point of coupling between the MG and the 

main grid (i.e. in the experiment, the 90kW Triphase 

converter is used in this process). It is obvious from Fig.  6(b-

1)  and Fig.  6(c-1) that the RHPC/MPC succeeded in forcing 

the MG to follow the reference values for the power drawn 

from the main grid. The effect of prediction and model 

uncertainties appears clearly in Fig.  6(b-1) and Fig.  6(c-1). 

Using a one minute sampling time for the LCL (RHPC or 

MPC) decreases the effect of the prediction and model 

uncertainties which leads to a very small difference – in range 

of 2-5% - between the actual power absorbed by the MG from 

the main and the UEML reference. This value is very small 

and has a negligible effect on the total operating cost for the 

whole day. 

 Both Fig.  6(b-2) and Fig.  6(c-2) show the optimal 

settings sent to the BESS in case of using RHPC and MPC 

respectively. These settings are sent to the BESS every one 

minute. Its obvious from figures that the change between any 

two consecutive settings to the BESS are kept as small as 

possible to achieve smooth BESS control (avoid charging and 

discharging the BESS with large changes in power values) to 

maintain the BESS lifetime.  Both Fig.  6(b-3) and Fig.  6(c-

3) show the measured SOC curve of the BESS during the day 

when using RHPC and MPC respectively. The SOC level is 

measured every minute and is fed to the RHPC using the 

CAN communication system and LabVIEW software.  

The BESS will be charged during the off-peak time when 

the cost of purchasing electricity from the main grid is low, 

and this energy is then used to feed the load during the peak 

tariff periods. The available PV and wind generation are used 

to feed part of the loads. If the PV and wind generation 

exceeds the load demand, the excess energy is stored in the 

BESS to be used later during peak times. It is obvious from 

Fig.  6(b-1) and Fig.  6(c-1)  that the MG absorbs energy from 

the main grid during the off-peak time (between 12:00 and 

7:00) when the purchase tariff of the electric energy from the 

main grid is low, and stores this energy in the BESS to be 

used later during the peak time periods. Fig.  6(b-3) and Fig.  

6(c-3) show that the BESS is charged up to 60% of its 

capacity during the off-peak tariff period (between 12:00 to 

7:00) when the purchase tariff of the electrical energy from 

the main grid is low, and completed its charging up to 90% 

of its capacity using the surplus (free) RES generation 

(between 7:00 and 16:00) after satisfying the loads. Also, it 

is observed that the proposed strategy kept the SOC of the 

BESS within limits (between 20 and 90 %). 
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Fig.  6. (a) The real load profile, real PV and wind generation profiles for one day, (b-1) The reference values for the power absorbed from the main 

grid - obtained from the UEML- and the actual measured power absorbed from the main grid through the day in case of using RHPC, (c-1) The 

reference values for the power absorbed from the main grid - obtained from the UEML- and the actual measured power absorbed from the main grid in 

case of using MPC, (b-2), (c-2) are the optimal settings sent to the BESS in case of using RHPC and MPC respectively,  (b-3) and (c-3) are the 

measured SOC curve of the BESS during the day in case of using RHPC and MPC respectively. 

 
 

As the main objective of the EMS is to minimize the daily 

operating cost of a MG and maximize the self-consumption 

of the RES within the MG, the EMS has not charged the 

BESS to its full capacity (90%) during the off-peak tariff 

period, because there is surplus RES generation that could be 

used to charge the BESS instead of purchasing electric energy 

from the main grid to charge the BESS even at low tariff. This 

operating scenario is common when surplus RES (PV 

generation or wind), is expected. On days where no surplus 

energy from RES generation is expected, the BESS is charged 

up to 90% of its full capacity during the off-peak tariff period 

(between 12:00 and 7:00) 

7 6
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Day ahead forecasting for load demand , PV generation,
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Fig.  7. The net time required for measuring, computing and communicating through (a) the UEML, (b) the LCL which includes RTPC 

and MPC. 
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Comparing Fig.  6(b-1) and Fig.  6(c-1), there almost no 

difference between using the RHPC and MPC in the LCL. 

The only difference is the time used for computing and 

processing. The MPC requires more time to perform the 

optimization process to get the best settings of the BESS 

taking into account the expected variation in the system for 

the next 15 samples. However, the RTPC uses a rule base 

controller which takes into account the variation of the next 

sample point only.  

Fig.  6 shows the net time required for measuring, 

computing and communicating through both the UEML and 

the LCL which includes RTPC and MPC. It is obvious from 

Fig.  6a that the net time required for measuring, computing 

and communicating through UEML is 13.1 seconds only. 

This time is very short and does not affect the EMS results -

comparing to the time period in which this layer is updated 

(i.e. updated every 15 minutes). Fig.  6b shows the net time 

required for measuring, computing and communicating 

through the LCL. The RTPC uses 4.3 seconds only compared 

to the MPC which uses 7.7 seconds. As this layer is repeated 

every 1 minute, the time consumed for measuring, computing 

and communicating is acceptable and does not affect the 

accuracy of the results. 

From the results obtained it is recommended to use a 

simple and fast controller (i.e. RTPC) for this LCL since it 

provides fast response, and has a limited computational time. 

Using the MPC which performs the optimization process 

takes more time without achieving more enhanced 

results.Table 4 shows a comparison between the yearly 

operating cost of the MG grid, as well as the yearly 

percentage of self-consumption of the RES when using the 

proposed EMS compared to other cases. It is obvious from 

the table that using the two-layer EMS achieves better results 

compared to the other cases. The results obtained encourage 

investment in the EMS/BESS as it ensures a reduction in the 

total operating cost of the MG. 

Table 4. A comparison between the yearly operating costs of the MG, as well as the yearly RES self-consumption percent 

using the proposed EMS and other cases 

Case Without using rolling horizon  Using Rolling horizon  

 Yearly operation cost 

of the MG (£) 

Yearly RES self –

consumption (%) 

Yearly operation 

cost of the MG (£) 

Yearly RES self –

consumption (%) 

Without EMS or storage system. 3941.4 51.32% 3941.4 51.32% 

Single layer EMS of 1 hour sample time. 2751.3 67.5% 2736.3 81.7% 

Single layer EMS of half an hour sample time. 2710.7 72.4% 2698.7 82.5% 

Single layer EMS of 15 minutes sample time.  2688.2 79.7% 2673.2 88.65% 

Two-layer EMS; UEML of 15 minutes sample 

time, and LCL of 1 minute sample time * 

2671.7 83.8% 2648.8 91.25% 

Ideal case (perfect forecasting and ideal EMS 

system). 
2562.6 95.67% 2562.6 95.67% 

* There are additional income from smoothing the shared power profile with the main grid should be deducted from the 

total yearly operating costs  

 Conclusion and future work. 

This paper has presented a new EMS which minimizes the 

total daily operating cost of microgrids. A complete model 

for the MG has been built, considering all the constraints that 

affect the operation of the MG. The convex optimization 

technique successfully obtains reference values with a low 

processing time. The results show that the proposed EMS, 

with two-layer structure, succeeded in reducing the total daily 

operating cost of the MG and increasing the self-consumption 

of the RES. A daily operating cost reduction of 18% to 30% 

can be achieved depending on the tariff scheme used, load 

and generation profiles and on the BESS capacity.  

The use of the RHPC and MPC enables the MG to 

accurately follow the reference values for the power absorbed 

from the main electric grid. A simple comparison was made 

to show the merits of two different low layer controllers – 

RHPC and MPC – with the RHPC being judged to be better 

as it does not require long computational time. 

Although using a sample time of one minute is considered 

a great challenge since it needs a very fast processing time 

from the controllers, it helps in achieving very accurate result 

in helping the MG follows the reference values. The 

experimental results demonstrate the proposed strategy can 

work in real time with high accuracy. 

Future work; the proposed EMS will be tested using a 

real-time pricing scheme. The effect of incorporating the cost 

curves of the storage/generation system will be examined. 

More studies will be included regarding the communication 

and measurement systems and their effect on the results, 

especially when partial or complete communication failure 

occurs for a short period of time. Also, the effect of using 

demand side management techniques will be studied. 
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