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Abstract  

Chemical looping gasification (CLG) is a promising thermochemical process for the production of H2. 

CLG process is mainly based on oxygen transfer from an air reactor to a gasification reactor using solid 

metal oxides (also called oxygen carriers) as oxidants. The unique oxygen separation system of CLG 

makes it an advanced process with a smaller carbon footprint compared to the conventional gasification 

process. The other advantages of CLG includes increased efficiency, reduced greenhouse gas emissions, 

and improved process stability compared to conventional biomass gasification. Despite the advantages of 

CLG, the relationship between biomass properties and experimental conditions is still unclear. This could 

be attributed to rigorous experimental requirements. To address the limitations, the present study proposes 

a process simulation is combined with experimental studies to generate large dataset used for interpretable 

machine learning (ML) studies. Three different ML models including support vector machine (SVM), 

random forest (RF), and gradient boost regression (GBR) were used to develop models for predicting the 

H2 and char yield during CLG.  The GBR outperformed other models for the prediction of H2 and char 

yield during CLG with R2 value > 0.9. Among the experimental conditions, the temperature (T) and steam 

to biomass ratio (SBR) were the most relevant parameters influence H2 and char production. Biomass ash, 

C, VM and H also influenced H2 and char formation. Biomass ash could act as catalyst during CLG 

thereby promoting char accumulation. Overall, a combination of SHAP and partial dependence plot 

helped address the black box challenges of ML models.  
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1. Introduction 

In modern times, the increasing energy demand brought about by population growth and the rapid pace of 

industrialization and urbanization creates a range of challenges globally. Currently, the primary energy 

source is derived from fossil fuels, but this approach is faced with various limitations, including, the finite 

nature of fossil resources, the greenhouse gases emissions, global warming, and pollution resulting from 

their extraction, refinement, and usage (Nanda et al., 2014).  It is, therefore, important to explore 

alternative energy sources that are cost-effective, sustainable, dependable, and eco-friendly, like biofuels 

(e.g., bio-oil, biodiesel, bioethanol, biobutanol, biomethane, and biohydrogen). These sources should also 

have the ability to supplement fossil fuels and help address the environmental problems caused by their 

use (Okolie, 2022; Okolie et al., 2019). 

Renewable energy sources such as wind, solar, and geothermal have been utilized for energy production, 

but they are not suitable for the production of liquid transportation fuels [Ref]. Additionally, these energy 

sources present further challenges related to intermittency, or the fluctuations in their output that can 

occur due to changes in weather or other factors.  Biomass, on the other hand, is defined as an alternative 

source of renewable energy thanks to their abundance and ability to be converted to both liquid and 

gaseous transportation fuels. (Goel et al., 2022). The Intergovernmental Panel on Climate Change (IPCC) 

fifth assessment report highlighted that integrating biomass energy with effective carbon capture 

technologies could aid in reaching long-term climate goals for a negative carbon economy (Lamers et al., 

2015). 

Biomass can be converted into green fuels and chemicals through various methods such as 

thermochemical processes (e.g., pyrolysis, liquefaction, and gasification), biological processes (anaerobic 

digestion and fermentation), or integrated processes (Okolie et al., 2022a). Of these, thermochemical 

processes are preferred due to their high biofuel yields, shorter processing times, and improved economic 

viability. Gasification is a thermochemical process used to produce hydrogen-rich syngas from waste 

biomass using gasifying agents such as air, steam, CO2, and supercritical water (hydrothermal 
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gasification). Compared to other thermochemical processes, gasification has advantages in terms of 

feedstock versatility, reduced greenhouse gas emissions, and increased energy efficiency (P.Basu, 2016). 

However, challenges such as the high cost of oxygen production, N2 dilution, and emission of pollutants, 

as well as the strong endothermic reaction with steam gasification agents still exists (Huang et al., 2016). 

To overcome these challenges, the chemical looping gasification (CLG) process has been proposed as a 

promising technology for converting waste biomass into hydrogen-rich syngas. 

The CLG process is mainly based on oxygen transfer from an air reactor to a gasification reactor using 

solid metal oxides (also called oxygen carriers) as oxidants. In the gasification reactor, biomass 

feedstocks are partially oxidized and gasify to high quality syngas (CO and H2) by the oxygen provided 

by solid metal oxides and gasification agent (Mohamed et al., 2021; Wang et al., 2015). During this 

reaction, metal oxide is reduced to a lower oxidation state. In a second reactor (an air reactor), the reduced 

oxygen carrier is oxidised by air or steam stream, which is an exothermic reaction and supply a significant 

amount of heat source, which could be used in the endothermic gasification reactor and eliminate the 

requirement of external carbon combustion as in the traditional gasification processes. The re-oxidized 

oxygen carrier is ready for a new cycle between these two interconnected reactors in a solid circulatory 

loop while the gas flows in these reactors are isolated using gas seals between the reactors. Circulating 

oxygen carriers can provide a continuous oxygen source for biomass gasification, eliminating the need for 

pure oxygen production and reducing costs (Huang et al., 2016).  

The unique oxygen separation system of CLG makes it an advanced process with a smaller carbon 

footprint compared to the conventional gasification process. The other advantages of CLG includes 

increased efficiency, reduced greenhouse gas emissions, and improved process stability compared to 

conventional biomass gasification (Goel et al., 2022). (Huang et al., 2016) Certain oxygen carriers, such 

as Fe- and Ni-based, and their reduction products, can effectively be used as catalyst to crack tar during 

the gasification process (Liu et al., 2012). The CLG process also eliminates the need for N2 dilution, as 

the fuel is not directly exposed to air, leading to the production of high-quality synthesis gas with a high 
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calorific value and low tar content, at a lower cost (Goel et al., 2022). An overview of the CLG including 

details of the oxygen carrier and potential gas-solid interactions are presented in figure 1.  

 

 

Figure 1: a) Overview of CLG of biomass for syngas production and b) potential reactions in the 

gasification reactor 

Although CLG is a promising technology, it still faces several challenges such as high capital cost, 

oxygen carrier durability, complex reaction mechanism and process operations, scalability issues and 

increased CO2 capture cost. Some of these challenges can be addressed understanding the impact of 

various process conditions on hydrogen yield and char formation during CLG. Char produced during 

CLG can accumulate in the reactor and reduce its efficiency. It can also clog the flow of gases through the 

reactor and reduce the quality of the syngas produced.  It is, therefore, imperative to understand the 

influence of process parameters on char formation during CLG.  

 Despite its potential, there are still knowledge gaps in this process, including the optimization of reaction 

conditions and the development of cost-effective and durable materials for the chemical looping reactors. 

Addressing these gaps is crucial for the commercialization of this process and its widespread adoption as 
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a solution to reduce greenhouse gas emissions while meeting the growing demand for liquid fuels. 

Although some researchers have explored the process analysis and techno-economic analysis (TEA) of 

integrating CLG with FT synthesis (Roshan Kumar et al., 2022b, 2022a). To the best of the authors 

knowledge there are still relatively few study that have adopted interpretable machine learning (ML) 

approach for understanding the relationship between process parameters, hydrogen yield, and char 

formation during CLG. To address the knowledge gaps the present study develop and systematically 

compared three ML models; random forest (RF), support vector machine (SVM) and gradient boost 

regression (GBR) for predicting hydrogen and char yield during CLG. Another novelty is the integration 

of Aspen plus process models with experimental data for obtaining robust CLG covering a wide range of 

operating conditions including proximate and ultimate analysis of biomass.  

2. Materials and methods 

2.1 Process simulation description  

Process modelling for CLG was developed in Aspen plus V12 licensed by the University of 

Oklahoma. Details of the process model is shown in figure 2. The feed which is at atmospheric 

conditions was decomposed at 700°C into various constituent elements. The decomposed 

product was then separated into gas and solid phases. The gas mixture was subsequently 

compressed to 23bar before it was sent into the stoichiometric reactor (RSTOIC) and continuous 

stirred tank reactor (RCSTR) for gasification (oxidation and reduction reactions occurred here). 

Fe-based oxygen carrier was used for the oxidation process. The products from the reactors were 

subsequently sent into separators that separated hydrogen gas and CO2 from other reactor 

products. 

The model consists of a yield reactor that decomposed the feedstock into its various constituents, 

an RSTOIC reactor for the volatilization process, an RSTOIC reactor for the oxidation processes 
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and an RCSTR reactor for the reduction gasification processes, a cyclone that separated solids 

(char from gas components), two heaters that provided heat for the raw feed and steam feed, a 

cooler to reduce the temperature of reactor products, 2 mixers, 2 compressors (that compressed 

the reactor feed as well as the hydrogen gas produced) and 3 separators that separate hydrogen 

from other reactor products and 2 storage tanks for CO2 and H2 storage. Summary of the model 

assumptions and equations are presented in Table 1. 

The selection of a suitable oxygen carrier is important for the efficient operating of a CLG systems. A 

plethora of metal oxides of Fe, Ni, Co, Mn and Cu, as well as their blends, have been comprehensively 

evaluated as promising oxygen carriers  (de Diego et al., 2004; Huijun et al., 2015). However, they have 

several limitations, such as the oxide of Cu suffers from agglomeration due to its low melting point (Ge et 

al., 2016). Mn and Co oxides ae prone to a poor issue while Ni oxides are characterized by low toxicity. 

Oxides of Fe are one of the most promising carriers and was the selected choice for the present study. The 

results of Aspen plus model were compared against experimental investigations and presented in figure 3.  

The experimental hydrogen yield for is close to the simulation results for two different experimental 

studies with similar oxygen carriers (FeO) and biomass at varying temperature ranges of 700 – 900 °C.  
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Figure 2:  Schematics of the chemical looping gasification process designed in Aspen Plus
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Table 1: An overview of the model assumptions and relevant equations  

Component Enthalpy Density 

Biomass (Non- conventional) HCOALGEN  DCOALIGT 

Ash HCOALGEN DCOALIGT 

Reaction Kinetic Parameters Data 

REACTION A/k Ea. (KJ/Kmol) 

R1 200 49900 

R2 300000 125000 

R3 2.78 12600 

R4 1.05e10 135000 

 

REDUCTION: 

•  𝐶 + 𝐻2𝑂 → 𝐶𝑂 + 𝐻2 
• 𝐶𝐻4 + 𝐻2𝑂 → 𝐶𝑂 + 3𝐻2 
• 𝐶𝑂 +  𝐻2𝑂 → 𝐶𝑂2 + 𝐻2 
• 𝐶 + 𝐶𝑂2 → 2𝐶𝑂 

 
FUEL COMBUSTION REACTION 
 
C + Fe2O3 → 2Fe + 3CO 
 
IRON OXIDATION REACTION 

• 2Fe + H2O → Fe2O3 + H2  

• Fe + CO2 → FeO + CO 
 
OVERALL REACTION 

• C + Fe2O3 → 2Fe + 3CO 

• Fe + CO2 → FeO + CO 

• FeO + C → Fe + CO 
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Figure 3: Comparison between Aspen plus model results and experimental hydrogen yield (a) Experimental investigations from Al-

Quadri et al. (Al-Qadri et al., 2022) (b) Experimental investigations from Ge et al. (Ge et al., 2016)
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2.2 Data preparation 

In total 236 datasets related to CLG of various biomass feedstock were obtained from literature and 

process simulation results. The biomass feedstock selected for this study includes agricultural residues, 

energy crops, municipal waste, algae biomass, and poultry waste. The dataset includes twelve input 

variables (carbon (C), hydrogen (H), Nitrogen (N), oxygen (O), Sulphur (S), Moisture content, Volatile 

matter (VM), Ash content (Ash), Fixed carbon (FC), gasification temperature (T), oxygen carrier quantity 

measured as mass ratio to biomass (OC) and Steam to biomass ratio (SBR)). The output variables are H2 

and char yield. CLG is a relatively new process with limited experimental results on various feedstock 

and oxygen carriers therefore with the validated process simulation data were used to supplement 

experimental findings. In addition, CLG process conditions such as OC, SBR and T were selected as part 

of the input variable due to their significant influence on hydrogen yield (Al-Qadri et al., 2022; Ge et al., 

2016). In this study 236 number of data were used to train and test the ML models (The entire dataset can 

be found in GitHub link of the supplementary information). The dataset was split into training and test 

data in 80/20 ratios, this is performed in google colab in python. The training data were used to train the 

ML models while the testing data set were implemented in the verification of the model accuracy and 

generality of the trained ML models. 

2.3 Model development and evaluation 

2.3.1 Data pre-processing  

Data cleansing was performed before developing the ML model. The implementation of data cleansing 

ensures optimal ML model prediction performance. Data cleansing involves sequential steps of handling 

missing data, outliers and standardization. All missing data were replaced using the median approach. 

This is performed by replacing the missing values with the mean, median, or mode of the available data. 

This was implemented by using the “fillna “function in python  
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Standardization is a technique used to transform data from varying scales into a common scale for easy 

comparison. This is achieved by normalizing the data with a mean of 0 and a standard deviation of 1 

through the subtraction of the mean and division by the standard deviation. This approach is advantageous 

since several machine learning algorithms presume normally distributed data and features on the same 

scale. By scaling down outliers along with the rest of the data, standardization also helps to minimize 

their impact. The sklearn.preprocessing library's StandardScaler, MinMaxScaler, and RobustScaler were 

utilized to assess model performance. Of these, the MinMaxScaler was found to be the most effective and 

thus chosen. MinMaxScaler is a machine learning pre-processing technique that scales features in a 

dataset by changing them to a specified range, frequently 0 to 1, by subtracting each data point's 

minimum value and dividing by the range. This method normalizes the data and is particularly beneficial 

for algorithms that are sensitive to input feature scaling.  

It is crucial to remove outliers before building machine learning models for several reasons. Outliers can 

skew a model's parameters, leading to poor performance on new data, and increase model complexity, 

making it harder to understand and use. They can also cause overfitting, resulting in poor performance on 

new data, and affect data distribution, causing issues with certain types of models (Ascher et al., 2021). A 

box plot was prepared and used to remove outliers from the dataset (Figure S1 of the supplementary 

information).  

2.3.2 Model development 

 Three different ML algorithms; the support vector machine (SVM), random forest (RF), and gradient 

boost regression (GBR) were used to develop models for predicting the H2 and char yield during CLG.  

The optimal hyper-parameter were selected through the grid search method. It involves specifying a 

discrete set of values for each hyperparameter and evaluating the performance of the model for all 

possible combinations of these values. The combination that results in the best performance metric is then 

chosen as the optimal set of hyperparameters. The ML algorithms were selected based on their 

effectiveness in handling multiple datasets related to several biomass composition and operating 
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conditions for thermochemical conversion processes. Details of each ML algorithm has been meticulously 

described elsewhere (Afolabi et al., 2022; Okolie et al., 2022b). 

The performance of each ML algorithm towards predicting the output was evaluated with the mean absolute 

error (MAE), regression coefficient (R2), and root-mean-square error (RMSE). These parameters have been 

described elsewhere (Umenweke et al., 2022) and are calculated from equations 1 – 3.  

   𝑀𝐴𝐸 =  
∑ |𝑦𝑖

𝑒𝑥𝑝
− 𝑦𝑖

𝑝𝑟𝑒𝑑
|𝑁

𝑖=1

𝑁
                                 (1) 

   𝑅2 = 1 −  
∑ (𝑦𝑖

𝑒𝑥𝑝
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𝑝𝑟𝑒𝑑
)

2
𝑁
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                             (2) 
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𝑒𝑥𝑝
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Where 𝑦𝑖
𝑒𝑥𝑝

 and 𝑦𝑖
𝑝𝑟𝑒𝑑

 are the actual and predicted values respectively. 𝑌𝑖
𝑒𝑥𝑝

 is the mean of the actual 

values. N represents the total number of data points. 

 

2.4 Interpretable analysis  

Due to the complexity of their internal mechanisms, many machine learning models are often regarded as 

"black boxes". To improve interpretability, one approach is to use inherently interpretable models, which 

can be categorized as either model-specific or model-agnostic (Onsree et al., 2022). Model-specific 

techniques are limited to particular model types, such as interpreting regression weights in a linear model. 

In contrast, model-agnostic methods can be utilized with any machine learning model and applied post-

training (Onsree et al., 2022). As a result, model-agnostic methods are generally more adaptable and all-

encompassing, while also providing a consistent standard for interpreting a range of machine learning 

models. To provide a comprehensive and global interpretation of the relationship between the input and 

outputs in datasets, this research employs the widely used model-agnostic method known as the SHAP 

feature importance method. 
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SHAP represents a promising method that enables both individual prediction explanation and global 

interpretation (Ascher et al., 2022). Grounded in game theory, SHAP estimates feature importance by 

distributing optimal credits based on Shapley values. SHAP force plots visually depict how various 

features influence an individual prediction. This method is advantageous for global interpretation because 

it determines the importance of each feature and its relationship with the output. Moreover, SHAP ensures 

that its predictions are equitably distributed across feature values, which is essential for establishing trust 

in the method (Pintelas et al., 2020). To gain insights into the model's local interpretation, a partial 

dependence plot (PDP) will be utilized. By holding other features constant, a PDP illustrates the 

relationship between a feature and a model's predicted outcome. It aids in identifying non-linear 

relationships or interactions between features and provides insights into how a specific feature influences 

a model's predictions for a specific value range. 

3. Results and discussion 

3.1 Dataset description and statistical analysis 

The statistical analysis of the final preprocessed dataset were quantified through the standard deviation 

and corresponding mean. These values are presented in Table 2.  The input dataset were classified as 

ultimate analysis (C, H, N, O, S), proximate analysis (Ash, FC, moisture, VM) and operating conditions 

(T, OC, SBR). In contrast, there are two output variables (H2 yield and char yield).  The C, H, N, O, S 

dataset were in the range of 40 – 60.5%, 4 – 13.7%, 0.1 – 8.2%, 24.7-59.2% and 0 – 2.3% respectively. In 

contrast, the Ash, FC, moisture, VM values ranged between 0.4 – 42%, 3.4 – 26.6%, 0.001 – 0.002% and 

49.4% - 94.2%. It should be mentioned that the proximate and ultimate analysis were all on dry basis 

therefore the moisture content used in the dataset is close to zero. The dry basis was selected because 

CLG requires pre-drying of feedstock to minimize the moisture content. In addition, the process 

simulation had a feedstock drying step before the actual CLG simulation. The output dataset ranged 

between 11.5 wt.% - 73.3 wt.% for H2 yield and 0.6 – 68.2 wt.% for the char yield. 
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The large range of distribution between the proximate and ultimate analysis could be attributed to the 

various categories of biomass selected for the simulation. In order to evaluate the impact of biomass type 

and composition on CLG different range of biomass types were selected including agricultural residues, 

industrial waste, woody biomass, energy crops and municipal solid waste.  

The operating conditions ranged between 500 – 1300 oC for T, 0.5 – 5 for SBR and 10 – 60 for OC. It 

should be mentioned that the range of values for the operating conditions were selected based on 

optimization results from previous experimental studies (Al-Qadri et al., 2022) (Ge et al., 2016). 

Table 2: Overview of the statistical summary of the pre-processed dataset including the input and output 

features. 

 count mean std min 25% 50% 75% max 

C (%) 236 49.9 4 40 47.6 48.9 52.8 60.5 

H (%) 236 6.4 1.3 4 6 6.2 6.4 13.7 

N (%) 236 1.4 1.5 0.1 0.5 0.9 1.6 8.2 

O (%) 236 42.2 4.7 27.4 39.4 44.1 45.6 52.9 

S (%) 236 0.2 0.4 0 0 0 0.3 2.3 

VM (%) 236 75.3 7.6 49.4 71.1 76.1 80.7 94.2 

Ash (%) 236 7.4 7.9 0.4 1.9 4.5 10 42 

FC (%) 236 17.3 5.3 3.4 13.2 17.2 20.9 26.6 

Moisture (%) 236 0 0 0 0 0 0 0 

T (°C) 236 902.2 259.5 500 700 900 1100 1300 

OC (%) 236 33.4 17.4 10 20 30 50 60 

SBR 236 2.6 1.4 0.5 1.5 2.5 3.5 5 

H2 (wt.%) 236 29.4 13.2 11.5 20.6 25.9 35.8 73.3 

Char yield 
(wt.%) 236 13.2 13.7 0.6 3.6 7.4 17.6 68.2 

 

Figure 4 shows the Pearson coefficients heat map for the input and output variables. The figure helps to 

understand the correlation between related variables in the ML model and it is based on the Spearman 

correlation coefficient (SCC) as shown in equation (4). Understanding the correlation between different 

sets of variables is important especially when it is required to develop trends between them. 

𝑆𝐶𝐶 = 1 − 
6 ∑ 𝑑𝑖

2

𝑛(𝑛2 − 1)
                                       (4) 
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Where SCC = Spearman’s rank correlation coefficient,  

di = difference between the two ranks of each observation, 

 n = number of observations 

SCC ≈ 0 signifies that the variables are weakly correlated, whereas SCC ≈ ±1 suggests the highest 

correlation strength. It should be mentioned that most of the features demonstrated non-linear 

relationships with each other, which was favorable for establishing ML models. The figure reveals that 

the char yield is strongly affected by the proximate and ultimate analysis (except the moisture content) of 

the feedstock as well as the T and SBR. In contrast, H2 yield is influenced by the char yield, T, SBR, ash, 

S, N and H content of the feedstock. The FC content represents the amount of solid combustible residue 

that is left behind after the biomass is heated and the volatile matter is expelled. While the ash content is 

the number of solid residues remaining after complete burning of biomass (Cai et al., 2017). Since both 

the FC and ash contents are solid residues left behind, they would influence the char formation. 

SBR (0.51), ash (0.22), S (0.21), N (0.13) and H (0.14) have strong positive correlation with H2 yield 

while T (-0.72), moisture (-0.13), C (-0.19) and VM (-0.16) have strong negative correlation. On the 

contrary, S (0.63), N (0.62), H (0.44) has a strong positive correlation with char yield while VM (-0.72), 

FC (-0.37), moisture (-0.37) and C (-0.18) are negatively correlated.
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Figure 4: Pearson coefficient heat map between any two variables of interest 

3.2 Model optimization and evaluation of model performance 

Tables 3 and 4 exhibit the outcomes of model performance before and after eliminating outliers and 

conducting hyperparameter optimization, comparing the optimized models with default models using 

effective preprocessing methods such as data normalization and outlier elimination. Among the three ML 

models, only GBR showed slight improvement as a result of the hyperparameter optimization and data 

cleansing, whereas SVM and RF did not exhibit any improvement. For instance, the R2 values for the test 

dataset of SVM H2 declined from 0.9417 (Table 3) to 0.93819 (Table 4), and the R2 values for the char 

yield of SVM also decreased from 0.9941 (Table 3) to 0.9381 (Table 4). Similar patterns were observed 

for the R2 values of the test dataset of RF. On the other hand, GBR’s R2 value for the test dataset 

increased after removing outliers and conducting hyperparameter optimization for the H2 yield alone. R2 
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value for the test dataset of GBR rose slightly from 0.9449 to 0.9453 for H2 yield. In contrast, the value 

declined slightly for GBR char yield (0.9657 to 0.9453). While the RMSE and MAE values for GBR test 

dataset decreases after removing outliers and conducting hyperparameter optimization (Except for the 

RMSE char yield). In general, hyperparameter optimization can be useful in obtaining the optimal model 

structure when computational resources during model training are not a constraint. 

The model evaluation results in Tables 3 and 4 shows that the R2 values of all the ML models were > 0.9 

for H2 and char yield.  This indicates a satisfactory fitting effect of all the three models. However, by 

comparing the performance of the models the GBR appears to be the most promising model in terms of 

R2, RMSE and MAE.  This was further confirmed by the relative error distribution plot for the three ML 

models presented in figures 5.  The relative error in this case can be defined as the ratio of difference 

between the actual and predicted values against the actual values. From the plot in figure 5, the GBR had 

the lowest relative error followed by RF and SVM. It should be mentioned that the relative error 

distribution range for all the three models were less than 50%.  Although, GBR had the lowest relative 

error distribution (< 5% for H2 yield and 35% for char yield). 

The GBR and RF are more advantageous than the SVM model for predicting the H2 and char yields 

during CLG because they are ensemble methods. These methods implement multiple models to improve 

the accuracy and robustness of predictions. The idea behind ensemble methods is that by combining the 

predictions of multiple models, we can reduce the variance and bias of individual models and achieve 

better overall performance. Ensemble methods are generally considered to be better than individual 

models because they can improve the accuracy, robustness, and generalization of predictions, and can 

also help to identify important features and patterns in the data (Ascher et al., 2022). A key difference 

between the RF and GBR is that multiple decision trees are trained independently on different subsets of 

the training data in RF. In contrast, a sequence of decision trees are trained in a way that each new tree is 

optimized to correct the errors of the previous ones for the GBR. Both methods also differs in the wat that 

handle their corresponding features.  
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Table 3: Performance of the model before removing outliers and hyper parameter optimization 

 

 

  

Models 

H2 yield Char yield 

R2_train R2_test RMSE_train RMSE_test MAE_train MAE_test R2_train R2_test RMSE_train RMSE_test MAE_train MAE_test 

SVM 

0.9946 

 

0.9417 

 

0.9825 

 

2.9149 

 

0.3627 

 

1.7319 

 

0.9999 

 

0.9941 

 

0.1171 

 

0.9922 

 

0.0976 

 

0.634 

 

RF 

0.9853 

 0.9229  

1.6219 

 3.3529  

1.0681 

 2.417  

0.9904 

 

0.9472 1.3544 

 

2.9621 0.778 

 

1.7628 

GBR 

0.9984 

 

0.9449 

 

0.5345 

 

1.4854 

 

0.3733 

 

0.9824 

 

0.9992 

 

0.9657 

 

0.3963 

 

2.3878 

 

1.1591 

 

0.2818 
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Table 4: Performance of the model after removing outliers and hyper parameter optimization 

 

 

 

 

  

 

 

 

Models 

H2 yield  Char yield  

R2_train R2_test RMSE_train RMSE_test MAE_train MAE_test R2_train R2_test RMSE_train RMSE_test MAE_train MAE_test 

SVM 0.9464 0.93819 3.0963 3.0024 1.4084 1.8558 

 

0.9464 

 

0.9381 

 

3.0963 

 

3.0024 

 

1.4084 

 

1.8558 

RF 0.9906 0.9438 1.2930 2.8622 0.8562 2.0771 

 

0.9906 

 

0.9438 

 

1.2930 

 

2.8622 

 

0.8562 

 

2.0771 

GBR 0.9999 0.9453 0.0753 2.8228 0.0500 1.7440 

 

0.9999 

 

0.9453 

 

0.0753 

 

2.8228 

 

0.0500 

 

1.7440 
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Figure 5: Relative error distribution of the three ML models for (a) H2 yield (b) char yield 

Several studies related to the application of ML for understanding and optimization of biofuels production 

system have demonstrated the promising capability of the ensemble methods. Zhao et al. (Zhao et al., 

2021) compared the performance of GBR, RF, ANN and SVM for the prediction of H2 yield during 

supercritical water gasification. The authors reported that RF performed better than all the other models. 

In another study, GBR performed better than the RF and decision regression tree (DRT) for the prediction 

of bio-oil properties including the yield, nitrogen content, higher heating values and energy recovery 

during the hydrothermal liquefaction of waste biomass (Li et al., 2021). 

After evaluating the different models in the present study, the optimized GBR was chosen for further 

analysis, prediction, and interpretation of the input data. A plot of the predicted output values against the 

actual (measured) output values was presented in Figure 6, which provides a detailed understanding of the 

GBR's performance in predicting H2 and char yield. It should be noted that a higher number of cluster 

points around the 45° line indicates that the ML model provided optimal performance. As shown in 

Figure 6, both the measured and predicted H2 and char yield cluster closely around the straight line, 

indicating that the GBR model is well-suited for making accurate predictions.
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Figure 6: Comparison of the predictions of the GBR model for each output fitted from the training and testing set
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Overall, the GBR model's performance evaluation results and the scatter plot analysis suggest that the 

GBR model can accurately predict the H2 and char yield values, and it can be used for further analysis and 

prediction of the input data. The presented results and analysis provide useful insights into the machine 

learning model's performance, helping researchers to better understand the relationship between the input 

and output variables and improve the model's accuracy in future studies.  

Although the present study concluded that GBR was the most effective model, previous research has 

identified a variety of models that are also suitable. No single model type appears to be dominant in the 

literature. Afolabi et al. identified RF as the most promising model for predicting the HHV of different 

classes of lignocellulosic data based on 237 biomass datasets  (Afolabi et al., 2022). Elmaz et al. (Elmaz 

et al., 2020) conducted a study in which they trained polynomial regression, SVM, ANN, and decision 

tree models using data from an in-house gasifier that was fed with pinecones and wood pellets. They 

found that decision trees and ANN were the preferred model types for their data set. However, despite 

their data set being more uniform than the one used in the present study, the decision tree models they 

studied achieved a lower test performance, with R2 values ranging from 0.81 to 0.94. In contrast to the 

proposed model optimization approach in our study, Sun et al. (Sun et al., 2022) employed particle swarm 

optimization to develop an ANN model for predicting syngas yield, gas species concentrations, and char 

yield. The model achieved an excellent test performance with an R2 value of 0.97. However, the authors 

pointed out that the model was only trained on data from pine wood gasification, and they highlighted the 

importance of expanding the data set by incorporating a broader range of feedstocks and gasification 

conditions to enhance the model's applicability. Tang et al.(Tang et al., 2021) aimed to predict pyrolytic 

gas yield and compositions based on pyrolysis conditions and biomass characteristics using ML 

algorithms combined with feature reduction. RF and SVM were compared, and the results indicated that 

six features were adequate to accurately forecast the yield while the compositions only required three. 
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3.3 Interpretable machine learning analysis  

As stated earlier, the GBR model showed superior performance, indicating its effectiveness in describing 

the complex correlation between input features and output (H2 and char yield). Therefore, the GBR model 

was used to analyze the importance of features and the partial dependence of various inputs on the 

production of H2 and char yield during CLG. Figure 7 shows the feature importance plot, which displays 

the relevance of proximate and ultimate analysis of biomass and the CLG operating conditions on H2 and 

char yield. The analysis reveals that among the biomass properties, only FC, VM, ash, C, H, and S have a 

noticeable impact on the H2 yield. Likewise, operating conditions such as SBR and T have a significant 

impact on H2 yield. Although the effects of Ash, VM, S, and H are relatively small. With regards to the 

formation of char, biomass properties such as Ash, VM, S, H, and C have a significant impact. 

Additionally, operating conditions including SBR, and T also affect the formation of char. Based on the 

feature analysis findings in Figure 7, the order of relevance of process parameters in influencing H2 and 

char yield is as follows: T > SBR > OC. When considering the impact of biomass properties, the order is 

as follows: FC > C > Ash > VM > S > H > moisture (for H2 yield) and Ash > VM > S > C > H > FC (for 

char yield). It should be noted that the content of O, N, and moisture had no impact on the H2 and char 

yield.  

In theory, it is not surprising that biomass with a higher content of H can produce more H2 during CLG. 

Two prominent parameters in evaluating H2 and char yield during CLG are T and SBR, for several 

reasons. Some studies have shown that the presence of steam can minimize tar and char formation during 

gasification (Gao et al., 2009; Niu et al., 2018). Moreover, steam can reform tars and heavier 

hydrocarbons, while also reacting with carbon black trapped in the surface of ceramic pores, increasing 

hydrogen production (Gao et al., 2009). Because most of the reactions involved in CLG are either 

endothermic or exothermic, the impact of temperature is significant in controlling these reactions.  

.
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Figure 7: Feature importance analysis showing the impact of CLG operating conditions and biomass properties on (a) H2 yield (b) char yield
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A PDP of the key features were presented in figures 8 and 9 to help understand the marginal effect of one 

or two features on the predicted results of the GBR model for both H2 and char yield. The prediction 

function was fixed at certain values of the selected features, and the other features are averaged, so as to 

separate the influence of changing the important feature value on H2 and char yield. The results for H2 

yield showed that it is not affected by O, N and moisture content of the biomass. Also, the oxygen carrier 

quantity measured as mass ratio to biomass (OC) does not influence H2 yield. In contrast, H2 yield is 

slightly affected by a change in C, H, S, VM, Ash, and FC content of the biomass feedstock. H2 yield is 

strongly impacted by T and SBR. An elevation in SBR led to a rapid increase in H2 yield.  Surprisingly, 

H2 yield increased up to a maximum of 700 oC then declined rapidly as the temperature rose to 1300 oC. 

Regarding the char yield, the properties of biomass such as C, H, N, S, O, FC, and moisture contents 

almost had negligible effect on char formation. Similarly, OC had negligible effect on char formation. In 

contrast, biomass with higher ash and FC content are predicted to produce immense amount of char. 

Specifically, increasing the ash content of biomass feedstock led to a significant rise in char formation. 

Since char are undesirable during CLG, it is important to ensure that the ash content of biomass feedstock 

is minimal. The operating conditions including T and SBR also influenced the char yield. Increasing T led 

to a decline in char yield while higher SBR slightly increased char formation.  

SBR plays a critical role in the CLG process as it influences the thermochemical conversion of biomass 

into gases. The amount of steam in the gasification process determines the extent of tar decomposition, 

while also playing a role in the char gasification and H2 generation as seen in figures 8 and 9. Increasing 

the SBR ratio can lead to better H2 production by facilitating the water-gas shift reaction, which increases 

the amount of H2 produced. Additionally, high SBR ratios help in reducing the formation of tar and other 

heavy hydrocarbons by increasing the amount of steam available for the reactions, resulting in improved 

gas quality. 
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Figure 8: One variable partial dependence plot showing the impact of operating conditions and biomass properties on H2 yield during CLG 
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Figure 9: One variable partial dependence plot showing the impact of operating conditions and biomass properties on char yield during CLG 
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T is a crucial factor that influences the rate and extent of reactions involved in CLG. By increasing the 

temperature, the reaction rate is accelerated, and H2 production is enhanced through the promotion of 

biomass gasification and cracking (Okolie et al., 2020). Furthermore, higher temperatures facilitate 

gasification reactions, reducing char formation. However, it is worth noting that elevated temperatures 

may also result in the production of undesirable by-products, such as soot, which can reduce process 

efficiency. This might explain the rapid decline in H2 yield with increasing temperature (Figure 8) and the 

decreasing char yield with rising temperature (Figure 9). 

The rise in char formation and H2 yields with increasing ash content in biomass can be explained as 

follows. Ash content is known to promote char formation during gasification  (Rodriguez Correa and 

Kruse, 2018). The presence of ash can catalyze gasification reactions, leading to an increase in char yield 

(Okolie et al., 2020). Minerals such as calcium, potassium, and magnesium in ash are known to enhance 

char formation during gasification. These minerals serve as sources of alkali and alkaline earth metals, 

which can catalyze gasification reactions by breaking down the biomass's hydrocarbons. Moreover, char 

formation during gasification results from incomplete biomass combustion, influenced by factors like 

temperature, residence time, and feedstock composition. The presence of ash can create a protective layer 

around char particles, preventing further gasification reactions and promoting char accumulation. 

Additionally, ash minerals can react with the biomass feedstock, resulting in the formation of solid 

carbonaceous residues. 

The results from partial dependence plots presented in this study were closed aligned with 

literature values. For instance, Niu et al. (Niu et al., 2018) showed that the H2 yield increased 

with the increase of temperature from 500 °C to 800 °C while the tar yield showed a contrary 

changing trend during CLG. However, at higher temperatures above 800 oC a decline in H2 yield 

was observed. In the same study, H2 yield elevated from 20.53% to 32.61% with the increase of 

SBR from 0 to 1.25. The authors noted some reactions responsible for the increase below:  
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𝐶 +  𝐻2𝑂 →  𝐻2 + 𝐶𝑂      𝛥𝐻 = 131.7 𝑘𝐽/𝑚𝑜𝑙                  Equation 1 

𝐶𝑂 +  𝐻2𝑂 →  𝐻2 + 𝐶𝑂2      𝛥𝐻 = −35.7 𝑘𝐽/𝑚𝑜𝑙              Equation 2: water gas shift reaction 

𝐶𝐻4 +  𝐻2𝑂 →  3𝐻2 + 𝐶𝑂      𝛥𝐻 = 223.7 𝑘𝐽/𝑚𝑜𝑙            Equation 3: Steam reforming reaction  

𝐶 +  𝐶𝑂2  →  2𝐶𝑂      𝛥𝐻 = 171.3 𝑘𝐽/𝑚𝑜𝑙                         Equation 4:  Boudouard reaction 

Increasing the SBR would promote equations 1 – 3 leading to the formation of H2. Also, 

increasing the temperature favours the endothermic reactions while it hinders the exothermic 

reactions.   

The connection between individual factors and the output can be further clarified using the 

SHAP method. Figure 10 (a) demonstrates the absolute significance of features for H2 yield, 

whereas Figure 10 (b) displays the feature importance for H2 yield along with their detailed 

impacts. Figures 10 (c) and (d) displays the significant of features for the char yield. The greater 

the distance of a point from the baseline SHAP value of zero, the more it influences the output. 

In this manner, the association between a feature and the SHAP value (and consequently, the 

predicted output) can be better comprehended. 

From figure 10 (a) and (b) it is evident that increasing the temperature led to a rise in H2 yield at 

first after which there is a significant decrease. Also, elevating the SBR promotes H2 formation.  

According to figure 11 (b), elevating the ash content led to an increase in char formation. This 

observation further confirms the findings from the partial dependence plot.  Features found in the 

middle had a relatively lower impact on the output. Such features include OC, O, moisture, S and 

N content of the biomass. 
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Figure 10: Representation of the feature importance analysis by the SHAP method fir the prediction of (a) and (b) for H2 yield while (c) and (d) for 

char yield.  Figures (a) and (c) shows the absolute importance of features while figure (c) and (d) displays the impact of individual predictions on 

the overall importance scores. High feature values are represented in red, while low feature values are depicted in blue.
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3.4 Discussion and outlook  

Although the present study applied the feature importance and SHAP analysis as a means of 

interpreting the ML behaviour and prediction of H2 and char yield during CLG, there are still 

relatively few studies in this field. While ML methods have often been referred to as black box 

due to this inability to adequately explain the relationship between features and output, several 

interpretable methods have been implemented. For instance, some researchers have adopted the 

Feature importance and partial dependence plot to explain the impact biomass properties and operating 

conditions on H2 yield during hydrothermal gasification (Zhao et al., 2021). It should be mentioned that 

the partial dependence plots are very useful and easy to implement especially when a straightforward 

relationship is required between individual feature and output. However, there might be some limitations 

especially when the data requires multiple input and multiple output such as the one implemented in the 

present study. Also, the partial dependence methods do not have the ability to capture confounding factors 

(Ascher et al., 2022). 

Some researchers have also adopted the permutation feature importance due to the ease of implementation 

with different model types (Yuan et al., 2021). However, this method is limited by potential non- linear 

relationships, may overestimate, or underestimate the importance of individual features in the presence of 

multicollinearity and often sensitive to noise in dataset. In this study a combination of SHAP (global) and 

PDP (local) methods were used to provide a detailed overview of the ML model prediction capability. 

The SHAP method helps to identify the mean behaviour of the ML model as well as the trends inherent 

between the features and output. In contrast, the PDP provided an understanding of which factors might 

affect the H2 and char yield. This could help researchers in identifying what factors to vary in optimizing 

H2 and char formation.  Importantly, the trained ML model could serve as valuable resources thereby 

saving a lot of experimental cost.  
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There are several limitations that should be addressed in subsequent study with interpretable ML models. 

The success of CLG is dependent on the oxygen carriers, therefore ML model could be adopted for the 

screening of the oxygen carriers. However, this would require a lot of experimental data. Incorporating 

lignocellulosic biomass composition in the model as input variable would help understand how biomass 

properties influence the H2 and char yield. However, this should be part of future work where in depth 

experimental and analytical characterization would be used to collect reasonable data for performing the 

ML analysis. Optimizing the heat transfer between the oxidation and reduction reactor is also another area 

that requires further attention as part of future studies.  

4. Conclusions  

The present study developed a novel ML algorithm based on GBR, RF and SVM for the prediction of H2 

and char yield during CLG. While there are relatively few experimental studies related to CLG, a 

combination of process modelling in Aspen plus and experimental data in literature were used to generate 

input and output dataset. The dataset comprises of input features such as carbon (C), hydrogen (H), 

Nitrogen (N), oxygen (O), Sulphur (S), Moisture content, Volatile matter (VM), Ash content (Ash), Fixed 

carbon (FC), gasification temperature (T), oxygen carrier quantity measured as mass ratio to biomass 

(OC) and Steam to biomass ratio (SBR)). The output variables are H2 and char yield. Among the ML 

algorithms, GBR was found to be the most promising in terms of the R2, MAE and RMSE values. 

Additionally, GBR outperformed other models for the prediction of H2 and char yield. PDP analysis 

showed that H2 yield is not affected by O, N and moisture content of the biomass. Also, the oxygen 

carrier quantity measured as mass ratio to biomass (OC) does not influence H2 yield. In contrast, H2 yield 

is slightly affected by a change in C, H, S, VM, Ash, and FC content of the biomass feedstock. H2 yield is 

strongly impacted by T and SBR. An increase in SBR led to a rapid increase in H2 yield.   H2 yield 

increased up to a maximum of 700 oC then declined rapidly as the temperature rose to 1300 oC. On the 

contrary, biomass with higher ash and FC content are predicted to produce immense amount of char. The 
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findings presented in this study could help researchers in the optimization of CLG process and save 

experimental cost.  

Data availability  

All data can be found in the GitHub link: https://github.com/judebebo32/ML_CLG  
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