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Abstract—Ratings provided by advisors can help an advisee to
make decisions, e.g., which seller to select in e-commerce. Unfair
rating attacks – where dishonest ratings are provided to mislead
the advisee – impact the accuracy of decision making. Current
literature focuses on specific classes of unfair rating attacks,
but this does not provide a complete picture of the attacks. We
provide the first formal study that addresses all attack behaviour
that is possible within a given system. We propose a probabilistic
modelling of rating behaviour, and apply information theory to
quantitatively measure the impact of attacks. In particular, we
can identify the attack with the worst impact. In the simple case,
honest advisors report the truth straightforwardly, and attackers
rate strategically. In real systems, the truth (or an advisor’s view
on it) may be subjective, making even honest ratings inaccurate.
Although there exist methods to deal with subjective ratings,
whether subjectivity influences the effect of unfair rating attacks
was an open question. We discover that subjectivity decreases
the robustness against attacks.

Index Terms—Unfair Rating Attacks, Worst-Case Attacks,
Robustness, Subjective Rating, Trust Systems

I. INTRODUCTION

Users can help each other make decisions by sharing their
opinions, especially when direct experience or evidence is
insufficient. Ratings are a discrete form of such shared infor-
mation. Rating mechanisms are popularly applied in existing
online systems, such as trust systems, recommender systems,
e-commerce systems and security systems [1], [2], [3], [4].

Not all ratings accurately reflect reality. Malicious advisors
(attackers) may deliberately provide fake or unreliable ratings
to impact the decisions of some other users (advisees). This is
known as an unfair rating attack. Unfair rating attacks reduce
the accuracy of decision making based on ratings.

Many approaches have been proposed in the literature to
improve the robustness of trust systems against unfair rating
attacks. What is typically proposed is to estimate trustwor-
thiness of advisors, based on which ratings are discounted or
filtered. We argue that being aware of advisors’ honesty is not
sufficient to have a complete picture of unfair rating attacks.
How advisors behave when they are dishonest also needs to be
studied. There are also some approaches which aim to propose
countermeasures for the existing types of attacks. However,
attackers can always adapt their behaviour or strategies to the
countermeasures. In such an arms-race, the system designer
will be one step behind the attackers.

We propose a probabilistic modelling of a rating by an
arbitrary advisor, which allows us to consider various possible
strategies of a random attacker. Given the uncertainty in the
behaviour of the attacker, we propose to investigate the worst-
case scenario that he can cause to an advisee. From a security

perspective, a secure system should be prepared for the worst-
case attacks. Measuring which unfair rating attack is worse
requires the right metric.

An advisee aims to get information about the observed facts
leading to a rating. From the advisee’s perspective, an attack
hinders his learning about the facts. How much information
about the facts a rating provides can be quantified by a
measurement from information theory, namely, information
leakage [5]. The less information ratings leak about the facts,
the greater the impact of the attack, since the advisee is
more hindered in his learning. The worst-case scenario for
the advisee is that the attack is the one that minimises the
information leakage about the facts. We say that a system is
more robust than another system, when in all situations, the
maximum impact of an attack is lower in the former system
than in the latter.

Dishonesty is not the only element that reduces the quality
of ratings, in realistic scenarios. Honest advisors can be
subjective in rating, or have different preferences from an
advisee. The same observed fact may cause different honest
advisors to provide different ratings. More importantly, an
honest advisor may come to a different conclusion than an
advisee would have, given the same facts.

In the literature, dishonesty and subjectivity are usually
treated separately, or with one as the special case of the
other. It was an open question whether subjectivity changes
the effects of dishonesty or unfair rating attacks. We compare
the difficulty of achieving strong unfair rating attacks in rating
with and without subjectivity, and find that the existence
of subjectivity makes attacks easier. We then introduce an
ordering of subjectivity, based on which we prove that higher
degree of subjectivity means being less robust against unfair
rating attacks.

Methods to mitigate the negative effect of subjectivity
on rating’s accuracy have been proposed. Since subjectivity
decreases robustness of rating systems, we study whether
these methods improve the robustness. The first method is for
advisors to rate individual features of a target (feature-based
rating) instead of only providing an overall rating. We compare
the restrictions that feature-based rating impose on achieving
ultimate attack to that of overall rating. We find feature-based
rating does not necessarily improve robustness compared to
overall rating, and may even worsen it. Clustering advisors
based on their behaviour is another way to discern subjectivity
difference. We alter the rating model to allow clustering, and
find that clustering increases expected information leakage
regardless of attackers’ strategies (and hence robustness).
There exist different ways to deal with clusters, e.g., excluding
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seemly dishonest clusters or exploiting all clusters. We find
that clusters should only be excluded in extreme cases.

Our main contribution is a formal way to measure the
amount of information a rating carries. Attackers can rate
in different ways, which affects how informative a rating is.
Our measure allows us to 1) compare the impact of different
attacks, 2) identify the circumstances under which an attacker
can eliminate all information, and 3) find the behaviour that
minimises the information. We first present a measure for ob-
jective rating, and then a more involved version for subjective
rating. Our measure allows us to formally reason about the
interplay between subjectivity and dishonesty, which has not
been done before. Furthermore, it also allows us to formally
reason about approaches that deal with both subjectivity and
dishonesty. In particular, we look at feature-based rating and
at clustering.

The work in this paper mainly consists of two parts. In
the first part, we study attacks where honest advisors are
assumed to be objective in rating – an essential scenario1.
We propose a probabilistic rating model and an information-
leakage based quantification method, as a basis of the study
on unfair rating attacks throughout the paper. We find the
worst-case attack strategies. In the second part, we study the
effects of attacks when honest advisors can be subjective in
any ways, emphasizing a comparison with the earlier results.
We also study whether the existing methods of dealing with
subjectivity would influence robustness against attacks.

II. RELATED WORK

We survey related approaches that solely deal with unfair
rating attacks, and also those that consider both dishonest
ratings and subjective ratings.

A. Dealing with Unfair Rating Attacks

Unfair rating attacks, also known as misleading feedback
attacks, reduce the accuracy of rating-based decision making.
They are among one of the most popular types of attacks in
trust and reputation systems [7]. Various approaches have been
proposed to diminish the effect of unfair rating attacks. Most
of them rely on estimation of the trustworthiness of advisors
(called recommender trust or feedback reputation) to judge
the quality of ratings. Typically, ratings are discounted/filtered
based on trustworthiness of advisors, before being aggregated.
Trustworthiness of advisors can be evaluated using different
considerations, e.g., advisor’s similarity with an advisee [8],
[9], [10], [11], the time of rating [12], [13], and the consistency
between previous ratings and the observed outcomes [14].

Similarity is a popular criterion for evaluation advisors and
their ratings. Weng et al. determine the credibility of an advisor
by measuring the statistical correlation between its ratings and
an advisee’s own experiences regarding the same targets [9]. A
local table is built for each advisor, to store their past ratings
and the advisee’s experiences. Ratings are weighted with the
advisors’ credibility values, which need to exceed a threshold
set by the advisee’s own confidence. In [8], Zhang and Cohen

1The work in this part has been published in [6].

propose to use both local and global ratings to estimate the
trustworthiness of an advisor. Whether a rating is local or
global is determined by whether it refers to the target under
evaluation or other targets in the system. For example, ratings
about other sellers from an advisor are useful when there are
few sellers with whom both the buyer and the advisor have
interacted. Liu et al. propose an approach called iCLUB [11],
where ratings are clustered based on their similarity. Advisors
whose ratings are in the same clusters with an advisee’s
ratings are considered reliable by the advisee. Ratings from
other advisors are considered as unfair and would be filtered.
Note that the clustering does not distinguish whether filtered
ratings are dishonest or subjective. Liu et al. also propose
to use Dempster-Shafer theory to combine information from
both local ratings and global ratings to identify trustworthy
advisors [10].

Alternatively, the time domain of rating can be employed.
In [12], Yang et al., propose to detect suspicious ratings and
also time intervals where attacks are more likely. The detection
results help decide in what degree advisors can be trusted.
Highly suspicious ratings are removed. In [15], a technique
called CUSUM [16] is employed to detect suspicious time
intervals where attacks very likely happen. To avoid mis-
takenly selecting normal but deviating ratings as suspicious,
the correlations among advisors are then learned to identify
which ratings are from colluding malicious advisors (which
are assumed to have large correlation). The Expectation Max-
imization algorithm and hypothesis test method are applied to
resist random and coordinated malicious rating attacks in [17].

Additionally, in [13], three aspects of rating behaviour are
considered to evaluate advisors: the time when ratings are
provided, similarity between an advisor and the advisee, and
also confidence of the advisor. For example, from the time
aspect, ratings provided more recently are considered to be
more reliable. From confidence aspect, ratings from a more
experienced advisor are considered to be more convincing.
Fuzzy logic is applied to fuse these three aspects. And finally,
in [14], Yu et al. propose a reinforcement-learning based
approach. An advisor’s trustworthiness is updated after each
interaction based on whether its ratings are consistent with the
actual observed behaviour of the rated target.

Accurate evaluation of advisors’ honesty is crucial when it is
the only criterion to assess ratings, but it is difficult to achieve.
If the evaluation mechanism is majority rule2, malicious ad-
visors can choose targets that are rated by only a few honest
advisors, and make their false ratings be the majority. In this
way, they can reduce the reputation of those honest advisors
and increase their own reputation, deceiving advisees. This
kind of behaviour is known as Reptrap attack [18]. In fact,
as we presented in our previous work [6], even if accurate
degrees of advisors’ honesty are given, trust models may still
perform poorly under strong attacks. Dishonest advisors can
pick strategies, some of which can be much more serious than
the others. It is insufficient to focus on only on whether an
advisor is honest, but to ignore their strategies. We aim to find
and study the most serious attack strategies.

2Ratings that belong to minority would be treated as unreliable.
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In approaches based on advisor reputation, ratings from dis-
honest advisors are usually discounted or filtered, possibly re-
sulting in a loss of useful information. Some approaches try to
make use of dishonest ratings. BLADE [19] and HABIT [20]
aim to extract useful information from (dishonest) ratings, as
long as there is statistical correlation between the ratings of
an advisor and the advisee’s own experience. For example, if
an advisor always rates with a negative bias for an advisee,
HABIT correct this bias when using his ratings. BLADE
records the correlation by building behaviour functions for
advisors, which serve to interpret their ratings. For instance, if
an advisor is detected to always badmouth a reputable seller,
his ratings would be reversed in the future. These approaches
indicate the importance of correlation between ratings and the
underlying facts. Regardless of the forms of attacks, if ratings
are sufficiently correlated with the facts, there can be a way
to uncover the truth. However, if there is little correlation,
the truth can hardly be learned. Based on this reasoning, we
propose to measure the impact of an attack by quantifying
how much information it provides about the truth. That means,
we do not use criteria such as some heuristic perceptions of
attacks3 or the direct effects of attacks on a specific system.
Our measurement is general and would not be confined to
specific systems.

Instead of judging the honesty of advisors before dealing
with their ratings, some approaches directly detect and filter
unfair ratings, using statistical methods for example. Weng et
al. propose an entropy-based method to measure the deviation
of ratings from an advisee’s own experience [21]. Ratings that
deviate too much are removed. This methodology is sometimes
called endogenous filtering, but it is a highly problematic ap-
proach [22] Alternatively, contextual information can be used
for filtering. For example, Wang et al. propose a detection-
based method for web service recommendation system [4].
They aim to identify malicious ratings and also find the
corresponding advisors’ IP addresses. These advisors would
then be refused to rate by the server.

Many defense mechanisms have assumptions about attack-
ers’ rating behaviour. For example, bad-mouthing4 and ballot-
stuffing attacks5 are the most popularly studied unfair rating
attacks. Sometimes, more complex attacks are analysed. Feng
et al. study three types of attacks, namely RepBad, RepSelf
and RepTrap [23]. Jiang et al. propose a trust model based
on evolutionary computation (named MET) to cope with four
types of attacks and their combinations [24]. Liu et al. study
attacks that come from a cyber competition where human
participants compete to break down a trust system [13]. To be
able to resist well-known attacks is useful, however, it cannot
ensure robustness faced with future attack strategies. In fact, to
assume attackers’ behavior makes defense passive, as attackers
can adapt their strategies, especially when they are aware of
the system design. With this in mind, we study from an active

3For example, some people may naturally think that it is the worst case if
advisors always lie.

4Dishonest advisors slander reputable targets, e.g., in collusion with other
targets to defame their competitors.

5Dishonest advisors provide untruthful positive ratings for a target, e.g.,
who bribed them to promote his reputation.

perspective – we want to figure out what would be the worst
case that attackers can cause. From a security view, a secure
(robust) system should be prepared for the worst-case attacks.

Finally, we note that instead of dealing with dishonest
rating, some approaches aim to disincentivise advisors to rate
dishonestly. Zhang et al., propose to reward reputable advisors
by making sellers provide products with lower prices but
increased quality [25] to them. In [26], a limited inventory
of each seller is considered, where buyers compete with each
other to get the purchase. Buyers that report truthful ratings are
assigned higher scores, making them have more opportunities
to transact with reputable sellers.

B. Dealing with Attacks under Subjective Rating

So far, when we use the term “unfair ratings”, we mean
ratings that are deliberately provided by strategic advisors. In
some works, “unfair ratings” refer to any ratings that indicate
divergent opinions with an advisee, even if the divergence
comes from the conflict interests or views between an honest
advisor and the advisee, e.g., subjective ratings [27]. Here,
we distinguish two kinds of ratings using different terms:
“subjective ratings” are from honest advisors with different
opinions, while “unfair ratings” still denotes ratings from
attackers.

Subjectivity is typically unavoidable in realistic rating sys-
tems. Both subjectivity and dishonesty may cause biased
ratings, impacting rating-based decision making. Considering
their analogous negative effect on the accuracy of ratings,
some researchers treat them equally without distinguishing the
motivations of advisors [27], [13], [9]. Some others propose
to differentiate subjective but honest advisors from dishonest
ones. In [28], Fang et al. propose to use a clustering scheme
for each advisee to identify his advisors as subjective or
dishonest. Advisors with similar subjectivity are clustered in
a same group. An advisee can make use of ratings from both
its subjective groups of advisors and also dishonest advisors’
groups, if the dishonest advisors have fixed behaviour pattern.
Noorian et al. propose a two-layer filtering approach where the
first layer excludes malicious advisors, and the second layer
discerns the dispositions of the remaining advisors [29].

Interestingly, subjectivity may change the nature of unfair
rating attacks. For example, Noorian et al. [30] consider an
attack based on using subjectivity, where dishonest advisors
disguise as honest-but-subjective. The effects of subjectivity
and dishonesty are not additive. Hence, we formally study
how subjectivity influences the robustness against dishonest
behaviour.

III. PRELIMINARIES

We briefly introduce some concepts from information the-
ory, which support our work throughout this paper.

Shannon entropy is used to measure the expected amount of
information carried in a random variable, which is determined
by the uncertainty of the random variable [31]:

Definition 1. (Shannon entropy) The Shannon entropy of a
discrete random variable X is given:

H(X) = E(I(X)) = −
∑

xi∈XP (xi) · log(P (xi))
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The Shannon entropy is maximal when all possible outcomes
are equiprobable. The base of the logarithm is set to 2, wlog.

Conditional entropy measures the expected amount of infor-
mation in one random variable when another random variable
is known [31]:

Definition 2. (Conditional entropy) The conditional entropy
of a discrete random variable X under Y is given as:

H(X|Y ) = −
∑

yj∈Y P (yj) ·
∑

xi∈Xf(P (xi|yj))

H(X|Y ) = H(X) iff X and Y are independent. For brevity,
we leave out the cases where only one of X and Y is
continuous. Note that 0≤H(X|Y )≤H(X).

Information leakage measures the gain of information about
one random variable when another random variable is known.
This definition coincides with mutual information [5]:

Definition 3. (Information leakage) The information leakage
of X under Y is given as:

H(X)−H(X|Y ) =
∑
x,y

p(x, y) · log
(
p(x, y)

p(x)p(y)

)
Only independent random variables do not leak information
about each other and vice versa:

Proposition 1. For any random variables X , Y : H(X) −
H(X|Y ) = 0 iff P (X) = P (X|Y ).

A crucial theorem for proving inequalities, is Jensen’s in-
equality [32]. Applied to probabilities, it states that the uniform
distribution has the lowest entropy, and that distributions closer
to the uniform distribution have lower entropy:

Theorem 1. (Jensen’s inequality) For a convex function f :

f

(∑
i ai · xi∑
i ai

)
≤
∑
i aif(xi)∑

i ai

Equality holds iff x1 = x2 = . . . = xn or f is linear. Two
instances of convex functions are x log x and − log(x).

We introduce some shorthand which will be used throughout
the paper. Given variable X , the lower-case x denotes one
of its outcomes, and moreover P (x) means P (X=x). ∀x
means for any x in X’s outcome set. We typically omit the
domain of such variables and, for example, write

∑
x to denote

the summation over all outcomes of X . Since x log(x) is a
common term, we introduce the shortcut f(x) = x log(x). For
practical reasons, we let f(0) = 0 log(0) = 0.

IV. QUANTIFYING ATTACKS UNDER OBJECTIVE RATING

In this section, we quantitatively study the effects (impact)
of unfair rating attacks. Specifically, we consider the scenario
where an arbitrarily selected advisor is rating a given subject.
One important aim is to find the worst-case attack strategies
that the advisor can undertake, for this specific rating. For now,
we assume that honest advisors’ ratings are objective, meaning
that they are equal to the observed facts. We do not assume
specific behaviour for attackers. The probabilistic rating model
we propose considers any possible degrees of honesty and
behavior of an arbitrary advisor, within the restriction of our
assumptions. The work in this section has been published
in [6].
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(b) Proper objective rating model

Fig. 1. Objective rating models with n options of observable facts and ratings.

A. Modeling Objective Rating

A rating process consists of an advisor who reports a rating,
based on his observation of a fact about the target under
evaluation, and an advisee who wants to use ratings to make
decisions regarding the target. Take an e-commerce system
as an example, a buyer can use ratings from other buyers
about, e.g., the quality of a product or the reliability of sellers
to decide whether to buy the product, or which seller to
choose. We consider a set-up with a single advisor in a single
rating. Random variables R and O represent the rating and
the observed fact behind the rating. The exact meaning of O
depends on the purpose of a system.

Consider a simple example, in rating whether an app is
malware or not, O has two outcomes “Yes/No”. Outcomes
of O are discrete and finite, which w.l.o.g. are labeled as
0, · · ·, n−1 (n>1). For now, we assume that options of rating
are the same as the possible outcomes of O6, which also
belong to the list 0, · · · , n−1. For an advisee, without R, O
is assumed to have maximum uncertainty, meaning its prior
distribution is uniform and H(O) = log(n).

We characterize an arbitrary advisor’s behaviour, consid-
ering both him being honest (with probability p, denoted as
H), and being dishonest (or strategic, with probability 1− p,
denoted as ¬H). The probability that an advisor is honest
can be interpreted in a Bayesian framework as representing
the knowledge of an advisee about the honesty of the advisor
in question. In a frequentist interpretation, the value p could
indicate that there is a population where a fraction of size p of
the advisors is honest, and 1−p is malicious, and we randomly
select an advisor from this population.

Given an observation O=i, an honest advisor always reports
the truth, i.e., P (R=i|O=i,H) = 1. How a dishonest advisor
rates can be characterized by the conditional probabilities of all
rating options, i.e., P (R=j|O=i), j∈{0, · · · , n−1}. All these
conditional probabilities form an n×n matrix denoted as α,
with αi,j=P (R=j|O=i) and

∑
j αi,j = 1. Subscript i, j also

denote the row and column index of the entry αi,j , with both
starting from 0. Whatever behaviour an attacker exhibits, there
exists a matrix α that describes it. Initially, we assume that
attackers will not tell the truth, i.e., ∀iαi,i = 0. This rating
set-up is the naive rating model, shown in Figure 1(a).

6There are a lot of rating systems that define fixed options of ratings, e.g.,
five-star rating systems provided by Tripadvisor and Amazon, scoring system
of Booking and Taobao.
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B. Ultimate Attacks

For an advisee, to deduce the truth behind a rating, the
rating needs to be correlated in some way to the observation.
If the rating is completely independent of the observation, then
there is no way to learn the truth. We name attacks which
cause this extreme case as ultimate attacks. The strategy to
achieve ultimate attacks in the naive rating model is provided
in Theorem 2:

Theorem 2. In the naive rating model, rating R is independent
of observation O iff p = 1

n and αi,j = 1
n−1 (i6=j).

Proof. If variables O and R are independent, then
P (R=j|O=j) = P (R=j|O=i), for all j, i∈{0, · · · , n−1}
and i6=j. The equation can be rewritten as p = (1−p)αi,j .
Since

∑
j αi,j=1, namely (n−1)p

1−p =1, we get p= 1
n and

αi,j=
1

n−1 . On the other hand, when p= 1
n and αi,j=

1
n−1 ,

P (R=j|O=i)= 1
n holds for all j, i, which implies the inde-

pendence between O and R.

Intuitively, we expect that lower values of p (more probably
an attacker) should make it easier to hide O. However,
Theorem 2 implies that when p≤ 1

n , the observation cannot
be perfectly hidden, whereas for p= 1

n , it can. Therefore, we
need to alter the naive rating model to accommodate for the
case p< 1

n .
When p< 1

n , the independence of O and R implies that∑
j 6=i αi,j<1, which is impossible in the naive rating model.

This is caused by the fact that the advisor is forced to lie if he
is strategical. Therefore, we must allow strategical/dishonest
advisors to report the truth with non-zero probability. In fact,
it is nature that strategical advisors may sometimes report the
truth, as part of the deceit. Consider a real-world scenario: in a
card game with only one Ace, King, Queen, the highest wins.
Alice asks her (dishonest) opponent Bob about what his card
is. If Bob always lies and when he states Queen, and Alice has
the King, Alice would know that Bob actually has the Ace.
Thus, as a strategical player, Bob should sometimes report the
truth to deceive Alice.

It is sometimes assumed that dishonesty implies not telling
the truth. The above argument establishes that not allowing at-
tackers to tell the truth would be a modelling error. Therefore,
we introduce an alternative rating option αj,j (e.g., α0,0 when
j = 0) for a dishonest advisor, as depicted in the proper rating
model in Figure 1(b). Now the strategy to achieve ultimate
attacks changes as follows:

Theorem 3. In the proper rating model in Figure 1(b),
rating R is independent of observation O iff p≤ 1

n and
αi,j=

p
1−p+αj,j .

Proof. If O and R are independent, then
∀{i, j}, i6=j, P (R=j|O=j)=P (R=j|O=i). The equation can
be rewritten as p+(1−p)αj,j=(1−p)αi,j or αi,j= p

1−p+αj,j .
Take i fixed, and sum over j, j 6=i on both sides, we
get 1−αi,i= (n−1)p

1−p +
∑
j 6=i αj,j . Since

∑
j αj,j≥0, we

get 1−np
1−p ≥0 and p≤ 1

n . On the other hand, if p≤ 1
n and

αi,j=
p

1−p+αj,j , P (R=j|O=i)=p+(1−p)αj,j holds for all
j, i, which means O and R are independent.

When
∑
j αj,j=0, we get αi,j= p

1−p . As
∑
j αi,j=1, we get

p= 1
n and αi,j=

1
n−1 , in which way Theorem 3 equals Theo-

rem 2. Note that
∑
j αj,j>0 may occur in ultimate attacks,

which implies dishonest advisors may sometimes report the
truth without leaking information.

It is common for trust and reputation systems, as well as
some security-related systems (e.g. blockchains []), to have
the precondition that at least half the participants are honest.
Theorem 3 suggests that this requirement may be too strong.
Theorem 3 indicates that R and O cannot be independent
when p> 1

n , which means that, for n>2 and 1
2>p>

1
n , in the

frequentist interpretation, even if the advisee selects an advisor
from a population that contains more attackers than honest
advisors, the advisee would still learn from the rating. The
larger n becomes, the larger the fraction of attackers in the
population is allowed to be.

C. Minimizing Information Leakage

Ultimate attacks are the worst-case attacks since an advisee
cannot learn anything about the truth. Although ultimate
attacks cannot be achieved when p> 1

n , some strategies should
still be better at hiding the observations than others. To capture
this, we quantitatively measure how much a rating is correlated
or dependent to the observation, using information leakage
(Definition 3 in Section III). The information leakage between
R and O measures how much information R provides about O.
There is 0 information leakage iff R and O are independent,
i.e., ultimate attacks. Less information R leaks implies that O
is hidden better. The impact of an attack can then be quantified
by information leakage. An attack has a larger impact than
another attack, when its information leakage is less.

Below, we aim to find the strategies with the largest impact,
for p> 1

n , namely the strategies that minimise the information
leakage. We may refer to these strategies as the worst-
case strategies. The attacker partially controls R given O,
so H(O|R) is variable, but H(O) is not controlled by the
attacker.

Definition 4. Level strategy is the strategy where: ∀j, αj,j = 0
and ∀i, i6=j, αi,j = 1

n−1 .

The level strategy minimises information leakage:

Theorem 4. For p ≥ 1
n , the level strategy minimises the

information leakage of O given R.

Proof. Let hj = p+(1− p)
∑
i αi,j for all i, j.

−H(O|R)=
∑

jP(R=yj)
∑

iP(O=xi|R=yj) logP(O=xi|R=yj)

=1 1

n

∑
j

(∑
i 6=j(1− p) · αi,j log(

(1− p) · αi,j
hj

)

+ (p+ (1− p)αj,j) log(
p+ (1− p)αj,j

hj
)
)

≥2 n− 1

n

∑
i
(1− p)(1− αi,i)

n− 1
log(

(1− p)(1− αi,i)
n− 1

)

+ (p+

∑
j(1− p) · αj,j

n
) · log(p+

∑
j(1− p) · αj,j

n
)

≥3 p · log(p) + (1− p) · log( 1− p
n− 1

)
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Inequality 2 is derived based on the Jensen’s inequality (The-
orem 1 in Section III). Inequality 3 is derived based on the
property that f(x) is superlinear and p ≥ 1

n .
Finally, note that applying the level strategy from Defi-

nition 4 to term 1 yields term 3. Hence, the level strategy
minimises information leakage. When p= 1

n , the level strategy
leads to zero information leakage, as proven in Theorem 2.

Now, we have found the worst-case attack strategies for
advisors with honesty degree p ∈ [0, 1]. Specifically, when p <
1
n , the strategy requires a dishonest advisor to report the truth
sometimes. When p ≥ 1

n , the strategy requires the advisor
to uniformly choose a dishonest rating. Moreover, ultimate
attack with zero information leakage can only be achieved
when p ≤ 1

n . An advisee can still get some information about
the truth when p > 1

n .
To illustrate our results, we plot the information leakage of

O in the worst-case attacks, as a variable of p (with n=3 and
n=10) and n (with p=0.2 and p=0.8), in Figure 2. The figure
shows that when p ≤ 1

n or n ≤ 1
p−1, the information leakage

is zero. And when the difference between p and 1
n increases,

the information leakage increases.
We have validated our information-theory based definition

of the worst-case unfair rating attacks in [6] (see “Robustness
Analysis” section). Three popular trust models BLADE [19],
TRAVOS [33] and MET [24] were used. We presented that
even when correct p values are provided, these models show
poor accuracy in trust evaluation under the worst-case attacks.
This is in line with our theoretical results: that when no
information exists in ratings (ultimate attacks), the truth cannot
be deduced, and when there exists minimal information (other
worst-case attacks), the truth may be derived if the strategies
are known (see ITC in [6]). In this paper, we do not present
these simulations, as we want to focus on our new studies in
Sections V and VI.

For attacks with non-zero amount of information, there
does not exist straightforward relation between the amount
of information leakage and the accuracy of trust evaluation,
or other types of decision making. This means that more
information leakage does not necessarily leads to more ac-
curate trust evaluation. Different models or mechanisms may
react differently to the same attack or attacks with the same
amount of information. For example, bad-mouthing ratings are
oppositely related to the truth (see their information leakage
in [34]). They are filtered in some approaches, but are made
use of in some others (see Section II). Models that are
designed against some specific types of attacks may show
lower accuracy under some other attacks, even if the latter
have more information leakage. Therefore, we do not build
explicit connection between the amount of information leakage
and the accuracy of decision making, but observe the fact
that information leakage puts an upper bound on the accuracy
that is achievable. The worst-case attacks result in the tightest
upper bound for accuracy. Hence, we argue that the worst-case
attacks should be considered when designing a secure system.

Fig. 2. The minimal information leakage of O varies with p and n (n > 1).

V. QUANTIFYING ATTACKS UNDER SUBJECTIVE RATING

In reality, the deviation of ratings from the observed facts
may not only come from dishonest intentions of advisors.
Given the same observation, different honest advisors may also
report different ratings. A very important reason here is that
their opinions regarding the observation are subjective7. Sub-
jectivity means “based on or influenced by personal feelings,
tastes, or opinions” (Oxford Dictionary). Different advisors
may have different subjectivity preferences. For example, they
may put emphasis on different features, either when grading a
target, or when suggesting an option. One honest user may rate
a site unsafe due to excessive advertisements, whereas another
honest user rates it safe, since it does not operate malware and
delivers the promised functionality. Even if they emphasize
the same features, they may have different expectations. In
the example, when two honest users both take amount of
advertisements as the criterion for safety, one user may find
it excessive and rate it unsafe, whereas the other may find it
acceptable and rate it safe.

Our interest in subjectivity is about to what extent honest
ratings determine how the advisee would observe the truth.
In the extreme case of the objective rating scenario from
Section IV, an honest rating determines the truth completely.
For example, if an honest advisor reports software as malware,
then it is malware, and the advisee considers it as malware. In
the subjective scenarios, there is no one-to-one link between
the two. For example, a hotel room can be “good enough” or
“not good enough” to an advisee, but advisors provide ratings
in the form of 1 to 5 stars. In this example, a low star rating
likely implies “not good enough” whereas a high star rating
likely implies “good enough”.

Subjectivity may reduce the usefulness of ratings. For
example, a positive honest rating about a clean hotel in a bad
neighbourhood may be found misleading by a user that cares
about location rather than cleanliness. Both subjective ratings
and dishonest ratings introduce inaccuracy. Some researchers
treat them the same without differentiating the underlying
motivation of advisors [13], [9], while some others orthog-
onally study them by distinguishing subjective advisors from
the dishonest ones [28]. However, it was an open question
whether (and if yes, how) subjectivity influences the effects
of unfair rating attacks. We formally study this issue in this
section.

7Discrimination by a target (where the target acts differently to different
advisors) may also cause diverse opinions, but discrimination would result in
different observations.
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(a) Subjective rating model.
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(b) Subject rating model distin-
guishing features (Sec. VI-A).

Fig. 3. Examples of subjective rating with 4 rating options.

A. Modelling Subjective Rating

Given an observation, various ratings may be chosen by
an honest but subjective advisor, not only the rating that
equals the observation. To include subjectivity, the proper
objective rating model (e.g., depicted in Figure 1(b)) needs
to be improved.

We still use notations p, α,O,R,H,¬H with the same
meaning as in the objective rating model. However, here
we allow ratings to have different amount of options as the
observations, with the outcomes of O/R being {0, · · · , no−1}
/ {0, · · · , nr−1}. We introduce an no×nr matrix σ to char-
acterize the rating behaviour of an honest advisor, with
σd,r=P (R=r|O=d,H). Subscript d, r also denote the row
and column index of the entry σd,r, with both starting
from 0. In the objective case, σ would be an identity ma-
trix. The probability of receiving r when the truth is o is
P (r|o) = P (r|o,H) · P (H|o) + P (r|o,¬H) · P (¬H|o) =
σo,r ·p+αo,r · (1−p). The matrix µ is defined as a shorthand
notation for P (R|O), with µo,r = σo,r · p + αo,r · (1 − p).
The prior distribution of O is assumed to be uniform, with
H(O)= log(no).

We formally define subjective rating as follows:

Definition 5. σ-subjective rating is a rating function
with fσ(o, α)(r) = p · σo,r + (1−p) · αo,r,
o∈{0, . . . , no−1}, r∈{0, . . . , nr−1}.

Function fσ defines how an advisor’s attributes p, σ, α decide
its behaviour – the link between R and O. Note that the
objective rating model in Figure 1(b) is a special case of fσ:
σ is an identity matrix I . We refer to it as fI , which is an
objective rating function.

A rating model for fσ is presented in Figure 3(a). There are
four outcomes of O. R also has four options. σ0,0 denotes the
conditional probability of an honest advisor reporting 0 when
0 is the observed fact.

In Figure 4, we depict 4 examples of σ matrices that define
the rating behaviour of honest advisors: σb, σc, σd and σe.
Recall that rows are values for O, and columns are values
for R. A value for O corresponds to the ground truth in the
objective rating model, but in the subjective rating model,
it corresponds to how the advisee would view the truth.
Also differently from the objective rating model, there is no
one-to-one correspondence between R and O e.g., r = 0
may correspond with both o=1 and o=2, and also they may
potentially mean different things . In our example, the two are
equinumerous.

σb =

∣∣∣∣∣∣
1.00 0.00 0.00
0.00 1.00 0.00
0.00 0.00 1.00

∣∣∣∣∣∣ σc =

∣∣∣∣∣∣
0.97 0.02 0.01
0.04 0.96 0.00
0.01 0.03 0.96

∣∣∣∣∣∣
σd =

∣∣∣∣∣∣
0.01 0.98 0.01
0.01 0.98 0.01
0.01 0.98 0.01

∣∣∣∣∣∣ σe =

∣∣∣∣∣∣
0.70 0.20 0.10
0.50 0.40 0.10
0.25 0.05 0.70

∣∣∣∣∣∣
Fig. 4. Several matrixes as examples

Matrix σb is the identity matrix, denoting objective rating.
Ratings and opinions correspond in σb. Even if they do not,
as long as an honest rating (R) completely determines what
the opinion of the advisee would be (O) e.g., r=2 determines
o=2, the rating is actually objective. Matrix σc is close to
matrix σb, signifying low subjectivity. Values of R determine
values of O to some degree, since for a given value of R,
there is one highly probable value for O (and two improbable
alternatives).

For matrix σd, the honest ratings do not determine the
would-be opinion of the advisee, since R probably equals 1,
in which case O is equally probably as 0, 1 or 2. Matrix σd is
considered to be highly subjective. A possible alternative view
would be to look at the extent to which the advisee’s view on
the truth (O) determines honest ratings (R), instead. Matrices
σb and σc remain (nearly) objective in this view. Matrix σd
could naively be considered less subjective than σc, since the
value of R is determined to probably be a specific value given
an o. However, the value of R cannot be determined by O
or vice versa, as they are independent (∀o, r, p(r)=p(r|o)). To
measure the extent to which the would-be opinion determines
the honest rating, we would have to normalise the probability
by dividing by the prior probability of the rating. Note that
since p(o|r) = p(r|o)

nop(r)
, meaning the conditional probabilities

p(o|r) for different o given a r are determined by the proba-
bilities in a column p(r|o), these two views actually coincide.

Matrices σb, σc and σd are unlikely to be the actual matrices
of advisors, as they are extreme cases. Matrix σe is a more
realistic example of a (highly) subjective rating matrix. If the
value of R is i, then the most probable value for O is also i.
Notice that the reverse is not true, since the advisor is most
likely to rate R = 0 whenever the advisee would have opinion
O = 1. Finally, the rating R = 1 weakly determines that O is
probably 1, but it strongly determines that O probably is not
2. In the model we define in Section V-D, we take this into
account when defining a partial order of subjectivity.

B. Information leakage

Use Definition 3 in Section III, we can compute information
leakage of subjective rating fσ:

Proposition 2. Given strategy α, the information leakage of
rating fσ is:

I(O;R) =
1

no

∑
o,r

µo,r log
noµo,r∑
o µo,r

Given fixed attack strategy α, if we change σ (i.e. the model
of the subjectivity of honest advisors), then the information
leakage typically changes. The amount of information leakage
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in ratings reflects the impact (or its effect on the system) of
the attack. Proposition 2 shows how subjectivity of honest
advisors influences the impact of attacks.

Conversely, given fixed subjectivity σ, is it possible for
attackers to find a strategy α such that no information is
leaked – ultimate attacks or the worst case for an advisee?
And if its possible, will there/and what would be conditions
for the values of p, no, nr, σ. We study these questions in
Section V-C. In particular, we will investigate whether sub-
jectivity changes the conditions for ultimate attacks compared
to objective rating. In Section V-D we quantitatively study the
relationship between the degree of subjectivity and the amount
of information leakage – quantitative robustness comparison.

C. Ultimate Attacks

According to the definition in Section IV, ultimate attacks
mean that there is zero information leakage of the observed
fact O. No matter how sophisticated a system can be, the rat-
ings are completely useless under ultimate attacks. Fortunately,
the circumstances wherein an attacker can perform an ultimate
attack are rare. Yet, for some settings it is rarer than others.
Hence, we can use the difficulty to perform an ultimate attack
as a proxy for the robustness of a system.

We can select α to get 0 information leakage for some
values of p, σ, formally:

Theorem 5. ∀o, r, let p<1 and σo∗,r = maxo σo,r. There
exists an attack strategy α, such that information leakage in
Proposition 2 equals 0 iff p ≤ 1∑

r σo∗,r
.

Proof. Subscript o∗, r denotes the row and column index of
the maximal element in column r of σ. Let αo∗,r (µo∗,r)
denotes the entry in α (µ) which has the same index. The
information leakage is zero iff O and R are independent, which
holds iff given an arbitrary r, P (r|o) equal for any o, includ-
ing o∗. This means pσo,r+(1−p)αo,r=pσo∗,r+(1−p)αo∗,r,
which can be rewritten as αo,r−αo∗,r= p

1−p (σo∗,r−σo,r).
For “only if”, remember that ∀o,

∑
r αo,r=1, hence

p
1−p

∑
r(σo∗,r−σo,r)+

∑
r αo∗,r=1. Note that

∑
r αo∗,r≥0

and also
∑
r(σo∗,r−σo,r)=

∑
r σo∗,r−1. Hence we get

p
1−p ·(

∑
r σo∗,r−1)≤1 and p≤ 1∑

r σo∗,r
. For “if”, we can sim-

ply set αo,r−αo∗,r= p
1−p (σo∗,r−σo,r).

To better illustrate Theorem 5, take σe in Figure 4 as an
example. The maximal entry in each column is 0.7, 0.4, 0.7
respectively. Suppose p=0.5≤ 1

0.7+0.4+0.7 , then there exists
an ultimate attack α. From the proof for the theorem, we
have

∑
r αo∗,r=1− p

1−p
∑
r(σo∗,r−σo,r)=2−

∑
r σo∗,r=0.2.

W.l.o.g, Let α0,0=0.2 and as a result α1,1=α2,2=0. Based
on αo,r−αo∗,r= p

1−p (σo∗,r−σo,r), we can get all entries of α,
e.g., α0,2=α1,2=0.6, a2,0=0.65.

Theorem 5 proves that it is possible for attackers to
completely hide information if there are enough of them
(1− p≥1− 1∑

r σo∗,r
), and the corresponding strategy depends

on the values of p, σ. There already exist methods to dis-
tinguish subjectivity preferences of honest advisors, e.g., by
clustering (as in [28] and [29]). Membership of a cluster
determines how probable certain subjective behaviours are.

The parameter σ characterises how probable certain actions
are, given the context. In order not to underestimate the power
of the attacker, we must assume that the attacker also has
access to p and σ. Furthermore, it is likely that the attacker
can arrive at the same result for p and σ, e.g. by performing the
same computations – assuming ratings are public knowledge.

It is obvious that 1∑
r σo∗,r

≥ 1
nr

, with equality only if all
σo∗,r equal 1. The identity matrix has all maximal elements
equal to 1, and thus, it is easy to see that this generalises the
results from Section IV. Even if there are not enough attackers
to perform an ultimate attack on an objective-rating system
( 1
nr
<p), there may be sufficiently many attackers to do so on

a system with subjectivity, namely when 1
nr

< p ≤ 1∑
r σo∗,r

.
The introduction of subjectivity makes it easier for attackers
to completely hide information, thus, leaving a system less
robust.

Further, o∗ in σo∗,r denotes the observation under which
reporting r is the most probable. The value of σo∗,r reflects
the subjectivity difference behind reporting r. The smaller
σo∗,r is, the more uniformly the values of σo,r are distributed
over o, and intuitively, the more probable that multiple o are
reported as the observation behind r, which indicates more
subjectivity difference. Theorem 5 implies that, with more
subjectivity difference, the amount of attackers necessary in
the population (from which we select our advisor) to make a
rating completely useless decreases.

We can compare the examples from Figure 4, and com-
pute what the probability needs to be that an advisor is an
attacker, in order for the attacker to be able to perform the
ultimate attack. For σb, it is p ≤ 1

1+1+1 ≈ 0.333; for σc,
p ≤ 1

0.97+0.96+0.96 ≈ 0.346; for σd, p ≤ 1
0.01+0.98+0.01 = 1;

and for σe, p ≤ 1
0.7+0.4+0.7 ≈ 0.556. In the case for σd, as O

and R are independent, attackers are even unnecessary to get
0 information.

D. Quantitative Robustness Comparison
Except ultimate attacks, we also want to investigate how

the impact of attacks changes with the increase/decrease of
the degree of subjectivity. First, we create an ordering of
subjectivity, to be able to say that one advisor is more
subjective than the other. Our ordering is not complete, so
when an advisor is more subjective in one aspect than another
advisor, but less so for another aspect, then the two advisors
may be incomparable.

We define the ordering on matrices σ, which describe
subjective rating behaviour, and take the natural extension to
rating functions: σ � σ′ iff fσ � fσ′ . There are some notions
that any reasonable subjectivity ordering of matrices must
have: 1) For σb, σc, σd, σe from Figure 4: σb � σc � σe � σd.
2) The relation must be reflexive and transitive (i.e. subjectivity
is a preorder). No anti-symmetry, since two different matrices
may be equally subjective. 3) An objective matrix Io

8 is an
maximal element (i.e. ∀σI � σ): reporting with the identity
matrix is objective reporting. 4) The uniform matrix U is
a supremum (i.e. ∀σσ � U ): rating and observation are
independent; honest ratings are unrelated to the truth.

8A matrix where every row and column has a single element equal to 1.
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The definition of subjectivity assumes a ranking (πi) of
which ratings are more appropriate for which observations,
in which case the more objective scenario should assign more
probability to more appropriate ratings. It may be the case that
some ratings are more likely to be provided a priori, which
can be corrected for by normalising the terms by dividing by
the prior probability. The prior probability is proportional to∑
i σi,j , which we denote as σj . Formally:

Definition 6. Let σ and σ′ be n× n subjectivity matrices. A
row σj is less subjective than σ′j , denoted σj 4 σ′j if there exist
permutation πj , s.t. π(σ)i,j and π(σ′)i,j are non-increasing
over i, and ∀0≤k<n

∑
0≤j<k

π(σ)i,j
σj

≥ π(σ′)i,j
σ′j

.
Then, a subjectivity matrix σ is less subjective than σ′, denoted
σ�σ′ when for all i, σi 4 σ′i.

The hard requirements for the Definition can be straightfor-
wardly proven, bearing in mind that normalised majorisation
is itself transitive, reflexive, has (1, 0, 0, . . . , 0) as supremum
and (1/n, . . . , 1/n) as infimum.

Proposition 3. The relationship � is reflexive and transitive,
and for all σ, I � s � U .

We rely on the observation that sometimes probability
mass can move from one value to another, whilst decreasing
information leakage:

Lemma 1. Given µi,j ≥ µj

n and µi,j′ ≤
µ′j
n , we can define

µ∗ equal to µ except at i, j and i, j′ where µi,j ≥ µ∗i,j ≥
µ∗j
n

and µi,j′ ≤ µ∗i,j′ ≤
µ∗
j′

n . Then I(O;Rµ) ≥ I(O;Rµ∗).

Proof. Jensens’ Inequality (Thm 1) gives:
∑
i
µi,j

n log
µi,j

µj

≥
∑
i

µ∗i,j
n log

µ∗i,j
µ∗j

and
∑
i

µi,j′

n log
µi,j′

µj
≥
∑
i

µ∗
i,j′

n log
µ∗
i,j′

µ∗
j′

.

For other j†, µi,j† = µ∗i,j† , so the remaining sums are:∑
i

µ
i,j†

n log
µ
i,j†

µ†j
=
∑
i

µ∗
i,j†

n log
µ∗
i,j†

µ∗
j†

.

Using the order of subjectivity of reporting, we can for-
malise the notion that increasingly subjective reporting makes
it easier for an attacker to decrease information leakage:

Theorem 6. For any ratings f � f ′, for any Rµ = f(O,α),
there ∃α′ such that Rµ′ = f ′(O,α′) with I(O;Rµ) ≥
I(O;Rµ′).

Proof. The ranking of the rows πi from Def 5 may not rank
the values of µ. Wlog, there exists α∗, s.t. µ∗ = pσ+(1−p)α∗

where πi ranks the values of
µ∗i,j
µ∗j

and I(O;Rµ) ≥ I(O;Rµ∗).
The α∗ can be obtained by applying Lemma 1 to move
probability from overly high ranked values to overly low
ranked values; since σ follows the ranking, the resulting µ∗

has the property that µ∗ − pσ ≥ 0 and thus α∗ = µ∗−pσ
1−p ≥ 0.

Remains to prove there exists µ′ s.t. I(O;Rµ∗) ≥
I(O;Rµ′). Let α† = µ∗−pσ′

1−p . Some values α†i,j may be
negative (meaning α† is invalid). For negative α†i,j , note that

since α∗ =
µ∗i,j−pσi,j

1−p is non-negative, σ′i,j > σi,j . Due the

majorisation property,
∑

1≤k<πi(j)
σi,k

σk
>
∑

1≤k<πi(j)

σ′i,k
σk

,

and since
µ∗i,j
µ∗j

respects the ranking,
∑

1≤k<πi(j)
µi,k

µk
>

∣∣∣∣∣∣
.485 .010 .505
.020 .480 .500
.015 .005 .98

∣∣∣∣∣∣
∣∣∣∣∣∣
.485 .260 .255
.270 .480 .250
.015 .005 .980

∣∣∣∣∣∣
∣∣∣∣∣∣
.485 .260 .255
.270 .480 .250
.125 .025 .850

∣∣∣∣∣∣
µ (IL: 0.478) µ∗ (IL: 0.441) µ′ (IL: 0.293)

Fig. 5. Three relevant matrices for applying Theorem 6 to σc and σe.

∑
1≤k<πi(j)

pσ′i,k
pσ′k

. Therefore, there exists j′ s.t. πi(j′) <

πi(j), and α†i,j′ > 0, so we can apply Lemma 1 to increase
µ†i,j (and decrease µ†i,j′ ), whenever α†i,j < 0. Hence, negative
values can be eliminated by applying Lemma 1, preserving
I(O;Rµ) ≥ I(O;Rµ′).

To illustrate the Theorem, say we want to prove that attacks
on σe can have more impact than on σc. So, given an arbitrary
attack on σc, there is a worse (or equal) attack on σe. Take, for
example, the attack where the attacker always rates option 2,
so αi,2 = 1. Let p = 1/2. Taking µ = pσc+(1−p)α (depicted
in Figure 5), we see that entries in µ are ranked differently
than in σc. By moving mass away from column 3 to columns 1
and 2 where appropriate, we obtain µ∗ (with lower information
leakage, due to Lemma 1). Note that µ∗i,j > p·(σc)i,j , so α∗ is
well-defined, but α† is not, since µ∗2,0 < p ·(σe)2,0 and µ∗2,1 <
p · (σe)2,1. Observe that µ′ is the result of moving probability
mass from 2, 2 to 2, 0 and 2, 1, and that µ′2,0 = p · (σe)2,0,
and α′ ≥ 0. Again, information leakage decreased.

VI. ROBUSTNESS OF EXISTING APPROACHES TO DEAL
WITH SUBJECTIVITY

We consider two types of ways proposed by system de-
signers to deal with subjectivity: feature-based rating, which
is popularly applied in reality to help resolve conflicting
emphasis on features in overall rating, and clustering advisors,
which is proposed in literature to distinguish advisors with
different subjectivity. These approaches aim to mitigate the
influence of subjectivity, so it is interesting to study whether
they improve the robustness against unfair rating attacks.

A. Feature-based rating

Feature-based rating refers to settings where advisors need
to rate each feature of an observation (or a target) instead of
providing an overall rating. For example, in Booking.com or
Expedia.com, consumers can score over multiple features of a
hotel after their accommodation, such as cleanliness, comfort,
location, facilities, staff and value for money. Compared with
overall rating, distinguishing features helps avoid subjective
ratings induced by different emphasis on features. Also, if all
ratings are honest, potential consumers are presented a more
comprehensive view of the hotel.

The rating function fσ modelled in Figure 3(a) does not
distinguish features, and we name it as overall subjective
rating function. The modelling of a feature-based rating can
be directly derived from fσ . To better illustrate this, we
first reformulate the modelling of fσ . There, O represents
an observation regarding a target, which contains all related
features of the observation that advisors care. We can split
all features into two groups regarding whether the advisee
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cares, with O′ and O′′ representing the group of features that
the advisee cares and does not care respectively.We assume
that cared features and uncared features are independent, i.e.,
O′⊥⊥O′′. Outcomes of O′ (or O′′) are the true values of the
corresponding features, e.g, the score of a hotel’s location.
The total number of outcomes of O′ (O′′) is denoted as nO′
(nO′′ ). As there are three variables in rating, 2D behaviour
matrices σ, α in overall rating now become 3D matrices with
dimensions nO′×nO′′×nr. Figure 3(b) presents the reformu-
lated subjective rating model. Specifically, σ0,1,3 means the
probability that an honest advisor reports 3 when he observes
0 for O′ and 1 for O′′.

The subjective rating behaviour regarding features O′ can
be characterized by conditional probabilities p(r|o′). Let
σo′,r = 1

nO′′

∑
O′′ σo′,o′′,r and αo′,r = 1

n′′O

∑
O′′ αo′,o′′,r.

Then, p(r|o′) =
∑
o′′ p(r, o

′′|o′) = p·σo′,r +(1−p)·αo′,r. The
information leakage of both O′ and O′′ is I(O′, O′′;R). An
advisee is interested in the information of O′: I(O′;R), which
is determined by σo′,r and αo′,r.

In a feature-based rating scenario, there are no uncared
features. Hence, only variables O′ and R remain in the
reformulated rating model (see Figure 3(b)). In this way,
the only difference between a feature-based rating and fσ in
Figure 3(a) is that variable O becomes O′. To be distinguished
from σo′,r, αo′,r in the reformulated model, we use ςo′,r and
βo′,r to characterize subjective and strategic behavior in a
feature-based rating respectively. ςo′,r and βo′,r determine
the information leakage of O′. Theorem 5 still holds: the
condition to achieve ultimate attacks in feature-based rating
is p < 1∑

r ςo∗,r
, ςo∗,r = maxo ςo,r.

According to the definition of information leakage, as long
as p(r|o′) remains the same for given any o′, which means
p·ςo′,r+(1−p)·βo′,r=p·σo′,r+(1−p)·αo′,r, the feature-based
rating would have the same amount of information leakage
compared with the overall rating. This implies that, when a
given overall rating framework is changed to a corresponding
feature-based rating framework, the information an advisee
can learn may remain the same. For instance, if subjectivity
differences over feature O′ remain unchanged, which means
∀o′, r, ςo′,r=σo′,r, then attackers can choose the same strategy
βo′,r=αo′,r to leak the same amount of information. By
choosing proper β, attackers may even cause less informa-
tion leakage in feature-based rating. For ultimate attacks,
if
∑
r ςo∗,r<

∑
r σo∗,r, the feature-based rating relaxes the

condition on achieving ultimate attacks.
In summary, although help reduce subjectivity induced by

different emphasis, feature-based rating does not necessarily
improves robustness compared with overall rating. Intuitively,
although subjectivity by different emphasis is reduced in
feature-based rating, subjectivity induced by various expecta-
tion gets re-distributed as every advisor is forced to consider
each feature separately. Hence, it is hard to judge whether
subjectivity difference becomes less in feature-based rating.

B. Clustering Advisors

Thus far, we have taken an approach where we use a single
matrix to model the subjectivity of all advisors. This is trivially

sufficient when reasoning about a single advisor, as we did in
Section V. There are two other cases where a single matrix is
sufficient to model subjectivity for all advisors: The first case
is the rather unrealistic case where all advisors have the same
subjective preferences. The second case is where we cannot
distinguish subjective preferences of different advisors.

While these three cases are interesting, they are insufficient.
Generally, we have multiple advisors with different behaviour
that we have some historical data about. Hence, in this section,
we introduce a model that help reason advisors with different
subjectivity matrices.

1) Modelling: To deal with the general case, we base
our analysis on the popular clustering approach [27], [28].
Therein, advisors are assigned to clusters based on their
(past) behaviour, and each cluster has their own behaviour
model. Not only can the subjectivity matrices differ from
cluster to cluster, we also allow p-value to differ, to model
clustering based on degree of honesty. Finally, we assume that
the attacker knows which cluster he is in. This implies that
his strategy matrix is chosen to minimise total information
leakage.

Assume there are k advisors in total, with Ri represents
the rating of ith advisor, and R=R0, . . . , Ri−1. Let there
be clusters c′, c†, . . . , with symbols ′, †, § denote associa-
tion to a cluster. R

′
refer to ratings generated by all k′

advisors in c′. Associated with cluster c′ is: probability of
its advisors’ honesty p′, subjectivity matrix σ′ and strategy
matrix α′. The random variable Ci dictates to which cluster
the ith advisor belongs, and C=C0, . . . , Ck. In other words,
p(ri|d,Ci=c′)=p′σ′+(1 − p′)α′=µ′. We use c′j to mean jth

advisor in cluster c′. Clustering is typically based on previous
behaviour of the advisors, and thus not related to what the
observed facts are; so C is independent of O.

2) Robustness of clustering: The crucial question is
whether clustering increases the robustness of the system,
which is the equivalent as whether clustering increases the
expected information leakage. Clustering indeed increases
expected information leakage, except in the case where C has
no impact on the relationship between O and R:

Theorem 7. I(O;R|C) ≥ I(O;R), with equality iff C and
O are conditionally independent under R.

Proof. First, note: I(O;R|C) = H(O|C)−H(O|R,C), and
I(O;R) = H(O)−H(O|R). Since O and C are independent,
it suffices to prove H(O|R,C) ≤ H(O|R). This is a known
property of conditional entropy, and equality holds only if C
and O are conditionally independent under R.

Therefore, clustering increases the expected information
leakage. No matter what the attacker’s behaviour is, more
information is expected after clustering. However, we strongly
conjecture that the benefits of clustering are even greater:
Clustering always outperforms not clustering.

A naive interpretation of the conjecture is that for all C,
I(O;R|C=c) ≥ I(O;R). Not only does Theorem 7 not
suffice to prove this version, it turns out to be false. As
a counter example, assume for one cluster c§ its σ§-matrix
has no information leakage – its a cluster where useless
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advisors are put in. There is a non-zero probability that all
advisors are put in this matrix, namely when the user is
unfortunate enough only to select useless advisors. In this case,
I(O;R|C=c)=0 < I(O;R). In the remainder of this section,
we will nuance our claim that clustering always outperforms
not clustering.

Intuitively, the reason the counterexample fails, is that
moving an advisor from one cluster to another changes the
expected behaviour of a randomly chosen advisor. It only
makes sense to compare a given clustering to a situation where
the expectation of the behaviour is the same. We introduce the
universal cluster for that purpose. The universal cluster, c§, has
the desired property that p(o|r, c§)=

∑
i
p(o|ri,ci)

k . Specifically,
let p§=p′k′

k +p†k†

k + . . . – so the universal p-value is simply the

averaged p-value. And, ∀o, r let σ§o,r=
k′p′σ′o,r
k′p′ +

k†p†σ†o,r
k†p†

+ . . .
– so each cell in the universal behaviour matrix is a weighted
average of the corresponding cells in the matrices of the clus-

ters. Similarly, ∀o, r let α§o,r=
k′(1−p′)α′o,r
k′(1−p′) +

k†(1−p†)α†f,d,r
k†(1−p†) +

. . . . Now, α§ may not minimise the information leakage for
the given p and σ. Let α$ be the attacker behaviour that
minimises information leakage. Then let c$ be the minimal
universal cluster, where p$=p§, σ$=σ§, but α$ is the matrix
that minimises I(O;R|c$)

Using the new terminology, we can express our conjecture
as I(O;R|c) ≥ I(O;R|c$). Note that it suffices to prove a
simpler inequality to prove the conjecture:

Proposition 4. Let c be c′0, . . . c
′
k′−1, c

†
k′ , . . . , c

†
k′+k†

, and c$

its minimised universal cluster. If H(O|R, c) ≤ H(O|R, c§)
then for any collection of clusters b, I(O;R|b)≥I(O;R|b$).

Proof. First, note that it suffices to prove for c§, since
I(O;R|c$) ≤ I(O;R|c§) by definition. Second, without loss
of generality, we reorder the list of advisors such that each
cluster’s advisors occur consecutively. Then, if we can prove
the proposition for two clusters, we can replace any pair of
clusters by its universal cluster, and inductively apply the
proposition. Remains to prove the proposition for two clusters:
If H(O|R, c) ≤ H(O|R, c§), then H(O) − H(O|R, c) ≥
H(O) − H(O|R, c§). Due to independence of O and C,
H(O|c)−H(O|R, c) ≥ H(O|c§)−H(O|R, c§), which suffices
to prove the proposition.

3) Whether to exclude clusters: We discussed the robust-
ness of clustering advisors. There exist various ways to deal
with clusters. Some researchers choose to exclude clusters
where the advisors are considered dishonest [29], while some
others propose to learn from clusters where advisors are even
strategic [28]. We study the impact of these different ways on
robustness.

Theorem 8 states that if a cluster provides no information
about O, then it does not impact the correlation between O
and other clusters.

Theorem 8. If R
′

is independent of O, then I(R†;O|R
′
) =

I(R†;O), also I(R†;O|R
′
, R§) = I(R†;O|R§).

Proof. I(R†;O|R
′
) =

∑
r
′ p(r

′
) · I(R†;O|r

′
)

=
∑
r
′

∑
r†

∑
o
p(o) · p(r†, r

′
|o) · log (p(r†|o)− p(r†|r

′
))

=1
∑
r
′

∑
r†

∑
o
p(o) · p(r†|d)p(r

′
) · log (p(r†|d)− p(r†))

= I(r†;O)

Equality 1 follows due to the independence between R
′

and O, and also conditional independence between R
′

and R†

given O. The second equality in the theorem can be proved
in the similar way.

The independence between R
′

and O means I(R
′
|O)=0.

Following immediately from Theorem 8, we get Corollary 1.

Corollary 1. If I(R
′
;O)=0, then I(R

′
, R†, R§;O) =

I(R†, R§;O).

Proof. Based on the chain rule of mutual information,
I(R

′
, R†, R§;O)=I(R

′
;O)+I(R†;O|R

′
)+(R§;O|R

′
, R†).

Considering I(R
′
;O)=0 and Theorem 8, the corollary can

be easily proved.

Corollary 1 implies if a cluster has no information about O,
then it can be completely excluded without making a user lose
any information. Remember the conditions for a cluster to have
0 information leakage is that the probability of advisors being
honest, p, needs to be below a threshold (Theorem 3 or 5).
The value p is a parameter of advisors. However, the value
is not obvious to an advisee, and clustering mechanisms may
not estimate p accurately. If a cluster is considered dishonest
and gets excluded, when its true p is above the threshold,
then a user loses useful information. Similarly, if a cluster
is considered very reliable, when its p is actually below the
threshold, then an advisee gets no information.

VII. CONCLUSION

In this paper, we proposed a quantitative measurement of
unfair rating attacks based on information theory. How much
information ratings provide about the truth determines the
impact of attacks. We studied the scenario that an arbitrary
advisor is rating a given subject. And we found the worst-
case strategies against a user – meaning causing the minimal
information leakage – that an individual attacker can undertake
in his rating.

We first considered the scenario where rating is assumed
to be objective. A probabilistic rating model was built to
reason about possible rating behaviour of an arbitrary advisor
who can have any degrees of honesty. We found that if we
select an advisor randomly from a population, that advisor
can hide the truth completely (perform the ultimate attack),
if the population contains at least n− 1 times more attackers
than honest users – where n is the number of rating options.
And some of them need to report the truth. Otherwise, the
truth can still be learned from the ratings even if more than
half of the advisors are strategic.

Considering that subjective rating is typically unavoidable in
reality, we then improved the proposed rating model in several
aspects: 1) given an observation, we allow honest advisors to
choose different ratings; 2) we allow the options of ratings to
be different from the options of observations; 3) we distinguish
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features of an observation that an advisee cares and does not
care about.

We found that the introduction of subjectivity makes it
easier for attackers to completely hide the truth. we also
introduced an ordering of subjectivity, and found that more
subjective rating makes a system less robust against unfair
rating attacks. Since subjectivity decreases robustness, we
studied whether existing methods of mitigating subjectivity
difference would improve robustness. Splitting ratings up,
such that individual features are rated does may mitigate
or exacerbate the problem. Clustering advisors with similar
subjective preference, however, improves robustness. Clusters
with sufficiently many attackers may be ignored or blocked
without consequence.
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