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Object Oriented Data Analysis (OODA) has seen many developments over the past decade
since Wang and Marron (2007) introduced the topic, and a broad overview of the field has
been given by Marron and Alonso (2014). At the heart of OODA is the need to make
choices about i) what the data objects are, ii) the conceptual space in which the data ob-
jects lie, and iii) the feature space that is used for practical data analysis. The paper by
Tavakoli et al. (2019) provides and an excellent exemplar of this approach to statistical
analysis. Highly informed preprocessing steps are carried out, based on substantial ex-
perience from the application field. The data objects of interest are infinite dimensional
covariance operators in a Hilbert space and practical analysis is carried out in the feature
space of finite dimensional covariance matrices.

The main methodological contribution is the introduction of the d-covariance, which is
the symmetric positive semi-definite matrix Ω that minimizes the expected squared dis-
tance of Ω to the random quantity (X − µ)(X − µ)T , where E[X] = µ. The need
for the development of d-covariance is reminiscent of issues that have arisen previously
in statistical shape analysis, where procedures such as Procrustes estimation produced
inconsistent estimates in general for population mean shapes from Gaussian landmark
models (Lele, 1993). The issue was addressed by estimating a different and more suitable
population quantity, namely the Fréchet mean shape, which can be estimated consistently
(e.g. see Dryden and Mardia, 2016, Chapter 13). The motivation for the new methods in
Tavakoli et al. (2019) is quite similar, where the population quantity of interest has been
substituted from the usual covariance matrix to the the more suitable d-covariance, which
can be estimated consistently. Of course which population quantity is of most practical
interest will depend heavily on the application, and the traditional covariance will always
have some appeal given its traditional role in statistics.

Dryden et al. (2009) and Pigoli et al. (2014) considered the power Euclidean distances
between pairs of covariance matrices and infinite dimensional covariance operators, re-
spectively. In particular the power Euclidean metric between covariance matrices A and
B is

dα(A,B) = |||Aα −Bα|||, (1)

where |||A||| is the Frobenius norm of A, and like in Tavakoli et al. (2019) the majority
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of attention has been focussed on the square root scale when α = 1
2
. If α = k

2m
where

k ≥ 1,m ≥ 0 are positive integers then, using the relation
√
xxT = xxT

|x| repeatedly, one
can show that the d-covariance is given by

covdα =

{
E

[
(X − µ)(X − µ)T

|X − µ|2−2α

]} 1
α

, (2)

assuming the required moments exist. Note that any real α > 0 can be approximated arbi-
trarily closely by an expression k

2m
, as the dyadic rationals are dense in R. As commented

by the authors, the effect of the regularisation can be seen in the divisor in (2). It will
be interesting to develop the results of Tavakoli et al. (2019) in cases other than α = 1

2
,

for example α = 3
4

could provide a reasonable compromise between the popular α = 1
2

and the conventional α = 1 case. Dryden et al. (2009) and Pigoli et al. (2014) also con-
sider a variant of (1) with an additional Procrustes rotation, which has connections to the
Wasserstein metric between zero mean Gaussian processes (Masarotto et al., 2018) and
the Bures distance in quantum statistics. It will be interesting to explore the d-covariance
for the Procrustes-type metrics.

Tavakoli et al. (2019) note that their work complements approaches for text-based analy-
sis. In text-based corpus analysis, widely studied are word collocations (Gablasova et al.,
2017), i.e., words that have a tendency to co-occur; and text documents represented as
word-pair co-occurrence counts can be identified as networks (Severn et al., 2019). Anal-
ysis of networks is another type of OODA analysis, with wide applications in neuro-
science and genetics, besides text analysis. Let Gm = (V,E), comprise a set of nodes,
V = {v1, v2, . . . , vm}, and a set of edge weights, E = {wij : wij ≥ 0, 1 ≤ i, j ≤ m},
indicating nodes vi and vj are either connected by an edge of weight wij > 0, or else
unconnected if wij = 0, and wij = wji and wii = 0 (undirected and without loops). Any
such network can be identified with its m×m graph Laplacian matrix L = (lij), defined
as

lij =

{
−wij, if i 6= j∑

k 6=iwik, if i = j

for 1 ≤ i, j ≤ m. The space of graph Laplacians is a subset of the cone of symmetric
positive semi-definite matrices (Ginestet et al., 2017). Graph Laplacians are finite dimen-
sional matrices, but they often represent networks with large m and in that case the situ-
ation is similar to that of Tavakoli et al. (2019) except the space is restricted to the graph
Laplacian subspace. Severn et al. (2019) introduce a framework for manifold value data
analysis of networks that uses the Euclidean power distance (1) and introduces a unique
projection from the space of covariance matrices to the subspace of graph Laplacians.
The projection can be computed efficiently using quadratic programming, and further sta-
tistical analysis such as regression, principal components analysis and hypothesis testing
has been developed.

One question in any OODA is “what is the best choice of metric?” The answer will very
much depend on the application, the object space, and the particular criteria the user
specifies for a well-performing metric. In compositional data analysis, in which the object
space is the unit simplex, debate over the choice of metric has been long-running (Scealy
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and Welsh, 2014), especially over whether the Euclidean metric or the log-ratio metric due
to Aitchison (1983) should be preferred. Tsagris et al. (2016) introduce a one-parameter
family of metrics for compositional data that involves a Box–Cox-type parameter α to be
estimated from the data (Box and Cox, 1964), with the Euclidean and log-ratio metrics
corresponding to special cases α = 1 and α = 0, respectively. For classification tasks
involving various compositional data sets, the optimal value of α is frequently between 1
and 0 reflecting benefit from a compromise between Euclidean and log-ratio metrics. A
data-driven choice could similarly be used to estimate the α in (1). Such as procedure is
considered by Dryden et al. (2010) for covariance matrices, where α is chosen to make
the power transformed data as Gaussian as possible.

References
Aitchison, J. (1983). Principal component analysis of compositional data. Biometrika,

70(1):57–65.

Box, G. E. P. and Cox, D. R. (1964). An analysis of transformations. (With discussion).
J. Roy. Statist. Soc. Ser. B, 26:211–252.

Dryden, I. L., Koloydenko, A., and Zhou, D. (2009). Non-Euclidean statistics for co-
variance matrices, with applications to diffusion tensor imaging. Ann. Appl. Stat.,
3(3):1102–1123.

Dryden, I. L. and Mardia, K. V. (2016). Statistical Shape Analysis, with Applications in
R, 2nd edition. Wiley, Chichester.

Dryden, I. L., Pennec, X., and Peyrat, J.-M. (2010). Power Euclidean metrics for co-
variance matrices with application to diffusion tensor imaging. arXiv e-prints, page
arXiv:1009.3045.

Gablasova, D., Brezina, V., and McEnery, T. (2017). Collocations in corpus-based lan-
guage learning research: Identifying, comparing, and interpreting the evidence. Lan-
guage Learning, 67:155–179.

Ginestet, C. E., Li, J., Balachandran, P., Rosenberg, S., and Kolaczyk, E. D. (2017).
Hypothesis testing for network data in functional neuroimaging. Ann. Appl. Stat.,
11(2):725–750.

Lele, S. (1993). Euclidean distance matrix analysis (EDMA): estimation of mean form
and mean form difference. Math. Geol., 25(5):573–602.

Marron, J. S. and Alonso, A. M. (2014). Overview of object oriented data analysis.
Biometrical Journal, 56(5):732–753.

Masarotto, V., Panaretos, V. M., and Zemel, Y. (2018). Procrustes metrics on covariance
operators and optimal transportation of Gaussian processes. Sankhya A.

Pigoli, D., Aston, J. A. D., Dryden, I. L., and Secchi, P. (2014). Distances and inference
for covariance operators. Biometrika, 101(2):409–422.

3



Scealy, J. and Welsh, A. (2014). Colours and cocktails: Compositional data analysis 2013
lancaster lecture. Australian & New Zealand Journal of Statistics, 56(2):145–169.

Severn, K. E., Dryden, I. L., and Preston, S. P. (2019). Manifold valued data analysis
of samples of networks, with applications in corpus linguistics. arXiv e-prints, page
arXiv:1902.08290.

Tavakoli, S., Pigoli, D., Aston, J. A. D., and Coleman, J. S. (2019). A spatial model-
ing approach for linguistic object data: analysing dialect sound variations across great
britain. Journal of the American Statistical Association. To appear.

Tsagris, M., Preston, S., and Wood, A. (2016). Improved classification for compositional
data using the α-transformation. Journal of Classification, 33(2):243–261.

Wang, H. and Marron, J. S. (2007). Object oriented data analysis: sets of trees. Ann.
Statist., 35(5):1849–1873.

4


