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ABSTRACT 34 

Understanding and predicting the storage stability of sweetcorn seeds is critical for 35 

effective supply chain management, however, prediction ability relies heavily on 36 

accelerated ageing (AA) studies and this is not always directly applicable to natural 37 

ageing (NA). In this study, hyperspectral imaging (HSI) and non-targeted 38 

metabolomics (LC-MS/MS) were integrated using PLS-R, SVM-R and OPLS-DA to 39 

predict loss of seed vigour in NA seeds, using data based on AA seeds. The 40 

inconsistencies in the pattern of spectral variation between seeds undergoing AA and 41 

NA were first identified. AA-based vigour prediction models were then built using all 42 

wavelengths and effective wavelengths (EWs) selected by regression coefficients. 43 

These models were externally validated by independent AA and NA seed datasets, 44 

respectively. The results yielded satisfactory predictions for AA seeds (R2≥0.814), 45 

but low precision for NA seeds (R2≤0.696). Metabolome analysis identified 54 46 

differential metabolites, containing a large proportion of amino acids, dipeptides and 47 

their derivatives, which were important substances reflecting discrepancies between 48 

the ageing mechanisms of AA and NA seeds. Subsequently, N-H bond-related 49 

wavebands were deemed to be a possible interference factor in the models' 50 

practicability. After removing the N-H bond-related EWs, the AA-based models 51 

achieved better performance on NA seeds, with R2
v-2 value increasing from 0.696 to 52 

0.720 for Lvsechaoren and from 0.668 to 0.727 for Zhongtian 300. In summary, 53 

coupling HSI, LC-MS/MS and machine learning was shown as an appropriate 54 

approach for non-destructive monitoring and predicting the vigour of stored 55 

sweetcorn seeds.     56 

 57 
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1. Introduction 64 

Sweetcorn (Zea mays L. saccharata Sturt) is an important vegetable and 65 

becoming increasingly popular in international trade (Chauhan et al., 2022). The high 66 

economic value can be attributed to its good taste, unique flavour and high nutritional 67 

value content such as protein, amino acids, vitamins and dietary fibre (Bai et al., 68 

2021). Sweetcorn is naturally developed by recessive mutations in characteristic 69 

genes that control the conversion of sugar into starch (Singh et al., 2014). The 70 

property of high soluble sugar in sweetcorn kernels has resulted in increased fungi 71 

infection. Meanwhile, the absence of substantial starch led to the rapid reduction in 72 

seed quality (vigour) during storage. Poor seed vigour mainly exhibits a negative 73 

influence on the germination ability, uniform emergence, yield potential, tolerance to 74 

abiotic stress and sowing cost (Rodo & Marcos-Filho, 2003). Consequently, real-time 75 

monitoring of changes in vigour parameters and better predictive ability of seed 76 

longevity during storage can provide guidance on when and which seed stacks should 77 

be placed onto the seed market. For this reason, it is crucial to have reliable methods 78 

of determining sweetcorn seed vigour accurately, quickly and consistently.  79 

Conventional methods for assessing seed vigour or longevity potentials, such as 80 

tetrazolium staining (Hosomi et al., 2012), conductivity tests (Rahman & Cho, 2016), 81 

and germination tests (Merritt et al., 2014), have a number of limitations, including 82 

being destructive, labour-intensive, highly subjective and time-consuming. Given 83 

these drawbacks, there is an increasing interest worldwide to investigate new rapid 84 

and non-destructive analytical technologies for discriminating highly-viable seeds 85 

based on the development of computer and optical sensor technology.  86 

Among the numerous emerging technologies, the hyperspectral imaging (HSI) 87 

system provides a three-dimensional hyperspectral data cube containing spatial 88 

information of the first and second dimensions (as regular imaging systems), and 89 

spectral data of the third dimension (spectral information for each pixel in an image) 90 

(Fan et al., 2019; Zhang et al., 2014; Zhang et al., 2023). The HSI has been confirmed 91 

to be a powerful tool with a great potential for seed vigour evaluation as demonstrated 92 
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in wheat (Zhang et al., 2020) and corn (Ambrose et al., 2016; Wakholi et al., 2018), 93 

tomato (Shrestha et al., 2016), Japanese mustard spinach (Ma et al., 2020), 94 

muskmelon (Kandpal et al., 2016) and sugar beet (Yang et al., 2021). However, most 95 

of the reported studies relied on seeds treated by accelerated ageing (AA) to establish 96 

generic prediction models, but the limitations of the AA approach have not been fully 97 

considered.  98 

Generally, AA is used to simulate natural ageing (NA) to shorten timescales by 99 

combining high ambient temperature and high relative humidity conditions. However, 100 

the consistency of metabolic mechanisms in seeds between these two different ageing 101 

processes remains controversial. Priestley and Leopold (1983) observed that the 102 

proportion of polyunsaturated fatty acids in soybean seeds decreased under NA 103 

condition, whereas it did not change under AA (Priestley & Leopold, 1983). 104 

Subsequently, the activity of acid phosphatase in NA rice seeds was proved to be 105 

lower than that in AA seeds (Freitas & Dias, 2006). Recent data on the volatile 106 

metabolites of sweetcorn seeds during NA and AA (Zhang et al., 2021) revealed that 107 

14 of 33 identified compounds exhibited a significant difference in relative content. 108 

The types and concentration of chemical substances in seeds are closely related to the 109 

spectral characteristics because the amplitude and waveform variations of HSI system 110 

can record the molecular overtones and combinations of the fundamental vibrations 111 

caused by the stretching and bending of C-H, O-H and N-H groups (Liu et al., 2017; 112 

Wang et al., 2021).  113 

In this study, we proposed that spectral information could reflect discrepancies in 114 

metabolites between NA and AA seeds, which may affect AA-based predictive model 115 

application to predict the vigour of NA seeds. Despite the practicality of AA-based 116 

models for predicting the vigour of sweetcorn seeds based on the volatile metabolites 117 

detected by gas chromatography-ion mobility spectrometry has been reported (Zhang 118 

et al., 2021), there is no published work researching this in spectral information of the 119 

HSI system. Additionally, up to now, there is a lack of study to investigate the 120 

underlying reasons related to the problems in the model application. LC-MS-based 121 

metabolomics was a typical method to investigate the wide arrays of non-volatile 122 
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metabolites in biological samples. Therefore, the hypothesis of this study is that 123 

linking the metabolites data with spectral information would help explain the 124 

similarities and differences between seeds undergoing NA and AA. To the best of our 125 

knowledge, this will be the first study to assess the effectivity of AA predictive 126 

models for NA seeds and extend the models by integrating HSI and metabolomics 127 

data.    128 

Therefore, the objectives of this study were: i) to investigate the similarities and 129 

differences between spectral information of NA and AA seeds; ii) to evaluate the 130 

application discrepancies of the optimal vigour prediction models on NA and AA 131 

seeds; iii) to explain the discrepancies in model application by analysing the 132 

metabolome of NA and AA seeds; iv) to optimise the performance of AA-based 133 

vigour predictive model on stored seeds by coupling mathematical prediction models 134 

and metabolomics.   135 

2. Materials and methods 136 

2.1. Seed sample collection 137 

Two commercial sweetcorn cultivars widely promoted in China, called 138 

Lvsechaoren and Zhongtian 300, were purchased from Hezhiyuan Seed Company 139 

(Weifang, Shandong, China). The initial moisture contents (MCs) were 11.0% 140 

(Lvsechaoren) and 12.5% (Zhongtian 300) wet weight basis. The corresponding raw 141 

germination percentages (GP, reflecting seed vigour) were 85.5% and 92.0%, 142 

respectively. Since the sampling frequency could not be determined until the target 143 

GP (Lvsechaoren: 75%, 65% and 45%; Zhongtian 300: 83%, 75% and 65%) was 144 

reached, 37.5 kg seeds for each cultivar were collected to ensure sufficient samples. 145 

Seeds were then randomly allocated to three groups: control group, natural ageing 146 

(NA) group and accelerated ageing (AA) group.  147 

For the control group, a 1.5 kg portion of seeds from each cultivar was taken as a 148 

no-retreatment control set, immediately sealed in a polyethene bag and stored at -149 

20°C. For the NA group, 12 equal portions (1.5 kg) of each cultivar were stored in 150 

cotton bags at ambient room temperature (17 ~ 28°C and 30 ~ 60% RH). One portion 151 
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of each cultivar was taken for GP assessment at a monthly frequency until the GP of 152 

the seed sample was reduced to approximately 75%. The assessments were then 153 

performed every half month once the GP was below 75%. For the AA group, 12 x 1.5 154 

kg portions of each cultivar were stored in nylon mesh bags, suspended over distilled 155 

water inside sealed glass containers in an electric oven (45°C, 100% RH) (Muasya et 156 

al., 2009). One portion of each cultivar was assessed for GP every 16 hours before it 157 

dropped to approximately 75% and then sampled every 8 hours after the GP dropped 158 

below 75%.  159 

The isolated samples were transferred into an incubator (23 ± 1°C) and dried 160 

back to their original MCs. Damaged seeds were removed during the natural drying 161 

processes. Once the seeds dried to their original MCs, 200 seeds were randomly 162 

selected from every portion for GP assessment (Zhang et al., 2020), and the residual 163 

seeds were sealed up in a polyethene bag and placed at -20°C. When the NA and AA 164 

seeds for each cultivar reached the target GP, the residual seeds of corresponding 165 

portion were reserved for further experiments.  166 

2.2. Hyperspectral image acquisition 167 

All seed samples were scanned by an assembled visible-near infrared (Vis-NIR) 168 

HSI system (Fig. 1) (Zhang et al., 2020). The details of the HSI system were 169 

described in Method S1. Each seed was positioned on the platform with the embryo 170 

side facing upwards for scanning. The raw hyperspectral image with three dimensions 171 

(x, y, λ) was obtained with a scanning speed of 1.3 mm/s and an exposure time of 15 172 

ms. In this study, the images contained 1004 pixels in the x-direction and 1002 173 

wavebands in the λ direction with 0.31 nm intervals. The number of pixels in the y-174 

direction depended on the scanning length for samples. During spectral data 175 

acquisition, the relative humidity and the temperature in the laboratory were 30% and 176 

23 ±1°C, respectively.  177 

2.3. Hyperspectral image correction 178 

Details of the hyperspectral image correction were described in Method S1. 179 
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2.4. Spectral Data Extraction 180 

The seed sample in each corrected hyperspectral image was identified as a region 181 

of interest (ROI) and segmented from the background. Spectral data of the ROI were 182 

then extracted and averaged based on the reflectance value of each pixel in it. The 183 

beginning 133 and ending 16 wavebands were eliminated due to the low signal-to-184 

noise ratio. Ultimately, 853 bands from 400.2 nm to 1069.9 nm for the sweetcorn 185 

seeds remained for future data analysis. The processes of spectral data segmentation 186 

and extraction were conducted by using the software ENVI 5.1 (ITT Visual 187 

Information Solutions, Boulder, CO, USA)   188 

2.5. Non-targeted metabolite profiling 189 

Six biological replicates were used for each target GP, and within each replicate, 190 

50 seeds were included. The seeds were firstly ground into a powder with liquid 191 

nitrogen, 60 mg of each replicate removed and homogenized in 200 μL deionized 192 

water. After adding 800 μL methanol/acetonitrile (1:1, v/v) and vortexing for 30 s, 193 

samples were dissolved and decomposed by ultrasonication in an ice bath for 30 min 194 

at 4°C. Subsequently, to precipitate and remove the protein, samples were incubated 195 

for 1 hour at -20°C and centrifuged for 15 min (13000 rpm, 4°C). The supernatant 196 

was collected, dried in a vacuum centrifuge, and stored at −80°C. Each sample was 197 

re-dissolved in acetonitrile/water (1:1, v/v) solvent prior to the non-targeted 198 

metabolite analysis. Samples were analysed using LC-MS/MS, and details were 199 

described in Method S1. 200 

2.6. Statistical analysis 201 

2.6.1 HSI data analysis 202 

A total of 272 seed samples, each containing 50 seeds of uniform size without 203 

physical damage, were randomly taken out for HSI modelling and analysis (Fig. 2). 204 

For each cultivar, AA seed samples (n=64), taken across the GP range were used to 205 

construct predictive regression models for vigour. Separately, two additional seed sets 206 

(n=36), one from the AA trial and another from the NA trial, were used to validate the 207 
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predictive accuracy and practicability of the models created. Distribution of seed 208 

vigour for each cultivar in calibration set, validation set-1 and validation set-2 was 209 

shown in Table 1. 210 

(1) Spectra Pre-processing 211 

Spectral pre-processing techniques are utilised to maximise the quality of 212 

hyperspectral measurement and minimise the interference information existing in 213 

spectral data (He et al., 2023). Standard normal variate (SNV) is applied to reduce 214 

additive and multiplicative effects by spectral normalisation approach. First derivative 215 

(FD) is a common method for getting rid of baseline offsets. Smoothing is regularly 216 

served to alleviate high-frequency noise produced by instruments. In this study, 217 

standard normal variate (SNV), autoscale (AS), and Savitzky–Golay first derivative 218 

(FD, second-order polynomial) with a smoothing gap of 9 and their combinations 219 

were investigated.  220 

(2) Effective Wavelengths (EWs) Selection   221 

Given that the high-resolution hyperspectral image data contain large amounts of 222 

redundant information, it was necessary to select EWs that carried the maximum 223 

spectral information to reduce irrelevant variables as well as to enhance the 224 

computational efficiency of prediction models. Regression coefficients (RC), a 225 

model-based EWs selection method, has been proved in our previous work to be an 226 

excellent method to effectively extract the spectral characteristics and sensitive 227 

spectrum bands that are closely related to the change in vigour levels during seed 228 

ageing (Zhang et al., 2020). Generally, RC in PLS-R models is implemented to 229 

distinguish the variables with measurable influences on the dependent (Y) variables. 230 

The significance of the influences for predicting the Y-variables is expressed in 231 

absolute values (He et al., 2013). Thus, wavelengths with large absolute values of beta 232 

coefficients can be considered the EWs.  233 

Following pre-processing, AA-based vigour prediction models (PLS-R and 234 

SVM-R) were established, cross-validated/internal-validated and external-validated 235 
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using the data sets collected from control and AA seeds. Leave-one-out was 236 

implemented as the cross-validation (CV) method. Subsequently, optimal AA-based 237 

PLS-R models were obtained based on representative wavelengths screened by RC. 238 

Separate data sets from control and NA seeds were used to externally validate the 239 

predictive ability of the optimal PLS-R models. The performance of these models was 240 

evaluated by the coefficient of determination (R2) of calibration (R2
c), cross-validation 241 

(R2
cv) and validation (R2

v), and the root mean square error (RMSE) of calibration 242 

(RMSEC), cross-validation (RMSECV) and validation (RMSEV). The procedure was 243 

carried out in MATLAB R2014a (The MathWorks, Natick, MA, USA).  244 

2.6.2 Metabolite analysis 245 

Raw data collected from LC-MS/MS were converted to mzXML files by 246 

ProteoWizard and then processed by the XCMS program, which includes peak 247 

alignment, retention time correction and peak area extraction. Metabolite annotations 248 

were conducted based on mass accuracy (<25 ppm) and their secondary spectral 249 

pattern, and then matched with the in-house database. The metabolite data were pre-250 

processed by Pareto-scaling algorithm, and then processed by principal component 251 

analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) 252 

models. The model fitting and predictability were evaluated by R2 and Q2, 253 

respectively. In this study, metabolites with variable importance in projection (VIP>1) 254 

algorithm and ANOVA analysis (p<0.05) were identified as differential metabolites. 255 

These processes were conducted in SIMCA-P 14.1 software (Umetrics, Umea, 256 

Sweden).  257 

3. Results and discussion  258 

3.1. Spectral characteristics of naturally and accelerated aged seeds 259 

The spectra of Lvsechaoren and Zhongtian 300 sweetcorn seeds are presented in 260 

Fig. 3. For each cultivar, the spectral profiles of seed samples in the same spectral 261 

range followed a similar trend, but varied in the vibration magnitude of reflectivity 262 

(Fig. 3A and D). Subsequently, the spectra of seeds with the same vigour level of 263 
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each cultivar were averaged to clearly observe the amplitude and waveform variations 264 

across vigour levels (Fig. 3B and E). The spectral curves of the two varieties 265 

increased to a plateau before decreasing, and the curves’ fluctuation in the near-266 

infrared region (NIR, 760~1070 nm) was greater than that in the visible region (Vis, 267 

400~760 nm).    268 

The difference in spectral reflectance between different vigour levels increased 269 

gradually above 600 nm. Hence, the spectra in the 600~900 nm range were extracted 270 

for plotting to zoom in on the differences in spectral features (Fig. 3C and F). They 271 

showed that the mean-reflectance of accelerated aged (AA) seeds of both cultivars 272 

was higher than that of naturally aged (NA) and RAW seeds in the NIR and most of 273 

the Vis region. Moreover, the reflection spectra exhibited an inverse relationship with 274 

germination% among AA groups, i.e., reduced relative reflectance with increasing 275 

germination% (AA 45%/65% > AA 65%/75% > AA 75%/83% RAW > 85%/92%). 276 

However, this pattern was not observed in NA groups. Lysechaoren seeds 277 

demonstrated lower relative reflectance at NA 75% (early ageing) compared to NA 278 

65% and NA 45%, and for Zhongtian 300 seeds, the relative reflectance of NA 65% 279 

was lower than NA 83% but higher than NA 75%. The inconsistent spectral patterns 280 

between seeds undergoing AA and NA may be due to some discrepancies in the 281 

physicochemical properties of sweetcorn seeds induced by AA compared to those 282 

induced by NA. These inconsistencies were indicative of the potential challenges in 283 

NA seed vigour prediction based on AA-based models.  284 

3.2. Development and validation of AA-based predictive models using full 285 

wavelengths 286 

Various pre-processing algorithms (including AS, FD, SNV and FD+SNV) were 287 

first utilised to maximize the usefulness of spectrum data. PLS-R and SVM-R 288 

prediction models for seed vigour were established based on the raw and pre-289 

processed full spectra from the calibration set (Table 2 and Table S1). Vigour 290 

predictive models generated from AA seed data sets, were not only validated by 291 

separate AA seed data (validation set-1), but more importantly, were assessed for 292 
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applicability to stored seeds using NA validation seed data (validation set-2). The 293 

tables showed the performance of the PLS-R and SVM-R models for the vigour of AA 294 

and NA seeds, including the coefficient of determination (R2) and the root mean 295 

square error (RMSE) for the calibration, cross-validation (internal validation, 296 

reflecting models’ precision), validation set-1 (external validation, reflecting models’ 297 

stability) and validation set-2 (external validation, reflecting models’ practicability).  298 

In general terms, the PLS-R models based on full wavelengths for Lvsechaoren 299 

and Zhongtian 300 seeds both showed higher stability than the SVM-R models. 300 

Hence, the PLS-R algorithm was used in the successor investigation. The PLS-R 301 

models for the two cultivars presented good performance in cross-validation set (R2
cv 302 

＞ 0.830 and RMSE ≤ 0.060). Among them, two highlighted models (SNV-PLS-R 303 

models for Lvsechaoren and FD-SNV-PLS-R model for Zhongtian 300) exhibited the 304 

optimal predictive ability in cross-validation set (R2
cv = 0.871, RMSECV = 0.054; 305 

R2
cv = 0.846, RMSECV = 0.037, respectively), and showed the excellent prediction 306 

results in validation set-1 (R2
v-1 = 0.905, RMSEC-1 = 0.049; R2

v-1 = 0.838, RMSEC-1 307 

= 0.040). Despite good performance on AA data of calibration sets, cross-validation 308 

sets and validation set-1, the models’ performance on NA data as validation set-2 was 309 

poor (R2
v-2 = 0.513 for Lvsechaoren and R2

v-2 = 0.326 for Zhongtian 300).    310 

3.3. Effective wavelengths (EWs) selection based on optimal PLS regression 311 

models  312 

Regression coefficients (RC) method was then utilized to extract the effective 313 

wavelengths (EWs) with the most information of seed vigour, based on the two 314 

optimal AA-PLS regression models (bold) in Table 2. The RC of each variable in the 315 

models were calculated and the corresponding RC curves were presented in Fig. 4. 316 

EWs were then selected at the peaks and valleys of the curves. Ultimately, 33 EWs for 317 

Lvsechaoren seeds and 31 for Zhongtian 300 seeds were summarised, respectively 318 

(Table S2). The results revealed an interesting phenomenon, that is, although the EWs 319 

of these two cultivars screened by RC method were different, they both lied on the 320 

vicinity of some specific spectral regions. In the visible region (400~760 nm), 321 
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wavebands at around 430 nm are associated with chlorophyll a, those around 471 nm 322 

represent carotenoids (Nansen et al., 2015), and those in 520~560 nm could be 323 

derived from anthocyanins (Yokoi & Sait, 1973). EWs in the NIR region (760~1070 324 

nm) mainly originated from the overtones and combinations of fundamental 325 

vibrations of O-H, N-H and C-H functional groups, which are the essential 326 

components of seed molecules (i.e. carbohydrate, fat, water and protein, etc.). 327 

Intriguingly, a large proportion of the selected EWs for both cultivars was 328 

concentrated in the NIR region, which indicated that the application precision of the 329 

AA-based vigour predictive models could be greatly affected by the consistency of 330 

structure/type and concentration of chemical composition in seeds between AA and 331 

NA. Besides, compared with wheat seeds (Zhang et al., 2020), fewer EWs in the 332 

visible region and more EWs in the NIR region were selected for sweetcorn seeds, 333 

which may be due to the thin seed coat and less pigment content of sweetcorn seeds. 334 

3.4. Development and validation of AA-based predictive models using EWs  335 

EWs of Lvsechaoren and Zhongtian 300 AA seeds were respectively applied as 336 

input variables to construct simplified PLS-R models (Table 3). For Lvsechaoren, the 337 

optimal simplified RC-SNV-PLS-R model (R2
v-1 = 0.909, RMSEV-1 = 0.050) based 338 

on only 33 characteristic bands exhibited similar prediction power to the Full-SNV-339 

PLS-R model (R2
v-1 = 0.905, RMSEV-1 = 0.049) for AA seeds. The precision of the 340 

corresponding models on NA data showed an R2
v-2 value of 0.586 (RC-SNV-PLS-R) 341 

and an R2
v-2 value of 0.513 (Full-SNV-PLS-R). For Zhongtian 300, the optimal 342 

simplified RC-FD-SNV-PLS-R model (R2
v-1 = 0.866, RMSEV-1 = 0.036) was 343 

slightly better than the Full-FD-SNV-PLS-R model (R2
v-1 = 0.838, RMSEV-1 = 344 

0.040) for AA seeds. The RC-FD-SNV-PLS-R model (R2
v-1 = 0.561, RMSEV-1 = 345 

0.076) as well performed better than the Full-FD-SNV model (R2
v-1 = 0.326, 346 

RMSEV-1 = 0.114) in predicting NA seeds of the same cultivar. Noteworthy, the 347 

simplified RC-FD-PLS-R model showed better performance in NA seeds compared to 348 

the full-band FD-PLS-R model: the corresponding R2
v-2 value increased from 0.279 to 349 

0.553 and the RMSEV-2 value decreased from 0.117 to 0.078. These indicated that 350 
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the combination of optimal EWs and a suitable algorithm could improve the 351 

application performance of the AA-PLS regression models on stored seeds in this 352 

case.     353 

Additionally, the simplified PLS-R models built by AA seeds performed well on 354 

the vigour prediction of seeds treated by the same process (R2
v-1 ≥ 0.820), but they 355 

did not have satisfactory performance on NA seeds (R2
v-2

 ≤ 0.696)(Table 3). 356 

Specifically, for Lvsechaoren, the R2
v-2

 of the optimal RC-SNV-PLS-R model 357 

decreased by 0.323 when compared to R2
v-1. Moreover, the RC-SNV-PLS-R model of 358 

Lvsechaoren presented a better prediction than that of Zhongtian 300 on AA seeds 359 

(R2
v-1: 0.909 vs. 0.846), but performed slightly worse than that of Zhongtian 300 on 360 

NA seeds (R2
v-2: 0.586 vs. 0.668). These results indicated the optimal PLS regression 361 

models for predicting seed vigour, generated using data from AA seeds may not be 362 

able to accurately predict the vigour changes of seeds during NA.  363 

3.5. Age-related changes in metabolite levels in the AA and NA seeds 364 

To investigate the specific differences in the ageing mechanism underlying the 365 

prediction performance of the PLS-R models on AA and NA seeds, the age-related 366 

changes in metabolite levels of Lvsechaoren seeds from RAW 85% and critical node 367 

(AA 75% and NA 75%) samples were identified by LC-MS/MS. The large complex 368 

datasets generated from positive ion modes (PIM) and negative ion modes (NIM) 369 

were subjected to non-supervised principal component analysis (PCA), which 370 

displayed the difference of chemical substances in seeds from different vigour and 371 

treatment seeds. The 2D score plots of PCA (Fig. 5A and 5B) showed the seed 372 

samples were grouped into three clusters in PIM and NIM. Although there were large 373 

overlap areas among these clusters, some degree of differences in variation trends still 374 

existed, which aroused our interest on exploring the underlying metabolic mechanism 375 

and also provided a statistical basis for further data mining.   376 

A supervised multivariate analysis method, orthogonal partial least squares 377 

discriminant analysis (OPLS-DA) (Fig. 6), and univariate methods, fold change (FC) 378 

and T-test, were combined to analyse the metabolites between every two groups. 379 
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Chemical compounds that met the criteria (i.e., the variable importance in the project 380 

(VIP) value≥1, FC≥1.2 or FC≤0.8 and p-value< 0.05) were selected as significant 381 

differential metabolites. Most of them are involved in the primary metabolism, such 382 

as sucrose, choline, linolenic acid, and ferulic acid (Table S3 and S4). Venn diagrams 383 

were then applied to further depict the shared differential metabolites among the 384 

pairwise comparisons (Fig. 5C and 5D). Overlaps of 7 differential metabolites in the 385 

PIM (yellow patch) and 7 differential metabolites in the NIM (yellow patch) were 386 

revealed to change simultaneously (up-regulated or down-regulated) between 387 

sweetcorn seeds during AA and NA. Moreover, overlapping differential metabolites of 388 

28 (22+4+2) in the PIM (green patch) and 26 (23+1+2) in the NIM (green patch) were 389 

identified to change asynchronously between AA and NA. These metabolites were 390 

possibly key age-related differentiators of seeds responding to NA and AA, and some 391 

of them may greatly contribute to building the AA-based models. An in-depth analysis 392 

of these metabolites is helpful to study the differences in metabolic mechanisms in 393 

seeds with high sugar content under different ageing processes.      394 

The overlapping metabolites with synchronous and asynchronous changes 395 

between seeds during NA and AA were visualised in Fig. 5E & 5F and Table S3 & 396 

S4. After AA treatment, the number of up-regulated metabolites (30 in PIM and 26 in 397 

NIM) in seeds is higher than that of down-regulated metabolites (3 in PIM and 5 in 398 

NIM). This phenomenon was also found in the seeds treated by NA. These results 399 

manifested that some key physiological and metabolic activities contributing to the 400 

reduction in seed vigour might be activated during AA and storage. Furthermore, the 401 

relative content of 28 substances (PIM) and 25 substances (NIM) in AA seeds were 402 

significantly higher than those in NA and RAW seeds, indicating that the inner 403 

physiological metabolism of sweetcorn seeds under AA may be faster than that under 404 

NA, which is consistent with the findings obtained from our previous study (Zhang et 405 

al., 2021).  406 

Additionally, results from this current work revealed an interesting phenomenon, 407 

which has not been reported before. There were differences in the types of key age-408 

related metabolites that changed asynchronously and synchronously in seeds between 409 
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AA and NA. Among the asynchronous metabolites (Fig. 5F, Table S3 & S4), amino 410 

acids and their derivatives (such as sarcosine and 4-aminobutyric acid) account for a 411 

large proportion. In the synchronous substances (Fig. 5E, Table S3 & S4), however, 412 

sugars and their derivatives (such as sucrose, raffinose, and glucosamine) are 413 

predominant. These important results can be interpreted in two different ways. Firstly, 414 

in terms of inner physiological metabolism of seed ageing, variations in the content of 415 

many soluble sugars presumably play an important role in the vigour of sweetcorn 416 

seeds, which is consistent with the findings in maize and legume seeds (Bernal-Lugo 417 

& Leopold, 1995; Obendorf & Górecki, 2012). The second is a more interesting 418 

perspective, which starts with the principle of spectroscopy. As is well known, the 419 

abundant spectral features result from photons absorption by light interacting with 420 

molecules. Specifically, the overtone of molecules and combinations of the 421 

fundamental vibrations caused by the stretching and bending of C-H, O-H and N-H 422 

bonds can be recorded by the variations of spectral reflectivity. As a result, the 423 

types/structures and concentration of molecules in seeds have a great effect on 424 

spectral information. Given this, the key differential molecules between NA and AA 425 

seeds contain a large proportion of amino acid, dipeptides and their derivatives, most 426 

of which have N-H bonds (Fig. 7). This may result in a certain degree of difference in 427 

spectral characteristics between NA and AA seeds, which adversely influenced the 428 

practicality of the AA-based model on sweetcorn seeds during storage.   429 

3.6. Vigour prediction of NA seeds based on EWs without N–H bonds 430 

To minimise the interference of age-related differential metabolites to the 431 

mathematical models’ utility, the EWs are associated with the N–H bonds were 432 

identified and eliminated. Among the Vis-NIR (400~1070 nm) range, the spectral 433 

bands at 760~820 nm were associated with the third overtone of N-H stretching 434 

(Cheng & Sun, 2015), and the wavebands between 1040~1050 nm were attributed to 435 

the N-H bond second overtone of protein (Fan et al., 2021). Besides, wavelengths at 436 

around 430 nm were derived from chlorophyll a, and its molecular structure contains 437 

the N–H bond (Fig. 4). After deleting the corresponding EWs (bold), the remaining 438 
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EWs were further used to establish the new AA-based PLS-R model and tested the 439 

practicality with AA and NA seeds (Table 4). The precision of the RC-PLS-R-models 440 

on NA seeds is generally improved to a certain extent after deleting the EWs 441 

associated with the N–H bonds. Specifically, the highest R2
v-2 value increased from 442 

0.696 of RC-FD-SNV-PLS-R model to 0.720 of RC-AS-PLS-R model without N–H 443 

bond-related bands. For Zhongtian 300, the maximum value of R2
v-2 elevated from 444 

0.668 in RC-SNV-PLS-R model to 0.727 in RC-SNV-PLS-R model without N–H 445 

bond-related bands. Whereas, most of the RC-PLS-R models without N–H bond-446 

related bands were found to be less powerful than RC-PLS-R models on the vigour 447 

prediction of AA seeds. This may be because the removed N-H bond-related bands, 448 

while not conducive to the vigour prediction of NA seeds, are highly important bands 449 

that achieve accurate prediction of the AA seed vigour.  450 

Seeds under AA contained much higher levels of fatty acids and their derivatives 451 

(such as cis-9-Palmitoleic acid and Jasmonic acid), amino acids and their derivatives 452 

(such as sarcosine and 4-aminobutyric acid), compared to NA seeds (Table S3 & S4). 453 

These demonstrated that more fatty acids and amino acids changed in sweetcorn seeds 454 

during AA. The increased free fatty acids may be generated due to lipid peroxidation. 455 

Amino acids can be produced from the degradation of proteins and serve as 456 

precursors of many secondary metabolites under biotic and abiotic stresses. Such a 457 

rapid change of amino acids derived from the glycolytic pathway (such as valine and 458 

leucine) was also found in wheat in response to drought stress (Roessner, 2012).    459 

Sweetcorn seeds are rich in carbohydrates, such as sucrose and raffinose-related 460 

oligosaccharides. Sucrose and oligosaccharides can be hydrolysed to reduce sugars, 461 

which are involved in the initial stages of the Maillard-Amadori reaction (MR). The 462 

free amino acids and dipeptides in seeds also have strong reactivity as substrates of 463 

MR. MR, as a non-enzymatic reaction involving reducing sugars and amino groups of 464 

amino acids or proteins, can initiate in seeds with low temperatures and very low 465 

moisture content and has been observed to exist a correlation with seed deterioration 466 

(Sun & Leopold, 2010). The increased reducing sugar and amino acids in sweetcorn 467 

seeds might act in concert to drive the MR in dried sweetcorn seeds during AA and 468 
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NA. This is consistent with the abundance of volatile MR products (e.g., 469 

benzaldehyde and 2-heptanone) observed in AA and NA seeds from our previous 470 

studies (Zhang et al., 2021).   471 

Additionally, raffinose family oligosaccharides, especially raffinose and inositol 472 

galactoside (a precursor of raffinose oligosaccharide synthesis), were suggested to be 473 

related to seed vigour in tomato, Arabidopsis and rice (Deborah et al., 2016; Yan et 474 

al., 2018). Raffinose and saccharose, together with other oligosaccharides and 475 

cycloalcohols, are capable of binding free radicals to protect cytomembranes from 476 

deterioration during prolonged storage (Zalewski & Lahuta, 1998). An earlier study 477 

declared the depletion of raffinose amounts is positively correlated with the declined 478 

vigour in the stored maize seeds ( Bernal-Lugo & Leopold, 1992). However, Yan et al. 479 

(2018) recently found that the variation of raffinose content was not significant in rice 480 

seeds under 24-month natural ageing (Yan et al., 2018). Interestingly, data in our work 481 

exhibited that the levels of raffinose increased in desiccated sweetcorn seeds after 482 

both AA and NA treatments (Fig. 5E and 5F). Whether this difference is caused by 483 

species/cultivar diversity or by ageing stages (Phase I/Phase II/Phase III) needs 484 

further investigation.   485 

Notably, sucrose, a main form of soluble sugar stored in sweetcorn seeds, has 486 

been reported to decrease significantly in aged maize axes and rice embryos (Kataki 487 

et al., 1997), and its concentration exhibited strong consistency in the extent of the 488 

vigour decrease in sweetcorn seeds treated by AA and NA (Fig. 5E and 5F). 489 

Furthermore, sucrose can be converted by sucrose synthase (EC 2.4.1.13), encoded by 490 

the Sus1 gene of maize, into UDP-glucose and fructose (Chen & Chourey, 1989). 491 

Fructose and glucose could then be synthesised to sorbitol under the action of 492 

aldoketone reductases. Sorbitol, as an acyclic polyol, was detected earlier in 493 

developing maize kernels (Shaw & Dickinson, 1984) and germinating soybean seeds 494 

(Kuo et al., 1990). The synthesis of sorbitol in aged seed embryos is important to 495 

arrest the increase of reducing sugar concentration and reduce the non-enzymatic 496 

attack of reducing sugar on protein amino acids and nucleic acid/protein complexes 497 

(Lahuta et al., 2007). Kataki et al. (1997) observed that sorbitol significantly 498 
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accumulates in rice, soybean, cotton, and lettuce maize seeds during rapid ageing 499 

treatment (45°C and 75% RH) and considered it to be a good common biomarker for 500 

seed deterioration (Kataki et al., 1997). Remarkably, our results not only support this 501 

idea in sweetcorn seeds, and further found the accumulation of sorbitol levels in NA 502 

seeds was consistent with that in AA seeds (Fig. 5E and 5F). On the whole, we infer 503 

that soluble sugars and their derivatives, as well as amino acids and their derivatives, 504 

could potentially constitute ideal starting points for studying the metabolic 505 

mechanisms and longevity prediction of seeds with high sugar content under different 506 

ageing processes. Meanwhile, amino acids and their derivatives can be a potential 507 

entry point to optimise the application ability of vigour prediction model based on 508 

spectral information from sweetcorn seeds.   509 

4. Conclusion 510 

In the present study, Vis-NIR HSI, non-targeted metabolomics and intelligent 511 

data mining approaches were combined for the first time to investigate the differences 512 

in metabolomic and predicted vigour between sweetcorn seeds undergoing 513 

accelerated ageing (AA) and natural ageing (NA). Specifically, the difference in 514 

ageing treatments resulted in a significant influence on the spectral reflectance of 515 

sweetcorn seeds across the two cultivars (Lvsechaoren and Zhongtian 300). The 516 

spectral reflectance of both cultivars increased linearly during AA (RAW 85% /92% < 517 

AA 75% /83% < AA 65% /75% <AA 45% /65%), but increased irregularly during 518 

NA. Recognition that Full-PLS-R and RC-PLS-R models based on AA seed data 519 

showed high prediction precision (R2 ≥ 0.814) for AA seeds, but reduced predictive 520 

ability (R2 ≤0.696) for stored seeds (NA). Moreover, use of metabolomics to identify 521 

ageing-related differential metabolites between AA and NA seeds, especially amino 522 

acids and their derivatives, enabled the identification of factors responsible for 523 

negatively impacting the accuracy of predictive models. After analysing the molecular 524 

structure of these key differential metabolites, N–H bond-related EWs were 525 

considered to adversely influence the application of AA-based predictive models. 526 
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Ultimately, by getting rid of the interference EWs, the AA-based RC-PLS-R models 527 

were further adapted to increase predictive power and applicability for NA seeds.   528 

The combination of a mathematical predictive model, generated using 529 

hyperspectral imaging data, with differential data captured on ageing-related 530 

metabolites was demonstrated to be an appropriate approach to interpret and optimise 531 

the application of the AA-based vigour predictive model for NA seeds. These findings 532 

will, therefore, provide the theoretical basis for longevity/storability prediction in 533 

seeds and enable the provision of preferentially high-vigour seeds, which ultimately 534 

help to reduce post-harvest losses for farmers and improve food quality for 535 

consumers. 536 

  537 



 

 21 

Funding 538 

This work was supported by the National Natural Science Foundation of China 539 

(grant number U2005208, 31971833, 32101676), the Natural Science Foundation of 540 

Fujian Province (2021J02024) and the Biotechnology and Biological Sciences 541 

Research Council (grant number BB/W006979/1).  542 

 543 

 544 

Acknowledgement 545 

The authors are grateful for helpful comments of bioinformatics analyses from 546 

Shanghai Applied Protein Technology Co., Ltd. (Shanghai, China).   547 



 

 22 

References 548 

Ambrose, A., Kandpal, L. M., Kim, M. S., Lee, W. H., & Cho, B. K. (2016). High speed measurement 549 

of corn seed viability using hyperspectral imaging. Infrared Physics & Technology, 75, 173-179. 550 

https://doi.org/10.1016/j.infrared.2015.12.008 551 

Bai, J., Hao, F., Cheng, G., & Li, C. (2021). Machine vision-based supplemental seeding device for 552 

plug seedling of sweet corn. Computers and Electronics in Agriculture, 188, 106345. 553 

https://doi.org/10.1016/j.compag.2021.106345 554 

Bernal-Lugo, I., & Leopold, A. C. (1995). Seed stability during storage: Raffinose content and seed 555 

glassy state. Seed Science Research, 5(2), 75-80. https://doi.org/ 10.1017/s0960258500002646 556 

Chauhan, H. S., Chhabra, R., Rashmi, T., Muthusamy, V., Zunjare, R. U., Mishra, S. J., Gain, N., 557 

Mehta, B. K., Singh, A. K., Gupta, H. S., & Hossain, F. (2022). Impact of vte4 and crtRB1 genes 558 

on composition of vitamin-E and provitamin-A carotenoids during kernel-stages in sweet corn. 559 

Journal of Food Composition and Analysis, 105, 104264. 560 

https://doi.org/10.1016/j.jfca.2021.104264 561 

Chen, Y. C., & Chourey, P. S. (1989). Spatial and temporal expression of the two sucrose synthase 562 

genes in maize: immunohistological evidence. Theoretical & Applied Genetics, 78(4), 553-559. 563 

https://doi.org/10.1007/BF00290842 564 

Cheng, J. H., & Sun, D. W. (2015). Data fusion and hyperspectral imaging in tandem with least 565 

squares-support vector machine for prediction of sensory quality index scores of fish fillet. LWT - 566 

Food Science and Technology, 63(2), 892-898. https://doi.org/10.1016/j.lwt.2015.04.039 567 

Deborah, D., Willems, L., Arkel, J. V., Dekkers, B., Hilhorst, H., & Bentsink, L. (2016). Galactinol as 568 

marker for seed longevity. Plant Science An International Journal of Experimental Plant Biology, 569 

246, 112-118. https://doi.org/10.1016/j.plantsci.2016.02.015 570 

Fan, N., Ma, X., Liu, G., Ban, J., Yuan, R., & Sun, Y. (2021). Rapid determination of TBARS content 571 

by hyperspectral imaging for evaluating lipid oxidation in mutton. Journal of Food Composition 572 

and Analysis, 103, 104110. https://doi.org/10.1016/j.jfca.2021.104110 573 

Fan, S., Li, J., Xia, Y., Tian, X., Guo, Z., & Huang, W. (2019). Long-term evaluation of soluble solids 574 

content of apples with biological variability by using near-infrared spectroscopy and calibration 575 

transfer method. Postharvest Biology and Technology, 151, 79-87. 576 

https://doi.org/10.1016/j.postharvbio.2019.02.001 577 

Freitas, R. A., Dias, D. C. F. S., Oliveira, G. A., Dias, L. A. S., & Jose, I. C. (2006). Physiological and 578 

biochemical changes in naturally and artificially aged cotton seeds. Seed Science and Technology, 579 

34(2), 253-264. https://doi.org/10.15258/sst.2006.34.2.01 580 

He, H. J., Wu, D., & Sun, D. W. (2013). Non-destructive and rapid analysis of moisture distribution in 581 

farmed Atlantic salmon (Salmo salar) fillets using visible and near-infrared hyperspectral 582 

imaging. Innovative Food Science & Emerging Technologies, 18, 237-245. 583 

https://doi.org/10.1016/j.ifset.2013.02.009 584 

He, H. J., Chen, Y., Li, G., Wang, Y., Ou, X., & Guo, J. (2023). Hyperspectral imaging combined with 585 

chemometrics for rapid detection of talcum powder adulterated in wheat flour. Food Control, 144, 586 

109378. https://doi.org/10.1016/j.foodcont.2022.109378 587 

Hosomi, S. T., Custódio, C. C., Seaton, P. T., Marks, T. R., & Machado-Neto, N. B. (2012). Improved 588 

assessment of viability and germination of Cattleya (Orchidaceae) seeds following storage. In 589 

Vitro Cellular & Developmental Biology - Plant, 48, 127-136. https://doi.org/10.1007/s11627-011-590 



 

 23 

9404-1 591 

Kandpal, L. M., Lohumi, S., Kim, M. S., Kang, J. S., & Cho, B. K. (2016). Near-infrared hyperspectral 592 

imaging system coupled with multivariate methods to predict viability and vigor in muskmelon 593 

seeds. Sensors and Actuators B: Chemical, 229, 534-544. 594 

https://doi.org/10.1016/j.snb.2016.02.015 595 

Kataki, P. K., Horbowicz, M., Taylor, A. G., & Obendorf, R. L. (1997). Changes in sucrose, cyclitols 596 

and their galactosyl derivatives with seed ageing. Basic and Applied Aspects of Seed Biology, 30, 597 

515-522.  https://doi.org/10.1007/978-94-011-5716-2_56 598 

Kuo, T. M., Doehlert, D. C., & Crawford, C. G. (1990). Sugar metabolism in germinating soybean 599 

seeds: evidence for the sorbitol pathway in soybean axes. Plant Physiology, 93(4), 1514-1520. 600 

https://doi.org/10.1104/pp.93.4.1514 601 

Lahuta, L. B., Górecki, R., Zalewski, K., & Hedley, C. L. (2007). Sorbitol accumulation during natural 602 

and accelerated ageing of pea (Pisum sativum L.) seeds. Acta Physiologiae Plantarum, 29(6), 527-603 

534. https://doi.org/10.1007/s11738-007-0063-0 604 

Bernal-Lugo, I., & Leopold, A. C. (1992). Changes in soluble carbohydrates during seed storage. Plant 605 

Physiology, 98(3), 1207-1210. https://doi.org/10.1104/pp.98.3.1207 606 

Liu, Y., Pu, H., & Sun, D. W. (2017). Hyperspectral imaging technique for evaluating food quality and 607 

safety during various processes: A review of recent applications. Trends in Food Science & 608 

Technology, 69, 25-35. https://doi.org/10.1016/j.tifs.2017.08.013 609 

Ma, T., Tsuchikawa, S., & Inagaki, T. (2020). Rapid and non-destructive seed viability prediction using 610 

near-infrared hyperspectral imaging coupled with a deep learning approach. Computers and 611 

Electronics in Agriculture, 177, 105683. https://doi.org/10.1016/j.compag.2020.105683 612 

Merritt, D. J., Martyn, A. J., Ainsley, P., Young, R. E., Seed, L. U., Thorpe, M., Hay, F. R., Commander, 613 

L. E., Shackelford, N., Offord, C. A., Dixon, K. W., & Probert, R. J. (2014). A continental-scale 614 

study of seed lifespan in experimental storage examining seed, plant, and environmental traits 615 

associated with longevity. Biodiversity and Conservation, 23, 1081-1104. 616 

https://doi.org/10.1007/s10531-014-0641-6 617 

Nansen, C., Zhao, G., Dakin, N., Zhao, C., & Turner, S. R. (2015). Using hyperspectral imaging to 618 

determine germination of native Australian plant seeds. Journal of Photochemistry & 619 

Photobiology B Biology, 145, 19-24. https://doi.org/10.1016/j.jphotobiol.2015.02.015 620 

Obendorf, R. L., & Górecki, R. (2012). Soluble carbohydrates in legume seeds. Seed Science Research, 621 

22(04), 219-242. https://doi.org/10.1017/S0960258512000104 622 

Priestley, D. A., & Leopold, A. C. (1983). Lipid changes during natural aging of soybean seeds. 623 

Physiologia Plantarum, 59(3), 467-470. https://doi.org/10.1111/j.1399-3054.1983.tb04231.x 624 

Rahman, A., & Cho, B. K. (2016). Assessment of seed quality using non-destructive measurement 625 

techniques: a review. Seed Science Research, 26(04), 285-305. 626 

https://doi.org/10.1017/S0960258516000234 627 

Rodo, A. B., & Marcos-Filho, J. (2003). Onion seed vigor in relation to plant growth and yield. 628 

Horticultura Brasileira, 21(2), 220-226.  https://doi.org/10.1590/S0102-05362003000200020 629 

Bowne, J. B., Erwin, T. A., Juttner, J., Schnurbusch, T., Langridge, P., Bacic, A., & Roessner, U. 630 

(2012). Drought responses of leaf tissues from wheat cultivars of differing drought tolerance at the 631 

metabolite level. Molecular Plant, 5(2), 418-429. https://doi.org/10.1093/mp/ssr114 632 

Shaw, J. R., & Dickinson, D. B. (1984). Studies of sugars and sorbitol in developing corn kernels. 633 

Plant Physiology, 75(1), 207-211. https://doi.org/10.1104/pp.75.1.207 634 



 

 24 

Shrestha, S., Knapič, M., Žibrat, U., Deleuran, L. C., & Gislum, R. (2016). Single seed near-infrared 635 

hyperspectral imaging in determining tomato (Solanum lycopersicum L.) seed quality in 636 

association with multivariate data analysis. Sensors & Actuators B Chemical, 237, 1027-1034. 637 

https://doi.org/10.1016/j.snb.2016.08.170 638 

Singh, I., Langyan, S., & Yadava, P. (2014). Sweet corn and corn-based sweeteners. Sugar Tech, 16, 639 

144-149. https://doi.org/10.1007/s12355-014-0305-6 640 

Sun, W. Q., & Leopold, A. C. (1995). The Maillard reaction and oxidative stress during aging of 641 

soybean seeds. Physiologia Plantarum, 94(1), 94-104. https://doi.org/10.1111/j.1399-642 

3054.1995.tb00789.x 643 

Wakholi, C., Kandpal, L. M., Lee, H., Bae, H., Park, E., Kim, M. S., Mo, C., Lee, W., & Cho, B. 644 

(2018). Rapid assessment of corn seed viability using short wave infrared line-scan hyperspectral 645 

imaging and chemometrics. Sensors and Actuators B Chemical, 255, 498-507. 646 

https://doi.org/10.1016/j.snb.2017.08.036 647 

Wang, C., Liu, B., Liu, L., Zhu, Y., & Li, X. (2021). A review of deep learning used in the 648 

hyperspectral image analysis for agriculture. Artificial Intelligence Review, 54, 5205-5253. 649 

https://doi.org/10.1007/s10462-021-10018-y 650 

Yan, S., Huang, W., Gao, J., Fu, H., & Liu, J. (2018). Comparative metabolomic analysis of seed 651 

metabolites associated with seed storability in rice (Oryza sativa L.) during natural aging. Plant 652 

Physiology & Biochemistry, 127, 590-598. https://doi.org/10.1016/j.plaphy.2018.04.020 653 

Yang, J., Sun, L., Xing, W., Feng, G., & Wang, J. (2021). Hyperspectral prediction of sugarbeet seed 654 

germination based on gauss kernel SVM. Spectrochimica Acta Part A: Molecular and 655 

Biomolecular Spectroscopy, 253, 119585. https://doi.org/10.1016/j.saa.2021.119585 656 

Yokoi, M., & Sait, N. (1973). Light absorption patterns of intact Rosa flowers in relation to the flower 657 

colour. Phytochemistry, 12(7), 1783-1786. https://doi.org/10.1016/0031-9422(73)80402-9 658 

Zalewski, K., & Lahuta, L. B. (1998). The metabolism of ageing seeds: changes in the raffinose family 659 

oligosaccharides during storage of field bean (Vicia faba var. minor Harz) seeds. Acta Societatis 660 

Botanicorum Poloniae, 67(2), 193-196. https://doi.org/10.5586/asbp.1998.022 661 

Zhang, B., Huang, W., Li, J., Zhao, C., Fan, S., Wu, J., & Liu, C. (2014). Principles, developments and 662 

applications of computer vision for external quality inspection of fruits and vegetables: a review. 663 

Food Research International, 62, 326-343. https://doi.org/10.1016/j.foodres.2014.03.012  664 

Zhang, T., Ayed, C., Fisk, D. I., Pan, T., Wang, J., Yang, N., & Sun, Q. (2022). Evaluation of volatile 665 

metabolites as potential markers to predict naturally-aged seed vigour by coupling rapid analytical 666 

profiling techniques with chemometrics. Food Chemistry, 367, 130760. 667 

https://doi.org/10.1016/j.foodchem.2021.130760 668 

Zhang, T., Fan, S., Xiang, Y., Zhang, S., Wang, J., & Sun, Q. (2020). Non-destructive analysis of 669 

germination percentage, germination energy and simple vigour index on wheat seeds during 670 

storage by Vis/NIR and SWIR hyperspectral imaging. Spectrochimica Acta Part A: Molecular and 671 

Biomolecular Spectroscopy, 239, 118488. https://doi.org/10.1016/j.saa.2020.118488 672 

Zhang, W., Pan, L., & Lu, L. (2023). Prediction of TVB-N content in beef with packaging films using 673 

visible-near infrared hyperspectral imaging. Food Control, 147, 109562. 674 

https://doi.org/10.1016/j.foodcont.2022.109562 675 

 676 

 677 

  678 



 

 25 

Figure Captions  679 

Fig. 1. Schematic diagram of hyperspectral imaging system. 680 

Fig. 2. Flow diagram of data sets constructed by sweetcorn seeds during AA and 681 

NA. GP: Germination percentage; AA: Artificial ageing; NA: Natural ageing. 682 

Fig. 3. Reflectance spectra of Lvsechaoren (A-C) and Zhongtian 300 (D-F) 683 

sweetcorn seeds with various vigour levels during AA and NA. (A) Spectral curves 684 

of all seeds from Lvsechaoren. (B) Average spectral curves of each vigour level for 685 

Lvsechaoren seeds. (C) Spectral curves in the 600~900 nm range of (B). (D) Spectral 686 

curves of all seeds from Zhongtian300. (E) Average spectral curves of each vigour 687 

levels for Zhongtian300 seeds. (F) Spectral curves in the 600~900 nm range of (E). 688 

For Lvsechaoren, Raw 85%: raw seeds with 85% germination percentage; AA 75%, 689 

AA 65% and AA 45%: accelerated aged seeds with 75%, 65% and 45% germination 690 

percentage; NA 75%, NA 65% and NA 45%: naturally aged seeds with 75%, 65% and 691 

45% germination percentage. For Zhongtian 300, Raw 92%: raw seeds with 92% 692 

germination percentage; AA 83%, AA 75% and AA 65%: accelerated aged seeds with 693 

83%, 75% and 65% germination percentage; NA 83%, NA 75% and NA 65%: 694 

naturally aged seeds with 83%, 75% and 65% germination percentage. 695 

Fig. 4. Regression coefficients curves from SNV-PLS-R model of Lvsecchaoren 696 

(A) and FD-SNV-PLS-R model of Zhongtian 300 (B) 697 

Fig. 5. Metabolomics analysis of sweetcorn seeds during AA and NA. (A) Scores 698 

scatter plot of principal component analysis (PCA) in the positive ionization mode 699 

(PIM). (B) Scores scatter plot of PCA in the negative ionization mode (NIM). (C) 700 

Venn diagrams of the identified differential metabolites in all pairwise comparisons in 701 

the PIM. (D) Venn diagrams of the identified differential metabolites in all pairwise 702 

comparisons in the NIM. (E) Cluster heatmap analysis of the overlapping metabolites 703 

with synchronous change in NA and AA seeds. (F) Cluster heatmap analysis of the 704 

overlapping metabolites with asynchronous change in NA and AA seeds. Raw: raw 705 

seeds with 85% germination percentage; NA: naturally aged seeds with 75% 706 
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germination percentage; AA: accelerated aged seeds with 75% germination 707 

percentage. The solid lines in PCA plots encircling the points define the 95% 708 

confidence intervals for all groups. 709 

Fig. 6. OPLS-DA analysis of seed samples from RAW 85% vs. AA 75% (A, D), 710 

RAW 85% vs. NA 75% (B, E) and AA 75% vs. NA 75% (C, F) in the PIM and 711 

NIM.  712 

Fig. 7. Structural formulas of typical differential metabolites containing N-H 713 

bonds.  714 

  715 
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Table 1 Germination percentage distribution of sweetcorn seeds in calibration set 716 

and validation set 717 

Varieties Data sets No. 
Minimum 

(%) 
Maximum 

(%) 
Mean 
(%) 

Standard deviation 
(%) 

Lvsechaoren 
Calibration set 64 40 92 67.9 15.0 

Validation set -1 36 42 90 67.6 14.7 
Validation set -2 36 42 90 68.1 14.0 

Zhongtian 

300 

Calibration set 64 60 96 78.3 9.5 

Validation set -1 36 62 96 78.6 9.8 

Validation set -2 36 62 96 80.6 9.9 

Abbreviations: Number of samples (No.)  718 

  719 
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Table 2 Prediction performance of PLS-R models for sweetcorn seeds of 720 

Lvsecchaoren and Zhongtian 300 based on full wavelengths in validation set-1 721 

and validation set-2 722 

Cultivars Pre-

treatments LV 

Calibration set 

(AA) 
Cross-

Validation 
Validation set-

1 (AA) 
Validation set-2  

(NA) 

R
2

c
 RMSE

C R
2

cv
 RMSE

CV R
2

v-1
 RMSE

V-1 R
2

v-2
 RMSEV

-2 

Lvsechaoren 

None 8 0.903 0.046 0.837 0.060 0.908 0.047 0.486 0.156 
AS 9 0.921 0.042 0.849 0.058 0.904 0.048 0.576 0.126 
FD 8 0.950 0.033 0.860 0.057 0.889 0.049 0.679 0.145 

SNV 10 0.939 0.037 0.871 0.054 0.905 0.049 0.513 0.127 
FD+SNV 9 0.954 0.032 0.844 0.060 0.898 0.047 0.676 0.141 

Zhongtian 

300 

None 10 0.906 0.029 0.832 0.039 0.850 0.038 0.332 0.109 

AS 10 0.922 0.026 0.841 0.038 0.814 0.043 0.285 0.109 

FD 7 0.906 0.029 0.841 0.038 0.851 0.038 0.279 0.117 

SNV 9 0.900 0.030 0.831 0.039 0.856 0.038 0.546 0.098 

FD+SNV 7 0.908 0.029 0.846 0.037 0.838 0.040 0.326 0.114 

Abbreviations: Natural ageing (NA); Artificial ageing (AA); Latent variable (LV); Partial 723 

least squares regression (PLS-R); Root mean square error of calibration (RMSEC); Root 724 

mean square error of cross validation (RMSECV); Root mean square error of validation 725 

(RMSEV); Autoscaling (AS); Savitzky–Golay first derivative (FD); Standard normal variate 726 

(SNV). 727 

728 
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Table 3 Prediction performance of PLS-R models for sweetcorn seeds of 729 

Lvsecchaoren and Zhongtian 300 based on optimal wavelengths in validation set-730 

1 and validation set-2 731 

Cultivars 
Pre-

treatments 
LV 

Calibration set 

(AA) 
Cross-Validation 

Validation set-1 

(AA) 

Validation set-2 

(NA) 

R
2

c
 RMSEC R

2

cv
 RMSECV R

2

v-1
 

RMSEV-

1 
R

2

v-2
 

RMSEV-

2 

Lvsechaoren 

None 7 0.920 0.042 0.877 0.052 0.939 0.043 0.367 0.165 

AS 8 0.931 0.039 0.872 0.053 0.921 0.047 0.461 0.158 

FD 10 0.921 0.042 0.861 0.056 0.929 0.043 0.682 0.122 

SNV 9 0.942 0.036 0.882 0.052 0.909 0.050 0.586 0.140 

FD+SNV 9 0.917 0.043 0.865 0.055 0.920 0.048 0.696 0.108 

Zhongtian 

300 

None 10 0.870  0.034  0.787  0.044  0.823  0.041  0.431  0.091  

AS 10 0.874  0.034  0.780  0.045  0.820  0.042  0.393  0.087  

FD 11 0.850  0.037  0.780  0.045  0.875  0.036  0.553  0.078  

SNV 9 0.863  0.035  0.788  0.044  0.846  0.039  0.668  0.073  

FD+SNV 10 0.852  0.037  0.796  0.043  0.866  0.036  0.561  0.076  

Abbreviations: As shown in Table 2.  732 
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Table 4 Prediction performance of Lvsecchaoren and Zhongtian 300 PLS-R 733 

models based on EWs without N–H bonds in validation set-1 and validation set-2 734 

Cultivars 
Pre-

treatments 
LV 

Calibration set 

(AA) 
Cross-Validation 

Validation set-1 

(AA) 

Validation set-2 

(NA) 

R
2

c
 RMSEC R

2

cv
 RMSECV R

2

v-1
 

RMSEV-

1 
R

2

v-2
 

RMSEV-

2 

Lvsechaoren 

None 7 0.911 0.044 0.869 0.054 0.896 0.051 0.560 0.160 

AS 8 0.915 0.043 0.874 0.053 0.919 0.049 0.720 0.117 

FD 8 0.895 0.048 0.837 0.060 0.912 0.048 0.599 0.147 

SNV 7 0.911 0.044 0.855 0.057 0.914 0.047 0.644 0.148 

FD+SNV 8 0.885 0.050 0.830 0.062 0.908 0.049 0.653 0.124 

Zhongtian 

300 

None 9 0.856 0.036 0.783 0.044 0.848 0.039 0.414 0.087 

AS 11 0.875 0.034 0.782 0.045 0.824 0.041 0.571 0.077 

FD 11 0.849  0.037  0.772  0.046  0.850  0.038  0.600  0.073  

SNV 9 0.858  0.036  0.781  0.045  0.842  0.039  0.727  0.071  

FD+SNV 10 0.847 0.037 0.786 0.044 0.838 0.040 0.570 0.073 

Abbreviations: As shown in Table 2. 735 

 736 


