3	Diagnosis and Management of Mantle Cell Lymphoma: A British
4	Society for Haematology Guideline
5	
6	Writing group: on behalf of the Haemato-Oncology Task Force of the British Society
7	for Haematology
8	
9	Toby A. Eyre ¹ , Mark J. Bishton ² , Rory McCulloch ³ , Maeve O'Reilly ⁴ , Robin
10	Sanderson ⁵ , Geetha Menon ⁶ , Sunil Iyengar ⁷ , David Lewis ⁸ , Jonathan Lambert ⁴ , Kim
11	M. Linton ⁹ , Pamela McKay ¹⁰
12	
13	1. Department of Haematology, Cancer and Haematology Centre, Oxford University
14	Hospitals NHS Foundation Trust, Oxford, United Kingdom.
15	2. Department of Haematology, Nottingham University Hospitals NHS Foundation
16	Trust, Oxford, United Kingdom.
17	3. Department of Haematology, Gloucestershire Hospitals NHS Foundation Trust,
18	Gloucester, United Kingdom
19	4. Department of Haematology, University College London Hospitals, London
20	United Kingdom.
21	5. Department of Haematology, King's College Hospital, London, United Kingdom
22	6. Department of Cellular Pathology, Liverpool University Hospitals NHS Foundation
23	Trust, Liverpool, United Kingdom
24	7. Department of Haematology, The Royal Marsden Hospital, London, United
25	Kingdom.
26	8. Department of Haematology, Derriford Hospital, Plymouth, United Kingdom
27	9. Department of Medical Oncology, the Christie NHS Foundation Trust,
28	Manchester, UK
29	10. Beatson West of Scotland Cancer Centre, Glasgow, United Kingdom
30	
31	Correspondence: BSH Administrator, British Society for Haematology,
32	100 White Lion Street, London, N1 9PF, UK. E-mail: <u>bshguidelines@b-s-h.org.uk</u>
33	
34	
35	

36 **Scope**

The objective of this guideline is to provide healthcare professionals with clear guidance on the diagnosis and management of patients with Mantle Cell Lymphoma.

40 Methodology

41 This Guideline was compiled according to the BSH process at <u>https://b-s-</u>

42 <u>h.org.uk/media/16732/bsh-guidance-development-process-dec-5-18.pdf</u> and

43 represents best practice in both teaching and district hospitals in the UK. The

44 Grading of Recommendations Assessment, Development and Evaluation (GRADE)

45 nomenclature was used to evaluate levels of evidence and to assess the strength of

46 recommendations. The GRADE criteria can be found at

47 <u>http://www.gradeworkinggroup.org</u>.

48

49 Literature review details

50 Recommendations included a systematic review of published English language 51 literature from publication of previous British Society for Haematology (BSH) 52 Management of Mantle Cell lymphoma Guidelines 2018 up to 02/2023. The search 53 was limited to English language publications and conference abstracts. 54 Titles/abstracts obtained were curated and manually reviewed by the writing group who conducted additional searches, using sub-section heading terms. In addition, 55 56 there are some further pertinent references and a consensus of expert opinion where no published data are available. PubMed, MEDLINE, EMBASE, Cochrane databases 57 58 and Web of Science were searched using the preliminary search terms; MCL OR Mantle Cell lymphoma OR aggressive Mantle Cell lymphoma OR indolent Mantle Cell 59 60 lymphoma. Systematic reviews, meta-analysis including guidelines from other countries, prospective clinical trials, observational studies i.e., cohort or case-control 61 studies, expert reviews and opinions and case series of >10 patients were considered 62 63 and reviewed as appropriate.

64

65 *Review of the manuscript*

66 Review of the manuscript was performed by the BSH Guidelines Committee,

67 Haemato-oncology Task Force, Haemato-oncology sounding board of BSH.

69	
70	WORD COUNT 5350 (excluding Recommendations and Tables)
71	
72	Pre-treatment evaluation
73	
74	Histopathological Assessment
75	Mantle cell lymphoma (MCL) has a heterogenous cellular origin, corresponding to
76	subsets of mature B-cells in the primary lymphoid follicle and mantle area of
77	secondary lymphoid follicles. Most cases are pre-germinal in origin, characterised by
78	few/no immunoglobulin heavy chain variable region gene (IGHV) somatic mutations.
79	~15-20% are post-germinal centre in origin and associated with a higher somatic
80	IGHV mutational burden (1–3). Classical MCL involves nodal and extra-nodal sites,
81	including the liver, spleen and the gastrointestinal (GI) tract. A non-nodal leukaemic
82	form with indolent and aggressive variants are described (4).
83	
84	Nodal architectural features include classic, blastoid, pleomorphic, marginal zone-
85	like and small cell types (5). Blastoid and pleomorphic types are associated with
86	poorer survival (6). TP53 genetic aberrations are the strongest predictors of poor
87	responses to chemoimmunotherapy, early disease progression and mortality (7,8).
88	
89	Nodal and bone marrow tissue should undergo histomorphological, immuno-
90	phenotypic and genetic analysis (Table 1). In cases with an immunophenotypic
91	profile for MCL which are cyclinD1-negative by immunohistochemistry, fluorescence
92	in situ hybridization (FISH) should be undertaken for CCND1 rearrangement and if
93	this is negative, further studies for CCND2 and CCND3 should be undertaken (9).
94	Routine karyotyping is of unclear clinical value and should be confined to clinical
95	trials.

	1	1			
Peripheral blood	Flow cytometry Standard panel	Histology	Immunohistochemistry Standard panel should include CD20, PAX5,	Cytogenetics	Mutations
morphology	should include CD19, CD20,		CD10, BCL6, CD5, CD23, cyclinD1, SOX 11. Ki-67		
	CD79b, CD5,				
	FMC7, CD200, CD10, CD23,				
	surface immunoglobulin				
- Small to	- CD5, CD19,	-Classic phenotype:	-Pan-B cell markers are expressed, including	-t(11;14)(q13;q32) is	-ATM is most frequently
medium sized lymphocytes,	CD20, CD79b, CD22, FMC7 and	monotonous proliferation of small	CD19, CD20, CD22, PAX5 and CD79a. - Surface immunoglobulins is expressed	characteristic and results in cyclin D1	mutated (43.5%), followed by <i>TP53</i>
mature nuclei with a cleft.	ROR1 expression is typical with	to intermediate lymphoid cells with	moderately/strongly including co-expression of IgM and IgD.	overexpressionRare cases that are	(26.8%), CDKN2A (23.9%), CCND1
- Larger	expression of	cleaved nuclei.	-CD5 is commonly expressed, but CD5	both cyclin D1 and	(20.2%),
atypical lymphoid cells	surface light chains; more often	-Pleomorphic and blastoid forms show	negativity can be seen in small cell variant. - CyclinD1 expression is a constant and	SOX11 negative need further evaluation for	NSD2 (15.0%), KMT2A (8.9%), S1PR1 (8.6%),
are seen in blastoid and	lambda. - A lack of CD23	larger cells with a higher mitotic index	specific feature. -Expression of SOX11 is common, except in	CCND2 and CCND3 mutation	and CARD11 (8.5%).
pleomorphic	and CD200	(10).	small cell and non-nodal leukaemic variants	-Secondary alterations	(20)
variants. - Occasionally	expression distinguishes from	-Small cell variant is composed of cells	(11) -Usually CD23 negative, but a small % show	include losses of chromosomes 1p, 6q,	-TP53 mutations rather than deletions are
prolymphocyti	CLL.	like small	weak expression (12)	8p, 9p, 10p, 11q, 13	associated with poor
c morphology is observed		lymphocytes -MZ-like variant has	-Usually CD10 and BCL6 negative. -Usually CD200 negative; a small % of non-	and 17p and gains 7p, 3q, 8q,12q and 18 q.	outcomes. (7,8). This may be explained by the
		cells with abundant cytoplasm	nodal leukaemic SOX11-negative cases can express CD200 (13) and have an indolent	-CK is seen in blastoid and pleomorphic	frequent biallelic disruption in <i>TP</i> 53
		-Áll variants are	course.	variants.	mutated MCL in contrast
		associated with 'pink' histiocytes and	-intracellular LEF1 is usually expressed in CLL but rarely in MCL, mostly in	 -8q24 alterations indicate a very 	to monoallelic deletions. (19,21).
		hyalinised vessels. -A 'starry sky'	blastoid/pleomorphic variants (14). -MUM1 (15) and plasma cell transcription	aggressive clinical course in blastoid and	NOTCH1 (22), KMT2D (23) and CDKN2A (24)
		pattern seen in	factors BLIMP-1 and XBP1 can be	pleomorphic variants.	mutations individually
		blastoid and pleomorphic variants	expressed (16). - p27 expression is more frequent and		confer a worse prognosis, with <i>TP53</i>
		(5)	stronger in blastoid and pleomorphic variants		aberrations remaining
			(17) -Although P53 IHC has been used as a		an adverse prognostic predictor.
			surrogate marker for TP53 mutations, this can be unreliable and NGS remains gold		
			standard (18,19)		
97					
98 99					
100					
100					
102					
103					
104					
105					
106		Table	1 Diagnostic features of MO		
107 108		I able '	1 – Diagnostic features of MCL	-	
109 110					
110		nmunohistochemistry, N nal zone, CLL chronic ly	IGS next generation sequencing, MCL, mantle componentic leukaemia	eii iympnoma, CK complex	C
	raryotype, wi∠ margi	Har ZUNE, ULL CHIONIC IY	mpnocytic ieuraeillia,		
112					
113	Initial clinical	assessment			

- 114 Patients should be assessed for B-symptoms, hepato-splenomegaly and
- 115 lymphadenopathy, including Waldeyer's ring, and for neurological and GI symptoms.
- 116 Eastern Co-operative Oncology Group performance status (ECOG PS) and fitness
- 117 for immunochemotherapy should also be assessed and frailty identified. Blood tests
- should include a full blood count with blood film, biochemistry including urate and
- 119 lactate dehydrogenase (LDH), and human immunodeficiency virus (HIV) and
- 120 hepatitis B/C virology. Echocardiography should be considered, and fertility
- 121 counselling/preservation offered.
- 122

123 Frailty assessments

124 There are no specific MCL-based assessments in MCL, and recommendations are typically extrapolated for frail diffuse large B-cell lymphoma (DLBCL) patients. Frail 125 126 patients have poor outcomes if treated with intensive chemotherapy (25), making it 127 important to identify frailty to optimise reversible problems and facilitate discussions 128 about treatment intensity and prognosis. Formal frailty assessment tools are 129 preferred over informal methods as they are more sensitive (25). The Geriatric 8 130 screening tool is a 3-5 minute screening tool for frailty (26,27). The Cumulative 131 Illness Rating Scale for Geriatrics and the Geriatric Assessment in Haematology, a 132 10-15 minute tool specifically developed for haematological malignancies (28) can 133 be considered on a case-by-case basis and within clinical trials.

134 Staging

Current international guidelines recommend fluorodeoxyglucose (FDG)-positron 135 emission tomography/computed tomography (¹⁸F-FDG PET/CT) to stage FDG-avid 136 137 lymphomas, including MCL (29,30) on the basis that the higher accuracy of PET/CT 138 vs. conventional CT changes staging in ~20% (31,32). PET/CT is most accurate for 139 detecting nodal and splenic involvement (33,34) and higher standardised uptake 140 value (SUV) rates correspond with more aggressive variants (34,35). Although 141 specificity remains high, PET/CT has lower and variable sensitivity for detecting 142 extranodal involvement; a recent meta-analysis reported an average sensitivity of 143 36% compared to bone marrow (BM) biopsy and an average sensitivity of 39% compared to endoscopy +/- biopsy (32). The prognostic role of baseline and interim 144 PET/CT remain uncertain (33). End of induction PET/CT assessment is associated 145

- 146 with improved survival outcomes for patients achieving complete metabolic response
- 147 (36), including those undergoing autologous stem cell transplantation (ASCT)
- 148 consolidation (33,37,38).
- 149

The BM is the most commonly involved extranodal site (50-90%) and as PET/CT has low detection rates (29), a routine BM biopsy +/- aspirate should be considered in all cases for histologic and immunohistochemical examination. This is usually sufficient to identify infiltration (39) with ancillary multi-parameter flow cytometry in cases of uncertainty (40,41). BM evaluation for minimal residual disease (MRD) assessment is evolving (42) but not yet standard practice.

156

157 Approximately 15-30% of patients have symptomatic GI involvement (43) but routine

158 endoscopy rarely changes management (44) and should only be considered for

- 159 symptomatic patients or when radiotherapy is planned pending confirmation of early-
- 160 stage disease (see later section on early stage MCL). In these cases, only upper GI
- 161 endoscopy should be considered on the basis that PET/CT has low concordance
- 162 with endoscopy for gastric involvement but sufficiently high concordance for
- 163 colorectal disease to obviate colonoscopy in asymptomatic patients (45).
- 164

165 CNS involvement at diagnosis is uncommon (46). Lumbar puncture with

- 166 cerebrospinal fluid (CSF) analysis (cytospin and immunophenotyping) and cranio-
- 167 spinal magnetic resonance imaging (MRI) are only recommended when there are
- 168 concerning neurological signs or symptoms. CSF cellular morphology and
- 169 immunophenotypic features are similar to peripheral tissue (Table 1). False positive
- 170 results can occur from peripheral blood contamination in leukaemic MCL.
- 171

172 Prognostic models

Several prognostic models are described (Table 2). These models are typically
validated in patients receiving first line treatment in clinical trials and should not be
used clinically to influence when frontline therapy is initiated. The independently
validated MCL international prognostic index (MIPI) can be readily applied. MIPI was
predictive of overall survival (OS) and progression-free survival (PFS) for patients
treated in the MCL2 trial (47).

- A simplified version, s-MIPI, has also been described, as has a biological MIPI (MIPI-
- B) score which incorporates Ki-67, and the combined MIPI (MIPI-C) (48) which
- allocates equal weighting to MIPI and Ki67 scores. The discriminatory precision of
- MIPI-C appears better than the MIPI but requires validation.

Table 2 – Prognostication models in MCI

	194	Tab	ble 2 – Prognostication	models in MCL	
	,	MIPI (49)	s-MIPI (49)	MIPI-B (49)	MIPI-C (48)
	Age (years)	X	X	Х	X
le	PS (ECOG)	Х	х	Х	Х
Variable	WBC (10 ⁹ /L)	х	х	х	х
20	LDH (ratio to ULN)	X	x	Х	Х
	Ki67 (%)			Х	Х
Ca	alculation	Weighted sum of 4 variables: 0.03535 x age (years) + 0.6978 (if ECOG >1) + 1.367 x log ₁₀ (LDH/ULN) + 0.9393 x log10 (WBC per 10 ⁻⁶)	Sum of points: Age: <50 years = 0pt; 50-59 = 1pt; 60-69 = 2pt; 70+ = 3pt) PS ECOG: 0-1 = 0pt; 2-4 = 2pt LDH (/ULN): <0.67 = 0pt; 0.67- 0.99 = 1pt; 1-1.49 = 2pt; >1.50 = 3pt WBC: <6.7 = 0pt; 6.7-9.9 = 1pt; 10-14.9 = 2pt; >15.0 = 3pt	Weighted sum of 5 variables: 0.03535 x age (years) + 0.6978 (if ECOG >1) + 0.02142 x Ki67 + 1.367 x log ₁₀ (LDH/ULN) + 0.9393 x log10 (WBC per 10 ⁻⁶)	Calculate MIPI risk group, then stratify based on MIPI risk group and Ki67 value as shown below
(pe pa	sk groups ercentage of tients in each group original datasets)	Low risk = score ≤ 5.70 (44%) Intermediate risk = score 5.70-6.19 (35%) High risk = score ≥ 6.20 (21%)	Low risk = score 0-3 (<i>NR</i>) Intermediate risk = score 4-5 (<i>NR</i>) High risk = score 6-11 (<i>NR</i>)	Low risk = score <5.70 (28%) Intermediate risk = score 5.70-6.49 (47%) High risk = score ≥6.5 (25%)	Low risk = low-risk MIPI and Ki67 <30% (36%) Low intermediate risk = either low-risk MIPI and Ki67 \geq 30%, or intermediate- risk MIPI and Ki67<30% (34%) High intermediate risk = either intermediate-risk MIPI and Ki67 \geq 30%, or high-risk MIPI and Ki67<30% (21%) High risk = high risk MIPI and Ki67 \geq 30% (9%)

05	Modian OS:	5 year OS	Modian OS:	Modian OS:
OS	Median OS:	5-year OS	Median OS:	Median OS:
	Low risk = NR (5-year OS = 60%)	Low risk = 81% Intermediate risk = 63%	Low risk = NR Intermediate risk = 58	European MCL Younger and Elderly
	Intermediate risk = 51 months	High risk = 35%	months High risk = 37 months	cohorts: Low risk = NR
	High risk = 29 months			Low intermediate risk = NR High intermediate risk = 52 months
				High risk = 18 months
				GLSG1996/GLSG2000 cohorts: Low risk = 113 months
				Low intermediate risk = 59 months High intermediate risk = 38 months
Comments			Low and intermediate	High risk = 22 months Better separation of curves than either
			groups do not separate well (and nearly half of patients	MIPI or MIPI-B but requires validation with independent dataset
			were in intermediate-risk group)	
			Need to calculate Ki67	
			precisely by counting 200 cells at high power in 2	
			separate areas, not estimation	
			(https://link.springer.com/arti cle/10.1007/s12308-009-	
195 Abbre	viations: MIPI Mantle cell lump	homa international prognostic index	0036-x) s-MIPL simplified MIPL MIPL-B I	piological MIPL MIPLC
10.4	• •	MCL, mantle cell lymphoma, LDH la	•	-
	ed, ULN upper limit of normal,	GLSG German low grade study grou	up	
198				
	COMMENDATIONS			
200				
201 -		undergo clinical asses	·	J
202		routine biochemistry	(including urate and	LDH),
203	•	nd HIV serology (1C)		
204 -	U .	orting should include f		
205	-	tric/immunohistochem		
206 -	· ·	alent) should be report	•	
207	possible and rep	oorted as <30% vs ≥309	% as a minimum (1B)
208 -	Perform <i>TP53</i> m	utational analysis in al	I patients at diagnos	sis (in
209	preference to FIS	SH analysis for 17p de	letions) (1B)	
210 -	Consider CCND	2 and CCND3 testing fo	or Cyclin D1 negative	e, t11:14-
211	negative, SOX11	-positive cases which	are otherwise clinic	0-
212	pathologically in	keeping with MCL (2E	3)	
213 -	Consider formal	frailty assessment in	potentially frail patie	nts (2C)
214 -	Patients should	be offered fertility cou	nselling or preserva	tion if
215	appropriate (1B)			

- We recommend that patients are staged with either ^{18F-}FDG-PET/CT or 216 CT as both are valid initial staging modalities for MCL (1B) 217 Perform a bone marrow biopsy +/- aspirate if required for formal staging, 218 219 or to investigate cytopenias pre-treatment as PET/CT has low sensitivity 220 to detect bone marrow involvement (2B) 221 Perform a lumbar puncture and CSF analysis with immunophenotyping in patients with clinical features suspicious for CNS involvement. 222 223 Craniospinal MRI is recommended in these patients (1B) 224 Patients should undergo pre-treatment baseline risk stratification using 225 the MIPI or MIPI-C (1A)
- 226

227 Early-stage MCL

Limited stage disease represents approximately 5% of MCL and evidence to guide 228 229 practice remains limited. Localised radiotherapy (RT) is associated with high response rates and some responses appear durable (50,51). Late relapses, often at 230 231 distant sites to original disease, are reported in case series where patients did not 232 have comprehensive staging investigations, and undetected advanced stage disease 233 at diagnosis was likely (52). If RT is considered on this basis, diagnostic gastroscopy alongside PET-CT and bone marrow biopsy should be considered prior to treatment 234 235 to exclude stage IV disease.

236

Studies have described small cohorts of early stage MCL managed with initial
observation (53,54). The numbers are too small to make definitive conclusions, but
outcomes appear similar to those receiving initial therapy. For asymptomatic patients
keen to avoid the potential toxicities associated with RT, adopting initial observation
appears a valid option.

242

243

- Patients with CT-based early stage MCL who are candidates for
 localised RT, consider more extensive staging including a PET-CT, bone
- 247 marrow biopsy and gastroscopy (2B)

248 - Consider local RT (4-24 Gy) or active observation for early stage MCL 249 (2B)

250 Frontline ASCT-fit patients

251 For younger patients who require treatment, are deemed fit and typically <65 years 252 of age, intensive chemotherapy induction and ASCT consolidation remains the current standard of care. Several induction regimens have been examined including 253 254 alternating augmented cyclophosphamide, doxorubicin, vincristine, prednisolone 255 (CHOP) and high dose cytarabine (HDAC) (55), 3 cycles of CHOP followed by 3 256 cycles of DHAP (56), 6 cycles of alternating CHOP/DHAP (57) and DHAP x 4 +/-257 CHOP x 4 (58). No specific induction regimen is clearly superior with overall response rates (ORR) of >90% and CT-based complete response (CR) rates of 258 >50% reported. Incorporating high dose cytarabine (HDAC) in the rituximab-259 260 containing induction has resulted in a long-term adjusted OS benefit in the MCL 261 Younger Trial of R-CHOP (rituximab-CHOP) vs R-CHOP/R-DHAP (dexamethasone, 262 HDAC, cisplatin) (59).

263

It is challenging to separate the beneficial effects of intensive induction from those of 264 265 consolidation. Several phase II single arm studies evaluated ASCT consolidation after intensive induction with 4–5-year PFS rates of 56-73% and OS rates of 64-81% 266 267 (55,56,60,61). In the MCL Younger trial (57), consolidation with ASCT increased the 268 MRD-negativity rate, a validated predictor of improved survival. Although responses 269 are durable following ASCT there is little evidence that this procedure is 'curative' for 270 most patients although a small percentage of low risk (low Ki67%, low-risk MIPI) 271 patients obtain remissions beyond 10 years and may obtain a functional cure (59). A 272 continuing pattern of relapse with no clear survival plateau was seen in the MCL2 trial (47,62) although in low and intermediate MIPI risk groups, 40% remained in first 273 274 CR at 12 years follow up. Rituximab maintenance (R-M) for 3 years post-ASCT 275 improves PFS and OS (58). Four-year PFS and OS were 83% and 89% respectively 276 for those receiving rituximab versus 64% and 80% in the control group (observation 277 only) and R-M remains a recommended standard of care.

279 Only one prospective randomised study has compared ASCT to interferon-alpha maintenance as front-line consolidation following CHOP-based induction with or 280 281 without rituximab (63). The median PFS was 39 months in the ASCT arm versus 17 282 months with interferon-alpha consolidation with no OS advantage demonstrated. 283 With 14 years follow-up, there was significantly superior PFS and OS in the ASCT group, however this benefit was restricted to rituximab-naïve patients (64). Only 7% 284 285 of patients had high-risk MIPI with no detail provided on patients with blastoid 286 morphology or on TP53 status.

287

288 There is no clearly established optimal ASCT conditioning regime with BEAM

289 (carmustine, etoposide, cytarabine, melphalan) or BEAC (carmustine, etoposide,

290 cytarabine, cyclophosphamide) commonly used.

291

The TRIANGLE study (NCT02858258) assessed whether ASCT consolidation can 292 293 be safely omitted following intensive induction by including the covalent Bruton 294 tyrosine kinase inhibitor (cBTKi) ibrutinib. Patients were randomised to ibrutinib-R-295 CHOP/R-DHAP followed by ASCT (arm A), ibrutinib-R-CHOP/R-DHAP followed by 296 ASCT and ibrutinib maintenance (arm A+I) or ibrutinib-R-CHOP/R-DHAP followed by 297 ibrutinib maintenance alone (arm I). Preliminary results (65) reported non-inferiority 298 of arm I compared to arm A (failure-free survival 86% vs 72%, p=0.9979), suggesting 299 that ASCT is not required when ibrutinib is used with R-CHOP during induction and 300 for 2-years maintenance.

301

302 Patients with blastoid MCL were included in the above studies and were associated 303 with worse outcomes, with the exception of MCL2 (47). A pooled analysis of the 304 MCL2 and MCL3 trials demonstrated dismal outcomes for patients with TP53 305 mutations receiving intensive chemo-immunotherapy induction and ASCT (7). The median PFS was only 11 months and, as such, these patients should be considered 306 for clinical trials evaluating novel agents. International joint practice 307 308 recommendations for transplantation and cellular therapies in the first line setting 309 (66) recommend consideration of ASCT in patients with a TP53 mutation who 310 achieve CR or PR after induction despite recognized poor outcomes as no specific proven alternative strategy is available. They also recommend alternative 311 312 consolidation strategies such as chimeric antigen receptor (CAR) T cell therapy or

313	allogeneic transplantation, preferably in the context of a clinical trial. The optimal
314	approach for TP53-mutated disease in this setting is currently unclear.
315	
316	RECOMMENDATIONS
317	
318	- Younger fit patients should receive a first-line induction regimen
319	containing high dose cytarabine (1A)
320	- Patients obtaining an objective response to induction therapy should be
321	offered consolidation ASCT (1B)
322	- Patients should be offered maintenance rituximab (subcutaneous or
323	intravenous) post ASCT (1A)
324	- Consider patients with a <i>TP53</i> mutation for alternative consolidation
325	strategies, preferably in the context of a clinical trial (2C)
326	- Offer ibrutinib during the R-CHOP component of R-CHOP/R-DHAP
327	induction and for 2 years maintenance in place of ASCT if licensed and
328	reimbursed in this setting (1A)
329	
330	First line treatment of MCL - unfit for transplant
331	
332	The European MCL Elderly study compared R-FC (rituximab, fludarabine,
333	cyclophosphamide) with R-CHOP in 560 previously untreated MCL over 65 years and
334	demonstrated superiority of R-CHOP induction (median OS 6.4 years vs 3.9 years).

R-M after R-FC was associated with a non-relapse mortality (NRM) of 22%, but
following R-CHOP R-M delivered to progression improved the PFS from 1.9 to 5.4
years compared to interferon maintenance (67,68).

338

Randomised studies in indolent non-Hodgkin lymphoma (NHL) including MCL demonstrated a PFS advantage for bendamustine-rituximab (BR) compared to R-CHOP (69,70). Both studies were conducted without R-M. No PFS advantage for R-M following BR was demonstrated in a randomised study (71). However subsequent large real-world evidence supports a role for R-M following BR, with substantial improvements in OS and time-to-next-treatment in patients receiving R-M following an initial response to BR (72).

In a randomised study comparing R-M to rituximab-lenalidomide (R2) maintenance after initial R-CHOP/cytarabine-based induction, R2 resulted in a significant 2-year PFS advantage (76.6% vs 60.8%). No OS difference was observed at a median followup of 25.2 months and R2 was associated with increased toxicity (73). R2 is not currently licensed or reimbursed in this setting in the UK.

352

353 VRCAP (bortezomib, rituximab, cyclophosphamide, doxorubicin, prednisolone) 354 improves PFS compared to R-CHOP (24.7 vs 14.4 months) but is associated with 355 greater haematological toxicity (74). An OS benefit was subsequently reported: 90.7 356 vs 55.7 months (75). However, this study was conducted in a pre-R-M and pre-cBTKi 357 era and is difficult to compare to results achieved with R-CHOP/B-R followed by R-M. 358 VRCAP is National Institute for Health and Care Excellence (NICE) approved and 359 represents a possible option for non-ASCT fit patients although there is currently no 360 evidence regarding the delivery of R-M following VRCAP induction.

361

362 The addition of cytarabine to BR (R-BAC500, bendamustine 70 mg/m² on days 2-3, 363 cytarabine 500 mg/m² on days 2-4) leads to high response rates in the first-line setting 364 (76). Long-term follow-up demonstrated an impressive 7-year PFS of 56% and 7-year 365 OS of 63% (77). The regimen is associated with significant infective and 366 haematological toxicity and as such should be considered in patients either fit for ASCT but considered borderline in age e.g., 65-70 years or those aged 60-65 years 367 368 and considered ineligible for ASCT. Venetoclax is being studied in combination with 369 R-BAC in the national Italian FIL_VR-BAC study, testing the value of venetoclax 370 consolidation and maintenance after abbreviated R-BAC in high-risk older patients 371 with MCL, with the trial fully recruited and results currently awaited (NCT03567876). 372

373 The SHINE trial compared continuous ibrutinib (I) with placebo alongside BR and R-374 M. At a median follow-up of 84.7 months, BR-I demonstrated an improvement in 375 median PFS in the ibrutinib-BR arm (80.6 vs 52.9 months) (78). No OS benefit was demonstrated (7-year OS 55% (I) vs 56.8% (placebo)). There was no clear PFS 376 377 advantage seen in TP53-mutated or high risk MIPI subgroups. Although SHINE was 378 designed for Ibrutinib to be delivered continuously to progression, despite long follow-379 up the median time on ibrutinib was only 2 years. More patients stopped Ibrutinib due 380 to an adverse event compared to placebo (39.5% vs 24%) and more infective toxicity 381 was demonstrated during I-R maintenance. BR-I was also associated with more 382 cardiac events, particularly atrial fibrillation (13.9% vs 6.5%). The combination is not currently licensed or reimbursed in the UK. Large, randomized trials comparing cBTKi 383 384 combinations with immunochemotherapy are ongoing. The UK/NORDIC ENRICH trial 385 of ibrutinib-rituximab followed by R-M and continuous ibrutinib versus RCHOP or BR 386 followed by R-M is fully recruited and currently awaiting results. BR plus R-M with and 387 without continuous acalabrutinib (ECHO, NCT02972840) and BR without R-M versus (MANGROVE, NCT04002297) are assessing second 388 zanubrutinib-rituximab 389 generation cBTKi in first-line ASCT-unfit MCL patients. 390 391 392 RECOMMENDATIONS 393 394 In patients unsuitable for high dose cytarabine-based induction and 395 ASCT, offer R-chemotherapy combinations as current standard of care (1A) 396 Offer R-CHOP, R-Bendamustine, R-BAC, and VR-CAP as options for 397 -398 previously untreated patients unsuitable for ASCT (1A) 399 Offer rituximab maintenance post RCHOP induction (1A) Consider rituximab maintenance post R-Bendamustine induction (2B) 400 Do not offer rituximab maintenance following R-BAC outside of a clinical 401 402 trial (2A). 403 404 Initial treatment of frail patients with MCL 405 Frail patients with lymphoma, including MCL, experience more treatment-related 406 407 toxicity and have worse outcomes than non-frail patients. In many cases, patients 408 may prioritise quality of life and symptom-relief over prolonging life. For patients 409 planned to receive systemic therapy, consideration should be given to pre-phase 410 steroids where disease burden is driving impaired performance status, as well as 411 involving a geriatrician to optimise co-morbidities (79,80) 412 413 Cytotoxic treatment options include chlorambucil, CVP (cyclophosphamide,

414 vincristine, prednisolone) and attenuated CHOP or bendamustine, in combination

- 415 with rituximab. Fourteen patients treated with R-chlorambucil for up to 8 months
- reported an ORR of 64%, CR rate of 36%, and median PFS of 15 months (81), whilst
- 417 another study of 20 patients who received R-chlorambucil for a year followed by 12-
- 418 months of rituximab maintenance reported a 3-year PFS of 89% (82). Both series
- 419 included mainly younger patients (median 64 years) with relatively low-risk MCL.
- 420
- 421 Rampotas *et al* (83) retrospectively evaluated 95 UK MCL patients considered unfit
- 422 for full-dose R-CHOP or R-bendamustine (median 79 years), who instead received
- 423 R-CVP, R-Chlorambucil, attenuated R-CHOP or R-bendamustine. The median PFS
- 424 was between 7.4-21.9 months, depending on the regimen used. On multivariable
- 425 analysis of composite groups, patients receiving attenuated R-CHOP/R-
- 426 Bendamustine experienced significantly longer PFS than those on R-CVP/R-
- 427 Chlorambucil but experienced more toxicity-related hospitalisations. There was no
- 428 OS difference between the treatment groups.
- 429
- 430 Non-cytotoxic approaches include ibrutinib, lenalidomide, bortezomib and rituximab
- 431 monotherapy (84). Modest sized first-line phase II trials demonstrate clear efficacy
- 432 of ibrutinib-rituximab (3-year PFS and OS rates of 87% and 94% respectively) (85)
- 433 and lenalidomide-rituximab (5-year PFS and OS rates of 64% and 77% respectively)
- 434 with durable disease control seen (86). Although these regimens may be appropriate
- 435 in selected older patients with comorbidities, the trials performed were not
- 436 specifically in this cohort and neither option is currently licensed nor reimbursed in437 the UK.
- 438
- Finally, in some cases best supportive/palliative care (including radiotherapy) may beappropriate, either alongside or instead of systemic anti-cancer therapy.
- 441

- 443
- 444 Considered for review by a geriatrician and pre-phase steroids for frail
 445 patients with MCL (2B)
- 446 Consider R-Chlorambucil, R-CVP, attenuated R-Bendamustine or
- 447 attenuated R-CHOP for frail patients appropriate for cytotoxic therapy
- 448 **(2B)**

- 449 Consider best supportive/palliative care (including radiotherapy) in
- 450 selected patients. (2B)
- 451 Consider enrolment into prospective trials of targeted novel therapies
 452 (2C)

453 Management of Indolent MCL

454 Indolent MCL can be defined clinically and pathologically and accounts for 10-15% of 455 all MCL cases. Several studies suggest that these patients can initially be safely 456 observed or receive non-intensive treatment. Non-nodal MCL typically presents with bone marrow, peripheral blood and splenic involvement, and develops from IGHV-457 458 mutated, SOX11-negative B cells. Nodal MCL can also present with small nodal 459 volume disease with a low Ki67 proliferation index, classical histology (i.e., non-460 blastoid or pleomorphic) and can follow an indolent, asymptomatic course. This selected group of newly-diagnosed MCL patients may have excellent outcomes with 461 462 initial observation.

463

464 The UK MCL Biobank Observational Study (87) demonstrated that 27.6% were initially 465 observed: women more than men (40% versus 22%). ~75% continued observation at 1 year and >50% at 2 years follow up from diagnosis. Raised LDH and a high Ki-67 466 467 were more common in patients requiring upfront therapy. Numerous other studies 468 conclude that for a carefully selected nodal and non-nodal MCL, initial observation is 469 safe and can have excellent outcomes (88). More data are required regarding the 470 impact of adverse genetic features such as TP53 mutation or deletion on time-to-first-471 treatment.

472

Alternatively, recent small prospective frontline trials of ibrutinib-rituximab (89,90) and immunomodulatory agents (91) have demonstrated durable disease control in low burden disease. IMCL-2015 GELTAMO trial (90) tested the concept of MRD-driven cessation of ibrutinib-rituximab (70% stopped after 2 years treatment), and the MD Anderson examined ibrutinib to progression and observed high atrial fibrillation rate (~1/3) and discontinuation rates due toxicity (42%) (89). These therapeutic classes could be considered if available for appropriate patients, ideally in the context of a

- clinical trial. In the future, MRD-based stopping rules or fixed duration therapy may bereasonably assessed in this specific patient group.
- 482

483 **RECOMMENDATIONS**

- 484 Consider active observation in untreated, asymptomatic MCL patients with
 485 low volume nodal disease (2B)
- 486 Consider active observation in untreated, asymptomatic MCL patients
 487 presenting with isolated splenic and marrow/peripheral blood involvement
 488 (2B)
- 489 Consider early intervention with non-toxic targeted therapy in the context
 490 of clinical trials (2B)
- 491 Management at first relapse
- 492

For patients relapsing after first-line immunochemotherapy, routine use of a cBTKi is established in clinical practice and real-world data has linked this development with improved outcomes, particularly in older patients (92,93).

496

497 When patients are considered candidates for future cellular therapies, it is 498 recommended that risk profile is assessed before starting second-line treatment. 499 This should include a re-biopsy for histopathological subtyping, assessment of TP53 500 mutation status and Ki67%. Around a third of patients do not respond to second-line 501 cBTKi and prognosis for this group is very poor (94,95). High-risk patients should be 502 discussed with a CAR-T centre and early response assessment is recommended to 503 minimise delay to next therapy (full details in BSH Addendum (96)). Where possible, high-risk patients should be prioritised for clinical trials. Early progression of disease 504 505 (POD) following first line treatment is associated with worse outcomes on second line cBTKi as a continuum i.e., POD within 6 months < POD within 24 months < no 506 507 POD24 (97). This recent data suggests survival outcomes for patients on a 2nd line 508 cBTKi can be modelled according to a simple clinical model incorporating POD, 509 Ki67% and MIPI at diagnosis (the '2L BTKi MIPI').

- 511 The 2L BTKi MIPI identifies 3 groups with distinct 2-year PFS2, including high risk
- 512 (14%), intermediate risk (50%), and low risk (64%). Time to POD, Ki67, and MIPI are
- 513 associated with survival outcomes in patients with R/R MCL receiving 2L BTKis.
- 514 Simple clinical models incorporating these variables may assist in planning for
- 515 alternative therapies such as chimeric antigen receptor T-cell therapy, allogeneic
- 516 stem cell transplantation, or novel agents with alternative mechanisms of action.
- 517
- 518 The oral cBTKis ibrutinib, acalabrutinib and zanubrutinib all have U.S. Food and
- 519 Drug Administration (FDA) approval for use in relapsed, refractory (R/R) MCL (98)
- 520 (Table 3). First-in-class ibrutinib demonstrated high response rates in a multiply
- relapsed cohort in a phase 2 study (ORR 68%, CR 21%) (99), and in a randomised
- 522 controlled trial, displayed superior PFS compared to temsirolimus (median PFS 14.6
- 523 months versus 6.2 months; HR 0.43; p<0.0001) (100). A pooled trial analysis
- observed improved median PFS in patients receiving ibrutinib at first relapse,
- 525 compared to later relapse (median PFS 25.4 months versus 10.3 months),
- 526 supporting earlier use in the treatment algorithm (101,102). The addition of rituximab
- 527 to ibrutinib has also been assessed in a small phase 2 study (103). Response rates
- 528 appear improved (ORR 88%, CR 44%), but findings are limited by the small
- 529 proportion of high-risk patients included.
- 530

Approval in R/R MCL for the second generation cBTKis acalabrutinib and 531 532 zanubrutinib are based on phase 2 studies. Acalabrutinib achieved ORR 81% and 533 CR 40%, and median PFS 22 months (104). Zanubrutinib achieved ORR 84% and 534 CR 68.6% with median PFS 33 months (105). No randomised studies to date have 535 compared efficacy and tolerability of the cBTKis in R/R MCL. Given the differences in 536 patient characteristics and methods of response assessment across studies, it is 537 unclear whether differences observed in ORR and CR rates are significant. Although not directly comparable with MCL, randomised studies in chronic lymphocytic 538 539 leukaemia and Waldenström macroglobulinaemia comparing outcomes of ibrutinib to 540 acalabrutinib or zanubrutinib observed improved toxicity profile for the second-541 generation cBTKis, with reduced rates of atrial fibrillation, hypertension, and bleeding 542 (106–108). At present, ibrutinib is the only cBTKi approved by the European 543 Medicines Agency (EMA).

570	MCL
569	Table 3. Prospective studies evaluating covalent BTKi monotherapy in R/R
568	
567	(2B).
566	therapy, consider clinical trials or immunochemotherapy at first relapse
565	- Where a covalent BTKi has been used in first line as continuous
564	of each agent (1B).
563	treatment should be individualised based on the specific toxicity profile
562	- Where the choice of ibrutinib, acalabrutinib or zanubrutinib is available,
561	care option in the UK at first relapse (1B)
560	- Offer ibrutinib monotherapy as an approved and reimbursed standard of
559	offered a covalent BTKi (1A).
558	- Patients relapsing after first line immunochemotherapy should be
557	
556	RECOMMENDATIONS
555	
554	reimbursed in the UK at present.
553	monotherapy (111,112). Neither bortezomib-CHOP or lenalidomide-rituximab are
552	months in a cBTKi-naive R/R MCL cohort and appears superior to lenalidomide
551	relapse. In a phase 2 study, lenalidomide-rituximab demonstrated median PFS 11.1
550	CHOP demonstrated superiority over CHOP in cBTKi naive MCL patients at first
549	phase 2 studies in non-cBTKi exposed R/R MCL patients (109,110), and bortezomib-
548	bendamustine (R-B) and R-BAC have both demonstrated high response rates in
547	but options include use of standard immunochemotherapy. Rituximab plus
546	first-line cBTKi therapy. Management of first relapse in this setting is not established
545	In recent years, clinical trials and early access schemes have provided access to

Treatment	Reference	Study	N	Median age, years	Median prior lines (range)	High risk MIPI	Response	Median PFS (months; 95% CI)	Key grade 3/4 adverse events >=10%
Ibrutinib	Wang et	Phase	111	68	3 (1-5)	49%	ORR 68%;	13.9 (7.0-	Neutropenia
	al, 2013	2					CR 21%	NE)	16%;
	(99)								thrombocytopenia
									11%

lbrutinib	Dreyling et	Phase	139	67	2 (1-9)	22%	ORR 72%;	14.6	Neutropenia 13%
	al, 2016	3					CR 19%	(10.4-	
	(113)							NE)	
Ibrutinib	Rule et al,	Pooled	370	68	2 (1-9)	32%	ORR 70%;	12.5 (9.8-	Neutropenia
	2017 (101)	analysis					CR 27%	16.6)	17%;
									thrombocytopenia
									12.4%;
									pneumonia
									12.7%; anaemia
									10.0%
Acalabrutinib	Wang et	Phase	124	68	2 (1-2)	17%	ORR 81%,	22 (16.6-	Neutropenia
	al, 2018	2					CR 40%	33.3)	12%; anaemia
	(104)								12%
Zanubrutinib	Song et al,	Phase	86	60.5	2 (1-4)	38.4%	ORR	33 (19.4-	Neutropenia
	2020 (105)	2					83.7%;	NE)	18.6%; infection
							CR 77.9%		18.6%;
									pneumonia
									12.8%
Zanubrutinib	Tam et al,	Phase	32	70.5	1 (1-4)	31.3%	ORR	21.1	Infections 18.8%;
	2021 (114)	1/2					90.6%;	(13.2-	anaemia 12.5%
							CR 31.3%	NE)	
		1				1	1		

571 Abbreviations: ORR overall response rate, CR complete response, NE not-evaluable, MIPI mantle cell lymphoma international 572

prognostic index, PFS progression-free survival

573

574

575 Chimeric Antigen Receptor (CAR) T-cell Therapy

576

Brexucabtagene autoleucel (Brexu-cel), an autologous CD19-targeting CAR T-cell 577

578 therapy, has been granted conditional marketing authorisation by the EMA for R/R

579 MCL after ≥2 lines of therapy, including a cBTKi. The ZUMA-2 study reported

580 impressive initial responses (ORR 93%, CR 67%) with 37% of evaluable patients in

581 ongoing response at a median follow-up of 35.6 months (115,116). Significant ≥

582 grade 3 adverse events included cytokine release syndrome (15%), neurological

events (31%) and infection (32%). 583

584

After approval by NICE in February 2021, each application for treatment in England 585 586 and Wales is reviewed by the National CAR T Clinical Panel (NCCP) using uniform

587 eligibility criteria (Table 4). A similar system exists in Scotland. Early real-world UK experience of Brexu-cel at 3rd line suggests that efficacy and safety outcomes for 588 589 those reaching infusion are comparable with ZUMA-2. However, prospective 590 intention-to-treat (ITT) analysis highlights the challenge of disease control at cBTKi 591 failure with a significant drop-out between NCCP approval and T-cell harvest and/or 592 infusion (117). Our guidance proposes a risk-based surveillance strategy for 593 potential CAR T candidates at first relapse, with the goal of identifying those at high 594 risk of early ibrutinib failure (94,100,101,118) and capturing early refractory or 595 progressive disease (PD) in such patients (Figure 1) (96).

596

597 High-risk patients should be discussed with a CAR T centre at first relapse and followed closely; at least 4-weekly face-to-face appointments in the first 3 months. 598 599 Patients with significant constitutional symptoms showing no improvement after 4 600 weeks of ibrutinib should be considered for early re-imaging. All high-risk patients 601 should have first imaging response assessment as early as 8 weeks but no later 602 than 12 weeks. Best response of stable disease after 8 weeks of ibrutinib or any PD 603 should prompt an urgent referral to a CAR T-cell centre (Figure 1). Earlier referral at 604 the first sign of ibrutinib failure may mitigate some risk of drop-out, improving the 605 accessibility of CAR T-cell therapy to such patients. Abrupt cessation of ibrutinib at 606 this stage should be avoided due to risk of tumour flare (119). Stabilisation of 607 disease may be required prior to T-cell harvest and where possible, bendamustine 608 should be avoided due to its potential impact on T-cell fitness (120).

609

610 Bridging therapy (BT) is defined as any lymphoma-directed treatment delivered

611 between T-cell harvest and lymphodepletion and may consist of

612 chemoimmunotherapy such as R-BAC (121), radiotherapy or other targeted

613 therapies such as non-covalent BTKis and venetoclax (alone or in combination)

although these are unlicensed targeted agents in the UK. BT practice varies widely,

⁶¹⁵ reflective of heterogeneous patient groups, lack of published data, physician

616 preference and geographical variation in cell turn-around times and access to novel

617 therapies. Some retrospective analyses suggest inferior CAR T outcomes in high-

618 grade B-NHL patients receiving BT but also demonstrate an association between the

use of BT and high-risk disease features (122,123). With the goal of achieving

disease control and maintaining ECOG PS prior to cell infusion, UK practice favours

621 BT, administered to 87% of patients with high-grade B-NHL after T-cell harvest,

622 where a CR/PR to BT conferred a 42% reduction in PD and death following infusion

623 (124). Likewise, markers of high-grade B-NHL activity, 3+ extra-nodal sites and

624 inferior ECOG PS correlate with inferior survival and immediate CAR T-related

625 toxicity post-infusion (124–128).

626

Extrapolating this experience to MCL, adequate disease control may be critical to
improve the drop-out rate but also to optimise the chances of durable remission and
improve tolerability of Brexu-cel. In real-world practice, the vast majority of MCL
patients are receiving BT with poor ORRs of 22-33% (117,129,130), highlighting the
need for more effective bridging strategies.

632

Strong predictors of long-term durable remission post CAR T-cell therapy in MCL are
incompletely explored. Overall initial responses in high-risk disease appeared
comparable in ZUMA-2 but small numbers preclude valid conclusions. Real-world
reporting, enriched for patients with poor prognostic features, has demonstrated
inferior PFS for those with high-risk disease such as high-risk sMIPI score, Ki-67
≥50%, *TP53* aberrations, complex karyotype, and blastoid/pleomorphic morphology
(117,129,130).

640

The largest reported real-world dataset (n=168) found age \geq 65 years, ECOG PS \geq 2 641 642 high-risk sMIPI, blastoid/pleomorphic morphology, bulky disease and bridging were 643 associated with grade \geq 3 ICANS (130) which remains the most significant immediate risk. Further, 20% of patients required intensive care for a median of 3 days (range 644 645 1-12), 11% required vasopressors, 3% mechanical ventilation and 2% dialysis. Of note, NRM was 9.1% at 1 year, primarily because of infections. Consideration of 646 647 tolerance of such toxicities are important in selecting an appropriate patient. Nonetheless, the 12-month duration of response (DOR) and PFS of 65% and 59% 648 649 respectively appear comparable to ZUMA-2 (115,116,130). Clinical studies exploring 650 CAR T products with a more favourable toxicity profile may also be considered. 651 652 Monitoring for late effects after CAR T-cell therapy should be in accordance with

653 EBMT guidance (131), with a particular focus on delayed cytopenia and infection. At

month 3 post Brexu-cel, persistent anaemia, thrombocytopenia and neutropenia was noted in 5%, 11% and 18%, respectively (129). Infection prophylaxis (anti-viral, antipneumocystis) is recommended for at least 1 year and until CD4 count >0.2 x 10^{9} /L

(130). Immunoglobin replacement therapy is considered in select patients with

658 secondary hypogammaglobulinaemia and repeated bacterial infections. Despite the

- lack of evidence and the high likelihood of lower responses, vaccination post CAR T
- 660 may reduce the risk and severity of late infection (130).
- 661

662 **RECOMMENDATIONS**

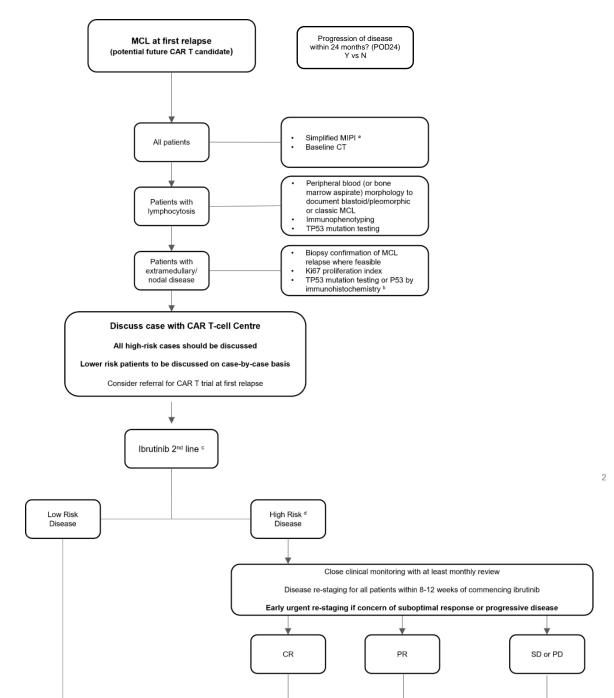
663

664 - Eligible MCL patients who are relapsed or refractory (including stable
 665 disease) after anti-CD20 antibody-containing immunochemotherapy and

666 BTKi should be offered Brexu-cel (1A).

- 667 Potential candidates for future CAR T treatment should be risk assessed at
 668 first relapse prior to initiation of a BTKi. All high-risk cases should be
 669 discussed with a CAR T-cell centre. High risk includes:
- blastoid/pleomorphic morphology, Ki67% >50, TP53 mutation, high risk
 sMIPI, bulk >5 cm or POD24. (1B).

672 - Assessment pre-BTKi in potential candidates should include CT re-staging,


- 673 sMIPI score with blood/tissue biopsy to establish morphology, Ki67% and
 674 *TP53* mutation status (if feasible) (1B).
- 675 High-risk patients starting ibrutinib should have CT or PET-CT re-staging
- 676 within 8-12 weeks (earlier if concern). Lack of early response with stable or
- 677 progressive disease on ibrutinib should prompt an urgent referral to a CAR

678 **T-cell centre (1B).**

680	Table 4: NCCP eligibility criteria for Brexu-cel and organ function parameters
681	for real-world use

682		
	NHS England NCCP eligibility criteria	Comments
Diagnosis	MCL with t(11;14) or cyclin D1 overexpression	
Age	No upper age limit	Suitability at discretion of CAR T-cell centre
Previous Treatment	 Anthracycline or bendamustine or high-dose cytarabine-containing regimen 	

	and • Anti-CD20 mor and • BTKi (ibrutinib/	Prior allograft is not an exclusion	
Patient	 ECOG PS 0-1 is acceptable) No active CNS 	at assessment (ECOG PS 2 at infusion	A prior history of MCL in the CNS is not an exclusion
		3/Hepatitis C negative or undetectable	Medical co-morbidities at discretion of CAR T- cell centre
	Organ functio	n requirements ^a	
ZUM	A-2 eligibility	Real-world practice	
CrCL ≥60 ml/	min	>30-40 ml/min considered	Dependent on aetiology, fitness and other risk factors
EF ≥50%		EF<50% considered	Dependent on aetiology, fitness and other risk factors
Oxygen satur pleural effusio	ations >92%, no on	Pleural effusion and ascites not an exclusion	
Bone marrow	function:		
Platelets ≥75 Neutrophils ≥	1x10 ⁹ /L	Lower acceptable, particularly if confirmed bone marrow involvement	
Lymphocytes 683 Abbrev		with MCL , CNS central nervous system, MCL mantle cell lymphoma, B	F Fiection fraction
684 ECOG	PS, Eastern Cooperative Oncolog inhibitor	y Group Performance Status, CAR chimeric antigen receptor	, BTKi Bruton Tyrosine
	oported by real-world A	xicel CIBMTR data.	
687			
688			
689 690			
690 691			
692			
693			
694			
695			
696			
697			
698			
699 700			
700 701	Figure 1. Proposed	surveillance strategy for high risk MC	L nationte
701 702		surveillance strategy for high-risk MC nencing ibrutinib at second-line.	L patients
102	com	including information at Second-Infe.	

713

Refer for CAR T at relapse

^a The Simplified Mantle Cell Lymphoma International Prognostic Index (MIPI) is used to assess risk based on age, ECOG PS score, LDH level and white cell count ^b IHC for p53 is a feasible alternative to *TP53* mutation testing where the latter is not accessible or fails. Overexpression of p53

Monthly review until Month 6 Disease re-staging at 6 months

If ongoing PR or CR, continue

clinical surveillance

Refer to CAR T-cell centre

Benefit of BTKi to be reviewed if SD at 8 weeks

in tumour biopsies has a high predictive accuracy for missense mutations in TP53.

^c Allogeneic haematopoietic stem cell transplantation may be considered in select patients responding to 2nd line therapy. ASTCT, CIBMTR, EBMT have published clinical practice recommendations on the sequencing of cellular therapies in MCL. ^d high risk disease is defined by blastoid/pleomorphic morphology, Ki67%>50, TP53 mutation (including high expression by immunohistochemistry), high risk sMIPI score, bulk >5 cm or progression of disease within 24 months of 1st line (POD24)

714 Management options for patients who are failed by a covalent BTK inhibitor

and are unfit for, or have already received CAR-T

716

Outcomes for patients failed by a cBTKi and following or unfit for CAR-T are dismal (132–134). Patients with poor ECOG PS may require best supportive care as realworld data suggests less than half receive further systemic therapies (135). A multitude of ongoing trials are evaluating novel therapies in this context, but no standard of care is currently recognised.

722

Data for immunochemotherapy is limited to small retrospective studies, the largest comprising 36 patients receiving R-BAC. ORR (83%) and CR rates (60%) were high with a modest median PFS and OS of 10.1 and 12.5 months respectively. Dose reductions related to toxicity occurred in nearly all patients over 70 years, with hospitalisation seen in 50% of the whole cohort (121).

728

729 Non-covalent BTKi (ncBTKi) target wild-type and C481-mutated B-cell malignancies 730 following cBTKi resistance. Pirtobrutinib is the most clinically advanced ncBTKi (136). 731 To date, 90 MCL patients with prior cBTKi exposure have been treated, with ORR of 732 58% and CR rate 20%. At 12 months follow-up, the median DOR among 52 733 responders was 22 months. Toxicities appear limited and primarily haematological, 734 while rates of atrial fibrillation and hypertension were very low (137). An ongoing 735 randomised phase 3 superiority study is comparing investigator choice cBTKi with pirtobrutinib at first or later relapse (138). Several other ncBTKi are under clinical 736 737 development but only nemtabrutinib is actively advancing in phase 2 studies in MCL, 738 although patient numbers are small (139).

739

Venetoclax is a BH3-mimetic targeting BCL2. Phase I study results reported high ORR and a PFS of 14 months in cBTKi-naïve patients (140). Retrospective studies of monotherapy in cBTKi-resistant MCL patients report PFS of 3-8 months despite most showing initial responses (141,142). BCL2-inhibitor combinations are being applied earlier in the disease course and a new highly selective BCL2-inhibitor, BGB-11417, has moved directly to a zanubrutinib combination in phase I development (143)

Zilovertamab vedotin is an immuno-conjugate targeting ROR1, carrying the toxin
 monomethyl auristatin E. Of 17 patients enrolled following cBTKi, there were nine
 responses with a median DOR of 10.0 (0-20.3) months. Neutropenia and peripheral
 neuropathy were the most significant adverse events recorded (144)

751

752 Bispecific antibodies recruit T cells to tumour cells and show great promise in B-cell 753 lymphomas (145–147). Glofitamab is under investigation specifically in MCL, using 754 standardised step-up dosing and obinutuzumab priming. In a phase I-II study, 37 755 heavily pre-treated patients, 24 with prior cBTKi exposure, have been treated. At a median follow-up of 8 months, the ORR was 83.8%, CR rate was 73.0%, and median 756 757 DOR 12.6 months. No patients discontinued treatment due to adverse events despite significant rates of high-grade cytokine release syndrome (148). There are limited data 758 759 patients treated with the CD3-CD20 bispecifics odronextamab, in MCL 760 mosunetuzumab and epcoritamab to date.

761

A retrospective study of 58 patients using lenalidomide following cBTKi report an ORR of 29% with a median DOR of 20 weeks. The safety profile was favourable, but the limited number and durability of responses means lenalidomide is uncommonly used (149). Bortezomib and temsirolimus are licensed for relapsed MCL but, due to a combination of low responses and lack of data following cBTKi failure, cannot be recommended (149,150).

768

- 770
- Suggest patients relapsing on a covalent BTKi continue this until the
 initiation of subsequent therapy to avoid the risk of disease flare (2C).
- There is no standard therapeutic approach at relapse post-covalent BTKi
 in those ineligible or post-CAR-T. Clinical trials should be considered
 wherever possible. Consider an individualised approach based on co morbidities, performance status, and available options (2B).
- If immunochemotherapy is considered, then R-BAC may be preferred
 (2B).
- 779 Consider a non-covalent BTK inhibitor such as pirtobrutinib if available
 780 as an option (2B).

781

782 The current role of allogeneic stem-cell transplantation (alloSCT)

783

784 Limited data for alloSCT in first response is available in registry and prospective trial 785 data, and whilst low relapse rates are reported, benefits were negated by high NRM 786 rates and graft-versus-host-disease (GVHD) (151,152). Prior to effective options for 787 relapsed MCL becoming available, alloSCT was widely used in fit patients with a significant number achieving extended PFS, again with the caveat of high NRM and 788 789 GVHD (152–157). Clinical data to support CAR T-cell therapy over alloSCT following 790 cBTKi is not available; but international consensus is to preferentially offer CAR T-cell 791 therapy where available, based on high response rates with CAR T-cell therapy 792 following multiple lines of contemporary therapy, demonstrable efficacy in high-risk 793 MCL including TP53-mutated, and an ability to deliver CAR T-cell therapy with active 794 disease (158).

795

796 Data for alloSCT post-cBTKi is confined to retrospective studies of 22 patients 797 describing a 1-year PFS of 76% and 5% NRM (159), and another of 11 patients who 798 received alloSCT following R-BAC, also with a 1-year PFS of 76% (121). There are no 799 published studies considering alloSCT post-CAR T-cell therapy at present. Although 800 alloSCT is a potential option for patients failing current contemporary therapies 801 including cBTKi and CAR-T, the numbers of eligible patients will be small due to a 802 combination of the age of patients receiving multiple lines of therapy, cumulative 803 treatment-related toxicities, adequate disease control and the need for a well-matched 804 donor.

805

806 Consideration can be given to alloSCT in select eligible patients responding to BTKi, 807 where the feasibility of CAR T is in question. Drop-out between NCCP approval and 808 cell harvest/infusion, primarily due to progressive disease, may render CAR T 809 inaccessible to certain high-risk candidates. However, there is insufficient data to 810 make any recommendations on which patients may be considered. Accumulating real-811 world experience of CAR T and timely access to novel bridging strategies may further 812 inform the sequencing of cell therapy in MCL.

813

815

816 Consider alloSCT for fit patients with an appropriate donor following 817 immunochemotherapy, cBTKi and CAR-T failure. (2B)

818

819 Management of CNS MCL

820

821 Central nervous system (CNS) relapse of MCL is uncommon and remains 822 incompletely studied. It typically occurs at a crude incidence of ~4% (including ~1%) 823 at diagnosis) with a median time to presentation of 15 months (46). The incidence of 824 leptomeningeal involvement is greater than parenchymal disease (160–162). A 825 higher risk is noted in patients with high Ki67%, blastoid histology, raised LDH, worse ECOG PS and high MIPI score (161–163). It is unclear whether CNS-826 827 penetrating agents used in systemic treatment algorithms such as high-dose cytarabine or cBTKi influence this risk. CNS MCL involvement is a common 828 829 exclusion criterion within prospective clinical trials, and as such the evidence base 830 for management is primary limited to retrospective case series. Ibrutinib is known to 831 penetrate the CNS and a recent relatively large retrospective international series 832 suggests that response rates and survival are superior to blood-brain-barrier 833 penetrating immunochemotherapy (164). Little is known about the efficacy of 2nd 834 generation cBTKi acalabrutinib, zanubrutinib or the ncBTK inhibitor pirtobrutinib in 835 this setting.

836

Scant data of treatment approaches exists in patients developing CNS disease
following a cBTKi. Although CAR T cells are measurable within the CNS and there
are small retrospective series (165) and pilot studies (166)suggesting clear efficacy
in relapsed DLBCL with CNS involvement, there is only a single case of a MCL
patient with CNS disease treated with lisocel within the TRANSCEND trial to date
(167). Further data with CAR T-cell therapy is needed before recommendations can
be made.

844

- 846
- Primary CNS prophylaxis with CNS penetrating agents in front line MCL
 treatment algorithms is not recommended (2C)

Suggest ibrutinib for CNS relapse in patients who are previously cBTKi naïve (2C)

851

852 Acknowledgements

The authors wish to thank Ben Stevenson for help in undertaking the initial literature review. The BSH Haemato-oncology task force members at the time of writing this guideline were Nilima Parry Jones, Toby Eyre, Simon Stern, Matthew Wilson, and Dima El Sharkawi. The authors would like to thank them, the BSH sounding board, and the BSH guidelines committee for their support in preparing this guideline.

858 **Conflict of Interest**

The BSH paid the expenses incurred during the writing of this guidance. All authors have made a declaration of interests to the BSH and Task Force Chairs which may be viewed on request. None of the authors have conflicts of interest to declare.

862 **Review Process**

Members of the writing group will inform the writing group Chair if any new pertinent evidence becomes available that would alter the strength of the recommendations made in this document or render it obsolete. The document will be archived and removed from the BSH current guidelines website if it becomes obsolete. If new recommendations are made an addendum will be published on the BSH guidelines website (<u>https://b-s-h.org.uk/guidelines/</u>).

869 **Disclaimer**

While the advice and information in this guidance is believed to be true and accurate at the time of going to press, neither the authors, the BSH, nor the publishers accept any legal responsibility for the content of this guidance.

873 References

- 874
- 8751.Hadzidimitriou A, Agathangelidis A, Darzentas N, Murray F, Delfau-876Larue MH, Pedersen LB, et al. Is there a role for antigen selection in

877	mantle cell lymphoma? Immunogenetic support from a series of 807
878	cases. Blood. 2011 Sep 15;118(11):3088–95.
879	2. Navarro A, Clot G, Royo C, Jares P, Hadzidimitriou A, Agathangelidis
880	A, et al. Molecular subsets of mantle cell lymphoma defined by the IGHV
881	mutational status and SOX11 expression have distinct biologic and
882	clinical features. Cancer Res. 2012 Oct 15;72(20):5307–16.
883	3. Orchard J, Garand R, Davis Z, Babbage G, Sahota S, Matutes E, et al.
884	A subset of t(11;14) lymphoma with mantle cell features displays
885	mutated IgVH genes and includes patients with good prognosis,
886	nonnodal disease. Blood. 2003 Jun 15;101(12):4975–81.
887	4. Jain P, Wang ML. Mantle cell lymphoma in 2022—A comprehensive
888	update on molecular pathogenesis, risk stratification, clinical approach,
889	and current and novel treatments. Am J Hematol. 2022 May 1;97(5):638–
890	56.
891	5. Swerdlow SH, Campo E, Pileri SA, Lee Harris N, Stein H, Siebert R, et
892	al. The 2016 revision of the World Health Organization classification of
893	lymphoid neoplasms. Blood. 2016 May 19;127(20):2375–90.
894	6. Shrestha R, Bhatt VR, Guru Murthy GS, Armitage JO.
895	Clinicopathologic features and management of blastoid variant of mantle
896	cell lymphoma. Leuk Lymphoma. 2015 Oct 3;56(10):2759–67.
897	7. Eskelund CW, Dahl C, Hansen JW, Westman M, Kolstad A, Pedersen
898	LB, et al. TP53 mutations identify younger mantle cell lymphoma patients
899	who do not benefit from intensive chemoimmunotherapy. Blood. 2017
900	Oct 26;130(17):1903–10.
901	8. Halldórsdóttir AM, Lundin A, Murray F, Mansouri L, Knuutila S,
902	Sundström C, et al. Impact of TP53 mutation and 17p deletion in mantle
903	cell lymphoma. Leukemia. 2011 Dec;25(12):1904–8.
904	9. Martín-Garcia D, Navarro A, Valdés-Mas R, Clot G, Gutiérrez-Abril J,
905	Prieto M, et al. CCND2 and CCND3 hijack immunoglobulin light-chain
906	enhancers in cyclin D1– mantle cell lymphoma. Blood. 2019 Feb
907	2;133(9):940.
908	10. Streich L, Sukhanova M, Lu X, Chen YH, Venkataraman G, Mathews
909	S, et al. Aggressive morphologic variants of mantle cell lymphoma
910	characterized with high genomic instability showing frequent
911	chromothripsis, CDKN2A/B loss, and TP53 mutations: A multi-
912	institutional study. Genes Chromosomes Cancer. 2020 Aug 1;59(8):484–
913	94.
914	11. Aqil B, Triska G, Frater J, Hassan A, Ruzinova MB, Cashen A, et al.
915	Immunophenotypic Variations in Mantle Cell Lymphoma and Their
916	Impact on Clinical Behavior and Outcome. Arch Pathol Lab Med. 2018
917	Oct 1;142(10):1268–74.
918	12. Saksena A, Yin CC, Xu J, Li J, Zhou J, Wang SA, et al. CD23
/10	

000	
920	leukemic non-nodal form, and a better prognosis. Hum Pathol. 2019 Jul
921	1;89:71–80.
922	13. Hu Z, Sun Y, Schlette EJ, Tang G, Li S, Xu J, et al. CD200 expression
923	in mantle cell lymphoma identifies a unique subgroup of patients with
924	frequent IGHV mutations, absence of SOX11 expression, and an indolent
925	clinical course. Mod Pathol. 2018 Feb 1;31(2):327–36.
926	14. O'Malley DP, Lee JP, Bellizzi AM. Expression of LEF1 in mantle cell
927	lymphoma. Ann Diagn Pathol. 2017 Feb 1;26:57–9.
928	15. Gualco G, Weiss LM, Harrington WJ, Bacchi CE. BCL6, MUM1, and
929	CD10 expression in mantle cell lymphoma. Appl Immunohistochem Mol
930	Morphol. 2010 Mar;18(2):103–8.
931	16. Ribera-Cortada I, Martinez D, Amador V, Royo C, Navarro A, Beà S,
932	et al. Plasma cell and terminal B-cell differentiation in mantle cell
933	lymphoma mainly occur in the SOX11-negative subtype. Mod Pathol.
934	2015 Nov 1;28(11):1435–47.
935	17. Jain P, Wang M. Mantle cell lymphoma: 2019 update on the
936	diagnosis, pathogenesis, prognostication, and management. Am J
937	Hematol. 2019 Jun 1;94(6):710–25.
938	18. Nolan J, Murphy C, Dinneen K, Lee G, Higgins E, Bacon L, et al. p53
939	immunohistochemistry must be confirmed by TP53 next generation
940	sequencing for accurate risk stratification of patients with mantle cell
941	lymphoma. Leuk Lymphoma. 2022;63(14).
942	19. Lew TE, Minson A, Dickinson M, Handunnetti SM, Blombery P, Khot
943	A, et al. Treatment approaches for patients with TP53-mutated mantle
944	cell lymphoma. Lancet Haematol. 2023 Feb 1;10(2):e142–54.
945	20. Hill HA, Qi X, Jain P, Nomie K, Wang Y, Zhou S, et al. Genetic
946	mutations and features of mantle cell lymphoma: a systematic review
947	and meta-analysis. Blood Adv. 2020 Jul 14;4(13):2927–38.
948	21. Obr A, Klener P, Furst T, Kriegova E, Zemanova Z, Urbankova H, et
949	al. A high TP53 mutation burden is a strong predictor of primary
950	refractory mantle cell lymphoma. Br J Haematol. 2020 Dec
951	1;191(5):e103–6.
952	22. Kridel R, Meissner B, Rogic S, Boyle M, Telenius A, Woolcock B, et
953	al. Whole transcriptome sequencing reveals recurrent NOTCH1
954	mutations in mantle cell lymphoma. Blood. 2012 Mar 1;119(9):1963–71.
955	23. Ferrero S, Rossi D, Rinaldi A, Bruscaggin A, Spina V, Eskelund CW,
956	et al. KMT2D mutations and TP53 disruptions are poor prognostic
957	biomarkers in mantle cell lymphoma receiving high-dose therapy: a FIL
958	study. Haematologica. 2020 Jun 1;105(6):1604–12.
959	24. Delfau-Larue MH, Klapper W, Berger F, Jardin F, Briere J, Salles G,
960	et al. High-dose cytarabine does not overcome the adverse prognostic
961	value of CDKN2A and TP53 deletions in mantle cell lymphoma. Blood.
962	2015 Jul 30;126(5):604–11.

Tucci A, Ferrari S, Bottelli C, Borlenghi E, Drera M, Rossi G. A 963 25. 964 comprehensive geriatric assessment is more effective than clinical 965 judgment to identify elderly diffuse large cell lymphoma patients who 966 benefit from aggressive therapy. Cancer. 2009 Oct 1;115(19):4547-53. 967 26. Bellera CA, Rainfray M, Mathoulin-Pélissier S, Mertens C, Delva F, 968 Fonck M, et al. Screening older cancer patients: first evaluation of the G-969 8 geriatric screening tool. Annals of Oncology. 2012 Aug;23(8):2166–72. 970 27. Lee S, Fujita K, Morishita T, Oiwa K, Tsukasaki H, Negoro E, et al. 971 Association of the Geriatric 8 with treatment intensity and prognosis in 972 older patients with diffuse large B-cell lymphoma. Br J Haematol. 2021 973 Jul 26;194(2):325-35. 974 28. Bonanad S, De la Rubia J, Gironella M, Pérez Persona E, González B, 975 Fernández Lago C, et al. Development and psychometric validation of a 976 brief comprehensive health status assessment scale in older patients 977 with hematological malignancies: The GAH Scale. J Geriatr Oncol. 2015 978 Sep 1;6(5):353-61. 979 29. Cheson BD, Fisher RI, Barrington SF, Cavalli F, Schwartz LH, Zucca E, 980 et al. Recommendations for initial evaluation, staging, and response 981 assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol. 2014 Sep 20;32(27):3059-67. 982 983 Barrington SF, Mikhaeel NG, Kostakoglu L, Meignan M, Hutchings 30. 984 M, Müeller SP, et al. Role of imaging in the staging and response 985 assessment of lymphoma: consensus of the International Conference on Malignant Lymphomas Imaging Working Group. J Clin Oncol. 2014 Sep 986 987 20;32(27):3048-58. 988 Albano D, Ferro P, Bosio G, Fallanca F, Re A, Tucci A, et al. 31. Diagnostic and Clinical Impact of Staging 18F-FDG PET/CT in Mantle-Cell 989 990 Lymphoma: A Two-Center Experience. Clin Lymphoma Myeloma Leuk. 991 2019 Aug 1;19(8):e457-64. 992 32. Albano D, Treglia G, Gazzilli M, Cerudelli E, Giubbini R, Bertagna F. 993 18F-FDG PET or PET/CT in Mantle Cell Lymphoma. Clin Lymphoma 994 Myeloma Leuk. 2020 Jul 1;20(7):422–30. 995 Bailly C, Carlier T, Touzeau C, Arlicot N, Kraeber-Bodéré F, Le Gouill 33. 996 S, et al. Interest of FDG-PET in the Management of Mantle Cell 997 Lymphoma. Front Med (Lausanne). 2019;6(APR). 998 34. Bailly C, Carlier T, Berriolo-Riedinger A, Casasnovas O, Gyan E, 999 Meignan M, et al. Prognostic value of FDG-PET in patients with mantle 1000 cell lymphoma: results from the LyMa-PET Project. Haematologica. 1001 2020;105(1):E33-6. 1002 35. Brepoels L, Stroobants S, De Wever W, Dierickx D, Vandenberghe 1003 P, Thomas J, et al. Positron emission tomography in mantle cell 1004 lymphoma. Leuk Lymphoma. 2008;49(9):1693-701.

1005 Albano D, Treglia G, Gazzilli M, Cerudelli E, Giubbini R, Bertagna F. 36. 1006 18F-FDG PET or PET/CT in Mantle Cell Lymphoma. Clin Lymphoma Mveloma Leuk. 2020 Jul 1;20(7):422-30. 1007 1008 37. Noring K, Carlsten M, Sonnevi K, Wahlin BE. The value of complete 1009 remission according to positron emission tomography prior to 1010 autologous stem cell transplantation in lymphoma: a population-based 1011 study showing improved outcome. BMC Cancer. 2021 Dec 1;21(1). 1012 38. Kolstad A, Laurell A, Jerkeman M, Grønbæk K, Elonen E, Räty R, et 1013 al. Nordic MCL3 study: 90Y-ibritumomab-tiuxetan added to BEAM/C in 1014 non-CR patients before transplant in mantle cell lymphoma. Blood. 2014 1015 May 8;123(19):2953-9. 1016 39. Pittaluga S, Tierens A, Dodoo YL, Delabie J, De Wolf-Peeters C. How 1017 reliable is histologic examination of bone marrow trephine biopsy specimens for the staging of non-Hodgkin lymphoma? A study of hairy 1018 cell leukemia and mantle cell lymphoma involvement of the bone 1019 1020 marrow trephine specimen by histologic, immunohistochemical, and 1021 polymerase chain reaction techniques. Am J Clin Pathol. 1022 1999;111(2):179-84. Merli M, Arcaini L, Boveri E, Rattotti S, Picone C, Passamonti F, et 1023 40. al. Assessment of bone marrow involvement in non-Hodgkin's 1024 1025 lymphomas: comparison between histology and flow cytometry. Eur J 1026 Haematol. 2010 Nov;85(5):405-15. 1027 Perković S, Bašić-Kinda S, Aurer I, Ugrina I, Duletić-Načinović A, 41. 1028 Lozić D, et al. Multiparameter flow cytometry is necessary for detection, 1029 characterization and diagnostics of composite mature B-cell 1030 lymphoproliferative neoplasms. Int J Hematol. 2013 Nov;98(5):589–96. Jung D, Jain P, Yao Y, Wang M. Advances in the assessment of 1031 42. 1032 minimal residual disease in mantle cell lymphoma. J Hematol Oncol. 1033 2020 Sep 24;13(1):127. 1034 43. Zelenetz AD, Gordon LI, Chang JE, Christian B, Abramson JS, Advani 1035 RH, et al. NCCN Guidelines[®] Insights: B-Cell Lymphomas, Version 5.2021. J Natl Compr Canc Netw. 2021 Nov 1;19(11):1218-30. 1036 Salar A, Juanpere N, Bellosillo B, Domingo-Domenech E, Espinet B, 1037 44. 1038 Seoane A, et al. Gastrointestinal involvement in mantle cell lymphoma: a 1039 prospective clinic, endoscopic, and pathologic study. Am J Surg Pathol. 1040 2006 Oct;30(10):1274-80. 1041 45. Skrypets T, Ferrari C, Nassi L, Margiottacasaluci G, Puccini B, 1042 Mannelli L, et al. 18F-FDG PET/CT Cannot Substitute Endoscopy in the 1043 Staging of Gastrointestinal Involvement in Mantle Cell Lymphoma. A 1044 Retrospective Multi-Center Cohort Analysis. J Pers Med. 2021 Feb 1045 1;11(2):1-10. 1046 46. Cheah CY, George A, Giné E, Chiappella A, Kluin-Nelemans HC, Jurczak W, et al. Central nervous system involvement in mantle cell 1047

1048 lymphoma: clinical features, prognostic factors and outcomes from the 1049 European Mantle Cell Lymphoma Network. Annals of Oncology. 2013 1050 Aug 1;24(8):2119-23. 1051 47. Eskelund CW, Kolstad A, Jerkeman M, Räty R, Laurell A, Eloranta S, 1052 et al. 15-year follow-up of the Second Nordic Mantle Cell Lymphoma trial 1053 (MCL2): prolonged remissions without survival plateau. Br J Haematol. 1054 2016 Nov 1;175(3):410-8. 1055 48. Hoster E, Rosenwald A, Berger F, Bernd HW, Hartmann S, Loddenkemper C, et al. Prognostic Value of Ki-67 Index, Cytology, and 1056 1057 Growth Pattern in Mantle-Cell Lymphoma: Results From Randomized Trials of the European Mantle Cell Lymphoma Network. J Clin Oncol. 1058 1059 2016 Apr 20;34(12):1386-94. 1060 49. Hoster E, Dreyling M, Klapper W, Gisselbrecht C, Van Hoof A, Kluin-Nelemans HC, et al. A new prognostic index (MIPI) for patients with 1061 advanced-stage mantle cell lymphoma. Blood. 2008 Jan 15;111(2):558-1062 1063 65. 1064 50. Rosenbluth BD, Yahalom J. Highly effective local control and palliation of mantle cell lymphoma with involved-field radiation therapy 1065 1066 (IFRT). Int J Radiat Oncol Biol Phys. 2006 Jul 15;65(4):1185-91. Leitch HA, Gascoyne RD, Chhanabhai M, Voss NJ, Klasa R, Connors 1067 51. JM. Limited-stage mantle-cell lymphoma. Annals of Oncology. 2003 Oct 1068 1;14(10):1555-61. 1069 1070 52. Bernard M, Tsang RW, Le LW, Hodgson DC, Sun A, Wells W, et al. 1071 Limited-stage mantle cell lymphoma: treatment outcomes at the 1072 Princess Margaret Hospital. Leuk Lymphoma. 2013 Feb;54(2):261–7. 1073 53. Abrisqueta P, Scott DW, Slack GW, Steidl C, Mottok A, Gascoyne 1074 RD, et al. Observation as the initial management strategy in patients with 1075 mantle cell lymphoma. Ann Oncol. 2017 Oct 1;28(10):2489-95. 54. 1076 Dabaja BS, Zelenetz AD, Ng AK, Tsang RW, Qi S, Allen PK, et al. 1077 Early-stage mantle cell lymphoma: a retrospective analysis from the 1078 International Lymphoma Radiation Oncology Group (ILROG). Ann Oncol. 1079 2017 Sep 1;28(9):2185-90. Geisler CH, Kolstad A, Laurell A, Andersen NS, Pedersen LB, 1080 55. 1081 Jerkeman M, et al. Long-term progression-free survival of mantle cell 1082 lymphoma after intensive front-line immunochemotherapy with in vivopurged stem cell rescue: a nonrandomized phase 2 multicenter study by 1083 1084 the Nordic Lymphoma Group. Blood. 2008 Oct 1;112(7):2687–93. 1085 Delarue R, (GELA) for the G d'Etude des L de l'Adulte, Haioun C, 56. 1086 (GELA) for the G d'Etude des L de l'Adulte, Ribrag V, (GELA) for the G d'Etude des L de l'Adulte, et al. CHOP and DHAP plus rituximab followed 1087 1088 by autologous stem cell transplantation in mantle cell lymphoma: a phase 2 study from the Groupe d'Etude des Lymphomes de l'Adulte. 1089 Blood. 2013 Jan 3;121(1):48–53. 1090

1091 Hermine O, Hoster E, Walewski J, Bosly A, Stilgenbauer S, 57. 1092 Thieblemont C, et al. Addition of high-dose cytarabine to immunochemotherapy before autologous stem-cell transplantation in 1093 1094 patients aged 65 years or younger with mantle cell lymphoma (MCL 1095 Younger): a randomised, open-label, phase 3 trial of the European Mantle Cell Lymphoma Network. The Lancet. 2016 Aug 1096 1097 6;388(10044):565-75. 58. 1098 le Gouill S, Thieblemont C, Oberic L, Moreau A, Bouabdallah K, 1099 Dartigeas C, et al. Rituximab after Autologous Stem-Cell Transplantation 1100 in Mantle-Cell Lymphoma. New England Journal of Medicine. 2017 Sep 28;377(13):1250-60. 1101 1102 59. Hermine O, Jiang L, Walewski J, Bosly A, Thieblemont C, Szymczyk 1103 M, et al. High-Dose Cytarabine and Autologous Stem-Cell Transplantation in Mantle Cell Lymphoma: Long-Term Follow-Up of the Randomized 1104 1105 Mantle Cell Lymphoma Younger Trial of the European Mantle Cell Lymphoma Network. Journal of Clinical Oncology. 2023 Jan 1106 1107 20;41(3):479-84. 1108 Khouri IF, Romaguera J, Kantarjian H, Palmer JL, Pugh WC, Korbling 60. 1109 M, et al. Hyper-CVAD and high-dose methotrexate/cytarabine followed by stem-cell transplantation: an active regimen for aggressive mantle-cell 1110 1111 lymphoma. J Clin Oncol. 1998;16(12):3803-9. Gianni AM, Magni M, Martelli M, di Nicola M, Carlo-Stella C, Pilotti 1112 61. S, et al. Long-term remission in mantle cell lymphoma following high-1113 dose sequential chemotherapy and in vivo rituximab-purged stem cell 1114 1115 autografting (R-HDS regimen). Blood. 2003 Jul 15;102(2):749–55. 62. Geisler CH, Kolstad A, Laurell A, Jerkeman M, Räty R, Andersen NS, 1116 et al. Nordic MCL2 trial update: Six-year follow-up after intensive 1117 1118 immunochemotherapy for untreated mantle cell lymphoma followed by 1119 BEAM or BEAC + autologous stem-cell support: Still very long survival but 1120 late relapses do occur. Br J Haematol. 2012 Aug;158(3):355-62. 1121 63. Dreyling M, Lenz G, Hoster E, van Hoof A, Gisselbrecht C, Schmits R, 1122 et al. Early consolidation by myeloablative radiochemotherapy followed 1123 by autologous stem cell transplantation in first remission significantly 1124 prolongs progression-free survival in mantle-cell lymphoma: results of a prospective randomized trial of the European MCL Network. Blood. 2005 1125 Apr 1;105(7):2677-84. 1126 1127 64. Zoellner AK, Unterhalt M, Stilgenbauer S, Hübel K, Thieblemont C, Metzner B, et al. Long-term survival of patients with mantle cell 1128 1129 lymphoma after autologous haematopoietic stem-cell transplantation in 1130 first remission: a post-hoc analysis of an open-label, multicentre, 1131 randomised, phase 3 trial. Lancet Haematol. 2021 Sep 1;8(9):e648-57. 1132 65. Dreyling M, Doorduijn JK, Gine E, Jerkeman M, Walewski J, Hutchings M, et al. Efficacy and Safety of Ibrutinib Combined with 1133

1104	Chandraid First Line Treatment on As Culotitute for Autole and Chans Call
1134	Standard First-Line Treatment or As Substitute for Autologous Stem Cell
1135	Transplantation in Younger Patients with Mantle Cell Lymphoma: Results
1136	from the Randomized Triangle Trial By the European MCL Network.
1137	Blood. 2022 Nov 15;140(Supplement 1):1–3.
1138	66. Munshi PN, Hamadani M, Kumar A, Dreger P, Friedberg JW,
1139	Dreyling M, et al. ASTCT, CIBMTR, and EBMT clinical practice
1140	recommendations for transplant and cellular therapies in mantle cell
1141	lymphoma. Bone Marrow Transplantation 2021 56:12. 2021 Aug
1142	20;56(12):2911–21.
1143	67. Kluin-Nelemans HC, Hoster E, Hermine O, Walewski J, Trneny M,
1144	Geisler CH, et al. Treatment of Older Patients with Mantle-Cell
1145	Lymphoma. New England Journal of Medicine. 2012 Aug 9;367(6):520–
1146	31.
1147	68. Kluin-Nelemans HC, Hoster E, Hermine O, Walewski J, Geisler CH,
1148	Trneny M, et al. Treatment of Older Patients With Mantle Cell
1149	Lymphoma (MCL): Long-Term Follow-Up of the Randomized European
1150	MCL Elderly Trial. J Clin Oncol. 2020 Jan 20;38(3):248–56.
1151	69. Flinn IW, van der Jagt R, Kahl B, Wood P, Hawkins T, MacDonald D,
1152	et al. First-Line Treatment of Patients With Indolent Non-Hodgkin
1153	Lymphoma or Mantle-Cell Lymphoma With Bendamustine Plus
1154	Rituximab Versus R-CHOP or R-CVP: Results of the BRIGHT 5-Year Follow-
1155	Up Study. J Clin Oncol. 2019;37(12):984–91.
1156	70. Rummel MJ, Niederle N, Maschmeyer G, Banat GA, von Grünhagen
1157	U, Losem C, et al. Bendamustine plus rituximab versus CHOP plus
1158	rituximab as first-line treatment for patients with indolent and mantle-
1159	cell lymphomas: an open-label, multicentre, randomised, phase 3 non-
1160	inferiority trial. Lancet. 2013;381(9873):1203–10.
1161	71. Rummel MJ, Knauf W, Goerner M, Soeling U, Lange E, Hertenstein
1162	B, et al. Two years rituximab maintenance vs. observation after first-line
1163	treatment with bendamustine plus rituximab (B-R) in patients with
1164	mantle cell lymphoma: First results of a prospective, randomized,
1165	multicenter phase II study (a subgroup study of the StiL NHL7-2008
1166	MAINTAIN trial). J Clin Oncol. 2016 May 20;34(15_suppl):7503–7503.
1167	72. Martin P, Cohen JB, Wang M, Kumar A, Hill B, Villa D, et al.
1168	Treatment Outcomes and Roles of Transplantation and Maintenance
1169	Rituximab in Patients With Previously Untreated Mantle Cell Lymphoma:
1170	Results From Large Real-World Cohorts. J Clin Oncol. 2023 Jan
1171	20;41(3):541–54.
1172	73. Ribrag V, Safar V, Kluin-Nelemans H, Oberic L, Feugier P,
1173	Casasnovas O, et al. Rituximab-Lenalidomide(R2) Maintenance Is
1174	Superior to Rituximab Maintenance after First Line
1175	Immunochemotherapy in Mantle Cell Lymphoma: Results of the MCL R2
1176	Elderly Clinical Trial. Blood. 2021 Nov 23;138(Supplement 1):379–379.

1177	74. Robak T, Huang H, Jin J, Zhu J, Liu T, Samoilova O, et al.
1178	Bortezomib-Based Therapy for Newly Diagnosed Mantle-Cell Lymphoma.
1179	New England Journal of Medicine. 2015 Mar 5;372(10):944–53.
1180	75. Robak T, Jin J, Pylypenko H, Verhoef G, Siritanaratkul N, Drach J, et
1181	al. Frontline bortezomib, rituximab, cyclophosphamide, doxorubicin, and
1182	prednisone (VR-CAP) versus rituximab, cyclophosphamide, doxorubicin,
1183	vincristine, and prednisone (R-CHOP) in transplantation-ineligible
1184	patients with newly diagnosed mantle cell lymphoma: final overall
1185	survival results of a randomised, open-label, phase 3 study. Lancet
1186	Oncol. 2018 Nov 1;19(11):1449–58.
1187	76. Visco C, Chiappella A, Nassi L, Patti C, Ferrero S, Barbero D, et al.
1188	Rituximab, bendamustine, and low-dose cytarabine as induction therapy
1189	in elderly patients with mantle cell lymphoma: a multicentre, phase 2
1190	trial from Fondazione Italiana Linfomi. Lancet Haematol. 2017 Jan
1191	1;4(1):e15–23.
1192	77. Tisi MC, Nassi L, Patti C, Spina M, Ferrero S, Tani M, et al.
1193	Rituximab Plus Bendamustine and Cytarabine (R-BAC) in Elderly Patients
1194	with Newly Diagnosed Mantle Cell Lymphoma: Long Term Follow-up and
1195	Mrd Results of a Phase 2 Study from the Fondazione Italiana Linfomi.
1196	Blood. 2021 Nov 23;138(Supplement 1):384–384.
1197	78. Wang ML, Jurczak W, Jerkeman M, Trotman J, Zinzani PL, Belada D,
1198	et al. Ibrutinib plus Bendamustine and Rituximab in Untreated Mantle-
1199	Cell Lymphoma. New England Journal of Medicine. 2022 Jun
1200	30;386(26):2482–94.
1201	79. Tucci A, Martelli M, Rigacci L, Riccomagno P, Cabras MG, Salvi F, et
1202	al. Comprehensive geriatric assessment is an essential tool to support
1203	treatment decisions in elderly patients with diffuse large B-cell
1204	lymphoma: a prospective multicenter evaluation in 173 patients by the
1205	Lymphoma Italian Foundation (FIL). Leuk Lymphoma. 2015 Apr
1206	1;56(4):921–6.
1207	80. Spina M, Balzarotti M, Uziel L, José A, Ferreri M, Fratino L, et al.
1208	Modulated Chemotherapy According to Modified Comprehensive
1209	Geriatric Assessment in 100 Consecutive Elderly Patients with Diffuse
1210	Large B-Cell Lymphoma. Oncologist. 2012 Jun 1;17(6):838–46.
1211	81. Bauwens D, Maerevoet M, Michaux L, Théate I, Hagemeijer A, Stul
1212	M, et al. Activity and safety of combined rituximab with chlorambucil in
1213	patients with mantle cell lymphoma. Br J Haematol. 2005
1214	Nov;131(3):338–40.
1215	82. Sachanas S, Pangalis GA, Vassilakopoulos TP, Korkolopoulou P,
1216	Kontopidou FN, Athanasoulia M, et al. Combination of rituximab with
1217	chlorambucil as first line treatment in patients with mantle cell
1218	lymphoma: a highly effective regimen. Leuk Lymphoma. 2011
1219	Mar;52(3):387–93.

1220 83. Rampotas A, Wilson MR, Lomas O, Denny N, Leary H, Ferguson G, 1221 et al. Treatment patterns and outcomes of unfit and elderly patients with 1222 Mantle cell lymphoma unfit for standard immunochemotherapy: A UK 1223 and Ireland analysis. Br J Haematol. 2021 Jul 1;194(2):365-77. 1224 84. Ghielmini M, Schmitz SFH, Cogliatti S, Bertoni F, Waltzer U, Fey MF, 1225 et al. Effect of single-agent rituximab given at the standard schedule or 1226 as prolonged treatment in patients with mantle cell lymphoma: a study 1227 of the Swiss Group for Clinical Cancer Research (SAKK). J Clin Oncol. 1228 2005;23(4):705-11. 1229 85. Jain P, Zhao S, Lee HJ, Hill HA, Ok CY, Kanagal-Shamanna R, et al. 1230 Ibrutinib With Rituximab in First-Line Treatment of Older Patients With 1231 Mantle Cell Lymphoma. Journal of Clinical Oncology. 2022 Jan 1232 10;40(2):202-12. 1233 86. Ruan J, Martin P, Christos P, Cerchietti L, Tam W, Shah B, et al. 1234 Five-year follow-up of lenalidomide plus rituximab as initial treatment of 1235 mantle cell lymphoma. Blood. 2018 Nov 8;132(19):2016–25. 1236 87. McCulloch R, Smith A, Wainman B, Ingram W, Lewis A, Hawkins M, 1237 et al. 40% of Females with Mantle Cell Lymphoma Are Managed with 1238 Initial Observation: Results from the MCL Biobank Observational Study. 1239 Blood. 2019 Nov 13;134(Supplement 1):2821. Kumar A, Ying Z, Alperovich A, Dogan A, Hamlin P, Moskowitz C, et 1240 88. al. Clinical presentation determines selection of patients for initial 1241 observation in mantle cell lymphoma. Haematologica. 2019 Mar 1242 1243 31;104(4):e163-6. 1244 89. Jain P, Zhao S, Lee HJ, Hill HA, Ok CY, Kanagal-Shamanna R, et al. 1245 Ibrutinib With Rituximab in First-Line Treatment of Older Patients With 1246 Mantle Cell Lymphoma. Journal of Clinical Oncology. 2022 Jan 1247 10;40(2):202-12. Giné E, de La Cruz F, Jiménez Ubieto A, López Jimenez J, Martín 1248 90. 1249 Garciá-Sancho A, Terol MJ, et al. Ibrutinib in Combination With 1250 Rituximab for Indolent Clinical Forms of Mantle Cell Lymphoma (IMCL-1251 2015): A Multicenter, Open-Label, Single-Arm, Phase II Trial. Journal of Clinical Oncology. 2022 Apr 10;40(11):1196-205. 1252 1253 91. Ruan J, Martin P, Christos P, Cerchietti L, Tam W, Shah B, et al. 1254 Five-year follow-up of lenalidomide plus rituximab as initial treatment of 1255 mantle cell lymphoma. Blood. 2018 Nov 8;132(19):2016-25. 1256 92. Smith A, Roman E, Appleton S, Howell D, Johnson R, Burton C, et al. 1257 Impact of novel therapies for mantle cell lymphoma in the real world 1258 setting: a report from the UK's Haematological Malignancy Research 1259 Network (HMRN). Br J Haematol. 2018 Apr 1;181(2):215–28. 1260 93. Di M, Cui C, Kothari SK, Zeidan AM, Podoltsev NA, Neparidze N, et 1261 al. Survival of mantle cell lymphoma in the era of Bruton tyrosine kinase

1262	inhibitors: a population-based analysis. Blood Adv. 2022 Jun
1263	14;6(11):3339–42.
1264	94. McCulloch R, Lewis D, Crosbie N, Eyre TA, Bolam S, Arasaretnam A,
1265	et al. Ibrutinib for mantle cell lymphoma at first relapse: a United
1266	Kingdom real-world analysis of outcomes in 211 patients. Br J Haematol.
1267	2021 Apr 1;193(2):290–8.
1268	95. Martin P, Maddocks K, Leonard JP, Ruan J, Goy A, Wagner-
1269	Johnston N, et al. Postibrutinib outcomes in patients with mantle cell
1270	lymphoma. Blood. 2016 Mar 24;127(12):1559–63.
1271	96. O'Reilly MA, Sanderson R, Wilson W, Iyengar S, Lambert J,
1272	McCulloch R, et al. Addendum to British Society for Haematology
1273	Guideline for the management of mantle cell lymphoma, 2018 (Br. J.
1274	Haematol. 2018; 182: 46-62): Risk assessment of potential CAR T
1275	candidates receiving a covalent Bruton tyrosine kinase inhibitor for
1276	relapsed/refractory disease. Br J Haematol. 2022;199(1).
1277	97. Villa D, Jiang A, Visco C, Crosbie N, McCulloch R, Buege MJ, et al.
1278	Time to progression of disease and outcomes with second-line BTK
1279	inhibitors in relapsed/refractory mantle cell lymphoma. Blood Adv
1280	[Internet]. 2023 Aug 11;7(16):4576–85.
1281	98. Eyre TA, Cheah CY, Wang ML. Therapeutic options for
1282	relapsed/refractory mantle cell lymphoma. Blood. 2022 Feb
1283	3;139(5):666–77.
1284	99. Wang ML, Rule S, Martin P, Goy A, Auer R, Kahl BS, et al. Targeting
1285	BTK with ibrutinib in relapsed or refractory mantle-cell lymphoma. N Engl
1286	J Med. 2013 Aug 8;369(6):507–16.
1287	100. Dreyling M, Jurczak W, Jerkeman M, Silva RS, Rusconi C, Trneny
1288	M, et al. Ibrutinib versus temsirolimus in patients with relapsed or
1289	refractory mantle-cell lymphoma: An international, randomised, open-
1290	label, phase 3 study. The Lancet. 2016 Feb 20;387(10020):770–8.
1291	101. Rule S, Dreyling M, Goy A, Hess G, Auer R, Kahl B, et al. Ibrutinib
1292	for the treatment of relapsed/refractory mantle cell lymphoma:
1293	extended 3.5-year follow up from a pooled analysis. Haematologica.
1294	2019 Apr 30;104(5):e211–4.
1295	102. Dreyling M, Goy A, Hess G, Kahl BS, Hernández-Rivas JÁ, Schuier N,
1296	et al. Long-term Outcomes With Ibrutinib Treatment for Patients With
1297	Relapsed/Refractory Mantle Cell Lymphoma: A Pooled Analysis of 3
1298	Clinical Trials With Nearly 10 Years of Follow-up. Hemasphere. 2022 May
1299	13;6(5):E712.
1300	103. Wang ML, Lee H, Chuang H, Wagner-Bartak N, Hagemeister F,
1301	Westin J, et al. Ibrutinib in combination with rituximab in relapsed or
1302	refractory mantle cell lymphoma: a single-centre, open-label, phase 2
1303	trial. Lancet Oncol. 2016 Jan 1;17(1):48–56.

1304	104. Wang M, Rule S, Zinzani PL, Goy A, Casasnovas O, Smith SD, et al.
1304	Acalabrutinib in relapsed or refractory mantle cell lymphoma (ACE-LY-
1306	004): a single-arm, multicentre, phase 2 trial. Lancet. 2018 Feb
1300	17;391(10121):659–67.
1308	105. Song Y, Zhou K, Zou D, Zhou J, Hu J, Yang H, et al. Treatment of
1309	Patients with Relapsed or Refractory Mantle-Cell Lymphoma with
1310	Zanubrutinib, a Selective Inhibitor of Bruton's Tyrosine Kinase. Clin
1310	Cancer Res. 2020 Aug 15;26(16):4216–24.
1312	106. Tam CS, Opat S, D'Sa S, Jurczak W, Lee HP, Cull G, et al. A
1312	randomized phase 3 trial of zanubrutinib vs ibrutinib in symptomatic
1313	Waldenström macroglobulinemia: the ASPEN study. Blood. 2020 Oct
1315	29;136(18):2038–50.
1316	107. Hillmen P, Eichhorst B, Brown JR, Lamanna N, O'Brien SM, Tam CS,
1317	et al. Zanubrutinib Versus Ibrutinib in Relapsed/Refractory Chronic
1318	Lymphocytic Leukemia and Small Lymphocytic Lymphoma: Interim
1319	Analysis of a Randomized Phase III Trial. J Clin Oncol. 2023 Feb 10;41(5).
1320	108. Byrd JC, Hillmen P, Ghia P, Kater AP, Chanan-Khan A, Furman RR, et
1321	al. Acalabrutinib Versus Ibrutinib in Previously Treated Chronic
1322	Lymphocytic Leukemia: Results of the First Randomized Phase III Trial. J
1323	Clin Oncol. 2021 Nov 1;39(31):3441–52.
1324	109. Czuczman MS, Goy A, Lamonica D, Graf DA, Munteanu MC, van der
1325	Jagt RH. Phase II study of bendamustine combined with rituximab in
1326	relapsed/refractory mantle cell lymphoma: efficacy, tolerability, and
1327	safety findings. Ann Hematol. 2015 Dec 1;94(12):2025–32.
1328	110. Visco C, Finotto S, Zambello R, Paolini R, Menin A, Zanotti R, et al.
1329	Combination of rituximab, bendamustine, and cytarabine for patients
1330	with mantle-cell non-Hodgkin lymphoma ineligible for intensive
1331	regimens or autologous transplantation. J Clin Oncol. 2013 Apr
1332	10;31(11):1442–9.
1333	111. Zinzani PL, Vose JM, Czuczman MS, Reeder CB, Haioun C, Polikoff J,
1334	et al. Long-term follow-up of lenalidomide in relapsed/refractory mantle
1335	cell lymphoma: subset analysis of the NHL-003 study. Ann Oncol.
1336	2013;24(11):2892–7.
1337	112. Wang M, Fayad L, Wagner-Bartak N, Zhang L, Hagemeister F,
1338	Neelapu SS, et al. Lenalidomide in combination with rituximab for
1339	patients with relapsed or refractory mantle-cell lymphoma: a phase 1/2
1340	clinical trial. Lancet Oncol. 2012 Jul;13(7):716–23.
1341	113. Dreyling M, Jurczak W, Jerkeman M, Silva RS, Rusconi C, Trneny M,
1342	et al. Ibrutinib versus temsirolimus in patients with relapsed or refractory
1343	mantle-cell lymphoma: an international, randomised, open-label, phase
1344	3 study. Lancet. 2016 Feb 20;387(10020):770–8.

1345	114. Tam CS, Opat S, Simpson D, Cull G, Munoz J, Phillips TJ, et al.
1346	Zanubrutinib for the treatment of relapsed or refractory mantle cell
1347	lymphoma. Blood Adv. 2021 Jun 22;5(12):2577–85.
1348	115. Wang M, Munoz J, Goy A, Locke FL, Jacobson CA, Hill BT, et al. KTE-
1349	X19 CAR T-Cell Therapy in Relapsed or Refractory Mantle-Cell
1350	Lymphoma. N Engl J Med. 2020 Apr 2;382(14):1331–42.
1351	116. Wang M, Munoz J, Goy A, Locke FL, Jacobson CA, Hill BT, et al.
1352	Three-Year Follow-Up of KTE-X19 in Patients With Relapsed/Refractory
1353	Mantle Cell Lymphoma, Including High-Risk Subgroups, in the ZUMA-2
1354	Study. Journal of Clinical Oncology. 2022 May 1;94.
1355	117. O'Reilly MA, Sanderson R, Wilson W, Burns D, Besley C, Creasey T,
1356	et al. Brexucabtagene Autoleucel for Relapsed/Refractory Mantle Cell
1357	Lymphoma: Real-World Outcomes in the United Kingdom. Blood. 2022
1358	Nov 15;140(Supplement 1):7519–21.
1359	118. Rule S, Dreyling M, Goy A, Hess G, Auer R, Kahl B, et al. Outcomes
1360	in 370 patients with mantle cell lymphoma treated with ibrutinib: a
1361	pooled analysis from three open-label studies. Br J Haematol. 2017 Nov
1362	1;179(3):430–8.
1363	119. Woyach JA. How I manage ibrutinib-refractory chronic lymphocytic
1364	leukemia. Blood. 2017 Mar 9;129(10):1270–4.
1365	120. lacoboni G, Martin Lopez AA, Jalowiec KA, Kwon M, Rejeski K,
1366	Navarro Garcés V, et al. Recent Bendamustine Treatment before
1367	Apheresis Has a Negative Impact on Outcomes in Patients with Large B-
1368	Cell Lymphoma Receiving Chimeric Antigen Receptor T-Cell Therapy.
1369	Blood. 2022 Nov 15;140(Supplement 1):1592–4.
1370	121. McCulloch R, Visco C, Eyre TA, Frewin R, Phillips N, Tucker DL, et al.
1371	Efficacy of R-BAC in relapsed, refractory mantle cell lymphoma post BTK
1372	inhibitor therapy. Br J Haematol. 2020 May 1;189(4):684–8.
1373	122. Pinnix CC, Gunther JR, Dabaja BS, Strati P, Fang P, Hawkins MC, et
1374	al. Bridging therapy prior to axicabtagene ciloleucel for
1375	relapsed/refractory large B-cell lymphoma. Blood Adv. 2020 Jul
1376	14;4(13):2871–83.
1377	123. Jain MD, Jacobs MT, Nastoupil LJ, Spiegel JY, Feng G, Lin Y, et al.
1378	Characteristics and Outcomes of Patients Receiving Bridging Therapy
1379	While Awaiting Manufacture of Standard of Care Axicabtagene Ciloleucel
1380	CD19 Chimeric Antigen Receptor (CAR) T-Cell Therapy for
1381	Relapsed/Refractory Large B-Cell Lymphoma: Results from the US
1382	Lymphoma CAR-T Consortium. Blood. 2019 Nov
1383	13;134(Supplement_1):245.
1384	124. Roddie C, Neill L, Osborne W, Iyengar S, Tholouli E, Irvine D, et al.
1385	Effective bridging therapy can improve CD19 CAR-T outcomes while
1386	maintaining safety in patients with large B-cell lymphoma. Blood Adv.
1387	2023 Feb 1. Online ahead of print.

125. Kuhnl A, Roddie C, Kirkwood AA, Tholouli E, Menne T, Patel A, et al. 1388 1389 A national service for delivering CD19 CAR-Tin large B-cell lymphoma -1390 The UK real-world experience. Br J Haematol. 2022 Aug 1;198(3):492-1391 502. 1392 126. Nastoupil LJ, Jain MD, Feng L, Spiegel JY, Ghobadi A, Lin Y, et al. Standard-of-Care Axicabtagene Ciloleucel for Relapsed or Refractory 1393 1394 Large B-Cell Lymphoma: Results From the US Lymphoma CAR T 1395 Consortium. J Clin Oncol. 2020 Sep 20;38(27):3119-28. 127. Vercellino L, di Blasi R, Kanoun S, Tessoulin B, Rossi C, D'Aveni-1396 1397 Piney M, et al. Predictive factors of early progression after CAR T-cell therapy in relapsed/refractory diffuse large B-cell lymphoma. Blood Adv. 1398 1399 2020 Nov 24;4(22):5607-15. 1400 128. Sanderson R, Kuhnl A, Tholouli E, Menne TF, Patel A, Chaganti S, et al. CAR-T Toxicity Management and Steroid Use in High-Grade B-Cell 1401 1402 Lymphoma: Impact on Real-World Survival Outcomes in the UK. Blood. 1403 2021 Nov 23;138(Supplement 1):531. 1404 129. Iacoboni G, Rejeski K, Villacampa G, van Doesum JA, Chiappella A, 1405 Bonifazi F, et al. Real-world evidence of brexucabtagene autoleucel for 1406 the treatment of relapsed or refractory mantle cell lymphoma. Blood 1407 Adv. 2022 Jun 28;6(12):3606–10. 1408 130. Wang Y, Jain P, Locke FL, Maurer MJ, Frank MJ, Munoz JL, et al. 1409 Brexucabtagene Autoleucel for Relapsed or Refractory Mantle Cell Lymphoma in Standard-of-Care Practice: Results From the US Lymphoma 1410 1411 CAR T Consortium. J Clin Oncol. 2023 Feb 8; 1412 131. Hayden PJ, Roddie C, Bader P, Basak GW, Bonig H, Bonini C, et al. 1413 Management of adults and children receiving CAR T-cell therapy: 2021 1414 best practice recommendations of the European Society for Blood and 1415 Marrow Transplantation (EBMT) and the Joint Accreditation Committee 1416 of ISCT and EBMT (JACIE) and the European Haematology Association 1417 (EHA). Ann Oncol. 2022 Mar;33(3):259-275. 1418 132. Cheah CY, Chihara D, Romaguera JE, Fowler NH, Seymour JF, 1419 Hagemeister FB, et al. Patients with mantle cell lymphoma failing ibrutinib are unlikely to respond to salvage chemotherapy and have poor 1420 1421 outcomes. Annals of Oncology. 2015 Jun 1;26(6):1175-9. 1422 133. Wang M, Munoz J, Goy A, Locke FL, Jacobson CA, Hill BT, et al. 1423 Three-Year Follow-Up of KTE-X19 in Patients With Relapsed/Refractory 1424 Mantle Cell Lymphoma, Including High-Risk Subgroups, in the ZUMA-2 Study. Journal of Clinical Oncology. 2022 May 1;94. 1425 1426 134. Hess G, Dreyling M, Oberic L, Gine E, Zinzani PL, Linton K, et al. 1427 Real-world experience among patients with relapsed/refractory mantle 1428 cell lymphoma after Bruton tyrosine kinase inhibitor failure in Europe: 1429 The SCHOLAR-2 retrospective chart review study. Br J Haematol. 1430 2022;00:1-11.

1431	125 McCullach D. Louvis D. Crashia N. Euro TA. Dalam S. Arasaratnam A
1431	135. McCulloch R, Lewis D, Crosbie N, Eyre TA, Bolam S, Arasaretnam A,
1432	et al. Ibrutinib for mantle cell lymphoma at first relapse: a United Kingdom real-world analysis of outcomes in 211 patients. Br J Haematol.
1433	2021 Apr 1;193(2):290–8.
1435	136. Mato AR, Shah NN, Jurczak W, Cheah CY, Pagel JM, Woyach JA, et
1436	al. Pirtobrutinib in relapsed or refractory B-cell malignancies (BRUIN): a
1437	phase 1/2 study. Lancet. 2021 Mar 6;397(10277):892–901.
1438	137. Wang ML, Shah NN, Jurczak W, Zinzani PL, Eyre TA, Cheah CY, et al.
1439	Efficacy of Pirtobrutinib in Covalent BTK-Inhibitor Pre-Treated Relapsed /
1440	Refractory Mantle Cell Lymphoma: Additional Patients and Extended
1441	Follow-up from the Phase 1/2 BRUIN Study. Blood. 2022 Nov
1442	15;140(Supplement 1):9368–72.
1443	138. Eyre TA, Shah NN, Dreyling M, Jurczak W, Wang Y, Cheah CY, et al.
1444	BRUIN MCL-321: phase III study of pirtobrutinib versus investigator choice of BTK inhibitor in BTK inhibitor naïve mantle cell lymphoma.
1445	2022 Nov;18(36):3961-9.
1446 1447	139. Woyach JA, Flinn IW, Awan FT, Eradat H, Brander D, Tees M, et al.
1447 1448	Efficacy and Safety of Nemtabrutinib, a Wild-Type and C481S-Mutated
1448	Bruton Tyrosine Kinase Inhibitor for B-Cell Malignancies: Updated
1449	, , , , , , , , , , , , , , , , , , , ,
1450	Analysis of the Open-Label Phase 1/2 Dose-Expansion Bellwave-001 Study. Blood. 2022 Nov 15;140(Supplement 1):7004–6.
1451	, , , , , , , , , , , , , , , , , , , ,
1452	140. Davids MS, Roberts AW, Seymour JF, Pagel JM, Kahl BS, Wierda WG, et al. Phase i first-in-human study of venetoclax in patients with
1453	relapsed or refractory non-hodgkin lymphoma. Journal of Clinical
1454	Oncology. 2017 Mar 10;35(8):826–33.
1456	141. Zhao S, Kanagal-Shamanna R, Navsaria L, Ok CY, Zhang S, Nomie K,
1450	et al. Efficacy of venetoclax in high risk relapsed mantle cell lymphoma
1457	(MCL) - outcomes and mutation profile from venetoclax resistant MCL
1459	patients. Am J Hematol. 2020 Jun 1;95(6):623–9.
1460	142. Eyre TA, Walter HS, Iyengar S, Follows G, Cross M, Fox CP, et al.
1461	Efficacy of venetoclax monotherapy in patients with relapsed, refractory
1462	mantle cell lymphoma after Bruton tyrosine kinase inhibitor therapy.
1463	Haematologica. 2019 Feb 1;104(2):e68–71.
1464	143. Soumerai JD, Lasica M, Opat S, Cheah CY, Chan H, Verner E, et al. A
1465	Phase 1 Study with the Novel B-Cell Lymphoma 2 (Bcl-2) Inhibitor Bgb-
1466	11417 As Monotherapy or in Combination with Zanubrutinib (ZANU) in
1467	Patients (Pts) with Non-Hodgkin Lymphoma (NHL) or Waldenström
1468	Macroglobulinemia (WM): Preliminary Data. Blood. 2022 Nov
1469	15;140(Supplement 1):9325–7.
1470	144. Spurgeon SE, Mei M, Barr PM, Barrientos JC, de Vos S, Furman RR,
1470	et al. Waveline-001: Updated Results from a Phase 1 Dose Escalation and
1472	Cohort Expansion Study of Zilovertamab Vedotin (MK-2140) in Non-
1473	Hodgkin Lymphoma. Blood. 2022 Nov 15;140(Supplement 1):6640–1.
	3 , F 1 1 1 1 1 1 1 1 1 1

1474 145. Budde LE, Sehn LH, Matasar M, Schuster SJ, Assouline S, Giri P, et 1475 al. Safety and efficacy of mosunetuzumab, a bispecific antibody, in patients with relapsed or refractory follicular lymphoma: a single-arm, 1476 1477 multicentre, phase 2 study. Lancet Oncol. 2022 Aug 1;23(8):1055-65. 146. Hutchings M, Morschhauser F, Iacoboni G, Carlo-Stella C, Offner 1478 1479 FC, Sureda A, et al. Glofitamab, a Novel, Bivalent CD20-targeting t-cell-1480 engaging bispecific antibody, induces durable complete remissions in relapsed or refractory B-Cell Lymphoma: A phase I trial. Journal of 1481 1482 Clinical Oncology. 2021 Jun 20;39(18):1959-70. 1483 147. Dickinson MJ, Carlo-Stella C, Morschhauser F, Bachy E, Corradini P, lacoboni G, et al. Glofitamab for Relapsed or Refractory Diffuse Large B-1484 1485 Cell Lymphoma. N Engl J Med. 2022 Dec 15;387(24):2220-31. 1486 148. Phillips TJ, Dickinson M, Morschhauser F, Bachy E, Crump M, Trněný M, et al. Glofitamab Monotherapy Induces High Complete 1487 1488 Response Rates in Patients with Heavily Pretreated Relapsed or Refractory Mantle Cell Lymphoma. Blood. 2022 Nov 15;140(Supplement 1489 1490 1):178-80. 1491 149. Wang M, Schuster SJ, Phillips T, Lossos IS, Goy A, Rule S, et al. 1492 Observational study of lenalidomide in patients with mantle cell 1493 lymphoma who relapsed/progressed after or were refractory/intolerant 1494 to ibrutinib (MCL-004). J Hematol Oncol. 2017 Nov 2;10(1):1–8. 1495 150. Goy A, Bernstein SH, Kahl BS, Djulbegovic B, Robertson MJ, de Vos 1496 S, et al. Bortezomib in patients with relapsed or refractory mantle cell 1497 lymphoma: updated time-to-event analyses of the multicenter phase 2 1498 PINNACLE study. Annals of Oncology. 2009 Mar 1;20(3):520–5. 1499 151. Rule S, Cook G, Russell NH, Hunter A, Robinson S, Morley N, et al. Allogeneic stem cell transplantation as part of front line therapy for 1500 1501 Mantle cell lymphoma. Br J Haematol. 2019 Mar 1;184(6):999–1005. 1502 152. Fenske TS, Zhang MJ, Carreras J, Ayala E, Burns LJ, Cashen A, et al. 1503 Autologous or reduced-intensity conditioning allogeneic hematopoietic 1504 cell transplantation for chemotherapy-sensitive mantle-cell lymphoma: 1505 Analysis of transplantation timing and modality. Journal of Clinical Oncology. 2014 Feb 1;32(4):273-81. 1506 1507 153. Dietrich S, Boumendil A, Finel H, Avivi I, Volin L, Cornelissen J, et al. Outcome and prognostic factors in patients with mantle-cell lymphoma 1508 1509 relapsing after autologous stem-cell transplantation: a retrospective 1510 study of the European Group for Blood and Marrow Transplantation 1511 (EBMT). Annals of Oncology. 2014 May 1;25(5):1053-8. 1512 154. Hamadani M, Saber W, Ahn KW, Carreras J, Cairo MS, Fenske TS, et 1513 al. Allogeneic Hematopoietic Cell Transplantation for Chemotherapy-1514 Unresponsive Mantle Cell Lymphoma: A Cohort Analysis from the Center 1515 for International Blood and Marrow Transplant Research. Biology of Blood and Marrow Transplantation. 2013 Apr 1;19(4):625–31. 1516

1517	155. le Gouill S, Kröger N, Dhedin N, Nagler A, Bouabdallah K, Yakoub-
1517	Agha I, et al. Reduced-intensity conditioning allogeneic stem cell
1518	transplantation for relapsed/refractory mantle cell lymphoma: a
1520	multicenter experience. Annals of Oncology. 2012 Oct 1;23(10):2695–
1521	703.
1522	156. Cook G, Smith GM, Kirkland K, Lee J, Pearce R, Thomson K, et al.
1523	Outcome following Reduced-Intensity Allogeneic Stem Cell
1524	Transplantation (RIC AlloSCT) for Relapsed and Refractory Mantle Cell
1525	Lymphoma (MCL): A Study of the British Society for Blood and Marrow
1526	Transplantation. Biology of Blood and Marrow Transplantation. 2010 Oct
1527	1;16(10):1419–27.
1528	157. Tam CS, Bassett R, Ledesma C, Korbling M, Alousi A, Hosing C, et al.
1529	Mature results of the M. D. Anderson Cancer Center risk-adapted
1530	transplantation strategy in mantle cell lymphoma. Blood. 2009 Apr
1531	4;113(18):4144.
1532	158. Munshi PN, Hamadani M, Kumar A, Dreger P, Friedberg JW,
1533	Dreyling M, et al. ASTCT, CIBMTR, and EBMT clinical practice
1534	recommendations for transplant and cellular therapies in mantle cell
1535	lymphoma. Bone Marrow Transplantation 2021 56:12. 2021 Aug
1536	20;56(12):2911–21.
1537	159. Dreger P, Michallet M, Bosman P, Dietrich S, Sobh M, Boumendil A,
1538	et al. Ibrutinib for bridging to allogeneic hematopoietic cell
1539	transplantation in patients with chronic lymphocytic leukemia or mantle
1540	cell lymphoma: a study by the EBMT Chronic Malignancies and
1541	Lymphoma Working Parties. Bone Marrow Transplantation 2018 54:1.
1542	2018 May 4;54(1):44–52.
1543	160. Gill S, Herbert KE, Prince HM, Wolf MM, Wirth A, Ryan G, et al.
1544	Mantle cell lymphoma with central nervous system involvement:
1545	frequency and clinical features. Br J Haematol. 2009 Oct;147(1):83–8.
1546	161. Chihara D, Asano N, Ohmachi K, Nishikori M, Okamoto M, Sawa M,
1547	et al. Ki-67 is a strong predictor of central nervous system relapse in
1548	patients with mantle cell lymphoma (MCL). Ann Oncol. 2015 May
1549	1;26(5):966–73.
1550	162. Cheah CY, Seymour JF. Refining the predictors of risk for central
1551	nervous system involvement in patients with mantle cell lymphoma.
1552	Leuk Lymphoma. 2013 Sep;54(9):1859–61.
1553	163. Conconi A, Franceschetti S, Lobetti-Bodoni C, Stathis A, Margiotta-
1554	Casaluci G, Ramponi A, et al. Risk factors of central nervous system
1555	relapse in mantle cell lymphoma. Leuk Lymphoma. 2013 Sep;54(9):1908–
1556	14.
1557	164. Rusconi C, Cheah CY, Eyre TA, Tucker D, Klener P, Giné E, et al.
1558	Ibrutinib improves survival compared with chemotherapy in mantle cell

1559	lymphoma with central nervous system relapse. Blood. 2022 Oct
1560	27;140(17):1907–16.
1561	165. Ahmed G, Hamadani M, Shah NN. CAR T-cell therapy for secondary
1562	CNS DLBCL. Blood Adv. 2021 Dec 28;5(24):5626–30.
1563	166. Jacobson CA, Falvey C, Bouvier R, Hogan S, Kendricken E, Jones J, et
1564	al. A Pilot Study of Axicabtagene Ciloleucel (axi-cel) for the Treatment of
1565	Relapsed/Refractory Primary and Secondary Central Nervous System
1566	Lymphoma (CNSL). Blood. 2022 Nov 15;140(Supplement 1):1060–1.
1567	167. Wang M, Gordon LI, Palomba ML, Abramson JS, Andreadis C,
1568	Ghosh N, et al. Safety and preliminary efficacy in patients (pts) with
1569	relapsed/refractory (R/R) mantle cell lymphoma (MCL) receiving
1570	lisocabtagene maraleucel (Liso-cel) in TRANSCEND NHL 001. Journal of
1571	Clinical Oncology 37, no. 15_suppl (May 20, 2019) 7516–7516.
1572	
1573	
1574	
1575	