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Graphical abstract 

 

ABSTRACT 

Stroke is classified into two main groups depending on its aetiology; ischaemic stroke and 

haemorrhagic stroke which successively develop from the occlusion or rupture of an artery leading 

to the brain. Despite being the leading cause of human cerebral damage, there is currently no 

medical therapy for haemorrhagic stroke and thrombolysis with recombinant tissue plasminogen 

activator remains the only approved pharmacotherapy for ischaemic stroke. However, due to its 

short therapeutic window (first 4.5 h of stroke onset) and increased risk of haemorrhage beyond 

this point, globally each year less than 1% of patients receive this therapy. Since, endothelial 

dysfunction, associated with inflammation and vascular permeability, remains the key early event 

in the pathogenesis of stroke, endogenous element(s) capable of countering this defect may help 

maintain vascular homeostasis and explain the overt differences observed in patients’ functional 

outcome. Accumulating evidence indicate that bone marrow-derived endothelial progenitor cells 

(EPCs) equipped with an inherent capacity to repair endothelial damage and differentiate into few 

other cell lines represent one such element. Indeed, EPC-based cell therapy, backed by rigorous 

preclinical, translational and early proof-of-concept, safety and feasibility clinical studies, is now 

considered as an important novel therapeutic approach. However, several questions relating to 

optimal cell dosage, delivery route and immediate and sufficient availability of cells remain to be 

addressed before its efficacious translation to clinical practice. In this context, ex vivo expansion 
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of EPCs leading to an abundant generation of functional outgrowth endothelial cells offers a great 

opportunity to address these issues and create a novel off-the-shelf type of therapeutic product. 
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1. Introduction 

Stroke continues to be one of the leading causes of mortality and morbidity in the World. Each 

year, globally more than 15 million people suffer a first stroke, of these one-third die and another 

one-third are left permanently disabled [1, 2]. In the United Kingdom, about 100,000 people suffer 

a stroke each year, equating to one person every 5 minutes and there are over 1 million people 

living with mild to severe disability caused by stroke [3]. Although everyone, including children, 

are at risk of having a stroke, more than two third of the people affected are older than 65 years of 

age [4]. In addition to human suffering, the financial costs of stroke covering both direct (diagnosis 

and inpatient/outpatient care) and indirect (social benefit payments to patients, income loss, carer 

costs for home nursing) expenses are also very high and amount to ~£9 billion per year in the UK 

alone [5].   

    There are two main types of stroke, haemorrhagic and ischaemic. Haemorrhagic strokes stem 

from the leak or rupture of an artery within (intracerebral haemorrhage, ICH) or on the surface 

(subarachnoid haemorrhage, SAH) of the brain tissue. They constitute about 15% of all strokes in 

the Western World but account for much of the stroke-related mortalities [6]. Ischaemic strokes, 

on the other hand, make up about 85% of all strokes and derive from the occlusion of a blood 

vessel leading to or within the brain due to formation of an embolus (embolic strokes) or a 

thrombus (thrombotic strokes). Ischaemic strokes are further stratified into several subgroups due 

to aetiological differences, namely small-vessel disease, large-artery atherosclerosis, 

cardioembolic stroke and cryptogenic stroke [7].  

    A large number of modifiable and non-modifiable risk factors are associated with an elevated 

risk of stroke. While the modifiable risk factors include those emerging from life style choices and 

the environment, the non-modifiable risk factors encompass factors related to hereditary or natural 
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processes [8-10]. Figure 1 summarises some of these risk factors for stroke and the physiological 

functions compromised as a result.  

    Despite being the leading cause of human brain damage, there is currently no medical therapy 

for haemorrhagic stroke and thrombolysis with recombinant tissue plasminogen activator (rt-PA) 

remains the only approved pharmacotherapy for ischaemic stroke. However, given the short 

therapeutic window (within 4.5 h of stroke onset) and markedly enhanced risk of haemorrhage 

beyond this point, globally less than 1% of patients receive this therapy each year [11]. New 

therapeutic strategies including application of novel fibrinolytics (e.g. desmetoplase and 

tenecteplase), glycoprotein IIb/IIIa antagonists (e.g. tirofiban and abciximab) and interventional 

approaches comprising both mechanical thrombectomy (clot retrieval or suction) and disruption 

(intracranial angioplasty) may set to enhance the number of patients receiving reperfusive 

treatment [12]. 

    Naturally, the limited availability of therapeutic options coupled with higher mortality and 

morbidity have spurred stroke research community over the years to discover safer and more 

efficacious novel treatment regimens for stroke patients, particularly for those who are unsuitable 

for thrombolytic or interventional therapies. Intriguingly, despite showing tremendous success in 

experimental studies, none of the so-called therapeutic agents replicated the favourable effects in 

subsequent clinical trials. Reasons for such a fundamental failure are multifactorial and include 

mostly targeting specific pathways pertaining to recanalisation or excitotoxicity and the use of 

mainly young and healthy male animals subjected to middle cerebral artery occlusion (MCAo) in 

preclinical studies [13]. In contrast, stroke patients often suffer from various comorbidities like a 

prior ischaemic attack, display patho-clinical heterogeneity in relation to aetiology or affected 

arteries and routinely take several medications for various cardiovascular risk factors, notably 

hypertension and diabetes. Besides, to judge the efficacy of a given therapeutic compound, clinical 

trials assess the long-term neurological and functional parameters (≥90 day of stroke onset) while 

preclinical studies focus more on infarct or oedema volumes during early stages of stroke [14]. 
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    Given that cerebrovascular recovery accompanied by angiogenesis, neurogenesis and re-

endothelialisation is fast emerging as a powerful new concept for stroke therapy and also that many 

processes, other than excitotoxicity, such as excessive release of reactive oxygen species, 

increased availability of intracellular Ca2+, mitochondrial dysfunction, inflammation and apoptosis 

are spatially and temporally involved in the pathophysiology of stroke, it is important to discover 

and test new mediators that can simultaneously target several mechanisms, demonstrate long-term 

effects and can be used beyond the initial phases of stroke [15-21]. 

 

2. Endothelium and endothelial damage in stroke 

Endothelium covers the entire inner surface of all blood vessels whereby constitutes a 

multifunctional organ tasked with the regulation of vascular tone, thrombosis, angiogenesis, 

inflammatory status and the selective passage of molecules between peripheral circulation and the 

surrounding tissue. Endothelial dysfunction is deemed to exist when normal endothelial function 

can no longer be sustained either in the basal state or in response to any physical (e.g. flow), 

humoral (e.g. bradykinin), chemical (e.g. acetylcholine) or pathological (e.g. hypertension) stimuli 

[22, 23].  

    Endothelial dysfunction is consistently observed in patients with stroke and may be regarded as 

the key early event in development of arteriosclerotic disease and associated complications such 

as thrombus formation and plaque disruption. Besides, by promoting peripheral vascular resistance 

and thus accentuating hypertensive state, endothelial dysfunction also worsens neurological and 

functional deficits in stroke patients [23, 24]. Even in cases where endothelial dysfunction is not 

regarded as the primary insult, much of the secondary events affecting the overall severity and 

outcome of stroke appear to be of endothelial origin. Delayed cerebral ischaemia or vasospasm 

following SAH and coagulopathies, aneurysms or amyloid angiopathy preceding ICH are 

important examples for such secondary events [25, 26]. Furthermore, endothelial dysfunction also 

constitutes the first step in blood-brain barrier (BBB) dysfunction which is characterised by 
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disruption of the endothelial integrity and leakage of blood constituents into the brain parenchyma 

[27]. Since formation of brain oedema (specifically focal brain oedema after ischaemic stroke, 

global brain oedema after SAH and perihaematomal oedema after ICH) constitute the main cause 

of death or neurological deterioration after stroke, restoration of endothelial integrity and BBB 

function may be a very effective therapeutic strategy to mitigate stroke-related damage [25, 26]. 

Although endothelial maintenance after vessel injury is in part mediated by division and lateral 

migration of neighbouring endothelial cells, endothelial progenitor cells (EPCs) are thought to 

significantly contribute to this mending process [28]. 

 

3. Definition and identification of EPCs 

EPCs are described as a population of new cells released into peripheral blood by bone marrow to 

promote endothelial repair and neovasculogenesis in response to an ischaemic injury [29]. Flow 

cytometry, based on the multi-parameter analysis of single cells in a heterogeneous cell population 

through concurrent detection of various cell surface markers, is one of the most commonly used 

methodologies to identify EPCs in whole blood. However, the significant overlap of markers 

expressed on the surface of EPCs and haematopoietic cells makes it hard to accurately identify 

EPCs through this methodology [29-31]. Considering that EPCs possess embryonic angioblast-

like characteristics and are committed to differentiate into mature endothelial cells, employment 

of a panel of antibodies targeting markers for haematopoietic cells (CD45), immaturity (CD133), 

stemness (CD34) and endothelial maturity (KDR) may be the best option to detect all endothelial-

committed (CD34+CD133+KDR+CD45-, CD34+KDR+CD45- and CD133+KDR+CD45-) and  

undifferentiated (CD34+CD133+CD45-, CD34+CD45- and CD133+CD45-) EPCs (Fig. 2).  

    Fluorescence-activated cell sorting (FACS) is also frequently used to isolate EPCs (mainly 

CD34 expressing cells) from peripheral blood or bone marrow to permit their use in clinical trials. 

Although shown to promote revascularisation in various ischaemic events affecting the heart or 
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the brain, these CD34+ cell populations are likely to contain a large quantities of haematopoietic 

stem cells and mature endothelial cells rather than the actual progenitor cells [32, 33]. 

 

4. EPCs as potential biomarkers 

The resolution of oedema and neuro-inflammation that develop immediately after an ischaemic 

injury may in part explain the early functional recovery observed following stroke. However, 

considering that stroke is a non-progressive localised cerebral condition and patients with stroke 

go on to manifest different levels of disability or no disability at all, endogenous components such 

as EPCs may be of pivotal importance to repair neurovascular damage and help determine the 

extent of functional recovery, implying that variations in the level and functional capacity of EPCs 

may serve as clinical markers [34, 35]. Indeed, increasing number of preclinical and clinical studies 

have reported significant correlations between circulating EPC levels and the severity or outcome 

of various cardiovascular, malignant, metabolic or inflammatory disorders [36, 37]. However, the 

data on the extent and time course of EPC release in experimental and clinical ischaemic stroke 

remain limited and inconsistent. For example, while a significant increase in CD34+CD133+ EPC 

numbers has been reported within the first 24 hour of an acute ischaemic attack by Paczkowska et 

al, others have shown initially lower but steadily increasing numbers of CD133+KDR+ cells in 

similar patient groups compared to the healthy subjects. In the latter studies, the numbers of 

CD133+KDR+ were shown to peak at day 7 where higher numbers correlated to better outcome 

in patients with large-artery atherosclerosis and small-vessel disease at 3 months. Although the 

precise causes remain unknown, the initial decreases in EPC numbers after a cerebral ischaemic 

injury may be attributed to a reduced production, impaired mobilisation or diminished 

survivability [38-41].   

    Due to controversies regarding EPC counts, functional assays focusing on the migratory, 

proliferative, tubulogenic and clonogenic capacity of EPCs (alone or together with EPC counts) 

may serve as better biomarkers for the prognosis of stroke. Indeed, strong associations observed 
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between the impaired/diminished EPC function and the extent of infarct volume or post-stroke 

neurological recovery support this statement and indicate that unless translated into an elevation 

in functional capacity, increases in EPC number alone may not mean much in terms of 

functional or neurological recovery. In concordance with this hypothesis, increased function, 

but not number, of KDR+CD34+CD133+CD45+ cells led to higher endothelial differentiation 

and better vasculogenesis [42, 43]. 

    Similar to ischaemic stroke, variations in circulating number of EPCs are also reported in 

patients with SAH and those with cerebral aneurysm or arteriovenous malformations, two main 

causes of ICH [33, 44-46]. A recent study designed to investigate the influence of CD34+ EPCs 

on the outcome of ICH has shown that circulating levels of CD34+ cells at day 7 positively 

correlate with good functional outcome and negatively correlate with residual cavity volume at 3 

months [33]. Positive correlations were also observed between CD34+ cell numbers at day 7 and 

the serum levels of vascular endothelial growth factor (VEGF), angiopoietin-1, brain-derived 

neurotrophic factor and stromal cell-derived factor-1 (SDF-1), key factors that affect EPC 

number and function [33]. These findings suggest that CD34+ progenitor cells may participate in 

the functional recovery of ICH patients and serve as prognostic biomarkers for ICH and possibly 

haemorrhagic stroke in general.  

    It is important to remember that the comorbidities in stroke patients i.e. hypertension, diabetes, 

coronary artery disease and old age can markedly suppress the number and functional properties 

of EPCs [47-49]. By compromising the process of cell maturation, the comorbidities may also 

significantly increase the number of immature EPCs in the circulation and contribute to the 

pathogenesis of various occlusive arterial diseases [50].   

 

5. EPCs as therapeutics 

Failure of clinical trials to replicate positive results obtained in pre-clinical settings with a large 

number of compounds propose cell-based approaches, capable of responding to a temporally and 
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spatially changing environment after an ischaemic attack, as valid therapeutic alternatives for 

ischaemic stroke. Amongst all the cell-based approaches, EPC-based therapies attract a particular 

attention due to unique ability of these cells to detect and repair endothelial damage and to 

differentiate into few other cell lines (oligopotency) to promote post-stroke neurogenesis, 

angiogenesis and vasculogenesis. Despite these, several issues such as effective therapeutic dose 

and optimal delivery route are likely to affect the efficacy of EPCs in clinical practice [51]. 

    Administration of cells to the same individual who donated the cells (autologous therapy) or to 

an unrelated donor (allogeneic therapy) represents another important issue in EPC therapy. 

Naturally, treatments with autologous cells are thought to carry significantly diminished risk of 

immunological reactions, biological incompatibility and disease transmission. Indeed, intravenous 

injection of autologous EPCs has been shown to be safe and effective in a randomised, placebo-

controlled phase I/IIa trial performed with 18 patients with acute cerebral infarct affecting the 

middle cerebral artery territory. Compared to placebo-controlled group who received saline or 

autologous bone marrow stromal cells, EPC group developed fewer serious adverse events and 

there were no toxicity or allergic reactions in any treatment group during the 4 year follow-up 

period [52]. 

    Intriguingly, in most clinical studies probing the safety and efficacy of autologous stem cells in 

ischaemic stroke, bone marrow-derived or adipose tissue-derived mesenchymal cells have been 

used. While the remaining few studies focused on intracerebral or intra-arterial application of 

peripheral blood-derived or umbilical cord blood-derived haematopoietic stem cells, only 6 studies 

registered at the ClinicalTrials.gov (Table 1) have examined or continue to examine the therapeutic 

capacity or diagnostic and prognostic value of EPCs in ischaemic stroke patients [53, 54]. 

    Other phase I studies conducted with autologous bone marrow derived stem/progenitor cells 

(BMSCs) or MSCs have also proven the safety of these particular cells in patients with acute and 

subacute ischaemic stroke and reported no treatment-dependent tumorigenesis, thromboembolism 

and neurological deterioration during the follow-up period leading up to 5 years [60, 61]. 
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Moreover, intra-arterial infusion of autologous BMSCs to patients between days 5 and 9 of 

ischaemic stroke has been shown to improve their functional outcome as assessed by Barthel 

index. In a relevant study, intravenous infusion of autologous EPCs to MCAo rabbits also led to 

significant improvements in functional outcome and concomitant reductions in infarct size which 

positively correlated with a decline in apoptotic cell numbers and an increase in microvessel 

density in the area of ischemic boundary [63]. Contrary to these, despite confirming the safety of 

BMSCs administered between days 7 and 30, a randomised multicentre study (InveST study) 

failed to demonstrate any benefit on patients’ functional outcome at day 180 [62]. 

    Allogeneic cell therapy, involving transplantation of ex vivo expanded cells to an unrelated 

recipient, addresses the prompt and adequate availability of therapeutic cells. Although the risk of 

a possible immune reaction with an allogeneic approach may be concerning, discovery of the 

limited replicative potential of allogeneic cells in the host has somewhat dispelled these concerns 

[55, 56]. Revelation of equally safe and effective improvement of left ventricular ejection fraction 

in large animals with ischaemic heart disease by allogeneic and autologous approaches further 

strengthen the applicability of allogeneic cells in clinical settings, bearing in mind that the larger 

animal models often more closely mimic human neurological disorders and are therefore 

considered as a crucial stepping stone for effective therapeutic translation [55, 56, 64]. The 

findings of MultiStem trial showing greater tissue repair in acute ischaemic stroke patients at one 

year of receiving intravenously injected allogeneic cells further substantiate this notion and 

confirm the safety of this therapeutic approach [57]. Interestingly, adjunctive therapy with 

cyclosporine A to suppress immune reactions attenuated post-stroke cortical injury by promoting 

the activity and migration of resident neural stem cells and thus accentuated the beneficial effect 

of EPC-based therapy for stroke [58]. In contrast, immunosuppression by methylprednisolone or 

cyclosporine appeared to negatively affect the therapeutic role of allogeneic MSCs in treatment of 

spinal cord injury [59]. Although currently unknown, differences in cell types employed (EPCs vs 

MSCs) and in diseased tissue (brain vs spinal cord) may partly account for this dichotomy.     
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    Decreases in apoptosis and oxidative stress that markedly influence neuronal viability after an 

ischaemic injury may somewhat account for the therapeutic effectiveness of EPCs against neuronal 

degeneration. Indeed, diminished activity and expression of caspase-3 and Bax, a pro-apoptotic 

enzyme and a pro-apoptotic protein, respectively as well as inhibition of NF-κB, a transcription 

factor that regulates mechanisms affecting cell survival, cytokine production and oxidative stress, 

appear to modulate the EPC-mediated neuroprotection in MCAo rats [65]. Recovery of 

neurotransmitter activity, vascularisation of cerebral tissue and increases in expression and activity 

of Bcl-2 (an anti-apoptotic protein), superoxide dismutase and glutathione peroxidase (antioxidant 

enzymes) and glutathione (a non-enzymatic free radical scavenger) also contribute to EPC-

mediated attenuation of stroke-evoked cerebrovascular damage [65].  

 

6. Mechanisms responsible for regulating EPC number and behaviour 

A better understanding of molecular mechanisms regulating the release, availability, function and 

interaction of EPCs under physiological and ischaemic conditions is of paramount importance for 

the design, execution and management of an effective medical therapy aiming to deliver the 

infused cells to the affected organs in sufficient quantity and for sufficient period of time. Under 

physiological conditions, a small number of EPCs are constantly released into circulation by bone 

marrow. However, induction of a localised vascular or ischaemic injury triggers greater 

mobilisation and release of EPCs into peripheral blood through a complex mechanism involving 

the excessive release of VEGF. The discovery that EPC and VEGF serum levels peak in patients 

at day 7 after myocardial infarction and serum level of VEGF at 72 h may predict the increases in 

EPC level during the first week of ischaemic stroke substantiate the strong correlation between 

VEGF and EPC levels in ischaemic vascular disease [66, 67]. Progressive increases in serum 

VEGF and SDF-1a chemokine protein, levels were also observed in patients with ICH [33, 68]. 

As the binding of SDF-1 to CXC chemokine receptor 4 (CXCR4) on EPCs increases recruitment 

and adherence of EPCs to the ischaemic tissue, therapeutic strategies boosting the availability of 
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SDF-1 or CXCR4 has been of considerable benefit to potentiate vasculo-reparative role of EPCs 

in a mouse model of hind limb ischaemia and in db/db diabetic mice [69, 70]. Accumulating recent 

evidence implicate PI3K, serine/threonine kinase Akt and nitric oxide (NO) in SDF-1/CXCR4 

axis-mediated EPC activation and ensuing improvements in neuro-vascular integrity and function 

[70, 71]. 

    Oestrogen also intimately affects the EPC characteristics. Re-endothelialisation of carotid artery 

in ovariectomised mice injected with oestrogen supports the notion that this primary female sex 

hormone can effectively mobilise and direct EPCs to the site of vascular injury and provides further 

evidence as to why premenopausal women are better protected against vascular disease compared 

to similar age men and postmenopausal women. However, inability of oestrogen to restore 

endothelial integrity in eNOS-deficient mice proves endothelial NO synthase (eNOS) and its end-

product NO as important prerequisites for the adequate release or proper function of EPCs [72, 

73]. 

    Mobilisation and homing of sufficient numbers of injected EPCs to the site of vascular injury 

are also influenced by both physical factors (vascular structure, vascular density and flow rate) 

and differential expression of cell surface adhesion molecules, in particular intercellular adhesion 

molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), where chemotactic 

agents may help determine the final location of infused cells. Increased availability of cytokines, 

in particular interleukin-6 (IL-6) and granulocyte-macrophage colony-stimulating factor (GM-

CSF) also regulate EPC counts and behaviour after an acute ischaemic injury. For instance while 

specific binding of IL-6 to its receptor IL-6R (aka glycoprotein gp80) and then to a gp130 

transducing chain enhances adhesion, proliferation, migration and homing of EPCs after an acute 

cerebral ischaemia, GM-CSF-mediated increases in EPC accounts for the enhanced peripheral and 

myocardial neovascularisation as observed in rabbits with hind limb ischaemia and in rats with 

myocardial infarct, respectively [74-77]. 
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    Deficiencies in oxygen, glucose and trophic factor availability alongside a concomitant increase 

in release of reactive oxygen species during the acute phase of a cerebral ischaemic attack would 

undoubtedly adversely affect the survival and function of EPCs [89, 90] where regulation of anti- 

and pro-apoptotic protein expressions and growth factor activity (especially those of VEGF, brain-

derived neurotrophic factor and glial cell line-derived neurotrophic factor) may profoundly negate 

these deleterious effects [91, 92]. Preconditioning with hypoxia may also potentiate EPC survival 

and function in ischaemic settings as evidenced by markedly enhanced survivability and neuro-

angiogenic activity of hypoxia-exposed BMSCs in a rodent model of ischaemic stroke [93]. 

    The presence of apoptotic bodies at the site of vascular injury is also known to influence 

recruitment and reparative capacity of EPCs in a positive manner. Lodgement of substantially 

higher number of EPCs to the retinal lesions with apoptotic bodies corroborate these findings [78]. 

Considering that apoptotic cells significantly upregulate the expression of a wide range of 

cytokines (e.g. VEGF, IL-8, IL-6 and TNF- and adhesion molecules (e.g. ICAM, VCAM and 

E-selectin) on endothelial cells, it is reasonable to state that these proangiogenic cytokines, 

chemokines and adhesion molecules play a critical role in attracting EPCs to the damaged 

endothelium [78]. 

         

7. Mode of application of EPCs 

As the incidence of adverse effects and the quantity of cells delivered to the damaged brain regions 

may be greatly influenced by the mode of application, the optimal route to administer EPCs into 

recipients remains an important issue. Albeit technically possible to inject cells via intra-arterial, 

intranasal or intracerebral (stereotactic implantation) routes, intravenous route would be much 

preferable in clinical practice due to its less invasive nature and ease of use. However, the number 

of cells homing into the site of injury and partaking in the cerebrovascular repair process with this 

route may be particularly low owing to entrapment of most injected cells by organs (e.g. spleen 

and lungs) that filter the blood. Even so, manipulation of adhesion molecules on plasma membrane 
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may successfully direct and bind the remaining EPCs to the tissue of interest where concurrent 

application of agents, such as mannitol, that transiently increase BBB permeability to facilitate 

crossing into brain parenchyma may be of further benefit to increase EPC numbers in the affected 

neurovascular regions [79, 80]. Similarly, sorting of cells expressing specific surface antigens by 

FACS may improve homing of cells to the desired locations, for instance, neural stem cells sorted 

for surface integrin CD49d has been shown to readily detect and bind to the area of stroke and 

improve behavioural recovery in mice [81].  

    Despite bypassing pulmonary circulation and thus ensuring that a substantial number of EPCs 

reach ischaemic brain to potentiate angiogenesis, intra-arterial delivery is inherently associated 

with an elevated risk of arterial occlusion, micro-embolism and stroke. Besides, observation of 

similar rates of functional recovery prompted by intravenous and intra-arterial delivery of 

autologous bone marrow mononuclear cells after acute ischemic stroke cast a doubt on the 

selection of arterial route [82, 83]. 

    Intracerebral injection or stereotactic implantation of EPCs directly to the site of cerebral injury 

may be the most effective method to attenuate neurovascular damage. A randomised, single blind 

controlled study performed with autologous CD34+ EPCs (3-8x106 cells) in a cohort of 30 patients 

with middle cerebral artery infarction has proven the feasibility of this route. Absence of severe 

adverse events alongside the significant improvements determined in neurological and functional 

outcomes by European Stroke Scale, National Institute of Health Stroke Scale (NIHSS) and 

modified Rankin Scale (mRS) at the end of the 12-month follow-up period prove the safety of this 

route [84]. Nonetheless, issues pertaining to repeatability and invasiveness make the routine use 

of this route rather difficult.  

    A non-invasive but brain-specific delivery of EPCs by intranasal route represents another 

therapeutic possibility. Mesenchymal Stem Cells (MSCs) or nerve growth factor administered 

through this route has been shown to improve post-stroke neurovascular regeneration, 

angiogenesis and functional recovery in mice and rodents [85-87].  Intranasal delivery is a simple 
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method that can be readily repeated and has the advantage of bypassing the BBB entirely. 

However, bearing in mind the anatomical differences between animal and human nasal epithelia, 

further research addressing the specific concerns, regarding the time frame, the behaviour of EPC 

at the site of delivery, the migratory pathways involved (olfactory nerve vs trigeminal nerve) and 

the overall efficacy of this route, is required before moving to clinical settings [88].   

 

8. Current concerns associated with EPC treatment 

As indicated above, mobilisation and homing of injected EPCs to the site of vascular injury in 

sufficient numbers constitute two of the main concerns associated with EPC-based treatments. 

Successful tracking of cells in vivo also remain an unresolved critical issue. Although many agents 

such as iron containing agents, magnetodendrimers, fluorescent proteins and paramagnetic 

particles (e.g. Gd-DTPA) can be used to track cells in vivo by MRI, various advantages and 

disadvantages pertaining to labelling rates, toxicity, sensitivity and production are documented 

with each agent. For instance, magnetodendrimers require specialised technical skills to 

manufacture, paramagnetic substances adversely affect cellular functionality while labelling 

methods rely on endocytosis or lipofectamine yield notoriously low-labelling rates [65, 94-96]. 

Indeed, the application of microbeads and quantum-dot-based nanoparticles appears to be superior 

to flow cytometry in assessing the active changes in the quantitative and functional aspects of 

EPCs under ischaemic or inflammatory conditions through analysis of microvesicles secreted from 

EPCs. Furthermore, Dex-DOTA-Gd3+ and 111In-oxine radioactive markers have been used in other 

studies to monitor the fate of transplanted EPCs or to examine their survival period in different 

models of ischaemic injury including rat cerebral and hind limb ischemia [35, 97, 98]. 

    Although many clinical studies demonstrate the safety and feasibility of stem cell therapy for 

stroke and report the absence of an association between cell-based treatments and the development 

of acute infusional toxicity, organ system complications, mortality, infection or malignancy, the 

possibility of elevated rates of mortality or cerebral haemorrhage due to maladaptive angiogenesis 
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triggered by comorbidities should always be taken into consideration throughout the therapy [35, 

47, 48, 99]. 

 

9. Outgrowth Endothelial Cells 

Cell culture, based on adhesion of cells to specific substrates, namely fibrinogen or collagen, prior 

to culture in endothelial cell specific media supplemented with foetal bovine serum and all the 

necessary growth factors (fibroblast growth factor, VEGF, insulin-like growth factor, etc), 

hormones (hydrocortisone), ascorbic acid and heparin is considered as the best methodology to 

obtain a large number of homogeneous EPCs [100]. This in vitro approach generates two 

morphologically and functionally distinct EPC subtypes, early EPCs (eEPCs) and outgrowth 

endothelial cells (OECs). Early EPCs possess spindle-shaped morphology, appear first in cultures 

and do not exhibit typical endothelial characteristics e.g. do not form adherens junctions [101]. 

Even so, current data suggest that eEPCs may contribute to process of endothelialisation and 

vasculogenesis by secreting several vasoactive substances including cytokines, NO and SDF-1 

[102, 103].  In contrast, OECs appear later in culture (14-28 days after seeding) and as shown in 

figure 2 display typical endothelial cell appearance i.e. cobblestone morphology, form palisading 

colonies and possess tubulogenic capacity [101, 104]. They also possess higher proliferative and 

migrational capacities and continue to express progenitor cell markers, CD34 and CD133 which 

collectively indicate that OECs constitute a separate cell line and are not circulating endothelial 

cells that simply shed from the vascular wall [101, 105].   

 

10. OECs as therapeutics 

As indicated above, EPCs have the physiological features to preserve vascular homeostasis in post-

ischaemic settings through neovascularisation and repair of the injured endothelium. However, the 

limited availability of true EPCs in peripheral blood compromises their therapeutic capacity and 

necessitates ex vivo expansion to produce large quantities of homogenous cells, i.e. OECs that can 
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be used immediately or cryopreserved for future use. Since, OECs display limited replicative 

potential in vivo, they are recognised as safe therapeutic components [106] and since they are able 

to detect and home into host endothelium in vivo, they are also recognised as efficacious 

therapeutic components. Indeed, human OECs administered into a murine model of retinal 

ischaemia by intra-vitreous injection have been shown to incorporate into the resident vasculature 

within 72 h of injection where they increase normal retinal vasculature, decrease avascular areas 

and suppress pathological pre-retinal neovascularisation [105]. Again, through direct 

incorporation into the host endothelium, OECs have been shown to significantly improve cardiac 

function in a porcine model of acute myocardial infarction [107]. Similarly, OECs injected into 

the systemic circulation of NOD/SCID mice have been shown to lodge and survive in nine 

different vascular beds such as gut, heart, liver, lung, spleen and bone marrow for up to 7 months 

with no ill effects such as thrombosis or infarcts [108]. Taken together, these findings imply that, 

in addition to being safe and feasible, treatments with OECs are also instrumental in evoking 

functional benefits [105-109]. Indeed, through direct participation in re-endothelialisation process, 

OECs attenuate endothelial dysfunction and promote cerebral angiogenesis and vasculogenesis 

which collectively diminish infarct volume and neurological deficits in settings of acute ischaemic 

stroke [104, 109]. Suppression of inflammatory responses and the regulation of migratory and 

proliferative features of vascular smooth muscle cells to mitigate neointimal hyperplasia may 

represent other pathways involved in the neuro-vascular benefits realised by OEC-based treatment 

regimens [110-112]. 

    The reparative function of OECs expanded for therapeutic purposes are likely to be affected by 

the physio-pathological status of the individuals who donate them. It is reasonable to assume that 

OECs obtained from younger and healthy donors may display better functional capacity compared 

to those obtained from elderly donors or patients with acute or chronic illnesses. Contrary to this 

assumption, the hitherto collected data of our ongoing clinical trial demonstrate that EPCs obtained 

from the peripheral blood of elderly patients with lacunar or cortical stroke establish higher number 
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of colonies and functional OECs than those obtained from young (18-64 years of age) or elderly 

(≥65 years old) healthy volunteers [113]. Greater attenuation of cerebral ischaemic damage in 

experimental models treated with BMSCs obtained from stroke rats supports the notion that 

previous exposure to ischaemia profoundly augment the neurovascular restorative capacity of 

OECs [114, 115]. In concordance with these findings, hypoxia-exposed cells produced better 

angiogenic responses in rats subjected to unilateral hind limb ischaemia. Similarly, exposure of 

healthy volunteer EPCs to hypoxia in in vitro conditions promote their differentiation and as a 

consequence improve their vasculogenic capacity [29, 116]. In this context, manifestation of 

higher tubulogenic capacity by OECs obtained specifically from subacute stroke patients denotes 

that both EPC characteristics and the characteristics of the intrinsic factors that modulate them 

may oscillate in a time-dependent fashion after an ischaemic event [29]. By repeated sampling 

from the same patients enrolled for the study, we are currently investigating whether EPC levels 

and functional aspects correlate with the bioavailability of major growth factors (e.g. VEGF and 

PDGF-BB), inflammatory cytokines or chemokines (e.g. TNF-, GM-CSF and IL-12), anti-

angiogenic elements (endostatin, angiostatin and thrombospondin-1) and total anti-oxidant 

capacity during acute, subacute and chronic phases of stroke [113]. Present data imply that 

transplantation of OECs during the subacute phase of stroke may be the most effective therapeutic 

approach and a shift in ischaemic status may dramatically accentuate or attenuate their function.  

    The quantity of blood sample, the presence of comorbidities and the nature of routinely taken 

medicines invariably influence the success of OEC isolation and the number of OECs obtained. 

For instance, while diabetics are bound to have fewer number of EPCs, those individuals taking 

statins will have considerably higher EPC numbers [117-119]. Furthermore, the tissue or 

haematological source of OECs may also greatly influence their function in that OECs originate 

from cord blood display longer life spans and shorter doubling times in culture and therefore reveal 

higher proliferative potential than those originate from adult peripheral blood [120]. Moreover, 

they also display greater capacity to form vascular networks and are safely stored in cryobanks 
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with no alterations to their growth potential, phenotype, and karyotype. Nevertheless, ex vivo 

expansion of cord blood-derived outgrowth endothelial progenitor cells on clinical scale elicits 

high incidence of karyotype aberrations [121].  

    In addition to being efficacious therapeutics in their own right, OECs may also act as important 

carriers for gene therapy. The tissue in which the cells settle may dramatically impact the efficacy 

of both OEC alone-based approaches and gene therapies. This is because some vascular beds 

provide better microenvironments for the long-term maintenance and proliferation of OECs to 

which various structural and physiological factors such as shear stress, flow rate and the varied 

availability of cell-surface adhesion molecules and the chemotactic agents are likely to contribute. 

Even so, only few studies have probed whether progenitor cells specifically target the organs to 

home to or simply land and proliferate in microenvironments that are conducive for this. 

Investigation of the homing pattern of human OECs in NOD/SCID mice has shown that despite 

lodging mostly in mouse lungs at 3 h, the distribution of cells by 24 h was similar across 9 organs 

studied, including the heart, liver, lung and spleen where OECs continued to expand up to 7 months 

without causing any noticeable side effects such as organ toxicity [108]. It is of note that pre-

treatment of mice with specific antibodies for E-selectin, P-selectin or anti-4 integrin prior to 

OEC injection significantly reduced the number of OECs in lungs at 3 h and OECs from older 

cultures expanded equally well in vivo as younger OECs [108]. 

    It is expected that therapeutic approaches designed to enhance the survival and engraftment of 

OECs would substantially augment the efficacy of gene therapy. Observation of significantly 

reduced infarct size and the increased vascularisation in the damaged myocardial region of animals 

injected with cardiac progenitor cells overexpressing Pim-1, a cardio-protective kinase capable of 

enhancing cell survival and proliferation, corroborate this hypothesis [122, 123]. These functional 

benefits coupled with the greater levels of cellular engraftment lasting up to 32 weeks confirm that 

enhancement of cellular survival, proliferation and regeneration by ex vivo gene delivery can 
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successfully address some of the limitations associated with cell-based therapeutic approaches 

[122].  

    As stem cells derived from separate biological sources play distinct therapeutic roles, it is 

possible that co-transplantation of OECs with different stem cells may enhance their therapeutic 

effects in stroke patients [131]. A recent study comparing the neurological impact of neural 

stem/progenitor cell (NSPC) and MSC co-transplantation in 8 patients with ischemic stroke has 

shown that both patients receiving either 4 intravenous injections of MSCs (0.5x106/kg body 

weight) or one intravenous injection of MSCs 0.5x106/kg body weight followed by three injections 

of MSCs at 5x106/patient and NSPCs at 6x106/patient through the cerebellomedullary cistern had 

significant improvements in neurological functions and daily living abilities with no sign of 

tumourigenesis during the 2-year follow-up period. Albeit important in demonstrating NSPC and 

MSC co-transplantation as an important therapeutic option to improve neurological outcome, 

further studies with larger sample size, longer follow-up periods and control groups are required 

to confirm these findings [131]. However, studies reporting elevated survival or reduced 

tumourigenesis rates achieved by co-transplantation of NSPCs with adipose tissue-derived stem 

cells and co-transplantation of bone marrow-derived stromal cells with embryonic stem cells 

already exist [132, 133]. Application of OECs with a non-stem cell substrate may also increase 

their longevity and restorative capacity. Increased survival of bone marrow-derived stromal cells 

co-administered with growth factors that provide a scaffold for cell adherence serves as a good 

example to this type of combinatory approach [134]. Although therapies combining OECs with 

other stem cells or non-stem cell substrates remain to be carried out, the idea to improve stem cell 

survival while attenuating an array of adverse events may be a norm in the future. 

    Given that cell-based therapies are potentially associated with various adverse effects including 

tumour formation or immunological reactions, cell-based but cell-free strategies may also be 

considered in regenerative stroke medicine. Indeed, paracrine factors secreted by EPCs/OECs 

could initiate, modulate and potentiate neuro-angiogenesis after an ischemic insult [135]. An 
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experimental study investigating this particular question in a mouse model of permanent focal 

cerebral ischemia has shown that injection of both EPCs or cell-free EPC conditioned media one 

day after stroke equally enhances peri-infarct capillary density and functional outcome (assessed 

by forelimb strength test) at 2 weeks after stroke [136]. In accordance with these findings, both 

bone marrow-derived autologous OECs and conditioned media obtained from their culture 

inhibited proliferation and migration of vascular smooth muscle cells in vitro and regulated their 

arrangement [110]. Transfusion of OECs soon after an injury into rabbit ear canal artery in this 

study abated increases in intimal layer by mitigating the early inflammatory and angiogenic 

responses [110]. 

 

 

11. OEC senescence and functional aspects 

Safe and efficient ex vivo expansion of EPCs from single figures to hundreds of millions is a 

lengthy process requiring several weeks and an important prerequisite for their therapeutic 

application. Shortly after their in vivo administration, OECs, due to their limited replicative 

potential, go into senescence and display the typical signs of ageing i.e. telomere shortening and 

low telomerase activity [106]. Albeit useful in minimising the risk of tumourigenesis, OEC 

senescence is also associated with functional impairment. Hence, effective modulation of 

mechanisms involved in this process can both extend OECs’ therapeutic window and accentuate 

their reparative potential. Indeed, silencing one of the proven modulators of OEC senescence, 

namely IL-8 by shRNA delayed OEC ageing and as a result enhanced their proliferative and 

vasculoreparative capacity [106]. In agreement with this finding, knocking down of the IL-8 

receptor beta (IL-8RB) has also alleviated both replicative and oncogene-induced senescence in 

fibroblasts [124].  

    A substantial body of evidence indicates that oxidative stress can also induce the ageing process 

in endothelial cells where an association between oxidative stress, accelerated telomere shortening 

and senescence is demonstrated through studies manipulating the intracellular redox state via a 
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vitamin C analogue, homocysteine or glutathione [125-127]. Although NO is thought to counteract 

endothelial cell senescence by concomitantly stimulating telomerase activity and reducing 

telomere erosion,  experiments using pharmacological tools (e.g. NO donors and NOS inhibitors) 

or silencing RNA technology to manipulate NO levels showed no effect on telomerase activity, 

cellular replicative capacity or the accumulation of senescent cells [128-130].  

 

12. Issues to consider while designing future clinical trials 

Accumulating data from phase I and II studies suggest EPC-based treatments as efficacious 

options for ischaemic stroke. Although the reduced risk of rejection may advocate selection of 

autologous cells for the so-called safer therapy, the limited availability of EPCs in biological 

niches such as peripheral blood and bone marrow seriously hinders their sufficient isolation and 

thus rules out their application as autologous therapeutics for acute ischaemic stroke. Considering 

the apparent lack of HLA-class II antigens on allogeneic cells and therefore the reduced likelihood 

of antigen-specific immune reactions, EPCs can be safely expanded ex vivo and used as allogeneic 

therapeutics [137, 138]. However, the requirement for a subsequent OEC infusion and patients’ 

tolerance to repeat dosing need to be taken into consideration while contemplating treatments with 

allogeneic cells and administration of cells from a different donor may be necessary to avoid 

anamnestic reaction [56]. Larger randomised clinical trials closely monitoring the long-term 

immunological profile of participants treated with allogeneic OECs would produce the rigorous 

clinical evidence required for transforming these cells to an off-the-shelf type of therapeutics for 

the treatment of ischaemic stroke. 

    It is evident from the literature that the availability of relevant previous preclinical and clinical 

data, patients’ characteristics (type, severity and phase of stroke), clinical question posed (e.g. 

testing safety vs efficacy of cells), mode of delivery as well as the purity and quantity of isolated 

or expanded cells will shape the design of future clinical trials. For example, intra-arterial and 

intravenous administration of cells during early stages (acute to subacute) of stroke is carried out 
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to attenuate acute tissue injury [110-112, 135] while targeted intracerebral administration of cells 

during chronic stages of stroke is performed to enhance vasculogenesis and neurogenesis through 

direct engraftment to the brain tissue [84]. Unlike experimental stroke where lesions consistent in 

size and location are generated by a reasonably well-controlled occlusion of a cerebral artery, 

substantial inter-individual variations in size and distribution of stroke lesions exist in humans. 

These inevitably affect patients’ selection for certain trials, particularly those involving stereotactic 

implantation of cells. 

    The mode of delivery will also affect the possibility of blinding participants or researchers to 

specific treatments. For instance, due to potential hazards associated with intra-arterial and intra-

cerebral routes, recruitment of healthy volunteers as study controls may not be adequately justified. 

Instead, serial neuro-radiological assessments covering pre-treatment, intra-treatment and post-

treatment periods may be considered to reduce both intra-individual and inter-individual variance. 

In fact, intracerebral injection during the acute phase of stroke may even be counterproductive 

considering that changes in neuro-inflammatory events, lesion size and oedema volume continue 

to occur throughout the earlier phase of the disease. Administration of OECs through an alternative 

route during acute stroke, on the other hand, would help inhibit the initial steps of the ischaemic 

cascade, augment neurovascular protection and allow assessment of neurological and functional 

recovery using a set of valid and reliable clinical scales such as NIHSS, mRS or Barthel Index.  

    In addition to administration of OECs, future studies should also focus on development of novel 

agents or approaches that can mobilise and integrate endogenous EPCs into new or pre-existing 

vessels to help post-stroke cerebral regeneration. Discovery of reliable biomarkers pinpointing the 

endothelial cell or BBB damage and highlighting the involvement of EPCs in neurovascular repair 

after stroke would be of great help in the diagnosis and management of stroke. As in vivo and in 

vitro hypoxia appear to precondition OECs to the microenvironment of the infarcted tissue (brain), 

it is also important to test the safety and efficacy of OECs grown under hypoxic conditions in 

future clinical trials [92, 115, 116]. 
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13. Conclusions 

Loss of endothelial integrity and impaired capacity for neovascularisation are thought to contribute 

to ischaemic events affecting various organs including the brain [22-28]. Accumulating recent 

studies demonstrate that re-endothelialisation of damaged arteries not only requires the migration, 

proliferation and sprouting of pre-existing mature endothelial cells but also relies on the 

bioavailability of functional EPCs which can promote endothelial repair directly by differentiation 

into endothelial cells or indirectly by regulating secretion of various elements, like VEGF, that 

individually or collectively augment the reconstructive role of progenitor cells [29]. 

    Despite some issues regarding the precise morphological and functional characteristics of EPCs 

remain uncertain, rapidly accumulating preclinical and clinical findings indicate that EPCs may 

serve as therapeutics in treatment of several disorders culminating from perturbed endothelial 

integrity and function [34, 35]. Indeed, through restoration and maintenance of vascular 

endothelium by constant replacement of dead or dying endothelial cells and concomitant induction 

of angiogenesis, neurogenesis and vasculogenesis, EPCs help preserve vascular homeostasis at all 

times and improve patients’ neurological and functional outcome after a brain injury. However, 

consensus on their definition are needed. 

    Ex vivo expansion of EPCs leading to generation of a vast amount of homogenous OECs, 

equipped with significant tubulogenic, migratory, proliferative, neurovasculo-reparative capacity 

opens a new avenue for the treatment of stroke.  Possibility of allogeneic application of OECs 

backed up by findings demonstrating the absence of immune responses due to lack of HLA-class 

II antigens on these particular cells is encouraging. It is anticipated that well-thought laboratory 

and translational studies considering the cell source, mode of action, optimal cell dose, timing of 

application, comorbidities, cell senescence, tumourigenicity and immunogenicity during the 

design phase will significantly enhance our understanding of OECs’ therapeutic capacity and pave 

the way for future clinical studies assessing their efficacy beyond the acute phase of stroke.  
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Figure Legends 

 

Figure 1. From risk factors to clinical manifestation of stroke. 

Uncontrolled modifiable and non-modifiable risk factors play a prominent role in the pathogenesis 

of both ischaemic and haemorrhagic strokes. Ischaemic strokes are further divided into two 

subgroups depending on the aetiology of the disease; embolic stroke or thrombotic stroke. 

Haemorrhagic strokes are also further divided into two subgroups depending on the location of 

bleeding, intracerebral haemorrhage (ICH) or subarachnoid haemorrhage (SAH). Size and location 

of the stroke lesions or haemorrhage determine the type and severity of functions regulated by 

different cerebral lobes in physiological settings. 

 

Figure 2. Flow cytometry and functional analyses of EPCs obtained from the peripheral 

blood of a healthy volunteer.  

Mononuclear cells separated from other components of peripheral blood by centrifugation on a 

density gradient media prior to treatment with an Fc receptor blocker. Cells were then incubated 

with a fluorescein isothiocyanate-, peridinin-chlorophyll-, allophycocyanin- and phycoeryhtrin-

conjugated antibodies to detect CD45 (a marker for haematopoietic cells), CD34, CD133 and KDR 

antigens. Flow cytometry shows the prevalence of CD34+ (A), CD34+CD133+ (B) and 

CD34+CD133+KDR+ (C) cells in a population of cells negatively stained for CD45. In additional 
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experiments, separated mononuclear cells seeded on fibronectin-coated plates and cultured in 

endothelial growth medium supplemented with all necessary ingredients including a cocktail of 

growth factors (e.g. fibroblast growth factor, VEGF and insulin-like growth factor), 

hydrocortisone, heparin and serum. Upon removal of non-adherent cells from the culture after 48 

h, cells continued to be cultured in the same medium until endothelial colony-forming cells with 

true progenitor characteristics appeared (D). Similar to mature endothelial cells, outgrowth 

endothelial cells display cobblestone morphology (E) and form tubes on matrigel, a marker of in 

vitro angiogenic activity (F). 
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Table 1 

Clinical trials with endothelial progenitor cells in ischaemic stroke. 

 

NCT Reference Study type Estimated 

sample size 

Start date Chief Investigator Study population 

 NCT03218527  observational  120    10.2015        Pol Camps-Remom Adult patients presenting at least on 

atherosclerotic plaque in the internal carotid 

artery ipsilateral to stroke 

 NCT02980354  observational  200    02.2017       Ulvi Bayraktutan  Elderly patients (≥65 years of age) with  

lacunar or cortical stroke. Elderly and young 

(18-64 years old) healthy volunteers. 

 NCT02157896  observational   30    05.2013       Hao Chen    Adult patients with infarcts within the 

territories of  middle cerebral artery, posterior 

cerebral artery, anterior cerebral artery, 

vertebrobasilar area or watershed area. 

 NCT01468064  interventional  20    11.2011      Zhenzhou Chen  Patients with acute cerebral infarcts within the 

middle cerebral arterial territory received 

autologous BMSCs, autologous EPCs or 

placebo.  

 NCT02605707  interventional  30    11.2014      Zhenzhou Chen  Patients with chronic ischaemic stroke received  

intracerebral transplantation of autologous 

endothelial progenitor cells 

 NCT01289795  observational  30    07.2010     Thomas Liman  Adult patients with first-ever acute ischaemic 

stroke   
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