Accepted Manuscript

Corneal nerves in health and disease

Mouhamed A. Al Aqaba, Virinder K. Dhillon, Imran Mohammed, Dalia G. Said, Harminder S. Dua

PII: S1350-9462(18)30096-X

DOI: https://doi.org/10.1016/j.preteyeres.2019.05.003

Reference: JPRR 762

To appear in: Progress in Retinal and Eye Research

Received Date: 25 December 2018

Revised Date: 25 April 2019

Accepted Date: 1 May 2019

Please cite this article as: Al Aqaba, M.A., Dhillon, V.K., Mohammed, I., Said, D.G., Dua, H.S., Corneal nerves in health and disease, *Progress in Retinal and Eye Research* (2019), doi: https://doi.org/10.1016/j.preteyeres.2019.05.003.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Title: Corneal Nerves in Health and Disease

Authors: Mouhamed A Al Aqaba¹, Virinder K Dhillon¹, Imran Mohammed¹, Dalia G Said¹, Harminder S Dua^{*1}.

Affiliations: ¹Larry A Donoso Laboratory for Eye Research, Academic Section of Ophthalmology, Division of Clinical Neuroscience, University of Nottingham, Nottingham University Hospitals, NHS Trust, Nottingham, England. UK.

Mouhamed A Al Aqaba, Clinical assistant Professor of Ophthalmology, The University of Nottingham. <u>Mouhamed.alaqaba@nottingham.ac.uk</u>

Virinder K Dhillon, Medical Retina Fellow, Moorfields Eye Hospital. <u>dlvirinder@hotmail.com</u>

Imran Mohammed, Senior Research Fellow, The University of Nottingham, Imran.mohammed@nottingham.ac.uk

Dalia G Said, Associate clinical professor of Ophthalmology, The University of Nottingham and Consultant Ophthalmologist, Nottingham University Hospitals, NHS Trust. Nottingham. <u>daliagsaid@gmail.com</u>

Harminder S Dua, Professor of Ophthalmology, The University of Nottingham and Consultant Ophthalmologist, Nottingham University Hospitals, NHS Trust. Nottingham. <u>Harminder.dua@nottingham.ac.uk</u>

Corresponding Author:

Prof. Harminder S Dua Section of Academic Ophthalmology B Floor, Eye ENT Centre Queens Medical Centre Derby Road, Nottingham. NG7 2UH <u>harminder.dua@nottingham.ac.uk</u>

Declaration of Interests:

Mouhamed A Al Aqaba: None

Virinder K Dhillon: None

Imran Mohammed: None

Dalia G Said: UK advisory board member of Cheisi and Dompe.

Harminder S Dua: Consultant and travel support from Allergan, Bausch & Lomb, Cheisi, Dompe, Santen, Shire, Thea and VisuFarma. Shares in NuVision biothereapeutics and Glaxosmithkline.

Title: Corneal nerves in health and disease

Contents:

1.	Introduction	07
2.	Neuroanatomy of the corneal nerves	10
	2.1. Embryology and development of corneal innervation	10
	2.2. Origin of corneal nerves	11
	2.3. Corneal nerve architecture	13
3.	Neurochemistry of the cornea (Neurotrophins,	
	Neurotransmitters and Neuropeptides)	29
4.	The role of corneal nerves	32
	4.1. Sensory and reflex function	32
	4.2. Axonal reflex and neurogenic inflammation	33
	4.3. Trophic function	36
5.	Manifestations of corneal nerve dysfunction	38
	5.1. Definitions	39
	5.2. Corneal pain in the absence of ocular surface disease	
	"Pain without stain"	40
	5.3. Anaesthetic cornea with intact corneal nerves	
	(pre-ganglionic damage)	42
	5.4. Anaesthetic/hypoesthetic cornea with absent nerves and abnormal	
	ocular surface "neurotrophic keratopathy, stain without pain"	43
6.	Visualisation of corneal nerves	44
	6.1. In vitro/ex vivo techniques	44
	6.2. In vivo techniques: In vivo confocal microscopy (IVCM)	49
7.	Nerve affection in corneal pathology	50
	7.1. Post-surgical conditions	51
	7.2. Diabetic Keratopathy	62
	7.3. Herpetic corneal disease	65
	7.4. Dry eyes	67
	7.5. Keratoconus	69
	7.6. Contact lens wear	70
	7.7. Bullous keratopathy	71
	7.8. Neurotrophic keratopathy (NK)	73
	7.9. Glaucoma	74
	7.10.Corneal dystrophies	76
	7.11.Limbal stem cell deficiency	77
_	7.12 Small-fibre sensory neuropathy (SFSN)	79
8.	Future directions	81
9.	Funding support	86
10.	Acknowledgement	86
11.	References	86
12.	Figure legends	109

Abbreviations:

AChE	Acetylcholinesterase
BK	Bullous keratopathy
CGRP	Calcitonin gene-related peptide
EK	Endothelial keratoplasty
FECD	Fuchs' Corneal Endothelial Dystrophy
HSK	Herpes simplex keratitis
HZO	Herpes zoster ophthalmicus
IVCM	In vivo confocal microscopy
LASIK	Laser in situ keratomileusis
LEC	Limbal epithelial crypts
LNC	Limbal nerve corpuscles
NcP	Nociceptor pain
NGF	Nerve growth factor
NP	Neuropathic pain
NK	Neurotrophic keratopathy
PRK	Photorefractive keratectomy
SEM	Scanning electron microscope
SFSN	Small-fibre sensory neuropathy
SMILE	Small incision lenticule extraction
SP	Substance P
TEM	Transmission electron microscope
TRPM8	Transient receptor potential cation channel subfamily M member 8
TRPV1	Transient receptor potential cation channel subfamily V member 1

1 Abstract

2 The cornea is the most sensitive structure in the human body. Corneal 3 nerves adapt to maintain transparency and contribute to corneal health by 4 mediating tear secretion and protective reflexes and provide trophic support to 5 epithelial and stromal cells. The nerves destined for the cornea travel from the 6 trigeminal ganglion in a complex and coordinated manner to terminate between 7 and within corneal epithelial cells with which they are intricately integrated in a 8 relationship of mutual support involving neurotrophins and neuromediators. The 9 nerve terminals/receptors carry sensory impulses generated by mechanical, pain, 10 cold and chemical stimuli. Modern imaging modalities have revealed a range of 11 structural abnormalities such as attrition of nerves in neurotrophic keratopathy and 12 post-penetrating keratoplasty; hyper-regeneration in keratoconus; decrease of sub-13 basal plexus with increased stromal nerves in bullous keratopathy and changes 14 such as thickening, tortuosity, coiling and looping in a host of conditions 15 including post corneal surgery. Functionally, symptoms of hyperaesthesia, pain, 16 hypoaesthesia and anaesthesia dominate. Morphology and function do not always 17 correlate. Symptoms can dominate in the absence of any visible nerve pathology 18 and vice-versa. Sensory and trophic functions too can be dissociated with pre-19 ganglionic lesions causing sensory loss despite preservation of the sub-basal nerve 20 plexus and minimal neurotrophic keratopathy. Structural and/or functional nerve 21 anomalies can be induced by corneal pathology and conversely, nerve pathology 22 can drive inflammation and corneal pathology. Improvements in accuracy of 23 assessing sensory function and imaging nerves in vivo will reveal more

4

- 24 information on the cause and effect relationship between corneal nerves and
- 25 corneal diseases.

26 Key words

27	Corneal nerves
_ /	
28	Trophic function
29	Sensory function
30	Limbal nerve corpuscles
31	Bullous keratopathy
32	Keratoplasty
33	Keratoconus
34	Dry eye
35	Corneal crosslinking
36	Diabetic keratopathy

37 1. Introduction

38	To serve its principal function of letting light in to the eye and providing
39	two thirds of the eye's focusing power, the cornea must remain transparent (Meek
40	and Knupp, 2015). Its anatomy and physiology are adapted towards this end.
41	Intrinsic transparency of the cornea is related to the architecture of the stromal
42	collagen, determined largely by the uniform diameter and spacing of the collagen
43	fibres, the transparency of the keratocytes, which are the predominant cell
44	population by far, the relative state of dehydration (78% water content) and the
45	absence of blood vessels. The cornea also maintains a rich nerve supply with a
46	high density of nerve fibres located within the epithelium, in the sub-basal plexus
47	and anterior stroma, which do not interfere with the transmission of light (Al-
48	Aqaba et al., 2010b; He et al., 2010; Marfurt et al., 2010). The major nerve
49	bundles lose their myelin sheath soon after entering the cornea at the limbus and
50	become transparent thereafter.
51	Being largely invisible on conventional examination techniques their
52	clinical appearance in diseases of the cornea has not been widely remarked on.
53	The advent of in vivo confocal microscopy (IVCM) has enabled en-face
54	examination of corneal nerves in health and disease and bespoke software
55	programmes have allowed quantification of various aspects of nerve morphology
56	such as density, fibre length, width, tortuosity, beading, branching and reflectivity
57	(Alzubaidi et al., 2016; Cruzat et al., 2017; Shaheen et al., 2014).
58	Immunohistological and microscopy techniques of studying whole mount
59	specimen of normal and diseased corneas have also contributed vastly to our
60	knowledge of corneal nerve aberrations (Al-Aqaba et al., 2011a; Al-Aqaba et al.,

7

61	2011b; Al-Aqaba et al., 2010b; He et al., 2010; Marfurt et al., 2010). It is not
62	surprising therefore that a whole range of corneal nerve pathology is now known,
63	and descriptions and definitions are attributed to specific disease conditions.
64	Whether the changes are a cause, or an effect of the disease is not always clear.
65	Corneal nerves serve sensory and trophic functions (Labetoulle et al.,
66	2019). They release a large number of chemical substances (neuro-mediators) that
67	preserve the health and integrity of the corneal cells, both epithelial cells and
68	keratocytes. This 'nutritional function' is referred to as the 'trophic' function of
69	the nerves. Sensory input is responsible for the normal and protective blink reflex
70	and are the afferent components driving tear secretion from the tear glands.
71	Trophic and sensory functions can be independently affected for example in
72	lesions that affect the pathway between the trigeminal ganglion and the sensory
73	cortex, the sensory function is compromised but the trophic function is maintained
74	by the surviving pseudo-unipolar neurons in the ganglion. Distal lesions affect
75	both sensory and trophic functions. When trophic function is compromised, the
76	health of the cells is affected and neurotrophic keratopathy results. The epithelial
77	cells and keratocytes in turn release molecules (growth factors and cytokines) that
78	maintain the health and regeneration of the nerves. Nerve growth factor is an
79	important example. There is thus a mutual cycle of support and dependence of the
80	nerves and cells.
81	Assessing corneal nerve function by testing corneal sensitivity is an age-

82 old practice with the non-standard use of a 'cotton wisp' as the mainstay.

83 Touching the cornea with a finely drawn out wisp of cotton or soft tissue paper is

satisfactory for a 'yes' 'no' response as assessed by the blink reflex or withdrawal

85	of the head by the patient. By this method, quantitative estimation of corneal
86	sensitivity is very subjective to both the patient and the doctor. The Cochet-
87	Bonnet aesthesiometer is a useful semi-quantitative tool to measure sensitivity
88	(Murphy et al., 1998). The filament is subject to environmental factors such as
89	temperature and humidity and it only assesses touch/pain sensations (Lum and
90	Murphy, 2018). The Belmonte aesthesiometer is more reliable and can assess
91	touch, cold and chemical stimuli but currently is largely viewed as a research tool
92	(Golebiowski et al., 2011).
93	The cornea also has a significant autonomic, predominantly sympathetic,
94	innervation. The limbal and perilimbal innervation is essentially vasomotor,
95	causing the ciliary blush (circumcorneal injection) on corneal irritation
96	(Labetoulle et al., 2019). This axonal reflex is part of the corneal defence system
97	allowing extravasation of immune cells from the limbal vessels, which then
98	infiltrate the cornea to combat the infectious/injurious agent. As the cornea itself
99	is avascular, the role of sympathetic nerves within the cornea is not clear but
100	alteration of sympathetic innervation can affect cell proliferation and alter the
101	behaviour and course of infections and diseases (Labetoulle et al., 2019).
102	As our ability to study structure and function of corneal nerves in health
103	and disease improves, understanding the pathophysiology of specific diseases will
104	be enhanced and specific targeted therapies will develop. Undoubtedly it will be
105	established that the causes and consequences of corneal nerve damage are integral
106	to most if not all corneal pathology and addressing these will be important in
107	managing corneal diseases and restoring corneal health.

9

108 2. Neuroanatomy of the cornea

109 2.1 Embryology and development of corneal innervation

110 The development of the human cornea starts with the formation of 111 primitive epithelium and lens. The process involves invagination of surface 112 ectoderm above the optic vesicles to form the crystalline lens. This primitive lens 113 induces the formation of the overlying epithelium into the corneal epithelium at 114 approximately one month of gestation. A week later, a bi-layered epithelium 115 appears (O'Rahilly, 1983). The basal layer produces collagen fibrils and 116 glycosaminoglycans that accumulate as the primary corneal stroma between the 117 epithelium and the lens vesicle (Dodson and Hay, 1971; Hay and Revel, 1969). A wave of neural crest cells migrates between the lens vesicle and primary stroma to 118 119 form the embryonic endothelium. A subsequent migration of neural crest cells, at 120 around the seventh week of gestation, populate the primary stroma to form the 121 primitive keratocytes that construct the definitive stroma (Cai et al., 1994; 122 Hayashi et al., 1988). Descemet membrane is secreted by the endothelial cells and 123 can be detected in utero as early 12 weeks of gestation (Eghrari et al., 2015). 124 Kitano has described the embryology of human corneal nerves and the following 125 course of events has been observed (Kitano, 1957). In the one-month embryo the 126 cornea has not taken the shape and no nervous tissue was found in the future orbit. 127 At the two-month stage, the primary cornea was fashioned and at this point the 128 ciliary nerves reached the edge of optic cup. Fine nerve branches began to appear 129 in the slowly differentiating corneal stroma during the third month. A large 130 number of nerves approach the anterior stroma just under Bowman's layer by the

131 fourth month. These penetrated Bowman's layer and entered the epithelium at the 132 fifth month stage. From the sixth to ninth month of gestation there was a 133 progressive increase in the density of nerve fibres and their fine branches both in 134 the stroma and epithelium. 135 2.2 Origin of corneal nerves 136 The human cornea is one of the most richly innervated structures in the 137 body and is densely supplied by sensory and autonomic nerve fibres (Muller et al., 138 2003). It is 40 times more sensitive than dental pulp, 100 times more than the conjunctiva (Wells and Michelson, 2008), and over 400 times more than the skin 139 140 (Bonini et al., 2003b).

141 2.2.1 Sensory nerves

142 The trigeminal nerve is the largest of all cranial nerves. It is the major 143 sensory nerve of the head innervating the skin of the face, oral mucosa, nasal 144 cavity, and paranasal sinuses. Its three sensory branches, the ophthalmic (V1), 145 maxillary (V2), and mandibular (V3) nerves, emerge at the anterior convex aspect 146 of the ganglion. The human trigeminal ganglion is canoe-shaped and has an 147 average number of 27,400 pseudo-unipolar neurons [neurons from which a single 148 axon emerges and divides into two, one going to the central nervous system and 149 the other to the peripheral end organ] (LaGuardia et al., 2000). The corneal 150 sensory fibres, which constitute most of the corneal nerve fibres, are mainly 151 derived from cell bodies of the ophthalmic division of the trigeminal nerve. A 152 relatively small number of neurons (about 1.5% of the total number of the neurons 153 of the ganglion), which are located in the medial or neural crest component of the

154	trigeminal ganglion serve the cornea (Arvidson, 1977; Felipe et al., 1999; Keller
155	et al., 1991; LaVail et al., 1993; Marfurt, 1981; Marfurt and Del Toro, 1987;
156	Marfurt and Echtenkamp, 1988; Marfurt et al., 1989; Morgan et al., 1987b;
157	Morgan et al., 1978; ten Tusscher et al., 1988). The sensory nerves exhibit a
158	variety of afferent (e.g. pain and temperature sensation) and efferent (trophic and
159	secretory) functions [Unlike nerves, the terms afferent and efferent for blood
160	vessels have the opposite connotation]. Mechanical, thermal and chemical stimuli
161	of the corneal nerves produce predominantly a sensation of pain in humans. (Lele
162	and Weddell, 1959) In some cases the maxillary division of trigeminal nerve can
163	provide innervation to part of the inferior cornea (Ruskell, 1974; Vonderahe,
164	1928). A single corneal sensory neuron can support an extremely large number of
165	individual nerve endings. This number differs considerably among different
166	mammalian corneas e.g. 200 in mouse (de Castro et al., 1998; Felipe et al., 1999)
167	and 3000 in rabbit (Marfurt et al., 1989; Rozsa and Beuerman, 1982). Many
168	retrograde nerve tracing studies have shown that 50-450 neurons innervate each
169	cornea, the real number depending on species (Launay et al., 2015; LaVail et al.,
170	1993; Marfurt et al., 1989; Morgan et al., 1978). These neurons are mainly small
171	or medium size, averaging 20-23 μm in diameter in rodents and 31-33 μm in
172	larger mammals (Keller et al., 1991; Marfurt et al., 1989; Nishimori et al., 1986;
173	Sugimoto et al., 1988). Given that the human corneal surface area is around 123
174	square millimetres (Dua et al., 1994) this would equate to approximately 11,000
175	nerve endings per square millimetre (based on counts for mammalian (rabbit)
176	nerve endings).

177 2.2.2 Autonomic nerves

178	All mammalian corneas receive sympathetic nerve fibres that are derived
179	from the superior cervical ganglion. The density of the sympathetic innervation
180	varies considerably among different species (Marfurt and Ellis, 1993). For
181	example, a dense sympathetic innervation that constitutes up to 15% of the total
182	corneal innervation has been demonstrated in rabbit and cat corneas (Ehinger,
183	1966b; Marfurt et al., 1989; Morgan et al., 1987a; Tervo and Palkama, 1978).
184	However, a sparse corneal sympathetic innervation was found in humans and
185	other primates (Ehinger, 1966b, 1971; Sugiura and Yamaga, 1968; Toivanen et
186	al., 1987). They were predominantly located in the limbal stroma and in a close
187	proximity to the blood vessels, except capillaries (Ehinger, 1966b). The function
188	of the adrenergic input to the cornea, which is essentially avascular, is not yet
189	known. Could the sympathetic nerves be an extension of the limbal vasomotor
190	nerves that respond to corneal stimuli to cause dilation of the vessels, as part of a
191	local axonal reflex arc usually mediated by the sensory nerves? Parasympathetic
192	fibres, originate from the ciliary ganglion, have been shown to terminate in the
193	peripheral part of rat and cat corneal stroma (Marfurt et al., 1998; Morgan et al.,
194	1987a; Tervo et al., 1979). However, this kind of innervation has not been
195	confirmed in humans.

- 1962.3Corneal nerve architecture
- 197 2.3.1 Limbal nerve plexus

198 The sensory nerves reach the eye mainly via the nasociliary branch of the 199 ophthalmic division of the trigeminal nerve. This branch gives rise to 2-3 long 200 ciliary nerves and a communicating branch or ramus taking sensory fibres to the

201	ciliary ganglion. Six short ciliary nerves from the ciliary ganglion and the long
202	ciliary nerves course toward the posterior pole of the globe, penetrate it around the
203	optic nerve and then pass anteriorly in the suprachoroidal space. Nerves in the
204	suprachoroidal space are of two main groups: 1) the short uveal nerves form the
205	suprachoroidal nerve plexus, which provide branches supplying the ciliary body.
206	They appear as mixed fibres containing sympathetic, parasympathetic and sensory
207	axons (May, 2004). 2) the long uveal nerves, accompanying the long posterior
208	ciliary arteries, which provide innervation to the anterior segment. Seventy-five
209	percent of these nerves are myelinated, while the remaining (25%) are
210	unmyelinated. They contain both sympathetic and sensory nerve fibres.
211	Until recently, all the nerve fibres, innervating different structures within
212	the globe, were thought to be postganglionic nerves. However, studies have
213	shown neurons within the uveal tissue of human eyes, which are immunoreactive
214	to nitric oxide synthase and vasoactive intestinal peptide (May et al., 2004; Tamm
215	et al., 1995). Approximately 2000 of these neurons are present in the choroid and
216	their postganglionic nerve fibres join the perivascular nerve plexus that supports
217	the vasodilating effect on the choroidal vasculature (Flugel et al., 1994). A similar
218	number of the neurons are located in the inner part of the ciliary muscle and are
219	believed to be involved in fine regulation of accommodation (Tamm et al., 1995).
220	Branches from the long ciliary (uveal) nerves, together with nerve fibres
221	from the sub-conjunctival plexus, form a complex peri-corneal (limbal) plexus,
222	which is characterised by a dense ring-like network of nerve fibres that encircle
223	the entire peripheral cornea (Fig. 1) (He et al., 2010). Most of the fibres in this
224	plexus are believed to supply vasomotor innervation to the blood vessels in the

225 limbus, while others pass within the limbal stroma unrelated to blood vessels226 (Marfurt, 2000).

227 2.3.1.1 Limbal nerve corpuscles

228 Tortuous nerves fibres have been found to extend from the superficial 229 limbal plexus and terminate in round or oval structures (Fig. 2), 20 to 100 µm in 230 diameter, termed limbal nerve corpuscles (LNCs) (Al-Aqaba et al., 2018). These 231 are generally confined to the peripheral 2 mm of the cornea and are randomly 232 distributed along the limbal circumference in the subepithelial substantia propria. 233 Their numbers are variable, ranging from 70 up to 300 per eye. They show an 234 association with the palisades of Vogt and the limbal epithelial crypts (Fig. 3) 235 (Dua et al., 2005).

236 On confocal microscopy they appear as bright, hyper-reflective ovoid structures singly or in clusters (Fig. 4) within the fibrous core of the palisades. On 237 238 whole mount staining with the Acetylcholinesterase technique they show 239 unevenly staining convoluted lamellae covering loculated spaces. On scanning 240 electron microscopy (SEM) of macerated limbal tissue the LNC show a globular 241 structure with a ruffled covering (Fig. 5). The location of the LNC and close 242 association with the LEC and limbal palisades suggests that they form part of the 243 stem cell niche microenvironment that maintains the stemness of the stem cells 244 interacting with the blood vessels, stromal cells and local immune cells. The 245 structure and function of the LNC is being studied and their exact role needs to be 246 deciphered. They could also serve as special receptors for pressure and 247 biomechanical stress at the limbus acting to restore limbal and corneal shape

248	following distortions induced by blinks, squeezing the eyelids and rubbing and
249	globe; external pressures that the eye is constantly subjected to.
250	2.3.2 Corneal stromal nerves
251	A mixture of sensory and autonomic nerves passes through the limbus and
252	enter the cornea at different levels. Nerves enter the cornea in the middle third of
253	the stroma in a series of large, radially-oriented nerve bundles and run forward
254	and anteriorly in a radial fashion toward the central area, giving rise to branches
255	that innervate the anterior and mid-stroma (Fig. 6). About 33-90 fascicles,
256	containing 900-1500 axons, enter the human cornea, while 20-40 fascicles enter
257	the cornea of other mammals (Al-Aqaba et al., 2010b; Chan-Ling, 1989; He et al.,
258	2010; Marfurt et al., 2010; Millodot, 1978; Zander and Weddell, 1951a).
259	Additionally, other small nerve bundles enter the cornea more superficially in the
260	episcleral and conjunctival planes, to provide innervation to the superficial stroma
261	and epithelium of the peripheral cornea respectively (Chan-Ling, 1989; He et al.,
262	2010; Zander and Weddell, 1951a). [Nerve structure: An axon is the cytoplasmic
263	extension of the neuron cell body. The cytoplasm is termed the axoplasm and the
264	cell membrane covering the axoplasm is the axolemma. This is covered by myelin,
265	which is white and relatively opaque. Myelin is surrounded by the Schwann cells
266	that secrete the myelin. The Schwann cell layer is termed neurilemma. Delicate
267	connective tissue (endoneurium, endoneurial sheath or Henle's sheath)
268	containing connective tissue cells (endoneurial cells) surrounds the axon. Bundles
269	of axons surrounded by a connective tissue sheath, the perineurium, are called a
270	fascicle. Bundles of fascicles bound together with connective tissue, the
271	epineurium constitutes a nerve (nerve bundle).]

272	All corneal sensory nerves derive from finely myelinated (A- δ) and
273	unmyelinated (C) axons determined by the size and presence of myelin sheaths in
274	the axon (Felipe et al., 1999). [Nerve fibres are of three types. A fibres, which can
275	be the A alpha(α)[13-20 μ m diameter and conduction velocity c/v of 80-120
276	metres per second m/s], which carry proprioception sensations from muscles; A
277	beta(β) [6-12 μ m diameter and c/v of 6-12 m/s], which transmit sensation of
278	touch and A delta(δ) [1-5 μ m diameter and c/v of 5-40 m/s], which transmit pain
279	and temperature sensations. B fibres, which are preganglionic nerves of the
280	autonomic system and visceral afferents. Nerve fibres of types A and B are
281	myelinated and consequently have a faster conducting velocity. C fibres that carry
282	sensations generated by pain, thermal and chemical stimuli. C fires are
283	unmyelinated with a slower conduction velocity (0.5 to 2 m/s) and are
284	comparatively thinner (0.2 to 1.5 μ m) (Tubbs et al., 2015).
285	In the human cornea, central stromal axons are unmyelinated and run in
286	the anterior stroma as large bundles parallel to collagen bundles. Most of the
287	axons in these bundles are about 0.5 μ m in diameter. However, a few may be as
288	large as 2.5 μ m (Muller et al., 1996; Muller et al., 1997). On the other hand, more
289	than 70% of the axons in rabbit corneas are unmyelinated (Beuerman, 1983). The
290	rest are finely myelinated axons that lose their myelin sheath within 1 mm after
291	penetrating the cornea (Lim and Ruskell, 1978; Rozsa and Beuerman, 1982;
292	Zander and Weddell, 1951a). Interestingly, studies have shown that myelinated
293	axons are present in the central cornea in some mammals (Rodger, 1950; Whitear,
294	1960).

295	As soon as they enter the corneal stroma, the nerve bundles lose their
296	perineurium and continue centrally surrounded only by Schwann cells. The nerve
297	bundles sub-divide and reconnect in a series of random bifurcations and
298	trifurcations forming a multi-layered network that distributes nearly equally
299	throughout all four corneal quadrants (Ishida et al., 1984). Each single sensory
300	neuron can extend in to the cornea for up to three quarters of its diameter and
301	supply as much as 20-50% of the corneal area (Zander and Weddell, 1951a, b).
302	Several studies have shown that corneal stromal nerves have a tendency to
303	concentrate in the anterior one third of stroma, where they form a dense sub-
304	Bowman's plexus. However, the posterior stroma seems to lack innervation and
305	only a few investigators have noticed a sparse innervation of corneal endothelium
306	(Leon-Feliu et al., 1978; ten Tusscher et al., 1989; Wolter, 1957).
307	Are the stromal nerves merely passing through the stroma en route to the
308	sub-basal plexus or are they supplying the stroma and keratocytes? Some nerves
309	are seen to terminate in the stroma, in relation to a keratocyte but such endings are
310	sparse compared to the density of nerves seen in relation to the epithelial cells.
311	Like epithelial cells, keratocytes too depend on trophic support from the nerves
312	implying neurotrophic factors released anteriorly can percolate through the stroma
313	to support all keratocytes. The increased density of nerves in the anterior stroma
314	corresponds with the increased density of keratocytes in the same location. This
315	could be more than just a co-incidence and represent the gradient of trophic factor
316	being more concentrated anteriorly.

317 The wide area covered by each neuron indicates that there is considerable318 overlap of innervation ensuring that no part of the cornea is deprived of nerve

319	supply following injury or insult to a single or few neurons or their axons. This
320	probably explains why multiple limbal incisions of varying lengths performed
321	during corneal or cataract surgery do not seriously affect corneal health.
322	Vascular and nervous systems share considerable similarities at the
323	anatomical and cellular levels. They often run parallel to each other, exhibit a
324	similar branching pattern (Ferrari et al., 2013). The developmental and growth of
325	both networks require an intricate control, which is maintained by a variety of
326	common molecules and trophic factors (Carmeliet et al., 2009; Tessier-Lavigne
327	and Goodman, 1996). In healthy physiological state, the densely innervated
328	cornea shows lack of vascular elements. However, conditions, that promote
329	corneal vascularisation e.g. ocular surface inflammation, limbal stem cell
330	deficiency, corneal graft rejection, infectious keratitis and chemical burns, often
331	result in abnormalities of nerve structure and function (Epstein and Paton, 1968;
332	Lim et al., 2009). Inflammation seems to be a common associated factor. A
333	direct inhibitory cross-talk between the sensory nerves and angiogenesis has been
334	confirmed in a relatively recent animal study, where inducing angiogenesis results
335	in nerve loss and, conversely, denervation induces corneal vascularisation (Ferrari
336	et al., 2013). This response appears to be mediated by reduced expression of
337	corneal angiostatic molecules such as pigment epithelial-derived factor (PEDF)
338	and epithelial vascular endothelial growth factor receptor 3 (VEGFR3) However,
339	there are contradictions as well. Herpes virus keratitis is the commonest cause of
340	corneal vascularisation despite reduced corneal sensations (Faraj et al., 2016).
341	Advanced keratoconus is associated with exuberance of stromal nerves yet rarely
342	vascularised in the absence of acute hydrops (Al-Aqaba et al., 2011b). In

343	acanthamoeba keratitis nerve affection in the form of radial keratoneuritis is
344	common yet it is an inflammatory condition least associated with vascularisation
345	(Faraj et al., 2016). Stressed cells release chemokines that attract vascular
346	endothelial cells suggesting that vascularisation is a multifactorial and complex
347	process. There could also be an anatomical correlation between vessels and
348	nerves. It has been shown that vessels in the cornea tend to follow tissue planes
349	such as suture track and those created by incisions and penetrating and lamellar
350	keratoplasty (Faraj et al., 2016). The micro channels through which nerves
351	traverse the stroma may also provide channels for vessels to follow both in the
352	presence or absence of the resident nerve.
353	Instillation of topical anaesthetic drops that predominantly affect the
354	terminal sensory nerve endings, allows the surgeon to make full thickness corneal
355	incisions near the limbus, transecting the thick limbal nerves without eliciting
356	pain. The deeper stromal nerves may therefore be more trophic than sensory, and
357	the superficial nerves the other way around.
358	Is pain response related to only the epithelium? With SMILE (small
359	incision lenticule extraction, laser refractive surgery) and LASIK (laser in situ
360	keratomileusis) procedures the pain is less when the anaesthesia wear off
361	compared to photorefractive keratectomy (PRK) where the epithelium is removed

362 and pain is severe when the anaesthetic wears off. This supports the notion that

363 the sensory element of superficial nerve endings is much greater than in the

364 stromal nerves/nerve endings. In bullous keratopathy (BK), episodic severe pain is

attributed to rupture of epithelial bullae and exposure of nerve endings.

366 Paradoxically, it has been shown that the sub-basal plexus in bullous keratopathy

367

368

369

370

371

372

is reduced or absent (see below Section 7.8). It is possible that the stromal nerves
elicit pain response in an environment of chronic edema and inflammation. In
'radial keratoneuritis' of acanthamoeba infection the pain is severe. Here the
stromal nerves are directly affected by the inflammation associated with
surrounding edema.
A modest number of sympathetic nerves are mixed with corneal sensory

373 nerves. The distribution of corneal sympathetic innervation has been studied using 374 histochemical fluorescence techniques, immunohistochemistry and nerve tracing 375 techniques (Ehinger, 1966a, b, c; Ehinger and Sjoberg, 1971; Klyce, 1986; Laties 376 and Jacobowitz, 1964; Laties and Jacobowitz, 1966; Marfurt, 1988; Marfurt and 377 Ellis, 1993; Tervo and Palkama, 1976). It has been found that sympathetic nerves 378 are mainly distributed in the anterior one-third of the stroma and there is an inter-379 species difference in the overall density (Marfurt et al., 1989). Although it has 380 been reported that there is insignificant corneal sympathetic innervation in adult 381 primates including human cornea (Ehinger, 1966a, 1971; Ehinger and Sjoberg, 382 1971; Laties and Jacobowitz, 1966; Sugiura and Yamaga, 1968), recent other 383 studies using antibodies against tyrosine hydroxylase reveal greater sympathetic 384 innervation than has been previously identified (Marfurt and Ellis, 1993; Ueda et 385 al., 1989).

There is ongoing evidence to support the physical and biochemical interaction between the nerves and the cellular constituents of the cornea. Stromal keratocytes are frequently found in the close vicinity of the nerves and occasionally enclose nerve bundles with their cytoplasmic processes (Fig. 7) (Muller et al., 2003). Metabolically active stromal fibroblasts have been recently

396	by myofibroblasts.
395	believed to be mediated by transforming growth factor beta 1 (TGF- β 1) secreted
394	delayed by scar-forming corneal myofibroblasts (Jeon et al., 2018). This effect is
393	(Yam et al., 2017). Conversely, neurite outgrowth following injury appears to be
392	notion that the density of stromal fibroblasts could influence nerve regeneration
391	shown to promote neurite growth in a dose-dependent manner supporting the

397 Acetylcholinesterase (AChE) is present in both neuronal and non-neuronal 398 tissues, and is usually regarded as a membrane-bound enzyme (Taylor et al., 399 1981; Wheeler et al., 1972). AChE activity has been demonstrated in the corneal 400 epithelium and keratocytes (Fig. 8). Evidence to suggest possible neuronal 401 function related role of intracellular AChE within the cornea include (1) the 402 association of acetylcholine and true AChE in cholinergic nerves; (2) loss of 403 corneal sensation when AChE synthesis is inhibited in the cornea; (3) lack of 404 acetylcholine and AChE content in denervated cornea; and, (4) localisation of true 405 cholinesterase in corneal epithelium by light and electron microscopy (Howard et 406 al., 1975).

407 2.3.3 Bulb-like structures at the junction of the stromal and sub-basal nerves

The junction of the stromal nerves and the sub-basal nerves at the subbasal plane demonstrate interesting anatomical features. As they approach the anterior stroma, the unmyelinated nerves subdivide in a characteristic branching pattern. After passing through Bowman's layer they terminate in bulb-like structures from which a leash of sub-basal nerves arises (Fig. 9). The perforation sites are predominantly located in the mid-peripheral cornea. Relatively fewer

414	perforation sites are found in the central cornea. The average number of
415	perforation points is 185 per cornea (Al-Aqaba et al., 2010b). The bulb-like
416	structures do not show any nuclei and probably represent the termination of the
417	endoneurium which appears to be folded upon itself. However, the demonstration
418	of neurons in the choroid should prompt another look at these structures in greater
419	detail. Interestingly, the epithelial cells surrounding these structures differ from
420	the remaining epithelium in that they often show a denser nuclear staining with
421	AChE (Fig. 10). While the unmyelinated nerves maintain their Schwann cell
422	sheath throughout the stroma, the sub-basal nerves project for several millimetres
423	within the sub-basal and intraepithelial planes without Schwann cell support.
424	Corneal epithelial cells function as surrogate Schwann cells for the sub-basal and
425	intraepithelial nerves during homeostasis and in response to injury (Stepp et al.,
426	2017). The morphological similarity between the sub-basal nerves and
427	intraepithelial nerve plexus and the dendritic lesion of herpes simplex keratitis
428	suggests the latter is determined by the former, which would not be surprising
429	given the affinity of the virus for the nerves. Pseudodendrites are seen in
430	acanthamoeba keratitis and with healing corneal abrasions. The mechanisms of
431	these lesions are different. In the former they represent the migration path taken
432	by acanthamoeba as they infect and ingest the epithelial cells and in the latter they
433	represent the meeting sites of healing epithelial sheets. Though sub-basal nerve
434	changes have been described with acanthamoeba infection (Kurbanyan et al.,
435	2012) the nerves are unlikely to determine the pseudodendritic pattern.
436	The appearance of the bulbous end of the stromal nerves has been
437	confirmed using a variety of techniques including AChE staining, Nanozoomer

438	scanning, (Fig. 10) (Al-Aqaba et al., 2010b), SEM, TEM (Fig. 11) and IVCM
439	(Fig. 12). The morphological features revealed differ with the stain used. AChE
440	staining demonstrated the blub-like terminations of the nerves as they emerge
441	anterior to the Bowman's layer but these are not shown by staining with anti-Beta
442	III tubulin immunohistology. This is most probably related to the intracytoplasmic
443	location of this neuron-specific major cytoskeleton protein, which would show the
444	axons but not the surrounding sheath (He et al., 2010; Marfurt et al., 2010).
445	2.3.4 Sub-basal nerve plexus
446	The corneal epithelium receives sensory nerve fibres either from the sub-
447	Bowman's nerves via the sub-basal plexus or in the peripheral cornea, directly
448	from the conjunctival nerves (Marfurt, 2000). The majority of these nerve fibres
449	are of C type (Richter et al., 1997). The sub-basal nerve plexus is situated between
450	the basal epithelial cells and Bowman's layer (Fig. 13). Morphologically, each
451	nerve consists of non-beaded straight nerve fibres in the centre and beaded fibres
452	located in the periphery of the nerve (Fig. 13). Several electron microscopy
453	studies have shown that these beads represent axonal efferent and sensory
454	terminals with accumulations of mitochondria and glycogen (Matsuda, 1968;
455	Muller et al., 1997; Ueda et al., 1989).
456	These nerves have a highly characteristic appearance, when viewed by
457	SEM and IVCM, as sharply defined linear structures of homogenous reflectivity
458	with Y shaped bifurcating branches and H shaped thinner connecting nerve fibre
459	bundles (Fig. 13 & Fig. 14) (Oliveira-Soto and Efron, 2001). At their point of

460 origin, the sub-basal nerves project downward (superior to inferior) for fibres

461	arising from perforation sites in the superior and central cornea and upward
462	(inferior to superior) for those originating in the inferior cornea. The nerves fibres
463	then converge towards the infero-central cornea to form a characteristic clockwise
464	whorl pattern (Al-Aqaba et al., 2010b; Patel and McGhee, 2005). The whorl is
465	located at the junction of the upper two thirds and lower one third of the cornea
466	and has been demonstrated by IVCM and AChE staining (Fig. 15) (Al-Aqaba et
467	al., 2010b; Patel and McGhee, 2005). In vortex keratopathy and hurricane keratitis
468	the epithelial lesions replicate the pattern of the underlying nerves. The epithelial
469	whorls, like the underlying whorl of the sub-basal plexus are almost always
470	'clockwise' in disposition and are believed to be a response to the electromagnetic
471	fields of the eye (Dua and Gomes, 2000; Dua et al., 1996; Dua et al., 1993).

472 The response of the migrating corneal epithelial cells to ocular 473 electromagnetic fields generated by the dipole of the eye along its antero-posterior 474 axis has been suggested as the likely driving force for the whorl appearance (Dua 475 et al., 1993). A difference in electric potential of nearly 6 mV exists between the 476 cornea and the back of the eye, with the cornea positive to the posterior segment 477 (Berson, 1981). The resultant flow of electricity would generate electro-magnetic 478 forces that are disposed in a clockwise direction. The directional movement of 479 epithelial cells is known to be influenced by electric (galvanotaxis) and magnetic 480 (magnetotaxis) fields. During epithelial cell turnover e.g. wound healing 481 following corneal abrasion, the radial centripetal slide of corneal epithelial cells 482 from the limbal region together with the tendency of the electric field to arrange 483 them in concentric circles would eventually result in the formation of clockwise 484 whorls (Dua et al., 1993). As the sub-basal nerves give rise to intra-epithelial

485	nerve branches which are perpendicular to the sub-basal plane, during the
486	centripetal movement of the corneal epithelium both the intra-epithelial nerves
487	and epithelial cells must advance in the same direction and velocity. This would
488	also explain the whorl-like configuration of the sub-basal nerves (Patel and
489	McGhee, 2005).

490 Furthermore, by virtue of the vertically oriented intraepithelial nerves and 491 nerve endings there is an intricate association of the epithelial sheet with the 492 nerves. This would necessitate the two tissues to have a complementary 493 configuration. Whether the former determines the latter or vice versa is unknown. 494 In epithelial defects, the epithelial sheet comes off with the corresponding 495 intraepithelial nerves. Both epithelium and nerves must regenerate. Whether this 496 occurs concurrently, which is more likely, or sequentially, with the nerves 497 following the epithelial healing, is also unknown.

498 2.3.5 Corneal nerve endings

499 Nerve fibres arising from the sub-basal plexus innervate the corneal 500 epithelium through all its layers. The intra-epithelial fibres closer to the basal 501 epithelium run in a more or less horizontal direction and those that terminate more 502 superficially are vertically oriented and terminate in three different ways: Simple 503 terminals, that do not branch after leaving the sub-basal plexus and present a 504 bulbar swelling at their termination within or below the superficial squamous 505 cells. Ramifying terminals, where the single intraepithelial nerve fibre arising 506 from the sub-basal plexus divides into 3 - 4 branches, which run horizontally for a 507 hundred microns or less and end with a bulbous swelling like the simple

508	terminals. Complex terminals, from nerve fibres that have multiple branches
509	starting in the wing cells and terminating with multiple larger bulbous endings
510	within the wing or squamous cells of the epithelium. The nerve endings are not
511	fixed structures as they change and regenerate in accordance with epithelial
512	turnover (Ivanusic et al., 2013; Marfurt et al., 2010; Rozsa and Beuerman, 1982).
513	It is often believed that corneal free nerve terminals of C- and A δ -neurons could
514	only be differentiated through their function. However, immunofluorescent study
515	on pig corneas suggest that these nerve terminals can also be distinguished
516	morphologically (Alamri et al., 2018). TRPM8 immuno-labelled cold
517	thermoreceptors have more complex endings than TRPV1 immuno-labelled
518	polymodal nociceptors. (Alamri et al., 2018).
519	2.3.6 Corneal neural receptors
520	Corneal receptors can be categorized into polymodal nociceptors
521	(receptors that respond to more than one noxious stimulus), cold thermoreceptors
522	and selective mechano-nociceptors, based on their electrophysiological and
523	functional properties (Belmonte et al., 2017).
524	2.3.6.1 Polymodal nociceptors
525	Polymodal nociceptors are most abundant type of corneal receptors. They
526	normally fire in response to a wide range of noxious external stimuli including
527	mechanical energy, heat, and chemical irritants. They can also be activated in

- response to endogenous chemical mediators released by inflammation and trauma
- 529 (MacIver and Tanelian, 1993). Polymodal nociceptors have been shown to be
- 530 excited by temperatures over 37°C and exhibit sensitisation to repeated heating

531	(Gallar et al., 1993). They can also respond to a mechanical stimulus of slightly
532	lower threshold than pure mechano-nociceptors. A prolonged mechanical
533	indentation of the cornea can produce a sustained discharge of polymodal
534	nociceptors (Belmonte et al., 1997). It has been found that acidic solutions of pH
535	5.0–6.5 or gas jets containing CO_2 also excite corneal polymodal nociceptors,
536	supporting the hypothesis that excitation of nociceptors by low pH is the cause of
537	pain following injury (Chen et al., 1995).
538	2.3.6.2 Mechano-nociceptors
539	They represent 20–30% of the corneal nerve terminals. They respond only
540	to strong mechanical stimuli that can potentially result in damage to corneal
541	epithelial cells (Belmonte et al., 2017). In contrast to polymodal nociceptors, brief
542	or persistent indentations of the corneal surface produce a single or a few
543	impulses from the mechano-nociceptors. This phasic sensory response helps to
544	signal the presence of a stimulus and to produce the immediate, sharp sensation of
545	pain induced by touching or scratching the corneal surface (Belmonte et al.,
546	2017).
547	2.3.6.3 Cold thermoreceptors
548	Cold thermoreceptors account for 10-15% of the total number of corneal
549	sensory neurons (Belmonte et al., 2017). They are continuously firing when the
550	temperature of the ocular surface is at its normal range (34-35°C). Moderate

551 cooling or heating can alter the electrical activity of these receptors (Brock et al.,

552 2006; Tanelian and Beuerman, 1984). In addition, recent evidence has shown that

abnormal activity of corneal cold thermoreceptors provides a plausible

554	explanation for the unpleasant sensations in dry eye disease (Kovacs et al., 2016).
555	Increased tear osmolarity, as a result of ocular surface dryness, enhances cold
556	thermoreceoptors activity and eventually results in compensatory changes in
557	lacrimation and blink rate (Kovacs et al., 2016; Parra et al., 2014).
558	
559	3. Neurochemistry of the cornea (Neurotrophins, Neurotransmitters and
560	Neuropeptides)
561	Like all tissues in the body corneal innervation is associated with
562	neurotrophins, neuropeptides and neurotransmitters. The neurotrophins are growth
563	factors, produced by neurons and by the tissues served by the nerves that play
564	important roles in the development, maintenance, survival, regeneration and
565	integration of neuronal function. They activate the p75 and Trk tyrosine kinase
566	receptors, which through several signalling pathways bring about the diverse
567	aspects of neural function (Huang and Reichardt, 2001; Mastropasqua et al., 2017;
568	Muller et al., 2003). Nerve growth factor is the prototype neurotrophin, which has
569	gained prominence with regard to the cornea as a recombinant NGF is now
570	available as eye drops for clinical use (Dua et al., 2018). Clinical trials have
571	shown that it is effective in inducing healing of corneal epithelial defects in stage
572	2 (moderate) and stage 3 (severe) neurotrophic keratopathy (Bonini et al., 2018b;
573	Dua et al., 2018). Brain derived neurotrophic factor (BDNF), Glial-derived
574	neurotrophic factor (GDNF), NT3, NT4 are other neurotrophins that have been
575	demonstrated in the cornea (You et al., 2000). Besides supporting neurons in both
576	the central and peripheral nervous systems, neurotrophins also modulate functions

577	in the immune and reproductive systems. They are also implicated in
578	neurodegenerative diseases, neoplasia, inflammation and pain.
579	Neurotransmitters and neuropeptides are polypeptide derivatives that serve to
580	transmit the nerve impulse from one neuron to another via the synaptic junction.
581	Examples of neurotransmitters are acetylcholine, dopamine, serotonin and
582	histamine. These are small molecular weight molecules that are synthesised at the
583	synaptic junction in relatively high concentrations, bring about their effect over a
584	short period of time and are rapidly metabolised. They induce acute short-term
585	response and act on specific receptors. Neuropeptides also have neurotransmitter
586	function. They have a slow release, bring about a prolonged effect and act on
587	multiple receptors. Unlike neurotransmitters, their action extends beyond the
588	immediate vicinity of their site of release. Examples of neuropeptides are
589	Substance P (SP) and calcitonin gene-related peptide (CGRP), which are the most
590	abundant neuropeptide in the mouse cornea (He and Bazan, 2016). In humans, a
591	relationship between CGRP in tears and corneal nerve density and sensitivity has
592	been demonstrated (Golebiowski et al., 2017). Oxytocin, vasopressin, insulin and
593	glucagon are other examples of neuropeptides. SP has been shown to modulate
594	corneal vascularisation in humans and murine models (Barbariga et al., 2018).
595	The list of neurochemicals associated with corneal innervation is large and
596	growing (Shaheen et al., 2014). A wide range of neuropeptides (SP and
597	neurokinin A), neurotransmitters (Ach, adrenaline, nor-adrenaline and dopamine)
598	and their receptors are expressed by human keratocytes both in vitro and in vivo
599	(Sloniecka et al., 2015). CGRP and vasointestinal peptide but not SP were found
600	in significantly higher concentrations in keratoconus corneal extracts compared to

30

normal and scarred (leucoma) corneas suggesting that altered corneal innervation

601

602	and consequent trophic effects can contribute to corneal pathology (Sacchetti,
603	2014). Involvement of neuropeptides and neurotransmitters in cell proliferation,
604	migration and vascularisation show that they participate in wound healing
605	responses as well.
606	Evidence suggests that these chemical mediators of nerve responses have
607	biological effects that extend beyond the transmission of a nerve impulse,
608	affecting corneal health and disease. Given the extensive ramification of nerves in
609	corneal stroma and their association with keratocytes and epithelial cells, it is not
610	surprising that they contribute to physiological homeostasis of the cornea and are
611	involved in pathogenesis of disease, response to injury and repair, regeneration
612	and recovery therefrom. For many years, the reduction in corneal sensitivity was
613	the only objective (and subjective) measure of nerve health. It was the surrogate
614	measure of all nerve functions. It is now known that trophic functions, mediated
615	by the chemical mediators, can be dissociated from sensory functions and in vivo
616	confocal microscopy has enabled direct visualisation of nerve morphology
617	revealing a range of alterations in corneal pathology. While all the above sounds
618	logical and is supported by reasonable evidence, the question that remains
619	unaddressed is how these effects translate to the posterior cornea, which is almost
620	completely devoid of nerves? Lack of innervation would imply lack of sensitivity
621	yet the need for trophic support would be no less. Neurotrophins and
622	neuropeptides produced in neurons and released at nerve terminals anteriorly
623	could diffuse posteriorly and support the posterior cornea. Equally, non-neuronal

624 cells (keratocytes) could produce the chemical mediators in the absence of nerves

625 or respond via their receptors, to chemical released in the anterior stroma.

626

627

4. The role of corneal nerves

628 4.1 Sensory and reflex function

629 The cornea is considered as the most densely innervated and most 630 sensitive structure in the human body. A 'blink' is a rapid closure and opening of 631 the eyelid involving the orbicularis and levator palpebrae muscles. Spontaneous 632 blinking, occurring about 15-20 times a minute, is centrally driven in the pre-633 motor brain stem. It occurs without any external stimuli and is involuntary. Reflex 634 blinking is a protective response to external stimuli that can be tactile, optical or 635 auditory. It occurs faster than a normal blink and is also 'involuntary'. Corneal 636 nerves carry afferent impulses generated by touch, temperature (cold), pain and 637 chemical stimuli (McKay et al., 2018). Light touch to the cornea causes rapid 638 bilateral blink response by contraction of the orbicularis muscle. This a protective 639 reflex mediated between the ophthalmic division of the trigeminal nerve and the 640 facial nerve(s). Afferent fibres from the cornea synapse in the spinal trigeminal 641 nucleus or the main sensory nucleus and neurons project directly to the facial 642 nuclei on both sides. Efferent fibres from the facial nuclei innervate the orbicularis 643 oculi muscle. Affection of the trigeminal nerve, trigeminal nucleus or brainstem 644 (cerebello-pontine angle or posterior fossa tumours, multiple sclerosis or brain 645 stem strokes), slow down the reflex response (Prasad and Galetta, 2007). A 646 general belief is that afferent pathway lesions affect the blink reflex bilaterally

647	while efferent (VII nerve) lesions affect the blink reflex unilaterally. However, it
648	is absent on one side in 8% of normal individuals (McGee, 2017).
649	The blink reflex is considered to have two components, one that can be
650	elicited by touching the cornea (corneal reflex) and the other by stimulating the
651	supraorbital region (Blink reflex, R2 Component.). Afferent nerves for the reflex
652	have been identified in the supraorbital nerve. Both components are regarded as
653	cutaneous reflexes but could have different neural connections as the latency and
654	duration of the corneal reflex have been shown to be longer than the R2
655	component (Berardelli et al., 1985).
656	The sensory nerves of the ocular surface also provide afferent impulses for
657	the reflex tear arc. Lacrimation reflexes involve three nerves, the 5^{th} , 7^{th} and
658	parasympathetic, and three ganglia, the geniculate (VII), spheno-palatine and the
659	Gasserian (V). The efferent pathway is through the parasympathetic fibres from
660	the superior salivary nucleus in the pons. The role of the sympathetic nervous
661	system in lacrimation is ill understood. Lacrimation too is a protective reaction to
662	wash out or dilute noxious agents and irritants. Tears bring with them a whole
663	range of antimicrobial molecules that prevent adhesion of organisms, destroy
664	organisms and avert infection.

665

4.2 Axonal reflex and neurogenic inflammation

A classic reflex arc involves a sensory receptor at the point of contact of
the nerve terminal with an exciting stimulus (the starting point), an effector
terminal at the destination (the end point) and an integration centre, usually a
synapse, connecting the two (orthodromic transmission) (Yaprak, 2008). Unlike
670	the classic reflex, the axonal reflex does not pass via a synapse. The stimulus
671	propagates an impulse that travels centrally along the nerve to the point of
672	bifurcation from where it reverses direction and is transmitted down the nerve
673	branch to an end organ (antidromic transmission) such as a blood vessels or gland
674	(Langley, 1923). Early evidence to support this phenomenon came from
675	experiments on the conjunctiva; which showed that the axon reflex was abolished
676	by instillation of topical anaesthesia and remained intact after trigeminal nerve
677	transection (Bruce, 1913).

678 The triple response of Lewis involves the appearance of a *red* line within a 679 few seconds of injury to skin with a sharp object representing immediate capillary 680 dilatation in response to release of histamine; followed in a few minutes with 681 surrounding redness or flare due to neurogenic arteriolar dilatation, which is 682 followed by a white wheal resulting from exudation of plasma from the capillaries 683 (Mtui, 2015). The axonal reflex is responsible for the wheal and flare responses. 684 The pathophysiology involves a sequence of events starting with the stimulation 685 of polymodal nociceptors by a stimulus, which generates impulses that are 686 transmitted to both the central nervous system orthodromically and to the 687 neighbouring skin or conjunctiva (limbus) antidromically. Antidromic stimulation 688 induces a release of neuropeptides, mainly CGRP and SP, which act directly on 689 vascular endothelial and smooth muscle (Chiu et al., 2012; McCormack et al., 690 1989). CGRP induces vasodilation by binding to receptors on the arteriolar walls 691 producing the flare response and SP binds to receptors on mast cells inducing 692 release of histamine (Columbo et al., 1996), which increases capillary 693 permeability causing the wheal response. When the stimulus is sustained the

694	neuropeptides can mediate neurogenic inflammation through attraction and
695	subsequent activation of the innate (mast cells, dendritic cells) and adaptive
696	immune cells (T cells) (Ansel et al., 1993; Mikami et al., 2011).
697	Neurogenic inflammation is a term used to describe inflammation mediated by
698	neuropeptides and neuromediators released from afferent fibres of sensory nerves
699	and also from autonomic, mainly sympathetic postganglionic nerves. The key
700	substances are tachykinins, CGRP and proinflammatory cytokines especially IL6
701	(van der Kleij et al., 2009). These mediators act directly on the adjacent blood
702	vessels to promote vasodilation and extravasation of inflammatory cells. Such a
703	mechanism has been shown to drive joint, colon, lung and bladder inflammation.
704	Interestingly, neurogenic inflammation can be countered by neurogenic
705	cholinergic anti-inflammatory response mediated via parasympathetic efferents
706	for example of the vagus nerve. Acetylcholine can interact with nicotinic
707	receptors on macrophages and monocytes to inhibit proinflammatory cytokine
708	release (Basbaum, 2009; Labetoulle et al., 2019).

709 A strong body evidence point to the fact that ocular immune privilege is 710 under neural control (Streilein et al., 2000). Several neuropeptides e.g. vasoactive 711 intestinal peptides (VIP) and CGRP, that are circulating in the aqueous humour, 712 have been demonstrated to inhibit the functions of T lymphocytes and 713 macrophages (Taylor, 2007). Transection of the corneal nerves have been shown 714 to disable corneal CD11c+ T regulatory cells (Tregs) by converting them into 715 contrasuppressor (CS) cells and also to suppress the production of 716 immunomodulatory factors in the anterior chamber (Neelam et al., 2018; Streilein et al., 1996). CD11c+ Tregs cells normally inhibit CD8+ Tregs cells, which are 717

718 induced by introducing antigens into the anterior chamber. Nerve regeneration is 719 associated with improved level of these factors. 720 4.3 Trophic function 721 In addition to their well-known sensory and reflex functions, corneal 722 nerves also have important trophic effects on the cornea and play a significant role 723 in the maintenance of a healthy ocular surface through the stimulation of corneal 724 wound healing after corneal injuries. Damage or dysfunction of the corneal 725 sensory innervation produces a degenerative condition known as neurotrophic 726 keratopathy (NK) (Duke-Elder, 1965) characterised by, in mild or stage 1 NK, 727 decreased epithelial thickness, varying degrees of epithelial degradation, 728 decreased epithelial cell mitosis, and impaired wound healing after corneal 729 injuries (Beuerman and Schimmelpfennig, 1980; Bonini et al., 2003b; Lim, 1976; 730 Sigelman and Friedenwald, 1954; Sugiura and Matsuda, 1967). This leads on to 731 moderate or stage 2 NK where there is a frank non-healing epithelial defect 732 extending to stromal involvement (severe or stage 3 NK) with melting and eventual perforation of the cornea. A large number of conditions, both ocular and 733 734 systemic, can be associated with NK. Peripheral or corneal causes, wherein the 735 pathology is largely confined to the cornea such as herpetic viral infection and 736 corneal surgery; corneal sensations are impaired but conjunctival sensations and 737 those of the surrounding skin are preserved. With 'central' damage to the 738 trigeminal nerve for example with head trauma, intracranial surgery, aneurysms or 739 tumours (Davis and Dohlman, 2001) sensitivity of the cornea, conjunctiva and 740 facial skin is impaired. Certain types of lens and retinal surgery, and some 741 ophthalmic laser treatments (e.g. panretinal photocoagulation and cycloablation)

742	can also cause NK by damaging the ciliary nerve fibres as they pass anteriorly
743	within the globe between the sclera and the choroid (Johnson, 1998; Menchini et
744	al., 1990; Weigt et al., 2002).
745	Laser refractive surgery has focused intense attention on corneal
746	innervation and consequence of damage to corneal nerves that is inevitable with
747	any type of laser refractive surgery both by the incisions made to prepare a
748	corneal flap mechanically with a blade or with femtosecond laser; and by the
749	excimer laser applied to achieve the refractive change. It has been reported that
750	procedures like radial keratotomy, photorefractive keratectomy, and LASIK
751	produce localised injury of thick stromal nerves and the sub-basal plexus resulting
752	in transient mild to severe epithelial changes with neurotrophic and/or dry eye
753	features (Tervo and Moilanen, 2003; Wilson, 2001; Wilson and Ambrosio, 2001).
754	Several studies have been conducted to investigate the exact mechanism
755	by which the corneal nerve fibres maintain a healthy cornea and promote wound
756	healing after corneal injuries. The results of these studies suggest that there is a
757	trophic relationship between corneal nerves and epithelial cells and each one
758	supports the other. Corneal nerves can stimulate epithelial cell growth,
759	proliferation, differentiation and type IV collagen formation through the release of
760	neurotrophins and neuropeptides (Baker et al., 1993). Conversely, corneal
761	epithelial cells can affect nerve survival and growth through the release of certain
762	factors (e.g. NGF and GDNF) (Emoto and Beuerman, 1987).
763	The clinical presentation of nerve damage, both symptoms and signs, can
764	be diverse and result from consequences of sensory damage affecting tear

37

765	secretion with features of dry eye disease; allodynia and hyperaesthesia due to
766	nerve inflammation, aberrant firing and aberrant or hyper regeneration. Corneal
767	sensations may correspondingly be decreased or increased though there is no
768	clinical means yet of measuring hyperaesthesia. In some instances this might
769	represent different ends of the spectrum of the same condition, starting with
770	increased sensitivity and ending in complete anaesthesia. Affection of trophic
771	function can lead to a cycle of epithelial and nerve damage with frank NK
772	progressing through the three stages. The clinical sign of superficial punctate
773	keratitis (SPK), which are essentially tiny epithelial defects, is generally more
774	centrally located in post-laser corneal refractive surgery compared to classical dry
775	eye disease where SPK affect the inferior third of the cornea. The former is more
776	likely to be a direct manifestation of the nerve damage in the corresponding area
777	with symptoms and signs of dry eye disease being a secondary occurrence (Dua et
778	al., 2018).

Interestingly, several experimental and clinical studies have shown that
there is a bidirectional control of corneal epithelium proliferation: sensory
neurotransmitters enhance epithelial cell mitosis, while sympathetic mediators,
epinephrine and norepinephrine, decrease epithelial cell mitosis (Bonini et al.,
2003a; Cavanagh and Colley, 1989). This is supported by the finding in animal
studies that cervical sympathetic denervation reduces corneal epithelial changes
induced by lesions of sensory nerves (Fujita et al., 1987).

786

5. Manifestations of corneal nerve dysfunction

788 5.1 Definitions

789	The International Association for the Study of Pain (IASP) defined pain as
790	"an unpleasant sensory and emotional experience associated with actual or
791	potential tissue damage, or described in terms of such damage." (Loeser and
792	Treede, 2008). Pain syndromes can be classified into two main categories:
793	neuropathic pain (NP) and nociceptive pain (NcP). NP is induced by a disease or
794	lesion of the peripheral or central somatosensory nervous system. Typical
795	examples of peripheral NP are post-herpetic neuralgia, diabetic neuropathy,
796	chemotherapy induced neuropathy and trigeminal neuralgia. NP syndromes of
797	central origin include multiple sclerosis pain, post-stroke pain and following
798	spinal cord injury. Syndromes such as atypical chronic fatigue, irritable bowel,
799	facial pain, interstitial cystitis and fibromyalgia, are types of neuropathic pain
800	where the primary underlying pathophysiology is not fully understood.
801	Patients with NP can present with positive and/or negative sensory
802	symptoms. Positive symptoms are usually due to excessive neuronal activity, for
803	examples allodynia [sub threshold or a normally non-painful stimulus provokes
804	pain], hyperalgesia [Increased response from a stimulus that normally provokes
805	pain] and paraesthesia [Non-painful ongoing sensation]. Negative symptoms are
806	the result of deficit of nerve function and may include hypoesthesia [Decreased
807	sensitivity to stimulation], anaesthesia [absent sensitivity to stimulation],
808	hypoalgesia [Diminished pain in response to a normally painful stimulus] and
809	analgesia [Absence of pain in response to a normally painful stimulus]. Patients
810	with NP often experience a combination of these paradoxical symptoms.

811	NcP is defined as a pain that results from actual or threatened damage to
812	non-neural tissue and is due to the activation of nociceptors. It occurs in the
813	setting of tissue inflammation, acute trauma or surgery.
814	5.1.1 Corneal pain representation in the somatosensory cortex
815	The human cornea has a high density of nociceptors that transduce
816	noxious stimuli. Painful stimulation of the human cornea induces neural activity
817	in the contralateral primary somatosensory cortex homunculus (S1); a region
818	consistent with the location of the eye representation at the mid-cortical region
819	(Moulton et al., 2012). It is believed that it is through these nociceptive fibres that
820	the somatotopic representation of the human cornea is conveyed. Localisation of
821	the site of pain in the cornea is not as refined as elsewhere. It is difficult for any
822	patient to tell which part of the cornea is pain originates form, i.e. whether is it
823	central, superior, inferior, nasal or temporal. This is likely related to the extensive
824	overlap of innervated areas from single neurons.
825	5.2 Corneal pain in the absence of ocular surface disease "Pain without stain"
826	Dry eye disease is a complex, multifactorial, and heterogeneous diagnosis
827	that covers a wide variety of clinical presentations (Galor et al., 2018). Symptoms
828	includes ocular sensations of dryness, discomfort, pain, and ocular surface
829	abnormalities such as reduced tear production and increased tear evaporation
830	(Smith et al., 2007). Dry eye symptoms are common complaints in the general

831 population. They are more frequently encountered in females than in males (Moss

et al., 2000), and with advancing age (Schaumberg et al., 2003). In the US, it was

found that 14.4% of people between the ages of 48 and 91 years reported dry eye

834	symptoms (Schaumberg et al., 2003). Most cases of dry eye disease have
835	associated clinical signs on slit-lamp examination that resolve following
836	appropriate therapy. However, there remain a subset of patients that demonstrate
837	gross disparity between the scale of symptoms and clinical signs on examination
838	(Hamrah et al., 2017). Such patients are troubled with profound ocular discomfort
839	and pain despite having a clinically unremarkable examination. Due to the
840	chronicity of the pain and its subsequent effect on the quality of life, these patients
841	end up being labelled as having "chronic pain syndrome". Anti-neuropathic and
842	antidepressant medications are commonly prescribed to help with the ocular
843	symptoms. These factors add to the complexities and challenges around the
844	management of these cases.
845	In our experience such patients with longstanding symptoms of ocular pain,
846	discomfort and burning without obvious clinical signs on examination, who were
847	referred with a diagnosis of central neuropathic ocular pain show evidence of
848	subclinical corneal pathology on IVCM [Ross A, Al Aqaba A, Said D and Dua
849	HS, unpublished observations] (Fig. 16). The changes include keratocyte
850	activation with swelling and enlargement of syncytial cell bodies of the
851	keratocytes, giving rise to a honeycomb-like pattern in the anterior stroma (Fig. 16
852	A to C). Dendritic-like cells are seen closely associated with stromal nerves (Fig.
853	16 D-F), which show segments of hyper-reflective outgrowths and hypo-reflective
854	darker bands along their course. These findings signify a form of subclinical
855	inflammatory corneal neuropathy of unknown aetiology. Hamrah et al. have
856	recently reported significant nerve alterations in patients with severe neuropathic
857	corneal pain. The changes include reduction in the total length and number of

858	nerves, increased reflectivity and tortuosity of sub-basal nerves and the presence
859	of sub-basal microneuromas (Aggarwal et al., 2019; Hamrah et al., 2017).
860	Interestingly, treatment with autologous serum tears induces nerve regeneration,
861	which correlates with improvement in patient symptoms (Aggarwal et al., 2019).
862	Despite, the ocular pain symptoms, corneal sensation was paradoxically
863	reduced in some of the patients. These findings, together with the prompt
864	alleviation of the ocular symptoms upon instillation of topical anaesthetic, suggest
865	that the cause of the pain symptoms is likely to be peripheral i.e. corneal, in
866	origin. The precise mechanism and the pathophysiology of these microstructural
867	alterations are still unknown. Hormonal and metabolic influences may play a role
868	in the development of the corneal nerve pathology noted (Auro et al., 2014).
869	Another possible explanation is central sensitisation of pain pathways as a result
870	of prolonged periods of unexplained damage to the peripheral somatosensory
871	system (Galor et al., 2018). Furthermore, corneal inflammation has been shown to
872	induce activation of a specific neuronal pathway within sensory trigeminal
873	complex, which might play a priming role in the central sensitisation of ocular
874	related brainstem circuits and the development of neuropathic corneal pain
875	(Launay et al., 2016). The use of topical anti-inflammatory medications e.g.
876	NSAIDs and ciclosporin result only in partial resolution of the subclinical
877	inflammation and ocular pain (unpublished data). When pain becomes 'central' in
878	origin, topical anaesthesia does not alleviate the patient's symptoms.
879	5.3 Anaesthetic cornea with intact corneal nerves (pre-ganglionic damage)

880	Corneal anaesthesia or hypoesthesia in the presence of intact corneal
881	nerves (sub-basal plexus) can be observed in patients with damage to the pre-
882	ganglionic nerve fibres of the ophthalmic division (V1) of the trigeminal nerve or
883	its CNS nucleus (Dhillon et al., 2014; Dhillon et al., 2016). This phenomenon can
884	be seen following surgical interventions for trigeminal neuralgia and
885	cerebellopontine angle tumours or post-brainstem stroke. Corneal sensation is
886	impaired as the afferent conduction to the cortex is disrupted. However, the
887	surviving neurons within the trigeminal ganglion possibly continue to produce
888	neurotrophic factors, which may sustain and promote the outgrowth of distal
889	axons and also help to maintain the integrity of healthy ocular surface. Therefore,
890	clinically significant symptoms or signs of neurotrophic keratitis are less likely to
891	develop in preganglionic V1 lesions (Dhillon et al., 2016). This is in contrast to
892	the postganglionic nerve damage that occurs following laser surgery or corneal
893	transplantation, in which the distal axons degenerate with subsequent loss of both
894	the sensory and trophic nerve functions. This suggests that the sensory and trophic
895	functions of V1 are independent and can be dissociated by injury or disease
896	(Dhillon et al., 2016). Anaesthesia dolorosa is a rare "positive" pain phenomenon,
897	which can also be observed after traumatic or surgical injury to trigeminal nerve.
898	It is characterised by a persistent "deafferentation" central neuropathic pain with
899	numbness along the territory of the respected nerve damage. (Elahi and Ho,
900	2014). In relation to the cornea this can also manifest as pain in an eye with no
901	corneal sensation but an intact sub-basal plexus (Dhillon et al., 2014).
902	5.4 Anaesthetic/hypoesthetic cornea with absent nerves and abnormal ocular
903	surface "neurotrophic keratopathy, stain without pain"

904 Pain is regarded as a manifestation of active disease and resolution of pain 905 is an indicator of improvement of the underlying condition. This is true from the 906 patient's perspective where pain is indicative of active disease. However, 907 clinically and pathologically this can be a sinister occurrence indicating further 908 nerve damage and risk of corneal melting. Neurotrophic keratopathy (NK) has 909 been defined as a disease related to alterations in corneal nerves leading to 910 impairment in sensory and trophic function with consequent breakdown of the 911 corneal epithelium, affecting health and integrity of the tear film, epithelium and 912 stroma (Dua et al., 2018). Three stages or grades have been described (section 913 4.3), which can progress from one to the other or, if the pathology or insult is 914 severe may manifest directly in the moderate or severe grade (stage 2 or 3).

915 From the evidence in the literature and experience of patients and 916 clinicians alike, it would be reasonable to conclude that corneal nerve disease is a 917 spectrum representing hyperaesthesia or paraesthesia at one end and complete 918 anaesthesia with loss of sensory and trophic functions at the other. 919 Symptomatically it can progress along this path, arrest at any one point for a 920 prolonged period or indefinitely or manifest at any point in the path at first insult 921 and progress thereafter. The precise pathophysiological changes that correspond 922 to these clinical manifestations and subjective symptoms need to be better 923 understood.

924

925 **6.** Visualisation of corneal nerves

926 6.1 In vitro/ex vivo techniques

927	Most of the knowledge of corneal nerve morphology, distribution and
928	ultrastructure in the last century was the result of light and electron microscopic
929	studies of corneas processed with different types of stains (Jones and Marfurt,
930	1991; Schimmelpfennig and Beuerman, 1982; Zander and Weddell, 1951a).
931	Corneal axons appear morphologically homogeneous when they are demonstrated
932	using routine histological methods or electron microscopy techniques. However,
933	immunocytochemical staining shows the presence of different neuropeptides
934	within the cytoplasm and peripheral axonal fibres of corneal neurons (Belmonte et
935	al., 2004). For example, about 58% of corneal neurons are immunoreactive to
936	Calcitonin gene-related peptide; 20% of them also contain Substance P (Felipe et
937	al., 1999; Muller et al., 2003; Stone et al., 1986; Tervo et al., 1981).
938	There are several staining techniques for the demonstration of corneal nerve
939	distribution (Table 1). Some of these stains are used to demonstrate corneal
940	sensory nerves while others are used specifically to stain corneal autonomic
941	nerves.
942	6.1.1 Whole mount Acetylcholinesterase staining technique

943 This is an enzyme histochemical staining technique which has been proven
944 to be excellent for the histological demonstration of cholinesterase containing
945 corneal nerves (Ishida et al., 1984). The cholinesterase enzymes are found along
946 the corneal nerve axons and believed to be responsible for the maintenance of the
947 ionic gradient along the axons during propagation of the nerve impulse
948 (Morishige et al., 2009). Whole mount preparations have allowed excellent in
949 vitro three-dimensional visualisation of the distribution and spatial arrangement of

950	the nerve bundles and characterisation of the structure of certain individual nerves
951	within large trunks (Robertson and Winkelmann, 1970).
952	In general, this technique is relatively simple and yields reproducible
953	results. Its reaction product is constant and stable making it ideal for reliable
954	quantitative studies (Ishida et al., 1984). Basically, there are two types of
955	reactions; specific and non-specific cholinesterase reactions. The latter can
956	demonstrate Acetylcholinesterase as well as Butyrilcholinesterase (Karnovsky and
957	Roots, 1964) and so allow adequate visualisation of individual axons and their
958	terminations, as well as large nerve fibre bundles.
959	Specific inhibitors are used with the former reaction and can differentially
960	demonstrate any of the above enzymes depending on the type of inhibitor used
961	(Robertson and Winkelmann, 1970). The non-specific reaction is preferred in
962	quantitative studies for two reasons. Firstly, it can demonstrate as much of the
963	total nerve population as possible and therefore, non-specificity is an
964	advantageous feature. Secondly, it allows for a comparison with other methods
965	used for quantification of corneal nerves such as gold chloride impregnation and
966	methylene blue which are also non-specific (Ishida et al., 1984). Several studies
967	have been conducted to investigate the corneal nerves in different mammalian
968	corneas qualitatively (Chiou et al., 1999; Linna et al., 1998; Morishige et al.,
969	2009; Robertson and Winkelmann, 1970; Tervo, 1976) and quantitatively
970	(Hernandez-Quintela et al., 1998; Ishida et al., 1984).
971	Using this modified technique several novel findings of corneal
972	innervation in health and disease have been discovered and presented (Al-Aqaba

973	et al., 2011a; Al-Aqaba et al., 2012a; Al-Aqaba et al., 2018; Al-Aqaba et al.,
974	2011b; Al-Aqaba et al., 2010b; Al-Aqaba et al., 2012b; Tervo and Palkama, 1978;
975	Tervo et al., 1983). The other popular technique has been the neuronal class III
976	beta-tubulin technique (β III-tubulin). The latter technique has largely been used to
977	demonstrate normal innervation patterns in animal corneas and some in normal
978	human corneas (Chucair-Elliott et al., 2015; He et al., 2010; Kubilus and
979	Linsenmayer, 2010; Marfurt et al., 2010). The most extensive studies on human
980	corneal pathologies have used the AChE technique. Distinct features
981	demonstrated by the AChE technique were not visible by the β III-tubulin. For
982	example, the bulb like termination of sub-Bowmans nerves at the perforation sites
983	have been shown using AChE technique (Al-Aqaba et al., 2010b) and confirmed
984	by IVCM (Al-Aqaba et al., 2010a) but were not seen with β III-tubulin. Similarly,
985	two recent studies on the architecture of corneal nerves using β III-tubulin failed to
986	show the limbal nerve corpuscles (He et al., 2010; Marfurt et al., 2010). This is
987	most probably related to the intracytoplasmic location of this neuron-specific
988	major cytoskeleton protein, which would be stained in the axons but not in the
989	surrounding sheath. We, however, were able to demonstrate these large structures
990	both en face and on cross section (light and transmission electron microscopy)
991	using AChE method (Al-Aqaba et al., 2018) and confirmed by IVCM (Al-Aqaba
992	et al. Clinical and In Vivo Confocal Microscopic features of Neuropathic Corneal
993	Pain, Revision under review, BJO 2019). Features that are visible by both
994	techniques, AChE and β III-tubulin, show strong correlation. A similar correlation
995	between the en-face imagining confocal microscopy technique and AChE findings
996	in corneal diseases such as keratoconus, bullous keratopathy, post penetrating

997 keratoplasty and after CXL is also demonstrated (Al-Aqaba et al., 2011a; Al-

998 Aqaba et al., 2012a; Al-Aqaba et al., 2011b; Al-Aqaba et al., 2012b).

999 AChE is intrinsic to blood vessels and nerves, thus where both are present 1000 the picture can be confusing. Differentiation between these two structures stained 1001 by AChE technique has been reported (Al-Aqaba et al., 2012b). Red blood cell 1002 membranes also stain with AChE hence it is possible to visual red blood cells in 1003 the lumen of blood vessels. Blood vessels lack the linear, longitudinal striations 1004 that are seen in nerves only. Cross section histological examination of 'nerves' do 1005 not show a lumen whereas that of vessels show a lumen. This approach has been 1006 used to corroborate the observed difference between nerves and vessels during 1007 optimisation of the staining techniques in vascularised corneas. Additionally, 1008 NanoZoomer scanning of the corneal whole mounts allows back tracing of all 1009 tortuous structures. Only those structures where the origin could be traced to 1010 major nerve trunks, with longitudinal striations were labelled as nerves. Aberrant 1011 nerves in the cornea seen in disease states often end in closed loops (Al-Aqaba et 1012 al., 2011a; Al-Aqaba et al., 2011b; Wolter, 1964, 1966), which is not a feature of 1013 blood vessels. Correlation of the AChE structures with clinically photographed 1014 nerves and blood vessels in particular, also allows differentiation of nerves and 1015 vessels in specimen removed during corneal transplantation and processed for 1016 AChE staining (Al-Aqaba et al., 2011a; Al-Aqaba et al., 2011b; Al-Aqaba et al., 1017 2010b). In these studies all corneas were also examined clinically with the slit 1018 lamp prior to surgery.

1019 *6.1.2 Methylene blue staining technique*

48

1020	In a review of several histochemical techniques used for staining neural
1021	tissue, Weddell and Zander demonstrated sufficient details of corneal nerves most
1022	precisely with methylene blue (Weddell and Zander, 1950). This method is
1023	difficult to perform and requires high skill and attention to the technical
1024	procedure. In addition, non-neuronal corneal tissue like keratocytes may be
1025	stained with this dye and can be a source of confusion. Unlike cholinesterase,
1026	methylene blue can be used for in vivo staining (Weddell and Zander, 1950).
1027	6.1.3 Sliver staining technique
1028	This technique is less favourable because it requires thin tissue sections for
1029	staining and final nerve ramifications, such as those present in the epithelium, are
1030	difficult demonstrate. This is because epithelial cells usually stain deeply with
1031	silver. However, stromal nerves are fairly well demonstrated by this method
1032	(Weddell and Zander, 1950).
1033	6.1.4 Gold chloride staining technique
1034	These demonstrate the nerve pattern nicely in whole mounts but this
1035	technique has been superseded by the cholinesterase technique because of greater
1036	detail obtained with the latter method (Robertson and Winkelmann, 1970).
1037	6.2 In vivo techniques: In vivo confocal microscopy (IVCM)
1038	Although the human cornea is well known to be extremely sensitive,
1039	relatively few aspects of corneal nerve parameters, i.e. spatial arrangement and
1040	nerve density, have been illustrated by classical histological techniques. This is
1041	mainly because corneal nerves start to degenerate very quickly after death (Muller
1042	et al., 1997). In addition, these techniques require the specimen to be physically

1043	cut and stained so considerable information about their spatial arrangement may
1044	be lost during specimen preparation (Guthoff et al., 2005). IVCM offers a great
1045	opportunity to study corneal nerves and other corneal structures in vivo. The basic
1046	principle of IVCM is to decrease light scattering from tissues outside the focal
1047	plane enabling optical sectioning of thin layers of the cornea resulting in
1048	producing two- or three-dimensional images. Intraepithelial nerves cannot be
1049	visualised with current devices but the sub-basal plexus is clearly demonstrated.
1050	As it allows enface imaging and montaging of images from over a large surface
1051	area, the complete picture is manifest. Indicators such as length, density,
1052	tortuosity, beading, reflectivity and branching patterns can be measured with
1053	dedicated software to give quantitative or semi-quantitative values. Not all
1054	confocal microscopes allow the same sub-basal nerve plexus quality studies. This
1055	is related to resolution, the ability to scan the periphery of the cornea and the same
1056	site repeatedly. The Rostock cornea module which we have used in all our studies
1057	has a side camera that allows localisation of the objective lens on the same site of
1058	the cornea (Petroll and Robertson, 2015).

1059

1060 7. Nerve affection in corneal pathology

VCM has become the gold standard technique for studying the morphology and
morphometry of the human corneal nerves in health and disease (Cruzat et al.,
2017; Patel and McGhee, 2009; Shaheen et al., 2014). Several factors can affect
the accuracy of the morphometric measurements of corneal nerves. The type of
confocal microscope, the quantification method and the area scanned must all be

1066	taken into consideration (Cruzat et al., 2017; Labbe et al., 2012). Three types of
1067	in vivo confocal microscopes have been developed since the principle was first
1068	described by Minsky in 1955 (Petropoulos et al., 2019). These are tandem
1069	scanning, slit scanning and laser scanning confocal microscopes, the latter being
1070	more accurate and sensitive method for evaluating corneal nerves in vivo and
1071	allowing the detection of corneal immune and inflammatory cells as well (Qazi et
1072	al., 2015).

1073 In normal subjects, the average sub-basal nerve density is 20 mm/mm^2 1074 (18.8–21.4) in the central cornea and 10.5 mm/mm² (8.8–12.2) in the periphery 1075 (Cruzat et al., 2017). The diameter of sub-basal nerves has been reported to range 1076 from 0.52µm to 4.68 µm. Sub-basal nerve beading, which represents accumulation 1077 of mitochondira, can vary from 90 to 198 beads/mm² (Patel and McGhee, 2009).

1078 Quantitative IVCM examination of the corneal stromal nerves remains 1079 controversial and challenging. This is probably due to the fact that stromal nerves 1080 cross the cornea obliquely, relative to the en face plane of confocal images. Image 1081 through the cross-centre of the nerve is, therefore, not always feasible, especially 1082 when saccadic eye movements are present (Patel and McGhee, 2009). The density 1083 of stromal nerves can range from 0.31 to 3.61 mm/ mm² and diameters from 5.5 1084 mm to 11.4 mm in the healthy subjects (Cruzat et al., 2017).

1085 7.1 Post-surgical conditions

1086 7.1.1 Laser in situ keratomileusis (LASIK) and small incision lenticule
1087 extraction (SMILE)

1088	In LASIK, nerve damage results from the transection of the nerves during
1089	creation of the flap with a blade or femtosecond laser pulses, and the subsequent
1090	ablation of stromal tissue and the nerves contained therein. In SMILE the
1091	extracted stromal lenticule brings with it a considerable number of anterior-mid
1092	stromal nerves (Mehta J, Al Aqaba M, Jung C, Nubile M and Dua HS,
1093	unpublished observations) (Fig. 17 and 18). Denoyer et al. have compared SMILE
1094	to LASIK for post-refractive ocular surface health. They reported a higher
1095	incidence of mild to moderate dry eyes in LASIK group up to 6 months after
1096	surgery (Denoyer et al., 2015). Furthermore, corneal sub-basal nerve parameters,
1097	including nerve density, number of long fibres, and branching as assessed by
1098	IVCM were significantly higher in the SMILE group compared with the LASIK
1099	group 1 and 6 months post-operatively. They concluded that LASIK has more
1100	profound impact on corneal innervation and subsequently ocular surface health
1101	particularly in early post- operative period when compared with SMILE. These
1102	findings have to be reconciled with the fact that a substantial number of stromal
1103	nerves are excised with the SMILE lenticule, as indicated above. This can be
1104	explained on the basis that the entire sub-basal plexus is an interconnected
1105	network with several larger nerve trunks carrying impulses via the stromal nerves
1106	to the limbal afferents and beyond. With SMILE several stromal nerves are cut
1107	but some remain and can carry information from the entire sub-basal plexus,
1108	retaining functional integrity. In LASIK, all the nerves along the entire
1109	circumference (except the hinge) of the flap are transected thus affecting
1110	sensitivity of the flap.

52

1111 Experimental animal studies have shown a significant loss of epithelial, 1112 sub-basal, and superficial stromal nerves in the LASIK flap excluding the hinge 1113 area at 3 days after surgery. However, initial regenerative nerve fibres are also 1114 identified at that time. At five months, a near normal nerve architecture of the 1115 epithelial, sub-basal, and anterior stromal innervation is achieved. (Linna et al., 1116 1998). One to two years after LASIK, the corneal regions with better sub-basal 1117 nerve morphology show better corneal sensitivity. These regions are near the flap 1118 hinge or the central cornea. According to Donnenfeld et al., transection of nasal 1119 and temporal oriented long ciliary nerve bundles from the corneal nerve plexus 1120 following creation of a superior-hinge flap leads to more marked loss of corneal 1121 sensation and more pronounced dry eye signs and symptoms than that with a 1122 nasal-hinge flap (Donnenfeld et al., 2003). The same feature has been reported 1123 with a narrow nasal-hinge flap compared with a wider hinge flap in which more 1124 nerves are left intact (Donnenfeld et al., 2004). However, in recent human IVCM 1125 studies on sub-basal nerve regeneration after LASIK, long sub-basal nerves are 1126 still identifiable in the central cornea 3 days after LASIK (Linna et al., 2000). 1127 Thereafter, they showed a great reduction in number, or were entirely absent by 1128 seven days (Avunduk et al., 2004; Calvillo et al., 2004; Lee et al., 2002; Linna et 1129 al., 2000; Mitooka et al., 2002; Pisella et al., 2001). With continued nerve 1130 regeneration, there is a gradual increase in the number of visible sub-basal nerves, 1131 in the central cornea by the first six months (Calvillo et al., 2004; Darwish et al., 1132 2007c; Mitooka et al., 2002). However, two studies have shown that the 1133 morphometric features of this plexus had not returned to preoperative levels 6 1134 months after surgery (Darwish et al., 2007a; Darwish et al., 2007c). On the other

1135	hand, corneal sensitivity was decreased after LASIK but returned to normal levels
1136	3 months after surgery. Therefore, it was concluded that there was no direct
1137	correlation between the nerve fibre length and density of sub-basal plexus and
1138	central corneal sensitivity (Darwish et al., 2007a; Darwish et al., 2007c). Other
1139	studies have revealed a significant correlation between central corneal sensitivity
1140	and sub-basal nerve morphology (Linna et al., 2000) and density (Lee et al., 2006;
1141	Perez-Gomez and Efron, 2003). This discrepancy might be due to difference in
1142	the ways by which the correlation was established. In studies where no correlation
1143	was found, the investigators have correlated the postoperative state of corneal
1144	sensitivity and sub-basal nerve morphology with their preoperative state, while in
1145	those studies that documented a strong correlation, the authors have compared the
1146	degree of corneal sensation with the level of sub-basal nerve regeneration
1147	postoperatively only. It is worth noting that in one long term follow-up study,
1148	there has been incomplete regeneration of the sub-basal nerves for up to 5 years
1149	following LASIK (Erie et al., 2005).

It is likely that in some individuals the nerves regenerate to preoperative 1150 1151 levels and in others they do not. Despite the reduced density postoperatively 1152 corneal sensations have largely been reported to return to preoperative levels after 1153 an initial drop. Moreover, the physical recovery of nerves appears to lag behind 1154 the return of sensations. This suggests that there is redundancy in the density of 1155 nerves the cornea is endowed with or that our methods of testing corneal 1156 sensitivity (Cochet Bonnet aesthesiometer) is relatively crude and not sensitive 1157 enough to distinguish between finer degrees of loss of sensitivity. Transected 1158 nerve segments in the flap and stroma tend to be visible on IVCM for a variable

1159	number of hours before they disappear, functional loss preceding morphological
1160	loss of the nerves. Depending on the timing of the examination, these segments
1161	may be counted as 'normal', compounding the nerve density measurements.
1162	The contention that superior-hinge flaps are worse than nasal-hinge flaps
1163	is based on the premise that main bundles of nerves originating from the long
1164	posterior ciliary nerves that traverse in the nasal and temporal meridians are both
1165	transected in superior-hinge flaps and the nasal nerves are preserved in nasal flaps.
1166	This is not entirely accurate as the depth at which the main bundles enter the
1167	corneal periphery is mid to two-thirds of the corneal thickness, which is well
1168	posterior to the thickness of the flap either by mechanical keratomes or
1169	femtosecond laser. Hence it is unlikely that the major trunks are transected during
1170	making of the flap. Histological studies on human corneas that have undergone
1171	LASIK have not been described (to the best of our knowledge). We had the
1172	opportunity to study one eye 'a few years' post-LASIK by the AChE whole
1173	mount staining technique. Disrupted nerves with irregular thickening and aberrant
1174	regeneration in the form of thick closed loops were noted, primarily within the
1175	margins of the LASIK flap (Fig. 19) (Dua HS, Dhillon V unpublished
1176	observations).
1177	7.1.2 Laser epithelial keratomileusis (LASEK)

There is a significant reduction in the sub-basal nerve diameter and density
following LASEK and these do not recover to preoperative states even 6 months
after surgery (Darwish et al., 2007a; Darwish et al., 2007c; Lee et al., 2006).
Although tortuosity showed a significant decrease after LASEK, the sub-basal

1182	nerve tortuosity measured by tortuosity coefficient returns to its normal
1183	preoperative level by 3 months (Darwish et al., 2007a). When comparing the
1184	regeneration of sub-basal nerve following LASIK and LASEK, different studies
1185	have reported different results. Whilst, Lee et al noted slower sub-basal nerve
1186	regeneration following LASIK in comparison with LASEK (Lee et al., 2006),
1187	Darwish et al found no differences in the recovery of sub-basal nerves following
1188	these procedures (Darwish et al., 2007c).
1189	7.1.3 Photorefractive keratectomy (PRK)
1190	Several studies using confocal microscopy have been conducted to
1191	investigate the corneal nerve regeneration and morphology over time following
1192	PRK. The immediate postoperative finding is the evident stromal nerve damage
1193	fifteen minutes after PRK (Heinz et al., 1996). At 1-2 months, the first sub-basal
1194	nerve bundles can be seen (Linna and Tervo, 1997) together with sprouting nerve
1195	fibres in the anterior stroma at the edge of the wound, directed toward the centre
1196	of cornea (Heinz et al., 1996; Kauffmann et al., 1996). At 5-8 months following
1197	PRK, regeneration of stromal nerves and sub-basal nerve plexus seems to be
1198	completed. However, abnormal branching and accessory thin nerve fibres were
1199	present (Heinz et al., 1996; Kauffmann et al., 1996).
1200	Some investigators have noted that the sub-basal nerve morphology
1201	returned to its preoperative state at 1 year (Moller-Pedersen et al., 2000), while
1202	others have reported a bizarre pattern compared to controls 2 years following PRK
1203	(Bohnke et al., 1998). Regarding sub-basal nerve density after PRK, a 59%

1204 reduction in the density at 1 year has been reported but it returned to its pre-

 significant difference in the number and density of central sub-basal nerve fibres were found when compared to controls at 5 years following PRK (Moilanen et al., 2003). In this study, 71% of patients showed a normal branching pattern. In LASEK and PRK there is the added element of epithelial healing in addition to anterior stromal healing. Cytokines and growth factors related to epithelial healing are known to influence keratocyte 'activation' and inducing haze with an exaggerated healing response in the stroma (Lim et al., 2003). What effect these molecules have on nerve regeneration is unknown. Irregular nerve sprouting and persistence of abnormal thin nerves could be related to the epithelial wound healing response. As far as the causes of nerve damage in these procedures are concerned, it seems likely that the microkeratome cut causes most of the nerve damage in corneas after LASIK. However, in PRK all epithelial nerves are removed with the removal of the epithelium by whatever means, sub-basal nerves photoablated, and a certain degree of stromal nerve injuries is induced by photoablation as well (Tervo et al., 2002). 	1205	operative density 2 years following PRK (Erie et al., 2005). Moreover, no
 were found when compared to controls at 5 years following PRK (Moilanen et al., 2003). In this study, 71% of patients showed a normal branching pattern. In LASEK and PRK there is the added element of epithelial healing in addition to anterior stromal healing. Cytokines and growth factors related to epithelial healing are known to influence keratocyte 'activation' and inducing haze with an exaggerated healing response in the stroma (Lim et al., 2003). What effect these molecules have on nerve regeneration is unknown. Irregular nerve sprouting and persistence of abnormal thin nerves could be related to the epithelial wound healing response. As far as the causes of nerve damage in these procedures are concerned, it seems likely that the microkeratome cut causes most of the nerve damage in corneas after LASIK. However, in PRK all epithelial nerves are removed with the removal of the epithelium by whatever means, sub-basal nerves photoablated, and a certain degree of stromal nerve injuries is induced by photoablation as well (Tervo et al., 2002). 	1206	significant difference in the number and density of central sub-basal nerve fibres
 2003). In this study, 71% of patients showed a normal branching pattern. In LASEK and PRK there is the added element of epithelial healing in addition to anterior stromal healing. Cytokines and growth factors related to epithelial healing are known to influence keratocyte 'activation' and inducing haze with an exaggerated healing response in the stroma (Lim et al., 2003). What effect these molecules have on nerve regeneration is unknown. Irregular nerve sprouting and persistence of abnormal thin nerves could be related to the epithelial wound healing response. As far as the causes of nerve damage in these procedures are concerned, it seems likely that the microkeratome cut causes most of the nerve damage in corneas after LASIK. However, in PRK all epithelial nerves are removed with the removal of the epithelium by whatever means, sub-basal nerves photoablated, and a certain degree of stromal nerve injuries is induced by photoablation as well (Tervo et al., 2002). 	1207	were found when compared to controls at 5 years following PRK (Moilanen et al.,
In LASEK and PRK there is the added element of epithelial healing in addition to anterior stromal healing. Cytokines and growth factors related to epithelial healing are known to influence keratocyte 'activation' and inducing haze with an exaggerated healing response in the stroma (Lim et al., 2003). What effect these molecules have on nerve regeneration is unknown. Irregular nerve sprouting and persistence of abnormal thin nerves could be related to the epithelial wound healing response. As far as the causes of nerve damage in these procedures are concerned, it seems likely that the microkeratome cut causes most of the nerve damage in corneas after LASIK. However, in PRK all epithelial nerves are removed with the removal of the epithelium by whatever means, sub-basal nerves photoablated, and a certain degree of stromal nerve injuries is induced by photoablation as well (Tervo et al., 2002).	1208	2003). In this study, 71% of patients showed a normal branching pattern.
 anterior stromal healing. Cytokines and growth factors related to epithelial healing are known to influence keratocyte 'activation' and inducing haze with an exaggerated healing response in the stroma (Lim et al., 2003). What effect these molecules have on nerve regeneration is unknown. Irregular nerve sprouting and persistence of abnormal thin nerves could be related to the epithelial wound healing response. As far as the causes of nerve damage in these procedures are concerned, it seems likely that the microkeratome cut causes most of the nerve damage in corneas after LASIK. However, in PRK all epithelial nerves are removed with the removal of the epithelium by whatever means, sub-basal nerves photoablated, and a certain degree of stromal nerve injuries is induced by photoablation as well (Tervo et al., 2002). 	1209	In LASEK and PRK there is the added element of epithelial healing in addition to
 are known to influence keratocyte 'activation' and inducing haze with an exaggerated healing response in the stroma (Lim et al., 2003). What effect these molecules have on nerve regeneration is unknown. Irregular nerve sprouting and persistence of abnormal thin nerves could be related to the epithelial wound healing response. As far as the causes of nerve damage in these procedures are concerned, it seems likely that the microkeratome cut causes most of the nerve damage in corneas after LASIK. However, in PRK all epithelial nerves are removed with the removal of the epithelium by whatever means, sub-basal nerves photoablated, and a certain degree of stromal nerve injuries is induced by photoablation as well (Tervo et al., 2002). 	1210	anterior stromal healing. Cytokines and growth factors related to epithelial healing
 exaggerated healing response in the stroma (Lim et al., 2003). What effect these molecules have on nerve regeneration is unknown. Irregular nerve sprouting and persistence of abnormal thin nerves could be related to the epithelial wound healing response. As far as the causes of nerve damage in these procedures are concerned, it seems likely that the microkeratome cut causes most of the nerve damage in corneas after LASIK. However, in PRK all epithelial nerves are removed with the removal of the epithelium by whatever means, sub-basal nerves photoablated, and a certain degree of stromal nerve injuries is induced by photoablation as well (Tervo et al., 2002). 	1211	are known to influence keratocyte 'activation' and inducing haze with an
 molecules have on nerve regeneration is unknown. Irregular nerve sprouting and persistence of abnormal thin nerves could be related to the epithelial wound healing response. As far as the causes of nerve damage in these procedures are concerned, it seems likely that the microkeratome cut causes most of the nerve damage in corneas after LASIK. However, in PRK all epithelial nerves are removed with the removal of the epithelium by whatever means, sub-basal nerves photoablated, and a certain degree of stromal nerve injuries is induced by photoablation as well (Tervo et al., 2002). 	1212	exaggerated healing response in the stroma (Lim et al., 2003). What effect these
 persistence of abnormal thin nerves could be related to the epithelial wound healing response. As far as the causes of nerve damage in these procedures are concerned, it seems likely that the microkeratome cut causes most of the nerve damage in corneas after LASIK. However, in PRK all epithelial nerves are removed with the removal of the epithelium by whatever means, sub-basal nerves photoablated, and a certain degree of stromal nerve injuries is induced by photoablation as well (Tervo et al., 2002). 	1213	molecules have on nerve regeneration is unknown. Irregular nerve sprouting and
 healing response. As far as the causes of nerve damage in these procedures are concerned, it seems likely that the microkeratome cut causes most of the nerve damage in corneas after LASIK. However, in PRK all epithelial nerves are removed with the removal of the epithelium by whatever means, sub-basal nerves photoablated, and a certain degree of stromal nerve injuries is induced by photoablation as well (Tervo et al., 2002). 	1214	persistence of abnormal thin nerves could be related to the epithelial wound
 1216 concerned, it seems likely that the microkeratome cut causes most of the nerve 1217 damage in corneas after LASIK. However, in PRK all epithelial nerves are 1218 removed with the removal of the epithelium by whatever means, sub-basal nerves 1219 photoablated, and a certain degree of stromal nerve injuries is induced by 1220 photoablation as well (Tervo et al., 2002). 	1215	healing response. As far as the causes of nerve damage in these procedures are
 damage in corneas after LASIK. However, in PRK all epithelial nerves are removed with the removal of the epithelium by whatever means, sub-basal nerves photoablated, and a certain degree of stromal nerve injuries is induced by photoablation as well (Tervo et al., 2002). 	1216	concerned, it seems likely that the microkeratome cut causes most of the nerve
 removed with the removal of the epithelium by whatever means, sub-basal nerves photoablated, and a certain degree of stromal nerve injuries is induced by photoablation as well (Tervo et al., 2002). 	1217	damage in corneas after LASIK. However, in PRK all epithelial nerves are
photoablated, and a certain degree of stromal nerve injuries is induced byphotoablation as well (Tervo et al., 2002).	1218	removed with the removal of the epithelium by whatever means, sub-basal nerves
1220 photoablation as well (Tervo et al., 2002).	1219	photoablated, and a certain degree of stromal nerve injuries is induced by
	1220	photoablation as well (Tervo et al., 2002).

1221 7.1.4 Corneal crosslinking

1222 Corneal crosslinking (CXL) for keratoconus has various techniques with 1223 different initial effects on sub-basal and stromal nerves. The immediate effect of 1224 corneal crosslinking was studied in an ex-vivo model where corneoscleral buttons 1225 were subjected to epithelium-on or -off corneal crosslinking. There was complete 1226 absence of the sub-basal nerves in the epithelium-off group while they were intact 1227 in the epithelium-on group. Stromal nerves although present, showed localised

57

1228	swelling, axonal discontinuity, and interruption of axonal membrane in the area
1229	that was treated with epi-off CXL (Fig. 20) (Al-Aqaba et al., 2012a).
1230	Other studies have shown that crosslinking whether epithelium-off or -on
1231	leads to initial reduction of anterior stromal keratocytes and nerve densities.
1232	Regeneration starts at 7 days post-operatively by nerve sprouting from
1233	neighbouring non-injured nerves. At 3 months, there is excessive stromal nerves
1234	regeneration in the anterior stroma which reaches preoperative levels at 6 months
1235	(Xia et al., 2011). Sub-basal nerves density was found to be markedly reduced in
1236	the first 6 months following epithelium-off CXL but complete regeneration was
1237	seen by IVCM after 12 months with return of corneal sensation to baseline
1238	(Mazzotta et al., 2015) while trans-epithelial crosslinking with iontophoresis (I-
1239	CXL) was associated with less damage to the sub-basal nerves and return to
1240	normal density within 6 months (Bouheraoua et al., 2014).
1241	The ex vivo study on human corneas would suggest that almost all the
1242	damage that occurs to nerves during CXL is related to the removal of the
1243	epithelium. However, IVCM based in vivo studies suggest damage to the anterior
1244	stromal nerves as well, which implies that this may take a relatively longer time to
1245	manifest and is likely to be associated with the host inflammatory response that
1246	will be absent in the ex vivo model.

1247 7.1.5 Corneal transplantation

Penetrating keratoplasty (PK) is a major surgical procedure wherein all
corneal nerve bundles entering the cornea are severed. This often performed in the
background of a corneal pathology itself would have caused alterations in both

1251	function and structure of the nerves. The knowledge of corneal nerve regeneration
1252	and repair in this context is therefore important. In a 12 month follow up study
1253	after penetrating keratoplasty, no clinically observable sub-basal nerves were
1254	identified over. (Darwish et al., 2007b). In a smaller longitudinal study of a series
1255	of cases series, presumed nerve structures have been observed at the level of
1256	Bowman's layer at one year post operatively (Hollingsworth et al., 2006). In both
1257	studies, stromal nerves were observed in the central cornea from 6 months after
1258	surgery. The longest longitudinal study was performed by Richter et al (Richter et
1259	al., 1996), documenting re-innervation of the central cornea with stromal nerves at
1260	7 months and sub-basal nerves at 2 years post operatively. The long-term effects
1261	of penetrating keratoplasty on sub-basal corneal nerves have also been
1262	investigated in larger cross sectional studies. Findings are sub-basal nerves appear
1263	tortuous and disoriented and nerve density is reduced, even four decades after
1264	surgery (Niederer et al., 2007; Patel et al., 2007).

1265 Among different indications for penetrating keratoplasty, patients with 1266 keratoconus showed greater regeneration of the sub-basal nerve plexus (Niederer 1267 et al., 2007). This might be due to the fact that corneal nerves in the peripheral 1268 host rim are relatively healthy allowing relatively rapid regeneration after PK. 1269 Considerable changes, in the form of thickening and looping and coiling, have 1270 been noted in corneal nerves in keratoconus. These changes are largely restricted 1271 to the ectatic area of the cornea while the periphery remains essentially normal. 1272 (Patel and McGhee, 2006) The regenerating nerves have to traverse the scar tissue 1273 between donor and host tissue to reach the centre of the donor cornea (Escapini, 1274 1955; Rexed, 1951). The scar tissue may have a barrier effect slowing the

progression of the regenerating nerves or may provide a plane of less resistance
directing nerves to grow along the graft host junction as is classically seen with
any invading vessels after PK (Fig. 21) (Al-Aqaba et al., 2012b). Where the
underlying disease has resulted in attrition and attenuation of peripheral nerves it
is to be expected that the regenerating response would be delayed, aberrant and
incomplete.

1281 After PK, sub-basal nerves are seen to approach the central cornea 1282 travelling directly from the host sub-basal plexus to the donor cornea and also 1283 from regenerated stromal nerves, passing anteriorly through the Bowman's layer 1284 as they normally do (Fig. 21). Varied patterns of stromal nerve regeneration are 1285 seen with in the same transplanted corneal button, these may be straight and 1286 angular resembling normal nerves, coiled and tortuous resembling aberrant 1287 regeneration and some area may be devoid of nerves (Fig. 22). Central corneal 1288 sensitivity is reduced in grafted eyes and returns to near normal levels after 12 1289 months. There is no direct association between the sub-basal nerve regeneration 1290 and recovery of central corneal sensitivity. This could be due to the limitation of 1291 IVCM in detecting fine regenerating nerve fibres that contribute to the restoration 1292 of the corneal sensitivity postoperatively. (Darwish et al., 2007b) Other alternative 1293 explanations could be the redundancy of corneal nerve density or the inadequate 1294 sensitivity of the Cochet-Bonnet aesthesiometer as discussed in the context of 1295 laser refractive surgery in section 7.1.1.

1296 Although tear film function has been shown to recover significantly faster 1297 in DALK patients compared to PK patients, there was no significant difference in 1298 corneal sensitivity between the two groups at 12 months postoperatively.(Lin et al., 2014). The earliest appearance of the sub-basal nerve was documented at
about 6 months after surgery in both groups. In addition, there was no statistical
difference in the number and density of the sub-basal nerves, even 5 years
following DALK and PK (Zhang et al., 2013). This is expected as the transection
of tissue and nerves contained therein is identical for DALK and PK barring the
retention of pre-Descemets layer (Dua's layer, DL) of 15-20 microns, which like
the deep stroma does not contain any nerves (Dua et al., 2015).

1306 Descemet's membrane endothelial keratoplasty (DMEK) have been shown 1307 to result in short term reduction of the sub-basal nerve density and corneal 1308 sensitivity which return to their preoperative values between 4 to 20 months 1309 (Bucher et al., 2014). The authors' suggest that surgical trauma including corneal 1310 incisions and descemetorhexis are the most likely reason for the transient nerve 1311 alteration. Neurotrophic factors released by the normal corneal endothelial cells of 1312 the graft may contribute to nerve regeneration. Ahuja et al found a similar trend in 1313 patients following Descemet-stripping endothelial keratoplasty (DESK). The 1314 sensitivity diminishes 1 month postoperatively and returned to preoperative values 1315 by 24 months. However, the sub-basal nerve regeneration appears retarded with 1316 abnormal branching pattern (Ahuja et al., 2012). Endothelial keratoplasty 1317 procedures, DSEK, pre-Descemets endothelial keratoplasty (PDEK) and DMEK, 1318 are the main stay interventions for endothelial failure (Singh et al., 2018). These 1319 procedures involve small incisions at the limbus as for cataract surgery. Though 1320 some nerve transection can and does occur at the incision sites the damage in never as much as in DALK and PK. In DSEK a finite amount (100-150 microns) 1321 1322 of stroma is also transplanted; in PDEK, DL and Descemets membrane (DM) is

transplanted and in DMEK only the DM is transplanted. Hence, it is almost certain that no donor nerves are transplanted as in DALK and PK. This could have a bearing on the nerve changes seen in the immediate and late postoperative periods. While evaluating nerve changes following corneal transplantation it is important to consider that much of these will relate to the underlying pathology and not just the type of procedure performed.7.1.6 Cataract surgery

1329 Following extracapsular cataract surgery, a significant reduction in the 1330 sensitivity is confined to a wedge-shaped area extending from the scleral wound 1331 and encompassing the central cornea (John et al., 1988). This is in contrast to a 1332 small area of reduced sensation around the incision site in phacoemulsification. 1333 When compared to the superior clear corneal incision, temporal incision seems to 1334 induce a larger decrease in corneal sensitivity, albeit not significant (Kim et al., 1335 2009). Corneal sensation returns to its preoperative levels by 3 months, despite 1336 suboptimal regeneration of sub-basal nerve fibres as confirmed by confocal 1337 microscopy (Kim et al., 2009). There is notion that the temporal long ciliary nerve 1338 is damaged with temporal incisions (see also section on LASIK 7.1.1). If this were 1339 the case, innervation in a significant area would be affected. It has been shown 1340 that the long ciliary nerves arborize far posterior form the limbus and the branches 1341 enter the limbus equally all around (Al-Aqaba et al., 2010b; He et al., 2010; 1342 Marfurt et al., 2010). The risk of damaging the main trunk of the long ciliary 1343 nerve in limbal incisions is low or none at all.

1344 7.2 Diabetic keratopathy

1345	Diabetic keratopathy is characterised by abnormal innervation of the
1346	cornea that results in decreased sensitivity and impaired epithelial wound healing
1347	(Bikbova et al., 2018). It represents a form of neurotrophic keratopathy where
1348	patients are at a higher risk of ocular complications such as surface irregularities,
1349	corneal erosions, corneal infections, and stromal opacification. In neurotrophic
1350	keratopathy the balanced mutual dependence of epithelial cells and nerves is
1351	disrupted leading in damage to both structures (Dua et al., 2018).
1352	Sub-basal nerve plexus is frequently affected in diabetic patients with
1353	neuropathy and the changes depend on the severity of neuropathy. It has been
1354	found that the number of fibres, number of beadings, and branching pattern of
1355	fibres in the sub-basal plexus decreases in cases of mild to severe neuropathy
1356	(Hossain et al., 2005; Malik et al., 2003; Midena et al., 2006) but corneal
1357	mechanical sensitivity decreases only in cases with severe neuropathy (Rosenberg
1358	et al., 2000). The epithelium of diabetic patients with advanced neuropathy is
1359	much thinner than that of diabetic patients without neuropathy, (Rosenberg et al.,
1360	2000) which could influence the subjective response to sensitivity testing.
1361	Moreover, it has been shown that there is a direct correlation between corneal
1362	sensitivity and the number of nerve fibres in the sub-basal plexus and between
1363	corneal diabetic neuropathy with peripheral diabetic neuropathy. Quantitative
1364	analysis has also shown greater tortuosity in patients with greater severity of
1365	peripheral diabetic neuropathy (Chang et al., 2006; Kallinikos et al., 2004). The
1366	visibility of corneal nerves by IVCM enables their assessment and serves as a
1367	useful clinical marker of peripheral diabetic neuropathy (Boulton, 2007; Pritchard
1368	et al., 2015). Proliferative diabetic retinopathy is also significantly associated with

1369	lower sub-basal nerve densities (Mocan et al., 2006). Surprisingly, diabetic
1370	patients with normal corneal and vibration sensation show significant changes in
1371	the sub-basal nerve parameters compared to healthy controls (Messmer et al.,
1372	2010). Therefore, IVCM is capable of detecting diabetic nerve fibre damage
1373	earlier than corneal aesthesiometery and perception of vibration in the lower limb
1374	(Messmer et al., 2010). This reinforces the notion of redundancy of corneal
1375	innervation wherein for a measurable loss of sensitivity as assessed by the Cochet-
1376	Bonnet aesthesiometer, there has to be a significant loss of visible nerves in the
1377	sub-basal plexus. Interestingly, IVCM can detect abnormalities of sub-basal nerve
1378	fibres in the inferior whorl complex in diabetic patients even before the
1379	development of clinical peripheral diabetic neuropathy (Petropoulos et al., 2015).
1380	In addition to corneal nerve alteration, diabetic cornea demonstrates decreased
1381	basal epithelial cell density, reduced anterior stromal keratocyte counts, and
1382	endothelial cell density (Bitirgen et al., 2014). These cellular changes can only
1383	been seen in diabetic patients with retinopathy, while nerve alterations seem to
1384	precede the development of diabetic retinopathy. It is worth noting that increasing
1385	duration of type 2 diabetes has been linked to the progressive degeneration of sub-
1386	basal nerve plexus (Lagali et al., 2017).
1387	Other cellular changes haven been observed in diabetic corneas. Qu et al

Other cellular changes haven been observed in diabetic corneas. Qu et al
showed an increase in the densities of Langerhans cells in patients with type 2
diabetes mellitus who have corneal punctate epitheliopathy. These changes were
related to the reduction in basal epithelial cell density leading to a delayed corneal
wound healing (Qu et al., 2018).

A previous study has provided evidence that panretinal photocoagulation for diabetic retinopathy is associated with further reduction in sub-basal nerve density and this damage seems to be due to the effect of argon laser on the long ciliary nerves as they traverse the suprachoroidal space and could be directly hit by the laser pulses or be involved in the induced scarring in the choroid (De Cilla et al., 2009).

1398 7.3 Herpetic corneal disease

Herpes simplex infection of the ocular surface is the leading cause of 1399 1400 neurotrophic keratopathy and infectious corneal blindness in the developed world 1401 (Farooq and Shukla, 2012; Looker and Garnett, 2005). Corneal nerves are at the 1402 heart of the pathophysiological mechanism and the phenotypical manifestation of 1403 the disease. During primary infection, corneal nerves serve as a conduit for the 1404 herpes virus to track into the trigeminal ganglion via retrograde axonal transport, 1405 where a latent HSV-1 infection is established. Following reactivation, viral 1406 particles travel down sensory nerve axons to the ocular surface where they 1407 replicate and induce cytopathic effect.

In patients with herpes simplex keratitis (HSK), IVCM has shown a significant reduction in the density, number and branching of the sub-basal nerve plexus (Hamrah et al., 2010). The chronicity of the infection episodes has been associated with greater nerve damage. In acute phase of the disease, loss of corneal sensation correlates strongly with profound reduction of the sub-basal nerve density. However, anatomical nerve regeneration is often associated with poor functional recovery, even 3 years following the last infection episode

1415	(Chucair-Elliott et al., 2015; Moein et al., 2018). The contralateral, clinically
1416	unaffected eyes also show a diminishment of sub-basal nerve plexus as compared
1417	with normal controls, suggesting bilateral nerve alteration in a clinically unilateral
1418	disease (Hamrah et al., 2010). Furthermore, Tear function has been shown to be
1419	impaired in the unaffected eyes of patients with unilateral recurrent herpetic
1420	keratitis, even when the disease is apparently quiescent (M'Garrech et al., 2013).
1421	This finding suggests that recurrent disease induces a reduction in the afferent
1422	pathways of the tear reflex from the affected eye, leading to tear abnormality in
1423	the unaffected eye.
1424	Following resolution of HSK, from a month to 12 months later, a majority
1425	of patients have a normal looking sub-basal plexus though a few patients can
1426	show either complete absence of sub-basal nerve plexus or reduced number of
1427	nerve fibre bundles (Rosenberg et al., 2002).
1428	In an experimental animal model, sympathetic hyper-innervation of the
1429	infected cornea is causatively linked to the pathological changes observed in HSK
1430	including thinning and scarring (Yun et al., 2016). Surprisingly, sympathetic
1431	nerves have also been shown to prevent corneal reinnervation by sensory nerves
1432	and promote severe and persistent stromal inflammation. Surgical sympathectomy
1433	is shown to halt or reverse the process of corneal neovascularisation, scarring and
1434	thinning and is often associated with restoration of sensory innervation (Yun et
1435	al., 2016). Following penetrating keratoplasty and deep anterior lamellar
1436	keratoplasty, corneal nerves are cut along the entire circumference. Aberrant and
1437	limited nerve regeneration in corneal grafts has been observed even 14 years
1438	following surgery, where a large number of nerves failed to regenerate and extend

1439	beyond the area of graft host junction (Al-Aqaba et al., 2012b). This blocks the
1440	free access of viral particles to the donor cornea. Extensive virus replication and
1441	shedding have been detected at the graft host junction without clinical signs of
1442	disease (Nicholls et al., 1996). This regeneration pattern possibly explains the
1443	altered clinical appearance of recurrent HSK in corneal grafts where lesions can
1444	start only in the vicinity of trephination line, often geographic, and lack of typical
1445	dendrites and terminal bulbs (Remeijer et al., 1997; Rezende et al., 2004). Late
1446	recurrences are located more centrally inside the donor button corresponding with
1447	further progression of the regenerating nerves.
1448	In herpes zoster virus keratitis (HZVK), the reduction of sub-basal nerve
1449	density is strongly linked to the profound changes in corneal epithelium e.g.
1450	increase cell size, decrease epithelial cell density and squamous metaplasia
1451	(Hamrah et al., 2015). The recovery of corneal sensation and innervation is
1452	possible, though many years after the last infection episode (Cruzat et al., 2016).
1453	The dendritic pattern of HZVK is similar but not identical to HSVK. The
1454	dendrites are described as 'elevated' rather than 'ulcerated' but are likely to be
1455	related to the epithelial nerves as (Piebenga and Laibson, 1973) both herpes zoster
1456	and simplex viruses have an affinity for nervous tissue.
1457	7.4 Dry eyes
1458	Aspects of dry eye are covered in sections 5.2 and 5.4. The Tear Film
1459	Ocular Surface society Dry eye workshop-2 (TFOS DEWS II) report defines dry
1460	eye disease thus "Dry eye is a multifactorial disease of the ocular surface

1461 characterised by a loss of homeostasis of the tear film, and accompanied by ocular

1462	symptoms, in which tear film instability and hyperosmolarity, ocular surface
1463	inflammation and damage, and neurosensory abnormalities play etiological roles"
1464	(Craig et al., 2017). Inflammation and neurosensory abnormalities play a role in
1465	the pathophysiology of DED and are both accentuated by DED being the principle
1466	factors contributing to pain, soreness and other symptoms. Hyperosmolarity leads
1467	to inflammation and nerve damage, which when perpetuated over time lead to
1468	altered gene expression of ion channel and receptor proteins, sensitisation of
1469	nociceptors, altered excitability and abnormal firing of impulses (Craig et al.,
1470	2017).
1471	It is well known that Sjogren's syndrome is associated with increased
1472	prevalence of peripheral and cranial neuropathy (Meijering et al., 2004). In
1473	addition, a relation has been suggested between corneal innervation and aqueous
1474	tear production. Therefore, different studies using IVCM have been conducted to
1475	investigate the sub-basal nerve plexus in patients with aqueous tear deficiency.
1476	With regard to the effect of dry eye on sub-basal nerve density, results are
1477	inconsistent. While some studies report a significantly reduced sub-basal nerve
1478	density in both Sjogren's and non-Sjogren's syndrome dry eyes compared to
1479	normal (Benitez del Castillo et al., 2004; Shin, 2002), others have observed no
1480	significant differences in the density (Hosal et al., 2005; Meijering et al., 2004;
1481	Zhang et al., 2005). One study even reported an increased number of nerves per
1482	frame in patients with Sjogren's syndrome compared to controls (Zhang et al.,
1483	2005). Another finding reported is an increased sub-basal nerve tortuosity in
1484	Sjogren`s syndrome (Benitez del Castillo et al., 2004; Shin, 2002; Zhang et al.,
1485	2005), which was hypothesised to be due to the release of nerve growth factors in

1486	response to the inflammatory process (Shin, 2002). The conflicting reports of
1487	increased or decreased nerve density and other parameters in dry eye and their
1488	return to normal in response to treatment (Cagini et al., 2018) could be reconciled
1489	by considering that dry eye disease is a spectrum starting with increased nerves
1490	and/or increased sensitivity (hyperaesthesia) in the early stages followed by
1491	reduction in nerves and hypoaesthesia as the disease progresses (Iaccheri et al.,
1492	2017; Stepp et al., 2018).
1493	Active DED affects not only the nerves but epithelial cells and keratocytes
1494	as well. Laccheri B (2017) noted increase in cell density of the intermediate
1495	corneal epithelial cells, activation of keratocytes and increased density, tortuosity
1496	and reflectivity of sub-basal nerves; all of which returned to normal levels on
1497	treatment with cyclosporine drops indicating that altered behaviour to sensory
1498	stimuli and trophic effects, both play a role in DED but can be reversed in the

1499 early stages of disease but the same may not be possible later in the course when

permanent structural changes and nerve loss occur (Belmonte et al., 2017).

7.5 Keratoconus

1500

1501

Early IVCM studies regarding alteration in the corneal nerve morphology in patients with keratoconus have been limited to qualitative analysis, with observations such as "sub-basal nerve fibres running in and out of the plane of the field in the central cornea" (Tervo et al., 1982). Quantitative studies have shown that patients with keratoconus exhibit a significant decrease in the subbasal nerve density (Patel et al., 2008; Patel and McGhee, 2006; Simo Mannion et al., 2005; Tervo, 1977). However, a considerable reduction in corneal sensation
1509	has been revealed only in patients with keratoconus who wore contact lenses
1510	routinely (Patel et al., 2008). Stromal nerve bundles are thicker than normal,
1511	especially within the area of the cone explaining why prominent corneal nerves
1512	are often seen using slit lamp biomicroscopy. (Mannion et al., 2007). Some
1513	authors have linked these nerve changes to progression of keratoconus (Brookes
1514	et al., 2003). IVCM and immunohistological studies on keratoconus buttons
1515	removed during corneal transplant surgery has revealed abnormal architecture
1516	with a tortuous network of nerve fibre bundles at the apex of the cone; many of
1517	these bundles formed closed loops. The sub-basal blub like structures too are
1518	thickened in keratoconus (Al-Aqaba et al., 2011b; Patel and McGhee, 2006). At
1519	the topographic base of the cone, nerve fibre bundles appeared to follow the
1520	contour of the base, with many of the bundles running concentrically in this
1521	region. On histology, stromal nerves within the conical region showed a series of
1522	changes of varying severity and were classified into 3 grades based on the extent
1523	and severity of the morphologic alterations. In grade 3, there is an excessive
1524	overgrowth of tortuous nerves forming a very complex network within the central
1525	cornea (Fig. 23). In grade 1, the changes are in the form of mild looping and
1526	coiling of the central stromal nerves. These findings provide an evidence of the
1527	involvement of corneal nerves in keratoconus and suggests further that they may
1528	play a role in the pathophysiology of the disease progression (Al-Aqaba et al.,
1529	2011b).
1530	7.6 Contact lens wear

Although associated with reduced corneal sensation (Patel et al., 2002),long term contact lens wear does not appear to affect the morphology,

1533	distribution or number of corneal nerves (Oliveira-Soto and Efron, 2003; Patel et
1534	al., 2002). Non-structural functional nerve changes have been attributed to the
1535	decreased corneal sensitivity in these subjects. This may be a sensory adaptation
1536	of the nerves to the constant presence of the contact lens much like the
1537	unawareness of the clothes we wear on a daily basis (Graczyk et al., 2018).
1538	7.7 Fuchs' Endothelial Corneal Dystrophy (FECD) and Bullous keratopathy
1539	(<i>BK</i>)
1540	Corneal nerve changes in conditions associated with chronic corneal
1541	edema have been studied in pseudophakic bullous keratopathy, Fuchs' endothelial
1542	corneal dystrophy (FECD) and failed corneal grafts. Though all conditions have
1543	persistent corneal edema they fundamentally differ in relation to transection of
1544	corneal nerves in those that have had penetrating keratoplasty compared to those
1545	that have not. Some may have had an endothelial keratoplasty procedure where
1546	the nerve trauma is expected to be different to those who have undergone
1547	penetrating keratoplasty. Ahuja et al. studied sensitivity and nerve morphology in
1548	patients with FECD and reported low sensitivity and density prior to endothelial
1549	keratoplasty (EK), a further drop after the operation and slow recovery to pre-
1550	operative levels (Ahuja et al., 2012). As the patients underwent EK it is presumed
1551	that the indication was endothelial cell dysfunction and corneal edema, implying
1552	an association of the reported changes to edema. Data on corneal thickness and
1553	endothelial cell counts is not provided. They noted that stromal nerves were
1554	frequently tortuous and formed loops with the abnormalities persisting up to 36
1555	months post EK. Kobayashi et al (Kobayashi et al., 2008) noted that patients who
1556	underwent Descemets stripping automated keratoplasty surgery had a change in

the morphology from honey comb pattern, consistent with edema, to normal notactivated keratocytes.

1559 Al Aqaba et al. (2011) studied corneal nerve changes in BK with in vivo 1560 confocal microscopy and AChE staining of buttons removed for BK eyes during 1561 PK (Al-Aqaba et al., 2011a). They reported that the nerve density was lower, the 1562 branching pattern less apparent and the sub-basal nerves were thinner in BK 1563 compared to normal. Other striking anomalies such as localised thickenings or 1564 excrescences and abnormal twisting, coiling, and looping of the mid-stromal 1565 nerves were also noted. The localised thickenings along the course of the nerve 1566 were interesting as they represented either the stub of a degenerated nerve or the 1567 starting point of aberrant nerve re-generation. It is not just the nerves that show 1568 structural changes in BK (Fig. 24 and 25). Subepithelial fibroblasts with scarring, 1569 altered keratocyte cell bodies and absent or decreased sub-basal nerves were seen 1570 both histologically and on IVCM in patients with BK of long standing, secondary 1571 to FECD and cataract surgery (Alomar et al., 2011). With the popularity of EK 1572 these findings raise an interesting question. Are we leaving behind a normal 1573 cornea following EK compared to PK? How long do the changes described above 1574 persist and do they every return to normal is unknown? From clinical experience 1575 it appears that vision improves despite reduced sensitivity and residual changes in 1576 nerves and resident cells, raising once again the question of structure-function 1577 correlation, redundancy and what constitutes normal as far as vision is concerned? 1578 BK is often encountered as a unilateral disease, with patients presenting to 1579 ophthalmic emergency care due to an acute onset of pain in the background of 1580 blurred or misty vision. It was thought that the ocular pain in BK is caused by

72

1581	defects in the corneal epithelium exposing the corneal nerve endings as the fluid
1582	filled epithelial bullae rupture or due to nerve stretching and irritation by the
1583	epithelial and subepithelial bullae. However, Al-Aqaba et al (Al-Aqaba et al.,
1584	2011a) have demonstrated that sub-Bowman's nerves rather than sub-basal
1585	nerves may be contributing to the symptoms of pain. This explanation was based
1586	on their finding of reduced sub-basal nerves (diameter and branching) indicating
1587	attrition of sub-basal plexus in chronic corneal edema which does not reconcile
1588	with the increased pain experienced by these patients. Aberrant morphology and
1589	hyper-regeneration of the sub-Bowman's and mid-peripheral stromal nerves may
1590	contribute to the symptom of pain in BK.

1591 7.8 Neurotrophic keratopathy (NK)

1592 Aspects of NK are covered in sections 4.2 and 4.3.3. The hallmark of NK 1593 is affection of corneal nerves, which manifests as reduced or absent corneal 1594 sensations associated with epitheliopathy, epithelial defect and ultimately stromal 1595 ulceration (Dua et al., 2018; Mertsch et al., 2018). Absence of corneal sensations 1596 with preservation of trophic functions carriers a good prognosis compared to 1597 conditions where the nerve damage is such that both trophic and sensory functions 1598 are affected. (Dhillon et al., 2016) Although stromal involvement is traditionally 1599 regarded as stage 3 (severe grade) of NK, recent evidence with OCT examination 1600 has shown that stromal involvement occurs early in the course of the disease and 1601 is present throughout (Mastropasqua et al., 2018). Understanding of pathogenesis 1602 of NK stimulated the development of recombinant nerve growth factor (rhNGF) 1603 eye drops, for the treatment of stage 2 and 3 NK. Replacement of deficient nerve

1604 growth factor promotes the healing of epithelium and nerve regeneration (Bonini1605 et al., 2018a; Bonini et al., 2018b; Dua et al., 2018).

1606 Corneal neurotisation is a surgical approach that restores corneal sensation 1607 by reinnervating the stromal and sub-basal layers of the cornea. The first report of 1608 IVCM in patients with NK and corneal neurotisation was published by Fung et al 1609 (Fung et al., 2018; Malhotra et al., 2019), where it was shown to restore sensory 1610 and trophic functions of corneal nerves, effectively halting the progression of NK 1611 and preventing further visual loss. Another case report by Ting et al (Ting et al., 1612 2018) pointed out that the findings on IVCM and histopathological examination 1613 suggest that partial regeneration/maintenance of corneal nerves occurring after 1614 corneal neurotisation surgery is likely attributed to the paracrine neurotrophic 1615 support, instead of direct sprouting, from the perilimbal transplanted nerve 1616 fascicles.

1617 7.9 Glaucoma

1618 IVCM has been used to evaluate microstructural changes in different types 1619 of glaucoma as well as to assess corneal changes induced by topical antiglaucoma 1620 medications and their preservatives and study conjunctival wound healing process 1621 specially in filtering blebs. Gatzioufas et al. studied the corneal morphology in 1622 primary congenital glaucoma, and found that the anterior and posterior stromal 1623 keratocyte density was significantly reduced, compared with normal controls but 1624 there were no observed differences in the keratocyte morphology(Gatzioufas et 1625 al., 2013). In pseudoexfoliation syndrome and glaucoma, studies have shown 1626 marked reduced density of sub-basal nerves and keratocytes in the anterior and

1627 posterior stroma as well as endothelial cells with increased endothelial cell

1628 polymegathism and pleomorphism (Kocabeyoglu et al., 2016; Yuksel et al.,

1629 2016).

1630 Several studies have shown reduced density and increased tortuosity and 1631 reflectivity of sub-basal nerves in patients on antiglaucoma drops (Baghdasaryan 1632 et al., 2018), thus highlighting the importance of IVCM as a potential tool to 1633 assess the level of toxicity of topical antiglaucoma drugs specially those 1634 containing preservatives and to identify those patients who would best benefit 1635 from laser trabeculoplasty or minimally invasive surgery to control the disease 1636 without detrimental effect on the ocular surface and corneal innervation (Labbe et 1637 al., 2012; Zhang et al., 2019). Patients on preservative containing antiglaucoma 1638 medications have a greater reduction of sub-basal nerve density and corneal 1639 hypoesthesia, when compared to preservative free drugs (Martone et al., 2009). 1640 Although hypoesthesia is often associated with improvement in patient symptoms 1641 despite presence of signs, this is not always the case as nerve pathology can be 1642 associated with allodynia and hyperalgesia in the presence of hypoesthesia. 1643 Another study conducted in France compared patients on antiglaucoma 1644 medications and dry eyes to normal subjects and found that corneal sensation was 1645 significantly decreased in the former two groups. In the dry-eye group, corneal 1646 sensitivity correlated with the density and the number of nerves, whereas in the 1647 glaucoma group, corneal sensitivity correlated only with the tortuosity of sub-1648 basal nerves. This highlights the importance of understanding the pathophysiology 1649 of the disease process to understand the correlation between corneal sensation and 1650 sub-basal nerve morphology. Cyclo-destructive procedures to control advanced

75

1651	glaucoma such as cyclo-photocoagulation did not seem to affect the morphology
1652	or density of the sub-basal nerves (Raivio et al., 2002).
1653	7.10 Corneal dystrophies
1654	Corneal dystrophies are a heterogenous group of genetic, often
1655	progressive, bilateral non-inflammatory corneal diseases, which are characterised
1656	by deposition of abnormal material (Klintworth, 2009). Out of 25 types of corneal
1657	dystrophies, two are often associated with significant alterations of nerve structure
1658	and/or function. These are lattice corneal dystrophy (LCD) and epithelial
1659	basement membrane dystrophy (EBMD). Keratoconus and FECD are discussed in
1660	sections 7.5 and 7.7 respectively.
1661	Lattice dystrophy typically starts as superficial fine nodular opacities in
1662	the central cornea, which appear to have stellate-shaped extensions when
1663	examined with slit lamp at high magnification (Wolter and Hendrson, 1962).
1664	Coalescence of the opacities form radially oriented linear deposits extend from the
1665	centre to the periphery, sparing the limbus. The latter appearance closely
1666	resembles the branching pattern of corneal nerves as demonstrated by several
1667	histological staining methods (Al-Aqaba et al., 2010b; Marfurt et al., 2010). A
1668	previous study has revealed that hyalinisation of the corneal nerves is responsible
1669	for the clinical appearance of linear opacities (Wolter and Hendrson, 1962).
1670	Furthermore, the clinical observation of the direct continuity of corneal nerves
1671	with the linear opacities at the periphery provides further evidence of the
1672	involvement of nerves. In addition, many patients with lattice dystrophy suffer
1673	from corneal hypoesthesia or anaesthesia (Meretoja, 1972), which probably

1674	accounts for the development of recurrent corneal erosions and poor wound
1675	healing in these cases (Martin and Safran, 1988). Therefore, degeneration and
1676	hyalinisation of the corneal nerves is often considered the primary pathology of
1677	lattice dystrophy.
1678	In familial amyloidosis, slowly progressive involvement of cranial nerves
1679	including the trigeminal, facial, glossopharyngeal, accessory, and hypoglossal
1680	nerves is clinically evident in patients with asymptomatic corneal lattice
1681	dystrophy (Boysen et al., 1979). Impaired corneal sensitivity in those patients is
1682	correlated with the reduction in density of sub-basal nerve plexus and the number
1683	of long fibre bundles on IVCM (Rosenberg et al., 2001).
1684	EBMD is a common anterior corneal dystrophy, with a prevalence of at
1685	least 2% in the population (Waring et al., 1978). The majority of EBMD cases are
1686	asymptomatic and only 10% of patients present with recurrent corneal erosions.
1687	IVCM shows a reduction of up to 50% in the sub-basal nerve density when
1688	compared to the healthy population (Germundsson and Lagali, 2014). The poor
1689	adhesion of the basal epithelium to the underlying basement membrane or the
1690	hemidesmosome complexes to the Bowman's zone via anchoring filaments, with
1691	subsequent erosions result in disruption and abnormal regeneration of the sub-
1692	basal nerves (Germundsson and Lagali, 2014). Stromal nerves remain intact in
1693	this condition (He and Bazan, 2013). Interestingly, the improved sub-basal nerve
1694	density following phototherapeutic keratectomy has been attributed to
1695	regeneration from the peripheral sub-basal nerves.

1696 7.11 Limbal stem cell deficiency (LSCD)

77

ACCEPTED MANUSCRIPT

1697	Limbal stem cells play a pivotal role in the maintenance of normal
1698	homeostasis of the corneal epithelium and wound healing (Deng et al., 2019; Dua
1699	et al., 2000). LSCD is defined as "an ocular surface disease caused by a decrease
1700	in the population and/or function of corneal epithelial stem/ progenitor cells; this
1701	decrease leads to the inability to sustain the normal homeostasis of the corneal
1702	epithelium" (Deng et al., 2019).
1703	On IVCM, LSCD is associated with a magnitude of changes in the corneal
1704	microstructure. These include a decrease in basal epithelial cell density and
1705	epithelial thickness, the presence of metaplastic cells with hyper-reflective nuclei
1706	and the presence of goblet cells within the conjunctivalised corneal epithelium
1707	(Chan et al., 2015a; Chan et al., 2015b; Deng et al., 2012; Miri et al., 2012).
1708	Alterations in sub-basal nerve plexus have been the primary focus of nerve
1709	research in LSCD. Several studies confirmed the reduction in the sub-basal nerve
1710	density and increased nerve tortuosity in stage-dependent manner (Chuephanich et
1711	al., 2017; Miri et al., 2012). In one study, sub-basal nerves were detected in 22%
1712	of patients with total LSCD and in 100% of patients with partial LSCD (Miri et
1713	al., 2012). The density of sub-basal nerves was $4.26 \pm 0.66 \text{ mm/mm}^2$ in cases of
1714	total LSCD and $9.70 \pm 6.32 \text{ mm/mm}^2$ in cases of partial LSCD. Both figures fall
1715	significantly below the normal sub-basal nerve density previously published using
1716	laser scanning IVCM.
1717	In normal corneas, sub-basal nerves and their associated intraenithelial

1/1/ In normal corneas, sub-basal nerves and their associated intraepithelial
nerve terminals run for several millimetres within the corneal epithelium without
Schwann cell support. Emerging evidence suggest that corneal epithelial cells

1720	function as surrogate Schwann cells during normal homeostasis and wound
1721	healing (Stepp et al., 2017). Therefore, loss of corneal epithelial phenotype could
1722	possibly explain the nerve dropout in the sub-basal plane in LSCD. In addition,
1723	the abnormal corneal and limbal epithelial cells in LSCD are unable to produce
1724	glial cell-derived nerve growth factors and nerve growth factors, which are
1725	necessary molecules to maintain neurite growth and regeneration (Qi et al., 2007).
1726	There is another aspect to visualisation of sub-basal nerves through multiple
1727	epithelial cell layers by IVCM. In conjunctival intraepithelial neoplasia, the
1728	hyper-reflective nature of the epithelium and the thickness was considered to
1729	'mask' the sub-basal nerves, which 're-appeared' as the CIN responded to
1730	treatment with mitomycin C. The central segmented nature of the re-appearing
1731	nerves corresponding to return of normality of the epithelium showed that a
1732	masking effect and visibility are factors to be considered (Alomar REF).
1733	7.12 Small-fibre sensory neuropathy (SFSN)

1734 Small-fibre sensory neuropathy (SFSN) refers to a spectrum of peripheral 1735 neuropathic conditions of diverse aetiologies that are characterised by damage to 1736 small-calibre sensory and/or autonomic nerve fibres (Hoitsma et al., 2004; Tavee 1737 and Zhou, 2009). It exclusively involves finely myelinated and unmyelinated 1738 fibres (Holland et al., 1998). Patients often suffer from burning, pain and 1739 autonomic deficits but with normal strength, proprioception, and reflexes (Gorson 1740 and Ropper, 1995). Symptoms are usually distributed in a stocking/glove pattern, 1741 suggesting a length-dependent neuropathy (Bucher et al., 2015). Alternatively, 1742 SFSN may manifest as an asymmetrical patchy pattern of sensory symptoms

ACCEPTED MANUSCRIPT

1743 primarily affecting the arms or even in the face, implicating a non–length-

dependent ganglionopathy (Gemignani, 2012; Khan and Zhou, 2012).

- 1745 SFSN can be caused by hereditary or acquired conditions (Holland et al.,
- 1746 1998). Hereditary causes include autosomal recessive hereditary sensory

1747 neuropathy, familial amyloidosis, and Fabry's disease. Acquired conditions

1748 include diabetes mellitus, systemic amyloidosis, and human immunodeficiency

- 1749 virus infection, and exposure to certain neurotoxic medications. However, no
- underlying cause can be identified in up to 47% of cases (Devigili et al., 2008),

therefore these cases are categorised as "idiopathic." Currently, the assessment of
intraepidermal nerve fibre density through skin biopsy is the gold standard tool to
establish the diagnosis (Lauria et al., 2010). Due to its invasive nature, skin biopsy

1754 has a limited application for longitudinal studies. More importantly,

1755 intraepidermal nerve fibre density does not often correlate with the disease

severity (Bucher et al., 2015). It therefore becomes apparent that non-invasive
measures are required to objectively evaluate the morphology of small sensory
nerve fibres.

1759 In a prospective single centre study, Bucher et al studied 14 patients with 1760 histologically confirmed SFSN. Corneal nerve parameters and dendritic cell 1761 density were assessed with IVCM and compared with age-matched healthy 1762 controls and correlated with symptoms, disease course, and histopathological 1763 findings (Bucher et al., 2015). They reported a reduction in nerve fibre density 1764 and total number of nerves with increased nerve tortuosity. However, these 1765 changes were not correlated with intraepidermal nerve fibre density or clinical 1766 symptoms. Similarly, Tavakoli et al evaluated corneal neuropathy in Fabry's

1767	disease and found that IVCM and non-contact corneal aesthesiometry provide
1768	novel means to detect early nerve fibre damage and dysfunction in patients with
1769	Fabry disease (Tavakoli et al., 2009).
1770	IVCM evidence of corneal small fibre neuropathy has also been reported
1771	in Wilson disease (Sturniolo et al., 2015), fibromyalgia (Ramirez et al., 2015),
1772	sarcoidosis (Oudejans et al., 2017) and Parkinson's disease (Podgorny et al.,
1773	2016).
1774	
1775	8. Future directions

1776 Although numerous studies have contributed to our knowledge and a lot is 1777 known about corneal nerves in health and disease the one conclusion that can be 1778 drawn without any controversy is that a lot more needs to be learned, both in 1779 health and in disease. Part of this challenge is to dispense with some old 1780 conceptions and reconcile others with new discoveries and emerging knowledge. 1781 The long ciliary nerves, travelling anteriorly along the nasal and temporal 1782 meridians were believed to divide into multiple branches at the 3 and 9 O'clock 1783 positions to innervate the cornea leaving a watershed zone at the 12 and 6 O'clock 1784 positions. This fed the debate between preference for the nasal hinge (where the 1785 nasal fibres are not transected by the keratome blade) over the superior hinge 1786 (where both the 3 and 9 O'clock meridian are transected) in LASIK. As 1787 anatomical clarification emerged that the nerves were equally distributed along 1788 the entire circumference and the main trunks lay below the depth at which most 1789 keratome blades made their pass it became apparent that the location of the flap

ACCEPTED MANUSCRIPT

1790	was not paramount but thinner flaps were better. Inadequate knowledge drive
1791	hypotheses that become accepted as the 'norm' until proved one way or the other.
1792	The terminal bulb-like structures located in the sub-basal plane from
1793	which the nerve bundles of the sub-basal plexus arise are there to be seen but their
1794	structure and function if any, needs to be deciphered. Their visualisation with
1795	some stains but not with others indicates that they relate to the nerve sheath and
1796	not the axoplasm or axolemma but that is where the tract runs cold. Ultrastructural
1797	studies supplemented with immunohistochemical studies should reveal
1798	information on structure, function and possible role in the afferent pathway of the
1799	nerves. Specific involvement of these structures in pathology should cast light on
1800	the basis of some clinical signs such as the multiple and isolated lesions of
1801	nummular keratitis and lesions of Thygeson's keratitis. Some clinical features of
1802	conditions such as lattice dystrophy and dendritic ulcers of herpetic eye disease
1803	relate to major trunks or fine terminal branches of corneal nerves. In the latter
1804	example the exact mechanism by which virus particles exit the nerve to infect the
1805	epithelium along the final length of the terminal branches is unclear. A better
1806	understanding of this association will provide insight in to nerve function and
1807	nerve pathology.

1808 The intimate relationship between epithelial nerves and epithelial cells 1809 implies that with any abrasion, whatever the cause, the lost epithelium will take 1810 with it a network of nerve fibres, ripping them off their attachments to the sub-1811 basal plexus. Though it is known that the terminal fine bundles and axons are 1812 always in a state of flux, how they respond to loss of large patches of cells is 1813 unclear. The whorl pattern of the entire corneal epithelial sheet and a 1814 corresponding whorl pattern of the underlying sub-basal nerve plexus reinforces 1815 the close association of the nerves and epithelial cell. Regeneration of lost tissue 1816 to recreate the same association must require complex directional signalling in 1817 which the epithelial cells could direct the nerves or the nerves the cells. Research 1818 to monitor and understand the regeneration and re-association of nerves and cells 1819 is warranted to understand better the association and to expose clues related to 1820 nerve regeneration.

1821 The LNC are recently discovered nerve related structures that are located 1822 at the limbus, have a distinct morphology and are intimately related to the limbal 1823 epithelial crypts. Here again the close association of nerves and epithelium is 1824 inescapable. Though a little is known of the structure of the LNC, nothing is 1825 known of their function. They resemble pressure sensors in the skin opening an 1826 exciting possibility of the existence of pressure sensors along the limbus, which 1827 may provide feedback on changes in corneal shape and curvature in response to 1828 external pressure applied by the lid blinks, lid squeezing, eye movement and eye 1829 rubbing. Any relationship to intraocular pressure would be pure speculation and 1830 blue-sky but as a notion, it cannot be brushed aside. Research to address these 1831 questions will gather pace and answers found to reveal the true role of these 1832 corpuscles.

1833 The lack of correlation demonstrated in many studies, between corneal 1834 epithelial nerve density and corneal sensitivity needs an explanation. This 1835 discrepancy is noted both when nerves are lost as part of a disease process and 1836 during regeneration after attrition related to surgery, especially laser refractive 1837 surgery. The explanations put forth are either a redundancy between nerve supply

1838	that exists and what is needed for the cornea to respond normally to
1839	environmental stimuli or the limitation of the instruments we have at our disposal,
1840	to assess corneal sensitivity. Exploration in both directions will yield scientific
1841	dividends, a better understanding of the catchment area of major nerve bundles
1842	and the overlap between the sensory fields on the one hand and the invention of
1843	better devices to measure and quantify not just normal and subnormal sensitivity
1844	but also hypersensitivity, which in some patients is a cause of significant
1845	morbidity and suicidal thoughts. Studies with functional magnetic resonance
1846	imaging together with sub-threshold stimuli are being contemplated to understand
1847	this hitherto inadequately explored area in the clinical setting.
1848	Linked to the above is the correlation between function and structure.
1849	Many abnormalities are seen in corneal disease some by IVCM, some by whole
1850	mount histology and some by both techniques. How the structural changes relate
1851	to function is ill understood. Advances in measuring sensitivity will help to
1852	understand association of sensory function with structure for example why in BK,
1853	with absent sub-basal plexus there is intense pain? Is this related to gross stromal
1854	nerve anomalies seen in this condition? Conversely, in keratoconus, gross
1855	thickening of stromal nerves and sub-basal bulb-like structures are seen with
1856	almost no sensory symptoms. However, such changes could be a reflection of
1857	altered trophic function beyond that what is noted in NK. The predominant
1858	stromal nerve changes in keratoconus are seen in the area of ectasia. Can ectasia
1859	be a manifestation of altered trophic influences on the keratocytes? Trophic
1860	effects on corneal epithelium in NK are countered by treatment with recombinant
1861	NGF with effects that last well beyond the duration of administration of NGF

1862	drops. Clinical trials on a number of different conditions are contemplated or
1863	required to ascertain effects of altered trophism and reversal thereof, on the
1864	disease condition being treated. Studies such as these should provide some
1865	answers to the question whether corneal nerve pathology drives the disease or
1866	altered nerve morphology is a consequence of the disease? Terms such as
1867	'activated' or 'resting' nerves and keratocytes are attributed to these structures
1868	based on IVCM appearances, implying a structure-function relationship. These
1869	are based on some available evidence but at best are hypotheses that need to be
1870	proved or disproved. Besides keratocytes, there are other cells in the stroma
1871	notably dendritic cells that are also 'activated' and migrate to the corneal stroma
1872	in response to inflammatory stimuli. The role of these cells in modulating corneal
1873	nerve responses is being studied and should help to build our understanding of
1874	inflammation and induced symptoms originating from the cornea.

1875 Most IVCM kits only capture a very small area of the cornea and image 1876 'stitching' software is used to build a 'bigger picture' unlike whole mount staining 1877 of corneal buttons that provide a complete picture of the nerve pathology. As the 1878 latter can only be done in-vitro it can only provide a snapshot of the pathology at 1879 time the cornea was removed for grafting, which is usually in a more advanced 1880 stage of the disease process. Advances in technology related to hardware and 1881 software of IVCM will allow longitudinal examination over wider surface areas 1882 both during the course of the disease process and its response to treatment. It is 1883 more than likely that the studies indicated will progress and accrue data at pace 1884 such that answers to some of the questions posed are probably just around the 1885 corner.

1886

1887 9. Funding support

1888 This work was partly funded by Fight for Sight.

1889

1890 10. Acknowledgement

1891 National Health Service Blood and Transplant (NHSBT) Service, UK for

1892 provision of eyes for research.

1893

1894 11. References

1895 Aggarwal, S., Colon, C., Kheirkhah, A., Hamrah, P., 2019. Efficacy of autologous1896 serum tears for treatment of neuropathic corneal pain. The ocular surface.

Ahuja, Y., Baratz, K.H., McLaren, J.W., Bourne, W.M., Patel, S.V., 2012.
Decreased corneal sensitivity and abnormal corneal nerves in Fuchs endothelial
dystrophy. Cornea 31, 1257-1263.

Al-Aqaba, M., Alomar, T., Lowe, J., Dua, H.S., 2011a. Corneal nerve aberrations
in bullous keratopathy. Am J Ophthalmol 151, 840-849 e841.

Al-Aqaba, M., Calienno, R., Fares, U., Otri, A.M., Mastropasqua, L., Nubile, M.,
Dua, H.S., 2012a. The effect of standard and transepithelial ultraviolet collagen
areas linking on human cornect nervous on an using study. Am J Onkthelmel 152

1904 cross-linking on human corneal nerves: an ex vivo study. Am J Ophthalmol 153,1905 258-266 e252.

Al-Aqaba, M.A., Alomar, T., Miri, A., Fares, U., Otri, A.M., Dua, H.S., 2010a.
Ex vivo confocal microscopy of human corneal nerves. Br J Ophthalmol 94, 1251-1257.

Al-Aqaba, M.A., Anis, F.S., Mohammed, I., Dua, H.S., 2018. Nerve terminals at
the human corneoscleral limbus. The British journal of ophthalmology 102, 556561.

Al-Aqaba, M.A., Faraj, L., Fares, U., Otri, A.M., Dua, H.S., 2011b. The
morphologic characteristics of corneal nerves in advanced keratoconus as
evaluated by acetylcholinesterase technique. Am J Ophthalmol 152, 364-376
e361.

- Al-Aqaba, M.A., Fares, U., Suleman, H., Lowe, J., Dua, H.S., 2010b. Architectureand distribution of human corneal nerves. Br J Ophthalmol 94, 784-789.
- Al-Aqaba, M.A., Otri, A.M., Fares, U., Miri, A., Dua, H.S., 2012b. Organization
 of the regenerated nerves in human corneal grafts. Am J Ophthalmol 153, 29-37
 e24.
- Alamri, A.S., Wood, R.J., Ivanusic, J.J., Brock, J.A., 2018. The neurochemistry
 and morphology of functionally identified corneal polymodal nociceptors and
 cold thermoreceptors. PloS one 13, e0195108.
- Alomar, T.S., Al-Aqaba, M., Gray, T., Lowe, J., Dua, H.S., 2011. Histological
 and confocal microscopy changes in chronic corneal edema: implications for
 endothelial transplantation. Invest Ophthalmol Vis Sci 52, 8193-8207.
- Alzubaidi, R., Sharif, M.S., Qahwaji, R., Ipson, S., Brahma, A., 2016. In vivo
 confocal microscopic corneal images in health and disease with an emphasis on
 extracting features and visual signatures for corneal diseases: a review study. The
 British journal of ophthalmology 100, 41-55.
- Ansel, J.C., Brown, J.R., Payan, D.G., Brown, M.A., 1993. Substance P
 selectively activates TNF-alpha gene expression in murine mast cells. Journal of
 immunology 150, 4478-4485.
- Arvidson, B., 1977. Retrograde axonal transport of horseradish peroxidase fromcornea to trigeminal ganglion. Acta Neuropathol 38, 49-52.
- Auro, K., Joensuu, A., Fischer, K., Kettunen, J., Salo, P., Mattsson, H., Niironen,
 M., Kaprio, J., Eriksson, J.G., Lehtimaki, T., Raitakari, O., Jula, A., Tiitinen, A.,
 Jauhiainen, M., Soininen, P., Kangas, A.J., Kahonen, M., Havulinna, A.S., AlaKorpela, M., Salomaa, V., Metspalu, A., Perola, M., 2014. A metabolic view on
 menopause and ageing. Nature communications 5, 4708.
- Avunduk, A.M., Senft, C.J., Emerah, S., Varnell, E.D., Kaufman, H.E., 2004.
 Corneal healing after uncomplicated LASIK and its relationship to refractive changes: a six-month prospective confocal study. Invest Ophthalmol Vis Sci 45, 1334-1339.
- Baghdasaryan, E., Tepelus, T.C., Vickers, L.A., Huang, P., Chopra, V., Sadda,
 S.R., Lee, O.L., 2018. Assessment of Corneal Changes Associated with Topical
 Antiglaucoma Therapy Using in vivo Confocal Microscopy. Ophthalmic research.
- Baker, K.S., Anderson, S.C., Romanowski, E.G., Thoft, R.A., SundarRaj, N.,
 1949 1993. Trigeminal ganglion neurons affect corneal epithelial phenotype. Influence
 on type VII collagen expression in vitro. Invest Ophthalmol Vis Sci 34, 137-144.
- Barbariga, M., Fonteyne, P., Ostadreza, M., Bignami, F., Rama, P., Ferrari, G.,
 2018. Substance P Modulation of Human and Murine Corneal
 Neovascularization. Investigative ophthalmology & visual science 59, 1305-1312.
- Basbaum, A.I., 2009. Chapter 3 Basic Mechanisms, in: Argoff, C.E., McCleane,
 G. (Eds.), Pain Management Secrets (Third Edition). Mosby, Philadelphia, pp. 19-
- 1955O. (Eds.), Pain Management Secrets (Third Edition). Mosby, Philadelphia, pp. 19195626.

Belmonte, C., Acosta, M.C., Gallar, J., 2004. Neural basis of sensation in intactand injured corneas. Exp Eye Res 78, 513-525.

Belmonte, C., Garcia-Hirschfeld, J., Gallar, J., 1997. Neurobiology of ocular pain.
Progress in Retinal and Eye Research 16, 117-156.

- 1961 Belmonte, C., Nichols, J.J., Cox, S.M., Brock, J.A., Begley, C.G., Bereiter, D.A.,
- 1962 Dartt, D.A., Galor, A., Hamrah, P., Ivanusic, J.J., Jacobs, D.S., McNamara, N.A.,
- 1963 Rosenblatt, M.I., Stapleton, F., Wolffsohn, J.S., 2017. TFOS DEWS II pain and sensation report. Ocul Surf 15, 404-437.
- 1965 Benitez del Castillo, J.M., Wasfy, M.A., Fernandez, C., Garcia-Sanchez, J., 2004.
- An in vivo confocal masked study on corneal epithelium and subbasal nerves inpatients with dry eye. Invest Ophthalmol Vis Sci 45, 3030-3035.
- Berardelli, A., Cruccu, G., Manfredi, M., Rothwell, J.C., Day, B.L., Marsden,
 C.D., 1985. The corneal reflex and the R2 component of the blink reflex.
 Neurology 35, 797-801.
- Berson, E., 1981. Electrical phenomena in the retina, in: Moses, R. (Ed.), Adler's
 physiology of the eye and clinical applications, 7th ed. CV Mosby, London, pp.
 507-509.
- 1974 Beuerman, R.W., Klyce, S., Kooner, S., Tanelian, D. and Rosza, A., 1983.
- 1975 Dimensional analysis of rabbit ciliary nerve. Investigative Ophthalmology and1976 Visual Science (Suppl.) 24, 261.
- 1977 Beuerman, R.W., Schimmelpfennig, B., 1980. Sensory denervation of the rabbit1978 cornea affects epithelial properties. Exp Neurol 69, 196-201.
- 1979 Bikbova, G., Oshitari, T., Baba, T., Bikbov, M., Yamamoto, S., 2018. Diabetic1980 corneal neuropathy: clinical perspectives. Clinical ophthalmology 12, 981-987.
- Bitirgen, G., Ozkagnici, A., Malik, R.A., Kerimoglu, H., 2014. Corneal nerve
 fibre damage precedes diabetic retinopathy in patients with type 2 diabetes
 mellitus. Diabetic medicine : a journal of the British Diabetic Association 31, 431438.
- Bohnke, M., Thaer, A., Schipper, I., 1998. Confocal microscopy reveals persisting
 stromal changes after myopic photorefractive keratectomy in zero haze corneas.
 Br J Ophthalmol 82, 1393-1400.
- Bonini, S., Lambiase, A., Rama, P., Filatori, I., Allegretti, M., Chao, W., Mantelli,
 F., Group, R.S., 2018a. Phase I Trial of Recombinant Human Nerve Growth
 Factor for Neurotrophic Keratitis. Ophthalmology 125, 1468-1471.
- Bonini, S., Lambiase, A., Rama, P., Sinigaglia, F., Allegretti, M., Chao, W.,
 Mantelli, F., Group, R.S., 2018b. Phase II Randomized, Double-Masked, VehicleControlled Trial of Recombinant Human Nerve Growth Factor for Neurotrophic
 Keratitis. Ophthalmology 125, 1332-1343.
- Bonini, S., Rama, P., Olzi, D., Lambiase, A., 2003a. Neurotrophic keratitis. Eye17, 989-995.

Bonini, S., Rama, P., Olzi, D., Lambiase, A., 2003b. Neurotrophic keratitis. Eye17, 989-995.

Bouheraoua, N., Jouve, L., El Sanharawi, M., Sandali, O., Temstet, C., Loriaut,
P., Basli, E., Borderie, V., Laroche, L., 2014. Optical coherence tomography and
confocal microscopy following three different protocols of corneal collagencrosslinking in keratoconus. Invest Ophthalmol Vis Sci 55, 7601-7609.

- Boulton, A.J., 2007. Diabetic neuropathy: classification, measurement and
 treatment. Curr Opin Endocrinol Diabetes Obes 14, 141-145.
- Boysen, G., Galassi, G., Kamieniecka, Z., Schlaeger, J., Trojaborg, W., 1979.
 Familial amyloidosis with cranial neuropathy and corneal lattice dystrophy. J
 Neurol Neurosurg Psychiatry 42, 1020-1030.
- Brock, J., Acosta, M.C., Al Abed, A., Pianova, S., Belmonte, C., 2006. Barium
 ions inhibit the dynamic response of guinea-pig corneal cold receptors to heating
 but not to cooling. J Physiol 575, 573-581.
- Brookes, N.H., Loh, I.P., Clover, G.M., Poole, C.A., Sherwin, T., 2003.
 Involvement of corneal nerves in the progression of keratoconus. Exp Eye Res 77, 515-524.
- Bruce, A.N., 1913. Vasodilator Axon Reflexes. Quart. J. Exper. Physiol. 6, 339-353.
- 2016 Bucher, F., Schneider, C., Blau, T., Cursiefen, C., Fink, G.R., Lehmann, H.C.,
- Heindl, L.M., 2015. Small-Fiber Neuropathy Is Associated With Corneal Nerve
 and Dendritic Cell Alterations: An In Vivo Confocal Microscopy Study. Cornea
 34, 1114-1119.
- 2020 Cagini, C., Iaccheri, B., Torroni, G., Fiore, T., Cerquaglia, A., Lupidi, M., Cillino,
 2021 S., Dua, H.S., 2018. Reply to Comment on: 'Corneal confocal scanning laser
 2022 microscopy in patients with dry eye disease treated with topical cyclosporine'. Eye
 2023 32, 836-837.
- 2024 Cai, C.X., Fitch, J.M., Svoboda, K.K., Birk, D.E., Linsenmayer, T.F., 1994.
 2025 Cellular invasion and collagen type IX in the primary corneal stroma in vitro. Dev
 2026 Dyn 201, 206-215.
- 2027 Calvillo, M.P., McLaren, J.W., Hodge, D.O., Bourne, W.M., 2004. Corneal
 2028 reinnervation after LASIK: prospective 3-year longitudinal study. Invest
 2029 Ophthalmol Vis Sci 45, 3991-3996.
- 2030 Carmeliet, P., De Smet, F., Loges, S., Mazzone, M., 2009. Branching
 2031 morphogenesis and antiangiogenesis candidates: tip cells lead the way. Nature
 2032 reviews. Clinical oncology 6, 315-326.
- 2033 Cavanagh, H.D., Colley, A.M., 1989. The molecular basis of neurotrophic2034 keratitis. Acta Ophthalmol Suppl 192, 115-134.
- 2035 Chan-Ling, T., 1989. Sensitivity and neural organization of the cat cornea. Invest2036 Ophthalmol Vis Sci 30, 1075-1082.

- 2037 Chan, E.H., Chen, L., Rao, J.Y., Yu, F., Deng, S.X., 2015a. Limbal Basal Cell
 2038 Density Decreases in Limbal Stem Cell Deficiency. Am J Ophthalmol 160, 6782039 684 e674.
- 2040 Chan, E.H., Chen, L., Yu, F., Deng, S.X., 2015b. Epithelial Thinning in Limbal
 2041 Stem Cell Deficiency. Am J Ophthalmol 160, 669-677 e664.
- 2042 Chang, P.Y., Carrel, H., Huang, J.S., Wang, I.J., Hou, Y.C., Chen, W.L., Wang,
- J.Y., Hu, F.R., 2006. Decreased density of corneal basal epithelium and subbasal
 corneal nerve bundle changes in patients with diabetic retinopathy. Am J
 Ophthalmol 142, 488-490.
- Chen, X., Gallar, J., Pozo, M.A., Baeza, M., Belmonte, C., 1995. CO2 stimulation
 of the cornea: a comparison between human sensation and nerve activity in
 polymodal nociceptive afferents of the cat. The European journal of neuroscience
 7, 1154-1163.
- 2050 Chiou, A.G., Kaufman, S.C., Beuerman, R.W., Ohta, T., Soliman, H., Kaufman,
 2051 H.E., 1999. Confocal microscopy in cornea guttata and Fuchs' endothelial
 2052 dystrophy. Br J Ophthalmol 83, 185-189.
- 2053 Chiu, I.M., von Hehn, C.A., Woolf, C.J., 2012. Neurogenic inflammation and the
 2054 peripheral nervous system in host defense and immunopathology. Nat Neurosci
 2055 15, 1063-1067.
- 2056 Chucair-Elliott, A.J., Zheng, M., Carr, D.J., 2015. Degeneration and regeneration
 2057 of corneal nerves in response to HSV-1 infection. Invest Ophthalmol Vis Sci 56,
 2058 1097-1107.
- 2059 Chuephanich, P., Supiyaphun, C., Aravena, C., Bozkurt, T.K., Yu, F., Deng, S.X.,
 2060 2017. Characterization of the Corneal Subbasal Nerve Plexus in Limbal Stem Cell
 2061 Deficiency. Cornea 36, 347-352.
- 2062 Columbo, M., Horowitz, E.M., Kagey-Sobotka, A., Lichtenstein, L.M., 1996.
 2063 Substance P activates the release of histamine from human skin mast cells through
 2064 a pertussis toxin-sensitive and protein kinase C-dependent mechanism. Clinical
 2065 immunology and immunopathology 81, 68-73.
- Craig, J.P., Nichols, K.K., Akpek, E.K., Caffery, B., Dua, H.S., Joo, C.K., Liu, Z.,
 Nelson, J.D., Nichols, J.J., Tsubota, K., Stapleton, F., 2017. TFOS DEWS II
 Definition and Classification Report. Ocul Surf 15, 276-283.
- 2069 Cruzat, A., Hamrah, P., Cavalcanti, B.M., Zheng, L., Colby, K., Pavan-Langston,
- 2070 D., 2016. Corneal Reinnervation and Sensation Recovery in Patients With Herpes2071 Zoster Ophthalmicus: An In Vivo and Ex Vivo Study of Corneal Nerves. Cornea
- 2072 35, 619-625.
- 2073 Cruzat, A., Qazi, Y., Hamrah, P., 2017. In Vivo Confocal Microscopy of Corneal
 2074 Nerves in Health and Disease. Ocul Surf 15, 15-47.
- 2075 Darwish, T., Brahma, A., Efron, N., O'Donnell, C., 2007a. Subbasal nerve
 2076 regeneration after LASEK measured by confocal microscopy. J Refract Surg 23,
 2077 709-715.

- 2078 Darwish, T., Brahma, A., Efron, N., O'Donnell, C., 2007b. Subbasal nerve
 2079 regeneration after penetrating keratoplasty. Cornea 26, 935-940.
- Darwish, T., Brahma, A., O'Donnell, C., Efron, N., 2007c. Subbasal nerve fiber
 regeneration after LASIK and LASEK assessed by noncontact esthesiometry and
 in vivo confocal microscopy: prospective study. J Cataract Refract Surg 33, 15151521.
- 2084 Davis, E.A., Dohlman, C.H., 2001. Neurotrophic keratitis. Int Ophthalmol Clin2085 41, 1-11.
- 2086 de Castro, F., Silos-Santiago, I., Lopez de Armentia, M., Barbacid, M., Belmonte,
 2087 C., 1998. Corneal innervation and sensitivity to noxious stimuli in trkA knockout
 2088 mice. Eur J Neurosci 10, 146-152.
- 2089 De Cilla, S., Ranno, S., Carini, E., Fogagnolo, P., Ceresara, G., Orzalesi, N.,
 2090 Rossetti, L.M., 2009. Corneal subbasal nerves changes in patients with diabetic
 2091 retinopathy: an in vivo confocal study. Invest Ophthalmol Vis Sci 50, 5155-5158.
- 2092 Deng, S.X., Borderie, V., Chan, C.C., Dana, R., Figueiredo, F.C., Gomes, J.A.P.,
- Pellegrini, G., Shimmura, S., Kruse, F.E., and The International Limbal Stem Cell
 Deficiency Working, G., 2019. Global Consensus on Definition, Classification,
- 2095 Diagnosis, and Staging of Limbal Stem Cell Deficiency. Cornea 38, 364-375.
- 2096 Deng, S.X., Sejpal, K.D., Tang, Q., Aldave, A.J., Lee, O.L., Yu, F., 2012.
 2097 Characterization of limbal stem cell deficiency by in vivo laser scanning confocal
 2098 microscopy: a microstructural approach. Archives of ophthalmology 130, 4402099 445.
- Denoyer, A., Landman, E., Trinh, L., Faure, J.F., Auclin, F., Baudouin, C., 2015.
 Dry eye disease after refractive surgery: comparative outcomes of small incision
 lenticule extraction versus LASIK. Ophthalmology 122, 669-676.
- Devigili, G., Tugnoli, V., Penza, P., Camozzi, F., Lombardi, R., Melli, G.,
 Broglio, L., Granieri, E., Lauria, G., 2008. The diagnostic criteria for small fibre
 neuropathy: from symptoms to neuropathology. Brain : a journal of neurology
 131, 1912-1925.
- Dhillon, V.K., Elalfy, M.S., Al-Aqaba, M., Dua, H.S., 2014. Anaesthetic corneas
 with intact sub-basal nerve plexus. Br J Ophthalmol 98, 417-418.
- Dhillon, V.K., Elalfy, M.S., Al-Aqaba, M., Gupta, A., Basu, S., Dua, H.S., 2016.
 Corneal hypoesthesia with normal sub-basal nerve density following surgery for
 trigeminal neuralgia. Acta Ophthalmol 94, e6-10.
- Dodson, J.W., Hay, E.D., 1971. Secretion of collagenous stroma by isolated
 epithelium grown in vitro. Exp Cell Res 65, 215-220.
- 2114 Donnenfeld, E.D., Ehrenhaus, M., Solomon, R., Mazurek, J., Rozell, J.C., Perry,
- H.D., 2004. Effect of hinge width on corneal sensation and dry eye after laser insitu keratomileusis. J Cataract Refract Surg 30, 790-797.
- 2117 Donnenfeld, E.D., Solomon, K., Perry, H.D., Doshi, S.J., Ehrenhaus, M.,
- 2118 Solomon, R., Biser, S., 2003. The effect of hinge position on corneal sensation
- and dry eye after LASIK. Ophthalmology 110, 1023-1029; discussion 1029-1030.

- Dua, H.S., Faraj, L.A., Said, D.G., 2015. Dua's layer: discovery, characteristics,
 clinical applications, controversy and potential relevance to glaucoma. Expert
 Review of Ophthalmology 10, 531-547.
- Dua, H.S., Gomes, J.A., 2000. Clinical course of hurricane keratopathy. The
 British journal of ophthalmology 84, 285-288.
- Dua, H.S., Gomes, J.A., Singh, A., 1994. Corneal epithelial wound healing. Br JOphthalmol 78, 401-408.
- 2127 Dua, H.S., Said, D.G., Messmer, E.M., Rolando, M., Benitez-Del-Castillo, J.M.,
- Hossain, P.N., Shortt, A.J., Geerling, G., Nubile, M., Figueiredo, F.C., Rauz, S.,
 Mastropasqua, L., Rama, P., Baudouin, C., 2018. Neurotrophic keratopathy. Prog.
- 2130 Retin Eye Res 66, 107-131.
- Dua, H.S., Saini, J.S., Azuara-Blanco, A., Gupta, P., 2000. Limbal stem cell
 deficiency: concept, aetiology, clinical presentation, diagnosis and management.
 Indian journal of ophthalmology 48, 83-92.
- Dua, H.S., Shanmuganathan, V.A., Powell-Richards, A.O., Tighe, P.J., Joseph,
 A., 2005. Limbal epithelial crypts: a novel anatomical structure and a putative
 limbal stem cell niche. Br J Ophthalmol 89, 529-532.
- Dua, H.S., Singh, A., Gomes, J.A., Laibson, P.R., Donoso, L.A., Tyagi, S., 1996.
 Vortex or whorl formation of cultured human corneal epithelial cells induced by
 magnetic fields. Eye 10 (Pt 4), 447-450.
- Dua, H.S., Watson, N.J., Mathur, R.M., Forrester, J.V., 1993. Corneal epithelial
 cell migration in humans: 'hurricane and blizzard keratopathy'. Eye (Lond) 7 (Pt
 53-58.
- Duke-Elder, S., and A.G. Leigh, 1965. Neurotrophic keratitis, in: Duke-Elder, S.
 (Ed.), System of Ophthalmology. Mosby, London, pp. 803-810.
- Eghrari, A.O., Riazuddin, S.A., Gottsch, J.D., 2015. Overview of the Cornea:
 Structure, Function, and Development. Prog Mol Biol Transl Sci 134, 7-23.
- Ehinger, B., 1966a. Adrenergic nerves to the eye and to related structures in manand in cynomolgus monkey (Macaca irus). Investigative Ophthalmology 5, 42-52.
- Ehinger, B., 1966b. Connections between adrenergic nerves and other tissuecomponents in the eye. Acta physiologica Scandinavica 67, 57-64.
- Ehinger, B., 1966c. Distribution of adrenergic nerves in the eye and some related
 structures in the cat. Acta physiologica Scandinavica 66, 123-128.
- Ehinger, B., 1971. A comparative study of the adrenergic nerves to the anterioreye segment of some primates. Z Zellforsch Mikrosk Anat 116, 157-177.
- Ehinger, B., Sjoberg, N.O., 1971. Development of the ocular adrenergic nervesupply in man and guinea-pig. Z Zellforsch Mikrosk Anat 118, 579-592.
- 2157 Elahi, F., Ho, K.W., 2014. Anesthesia dolorosa of trigeminal nerve, a rare 2158 complication of acoustic neuroma surgery. Case reports in neurological medicine
- 2159 2014, 496794.

- Emoto, I., Beuerman, R.W., 1987. Stimulation of neurite growth by epithelialimplants into corneal stroma. Neurosci Lett 82, 140-144.
- 2162 Epstein, D.L., Paton, D., 1968. Keratitis from misuse of corneal anesthetics. The2163 New England journal of medicine 279, 396-399.
- Erie, J.C., McLaren, J.W., Hodge, D.O., Bourne, W.M., 2005. Recovery of
 corneal subbasal nerve density after PRK and LASIK. Am J Ophthalmol 140,
 1059-1064.
- Escapini, H., 1955. Nerve changes in the human corneal graft. AMA ArchOphthalmol 53, 229-235.
- 2169 Faraj, L.A., Said, D.G., Al-Aqaba, M., Otri, A.M., Dua, H.S., 2016. Clinical
- evaluation and characterisation of corneal vascularisation. Br J Ophthalmol 100, 315-322.
- Farooq, A.V., Shukla, D., 2012. Herpes simplex epithelial and stromal keratitis:
 an epidemiologic update. Surv Ophthalmol 57, 448-462.
- 2174 Felipe, C.D., Gonzalez, G.G., Gallar, J., Belmonte, C., 1999. Quantification and
- 2175 immunocytochemical characteristics of trigeminal ganglion neurons projecting to2176 the cornea: effect of corneal wounding. Eur J Pain 3, 31-39.
- Ferrari, G., Hajrasouliha, A.R., Sadrai, Z., Ueno, H., Chauhan, S.K., Dana, R.,
 2013. Nerves and neovessels inhibit each other in the cornea. Invest Ophthalmol
 Vis Sci 54, 813-820.
- Flugel, C., Tamm, E.R., Mayer, B., Lutjen-Drecoll, E., 1994. Species differences
 in choroidal vasodilative innervation: evidence for specific intrinsic nitrergic and
 VIP-positive neurons in the human eye. Investigative ophthalmology & visual
 science 35, 592-599.
- Fujita, S., Miyazono, Y., Ohba, N., 1987. Capsaicin-induced corneal changes
 associated with sensory denervation in neonatal rat. Jpn J Ophthalmol 31, 412424.
- 2187 Fung, S.S.M., Catapano, J., Elbaz, U., Zuker, R.M., Borschel, G.H., Ali, A., 2018.
- In Vivo Confocal Microscopy Reveals Corneal Reinnervation After Treatment of
 Neurotrophic Keratopathy With Corneal Neurotization. Cornea 37, 109-112.
- 2190 Gallar, J., Pozo, M.A., Tuckett, R.P., Belmonte, C., 1993. Response of sensory 2191 units with unmyelinated fibres to mechanical, thermal and chemical stimulation of
- the cat's cornea. J Physiol 468, 609-622.
- Galor, A., Moein, H.R., Lee, C., Rodriguez, A., Felix, E.R., Sarantopoulos, K.D.,
 Levitt, R.C., 2018. Neuropathic pain and dry eye. Ocul Surf 16, 31-44.
- Gatzioufas, Z., Labiris, G., Stachs, O., Hovakimyan, M., Schnaidt, A., Viestenz,
 A., Kasmann-Kellner, B., Seitz, B., 2013. Biomechanical profile of the cornea in
 primary congenital glaucoma. Acta Ophthalmol 91, e29-34.
- 2198 Gemignani, F., 2012. Characterization of non-length-dependent small-fiber
 2199 sensory neuropathy. Muscle & nerve 46, 295.

Germundsson, J., Lagali, N., 2014. Pathologically reduced subbasal nerve density
in epithelial basement membrane dystrophy is unaltered by phototherapeutic
keratectomy treatment. Investigative ophthalmology & visual science 55, 18351841.

- Golebiowski, B., Chao, C., Stapleton, F., Jalbert, I., 2017. Corneal Nerve
 Morphology, Sensitivity, and Tear Neuropeptides in Contact Lens Wear.
 Optometry and vision science : official publication of the American Academy of
 Optometry 94, 534-542.
- Golebiowski, B., Papas, E., Stapleton, F., 2011. Assessing the sensory function of
 the ocular surface: implications of use of a non-contact air jet aesthesiometer
 versus the Cochet-Bonnet aesthesiometer. Experimental eye research 92, 408-413.
- Gorson, K.C., Ropper, A.H., 1995. Idiopathic distal small fiber neuropathy. Actaneurologica Scandinavica 92, 376-382.
- 2213 Graczyk, E.L., Delhaye, B.P., Schiefer, M.A., Bensmaia, S.J., Tyler, D.J., 2018.
- 2214 Sensory adaptation to electrical stimulation of the somatosensory nerves. J Neural2215 Eng 15, 046002.
- Guthoff, R.F., Wienss, H., Hahnel, C., Wree, A., 2005. Epithelial innervation of
 human cornea: a three-dimensional study using confocal laser scanning
 fluorescence microscopy. Cornea 24, 608-613.
- Hamrah, P., Cruzat, A., Dastjerdi, M.H., Zheng, L., Shahatit, B.M., Bayhan, H.A.,
 Dana, R., Pavan-Langston, D., 2010. Corneal sensation and subbasal nerve
 alterations in patients with herpes simplex keratitis: an in vivo confocal
 microscopy study. Ophthalmology 117, 1930-1936.
- Hamrah, P., Qazi, Y., Shahatit, B., Dastjerdi, M.H., Pavan-Langston, D., Jacobs,
 D.S., Rosenthal, P., 2017. Corneal Nerve and Epithelial Cell Alterations in
 Corneal Allodynia: An In Vivo Confocal Microscopy Case Series. The ocular
 surface 15, 139-151.
- Hamrah, P., Sahin, A., Dastjerdi, M.H., Shahatit, B.M., Bayhan, H.A., Dana, R.,
 Pavan-Langston, D., 2015. In Vivo confocal microscopic changes of the corneal
 epithelium and stroma in patients with herpes zoster ophthalmicus. Am J
 Ophthalmol 159, 1036-1044 e1031.
- Hay, E.D., Revel, J.P., 1969. Fine structure of the developing avian cornea.Monogr Dev Biol 1, 1-144.
- Hayashi, M., Ninomiya, Y., Hayashi, K., Linsenmayer, T.F., Olsen, B.R.,
 Trelstad, R.L., 1988. Secretion of collagen types I and II by epithelial and
 endothelial cells in the developing chick cornea demonstrated by in situ
 hybridization and immunohistochemistry. Development 103, 27-36.
- He, J., Bazan, H.E., 2013. Corneal nerve architecture in a donor with unilateralepithelial basement membrane dystrophy. Ophthalmic research 49, 185-191.
- He, J., Bazan, H.E., 2016. Neuroanatomy and Neurochemistry of Mouse Cornea.Investigative ophthalmology & visual science 57, 664-674.

- He, J., Bazan, N.G., Bazan, H.E., 2010. Mapping the entire human corneal nervearchitecture. Exp Eye Res 91, 513-523.
- Heinz, P., Bodanowitz, S., Wiegand, W., Kroll, P., 1996. In vivo observation of
 corneal nerve regeneration after photorefractive keratectomy with a confocal
 videomicroscope. Ger J Ophthalmol 5, 373-377.
- Hernandez-Quintela, E., Mayer, F., Dighiero, P., Briat, B., Savoldelli, M.,
 Legeais, J.M., Renard, G., 1998. Confocal microscopy of cystic disorders of the
 corneal epithelium. Ophthalmology 105, 631-636.
- Hoitsma, E., Reulen, J.P., de Baets, M., Drent, M., Spaans, F., Faber, C.G., 2004.
- 2250 Small fiber neuropathy: a common and important clinical disorder. Journal of the
- neurological sciences 227, 119-130.
- Holland, N.R., Crawford, T.O., Hauer, P., Cornblath, D.R., Griffin, J.W.,
 McArthur, J.C., 1998. Small-fiber sensory neuropathies: clinical course and
 neuropathology of idiopathic cases. Ann Neurol 44, 47-59.
- Hollingsworth, J.G., Efron, N., Tullo, A.B., 2006. A longitudinal case series
 investigating cellular changes to the transplanted cornea using confocal
 microscopy. Cont Lens Anterior Eye 29, 135-141.
- Hosal, B.M., Ornek, N., Zilelioglu, G., Elhan, A.H., 2005. Morphology of corneal
 nerves and corneal sensation in dry eye: a preliminary study. Eye 19, 1276-1279.
- Hossain, P., Sachdev, A., Malik, R.A., 2005. Early detection of diabetic peripheral
 neuropathy with corneal confocal microscopy. Lancet 366, 1340-1343.
- Howard, R.O., Zadunaisky, J.A., Dunn, B.J., 1975. Localization of
 acetylcholinesterase in the rabbit cornea by light and electron microscopy.
 Investigative ophthalmology 14, 592-603.
- Huang, E.J., Reichardt, L.F., 2001. Neurotrophins: roles in neuronal developmentand function. Annual review of neuroscience 24, 677-736.
- Iaccheri, B., Torroni, G., Cagini, C., Fiore, T., Cerquaglia, A., Lupidi, M., Cillino,
 S., Dua, H.S., 2017. Corneal confocal scanning laser microscopy in patients with
 dry eye disease treated with topical cyclosporine. Eye 31, 788-794.
- Ishida, N., del Cerro, M., Rao, G.N., Mathe, M., Aquavella, J.V., 1984. Corneal
 stromal innervation. A quantitative analysis of distribution. Ophthalmic research
 16, 139-144.
- Ivanusic, J.J., Wood, R.J., Brock, J.A., 2013. Sensory and sympathetic innervation
 of the mouse and guinea pig corneal epithelium. The Journal of comparative
 neurology 521, 877-893.
- Jeon, K.I., Hindman, H.B., Bubel, T., McDaniel, T., DeMagistris, M., Callan, C.,
 Huxlin, K.R., 2018. Corneal myofibroblasts inhibit regenerating nerves during
 wound healing. Sci Rep 8, 12945.
- Johnson, S.M., 1998. Neurotrophic corneal defects after diode laser cycloablation.
 Am J Ophthalmol 126, 725-727.

Jones, M.A., Marfurt, C.F., 1991. Calcitonin gene-related peptide and corneal
innervation: a developmental study in the rat. The Journal of comparative
neurology 313, 132-150.

2284 Kallinikos, P., Berhanu, M., O'Donnell, C., Boulton, A.J., Efron, N., Malik, R.A.,

- 2285 2004. Corneal nerve tortuosity in diabetic patients with neuropathy. Invest2286 Ophthalmol Vis Sci 45, 418-422.
- Karnovsky, M.J., Roots, L., 1964. A "Direct-Coloring" Thiocholine Method for
 Cholinesterases. The journal of histochemistry and cytochemistry : official journal
 of the Histochemistry Society 12, 219-221.
- Kauffmann, T., Bodanowitz, S., Hesse, L., Kroll, P., 1996. Corneal reinnervation
 after photorefractive keratectomy and laser in situ keratomileusis: an in vivo study
 with a confocal videomicroscope. Ger J Ophthalmol 5, 508-512.
- Keller, J.T., Bubel, H.C., Wander, A.H., Tierney, B.E., 1991. Somatotopic
 distribution of corneal afferent neurons in the guinea pig trigeminal ganglion.
 Neurosci Lett 121, 247-250.
- Khan, S., Zhou, L., 2012. Characterization of non-length-dependent small-fibersensory neuropathy. Muscle & nerve 45, 86-91.
- Kitano, S., 1957. An embryologic study of the human corneal nerves. Jap JOphthalmol 1, 48-55.
- Klintworth, G.K., 2009. Corneal dystrophies. Orphanet journal of rare diseases 4,7.
- Klyce, S., Jenison, G.L., Crosson, C.E. and Beuerman, R.W., 1986. Distribution
 of sympathetic nerves in the rabbit cornea. Investigative Ophthalmology and
 Visual Science (Suppl.) 27, 354.
- Kobayashi, A., Mawatari, Y., Yokogawa, H., Sugiyama, K., 2008. In vivo laser
 confocal microscopy after descemet stripping with automated endothelial
 keratoplasty. Am J Ophthalmol 145, 977-985.
- Kocabeyoglu, S., Mocan, M.C., Irkec, M., Karakaya, J., 2016. In Vivo Confocal
 Microscopic Evaluation of Corneas in Patients With Exfoliation Syndrome.
 Journal of glaucoma 25, 193-197.
- 2311 Kovacs, I., Luna, C., Quirce, S., Mizerska, K., Callejo, G., Riestra, A., Fernandez-
- 2312 Sanchez, L., Meseguer, V.M., Cuenca, N., Merayo-Lloves, J., Acosta, M.C.,
- 2313 Gasull, X., Belmonte, C., Gallar, J., 2016. Abnormal activity of corneal cold
 2314 thermoreceptors underlies the unpleasant sensations in dry eye disease. Pain 157,
 2315 399-417.
- Kubilus, J.K., Linsenmayer, T.F., 2010. Developmental corneal innervation:
 interactions between nerves and specialized apical corneal epithelial cells. Invest
 Ophthalmol Vis Sci 51, 782-789.
- 2319 Kurbanyan, K., Hoesl, L.M., Schrems, W.A., Hamrah, P., 2012. Corneal nerve
- alterations in acute Acanthamoeba and fungal keratitis: an in vivo confocalmicroscopy study. Eye (Lond) 26, 126-132.

- Labbe, A., Alalwani, H., Van Went, C., Brasnu, E., Georgescu, D., Baudouin, C.,
 2012. The relationship between subbasal nerve morphology and corneal sensation
 in ocular surface disease. Invest Ophthalmol Vis Sci 53, 4926-4931.
- 2325 Labetoulle, M., Baudouin, C., Calonge, M., Merayo-Lloves, J., Boboridis, K.G.,
- 2326 Akova, Y.A., Aragona, P., Geerling, G., Messmer, E.M., Benitez-Del-Castillo, J.,
- 2327 2019. Role of corneal nerves in ocular surface homeostasis and disease. Acta2328 Ophthalmol 97, 137-145.
- Lagali, N.S., Allgeier, S., Guimaraes, P., Badian, R.A., Ruggeri, A., Kohler, B.,
 Utheim, T.P., Peebo, B., Peterson, M., Dahlin, L.B., Rolandsson, O., 2017.
 Reduced Corneal Nerve Fiber Density in Type 2 Diabetes by Wide-Area Mosaic
 Analysis. Investigative ophthalmology & visual science 58, 6318-6327.
- LaGuardia, J.J., Cohrs, R.J., Gilden, D.H., 2000. Numbers of neurons and nonneuronal cells in human trigeminal ganglia. Neurological research 22, 565-566.
- Langley, J.N., 1923. Antidromic action: Part II. Stimulation of the peripheralnerves of the cat's hind foot. J Physiol 58, 49-69.
- Laties, A., Jacobowitz, D., 1964. A Histochemical Study of the Adrenergic and
 Cholinergic Innervation of the Anterior Segment of the Rabbit Eye. Invest
 Ophthalmol 3, 592-600.
- Laties, A.M., Jacobowitz, D., 1966. A comparative study of the autonomicinnervation of the eye in monkey, cat, and rabbit. Anat Rec 156, 383-395.
- Launay, P.S., Godefroy, D., Khabou, H., Rostene, W., Sahel, J.A., Baudouin, C.,
 Melik Parsadaniantz, S., Reaux-Le Goazigo, A., 2015. Combined 3DISCO
 clearing method, retrograde tracer and ultramicroscopy to map corneal neurons in
 a whole adult mouse trigeminal ganglion. Experimental eye research 139, 136143.
- Launay, P.S., Reboussin, E., Liang, H., Kessal, K., Godefroy, D., Rostene, W.,
 Sahel, J.A., Baudouin, C., Melik Parsadaniantz, S., Reaux Le Goazigo, A., 2016.
 Ocular inflammation induces trigeminal pain, peripheral and central
 neuroinflammatory mechanisms. Neurobiology of disease 88, 16-28.
- 2351 Lauria, G., Hsieh, S.T., Johansson, O., Kennedy, W.R., Leger, J.M., Mellgren, 2352 S.I., Nolano, M., Merkies, I.S., Polydefkis, M., Smith, A.G., Sommer, C., Valls-2353 Sole, J., European Federation of Neurological, S., Peripheral Nerve, S., 2010. 2354 European Federation of Neurological Societies/Peripheral Nerve Society 2355 Guideline on the use of skin biopsy in the diagnosis of small fiber neuropathy. 2356 Report of a joint task force of the European Federation of Neurological Societies 2357 and the Peripheral Nerve Society. European journal of neurology 17, 903-912, 2358 e944-909.
- LaVail, J.H., Johnson, W.E., Spencer, L.C., 1993. Immunohistochemical
 identification of trigeminal ganglion neurons that innervate the mouse cornea:
 relevance to intercellular spread of herpes simplex virus. J Comp Neurol 327,
 133-140.

- Lee, B.H., McLaren, J.W., Erie, J.C., Hodge, D.O., Bourne, W.M., 2002.
 Reinnervation in the cornea after LASIK. Invest Ophthalmol Vis Sci 43, 36603664.
- Lee, S.J., Kim, J.K., Seo, K.Y., Kim, E.K., Lee, H.K., 2006. Comparison of
 corneal nerve regeneration and sensitivity between LASIK and laser epithelial
 keratomileusis (LASEK). Am J Ophthalmol 141, 1009-1015.
- Lele, P.P., Weddell, G., 1959. Sensory nerves of the cornea and cutaneous sensibility. Exp Neurol 1, 334-359.
- Leon-Feliu, E., Gomez-Ramos, P., Rodriguez-Echandia, E.L., 1978. Endothelial
 nerve fibres in the cornea of the frog Rana ridibunda. Experientia 34, 1352-1353.
- Lim, C.H., 1976. Innervation of the cornea of monkeys and the effects of denervation. Br J Physiol Opt 31, 38-42.
- Lim, C.H., Ruskell, G.L., 1978. Corneal nerve access in monkeys. Albrecht VonGraefes Arch Klin Exp Ophthalmol 208, 15-23.
- Lim, M., Goldstein, M.H., Tuli, S., Schultz, G.S., 2003. Growth factor, cytokineand protease interactions during corneal wound healing. Ocul Surf 1, 53-65.
- Lim, P., Fuchsluger, T.A., Jurkunas, U.V., 2009. Limbal stem cell deficiency and
 corneal neovascularization. Seminars in ophthalmology 24, 139-148.
- Lin, X., Xu, B., Sun, Y., Zhong, J., Huang, W., Yuan, J., 2014. Comparison of deep anterior lamellar keratoplasty and penetrating keratoplasty with respect to postoperative corneal sensitivity and tear film function. Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie 252, 1779-1787.
- Linna, T., Tervo, T., 1997. Real-time confocal microscopic observations on
 human corneal nerves and wound healing after excimer laser photorefractive
 keratectomy. Curr Eye Res 16, 640-649.
- Linna, T.U., Perez-Santonja, J.J., Tervo, K.M., Sakla, H.F., Alio y Sanz, J.L.,
 Tervo, T.M., 1998. Recovery of corneal nerve morphology following laser in situ
 keratomileusis. Exp Eye Res 66, 755-763.
- Linna, T.U., Vesaluoma, M.H., Perez-Santonja, J.J., Petroll, W.M., Alio, J.L.,
 Tervo, T.M., 2000. Effect of myopic LASIK on corneal sensitivity and
 morphology of subbasal nerves. Invest Ophthalmol Vis Sci 41, 393-397.
- Loeser, J.D., Treede, R.D., 2008. The Kyoto protocol of IASP Basic PainTerminology. Pain 137, 473-477.
- Looker, K.J., Garnett, G.P., 2005. A systematic review of the epidemiology and interaction of herpes simplex virus types 1 and 2. Sex Transm Infect 81, 103-107.
- Lum, E., Murphy, P.J., 2018. Effects of ambient humidity on the Cochet-Bonnet aesthesiometer. Eye 32, 1644-1651.
- 2401 M'Garrech, M., Rousseau, A., Kaswin, G., Sauer, A., Barreau, E., Bourcier, T.,
- 2402 Labetoulle, M., 2013. Impairment of lacrimal secretion in the unaffected fellow

eye of patients with recurrent unilateral herpetic keratitis. Ophthalmology 120, 1959-1967.

2405 MacIver, M.B., Tanelian, D.L., 1993. Structural and functional specialization of A

- delta and C fiber free nerve endings innervating rabbit corneal epithelium. J
- 2407 Neurosci 13, 4511-4524.
- Malhotra, R., Elalfy, M.S., Kannan, R., Nduka, C., Hamada, S., 2019. Update on corneal neurotisation. Br J Ophthalmol 103, 26-35.
- 2410 Malik, R.A., Kallinikos, P., Abbott, C.A., van Schie, C.H., Morgan, P., Efron, N.,
- Boulton, A.J., 2003. Corneal confocal microscopy: a non-invasive surrogate ofnerve fibre damage and repair in diabetic patients. Diabetologia 46, 683-688.
- 2413 Mannion, L.S., Tromans, C., O'Donnell, C., 2007. Corneal nerve structure and 2414 function in keratoconus: a case report. Eye Contact Lens 33, 106-108.
- 2415 Marfurt, C.F., 1981. The somatotopic organization of the cat trigeminal ganglion 2416 as determined by the horseradish peroxidase technique. Anat Rec 201, 105-118.
- 2417 Marfurt, C.F., 1988. Sympathetic innervation of the rat cornea as demonstrated by
- 2418 the retrograde and anterograde transport of horseradish peroxidase-wheat germ
- agglutinin. The Journal of comparative neurology 268, 147-160.
- 2420 Marfurt, C.F., 2000. Nervous Control of the Cornea, in: Burnstock, G., Sillito, A.
 2421 (Ed.), Nervous Control of the Eye. Harwood Academic, London, pp. 41-92.
- 2422 Marfurt, C.F., Cox, J., Deek, S., Dvorscak, L., 2010. Anatomy of the human
 2423 corneal innervation. Exp Eye Res 90, 478-492.
- Marfurt, C.F., Del Toro, D.R., 1987. Corneal sensory pathway in the rat: a
 horseradish peroxidase tracing study. J Comp Neurol 261, 450-459.
- 2426 Marfurt, C.F., Echtenkamp, S.F., 1988. Central projections and trigeminal
 2427 ganglion location of corneal afferent neurons in the monkey, Macaca fascicularis.
 2428 J Comp Neurol 272, 370-382.
- 2429 Marfurt, C.F., Ellis, L.C., 1993. Immunohistochemical localization of tyrosine
 2430 hydroxylase in corneal nerves. J Comp Neurol 336, 517-531.
- 2431 Marfurt, C.F., Jones, M.A., Thrasher, K., 1998. Parasympathetic innervation of
 2432 the rat cornea. Experimental eye research 66, 437-448.
- 2433 Marfurt, C.F., Kingsley, R.E., Echtenkamp, S.E., 1989. Sensory and sympathetic
 2434 innervation of the mammalian cornea. A retrograde tracing study. Investigative
 2435 ophthalmology & visual science 30, 461-472.
- 2436 Martin, X.Y., Safran, A.B., 1988. Corneal hypoesthesia. Surv Ophthalmol 33, 28-2437 40.
- 2438 Martone, G., Frezzotti, P., Tosi, G.M., Traversi, C., Mittica, V., Malandrini, A.,
- 2439 Pichierri, P., Balestrazzi, A., Motolese, P.A., Motolese, I., Motolese, E., 2009. An
- 2440 in vivo confocal microscopy analysis of effects of topical antiglaucoma therapy
- with preservative on corneal innervation and morphology. Am J Ophthalmol 147,
- 2442 725-735 e721.

- 2443 Mastropasqua, L., Massaro-Giordano, G., Nubile, M., Sacchetti, M., 2017.
 2444 Understanding the Pathogenesis of Neurotrophic Keratitis: The Role of Corneal
 2445 Nerves. Journal of cellular physiology 232, 717-724.
- Mastropasqua, L., Nubile, M., Lanzini, M., Calienno, R., Dua, H.S., 2018. In vivo
 microscopic and optical coherence tomography classification of neurotrophic
 keratopathy. Journal of cellular physiology.
- Matsuda, H., 1968. [Electron microscopic study of the corneal nerve with special
 reference to the nerve endings]. Nippon Ganka Gakkai Zasshi 72, 880-893.
- May, A., 2004. Morphology of the long and short uveal nerves in the human eye.Journal of anatomy 205, 113-120.
- 2453 May, C.A., Neuhuber, W., Lutjen-Drecoll, E., 2004. Immunohistochemical
 2454 classification and functional morphology of human choroidal ganglion cells.
 2455 Investigative ophthalmology & visual science 45, 361-367.
- 2456 Mazzotta, C., Hafezi, F., Kymionis, G., Caragiuli, S., Jacob, S., Traversi, C.,
 2457 Barabino, S., Randleman, J.B., 2015. In Vivo Confocal Microscopy after Corneal
 2458 Collagen Crosslinking. Ocul Surf 13, 298-314.
- McCormack, D.G., Mak, J.C., Coupe, M.O., Barnes, P.J., 1989. Calcitonin generelated peptide vasodilation of human pulmonary vessels. Journal of applied
 physiology 67, 1265-1270.
- McGee, S., 2017. Miscellaneous Cranial Nerves, in: McGee, S. (Ed.), Evidence-Based Physical Diagnosis, Fourth ed. Elsevier.
- 2464 McKay, T.B., Seyed-Razavi, Y., Ghezzi, C.E., Dieckmann, G., Nieland, T.J.F.,
- Cairns, D.M., Pollard, R.E., Hamrah, P., Kaplan, D.L., 2018. Corneal pain andexperimental model development. Progress in retinal and eye research.
- 2467 Meek, K.M., Knupp, C., 2015. Corneal structure and transparency. Prog Retin2468 Eye Res 49, 1-16.
- Meijering, E., Jacob, M., Sarria, J.C., Steiner, P., Hirling, H., Unser, M., 2004.
 Design and validation of a tool for neurite tracing and analysis in fluorescence
 microscopy images. Cytometry A 58, 167-176.
- 2472 Menchini, U., Scialdone, A., Pietroni, C., Carones, F., Brancato, R., 1990. Argon
 2473 versus krypton panretinal photocoagulation side effects on the anterior segment.
 2474 Ophthalmologica 201, 66-70.
- Meretoja, J., 1972. Comparative histopathological and clinical findings in eyes
 with lattice corneal dystrophy of two different types. Ophthalmologica. Journal
 international d'ophtalmologie. International journal of ophthalmology. Zeitschrift
 fur Augenheilkunde 165, 15-37.
- 2479 Mertsch, S., Alder, J., Dua, H.S., Geerling, G., 2018. [Pathogenesis and
 2480 epidemiology of neurotrophic keratopathy]. Der Ophthalmologe : Zeitschrift der
 2481 Deutschen Ophthalmologischen Gesellschaft.

Messmer, E.M., Schmid-Tannwald, C., Zapp, D., Kampik, A., 2010. In vivo
confocal microscopy of corneal small fiber damage in diabetes mellitus. Graefes
Arch Clin Exp Ophthalmol 248, 1307-1312.

Midena, E., Brugin, E., Ghirlando, A., Sommavilla, M., Avogaro, A., 2006.
Corneal diabetic neuropathy: a confocal microscopy study. J Refract Surg 22, S1047-1052.

Mikami, N., Matsushita, H., Kato, T., Kawasaki, R., Sawazaki, T., Kishimoto, T.,
Ogitani, Y., Watanabe, K., Miyagi, Y., Sueda, K., Fukada, S., Yamamoto, H.,
Tsujikawa, K., 2011. Calcitonin gene-related peptide is an important regulator of
cutaneous immunity: effect on dendritic cell and T cell functions. Journal of
immunology 186, 6886-6893.

2493 Millodot, M., Lim, C.H. and Ruskell, G.L., 1978. A comparison of corneal
2494 sensitivity and nerve density in albino and pigmented rabbits. Ophthalmic
2495 Research 10, 307-311.

Miri, A., Alomar, T., Nubile, M., Al-Aqaba, M., Lanzini, M., Fares, U., Said,
D.G., Lowe, J., Dua, H.S., 2012. In vivo confocal microscopic findings in patients
with limbal stem cell deficiency. Br J Ophthalmol 96, 523-529.

Mitooka, K., Ramirez, M., Maguire, L.J., Erie, J.C., Patel, S.V., McLaren, J.W.,
Hodge, D.O., Bourne, W.M., 2002. Keratocyte density of central human cornea
after laser in situ keratomileusis. Am J Ophthalmol 133, 307-314.

Mocan, M.C., Durukan, I., Irkec, M., Orhan, M., 2006. Morphologic alterations of
both the stromal and subbasal nerves in the corneas of patients with diabetes.
Cornea 25, 769-773.

Moein, H.R., Kheirkhah, A., Muller, R.T., Cruzat, A.C., Pavan-Langston, D.,
Hamrah, P., 2018. Corneal nerve regeneration after herpes simplex keratitis: A
longitudinal in vivo confocal microscopy study. Ocul Surf 16, 218-225.

Moilanen, J.A., Vesaluoma, M.H., Muller, L.J., Tervo, T.M., 2003. Long-term
corneal morphology after PRK by in vivo confocal microscopy. Invest
Ophthalmol Vis Sci 44, 1064-1069.

Moller-Pedersen, T., Cavanagh, H.D., Petroll, W.M., Jester, J.V., 2000. Stromal
wound healing explains refractive instability and haze development after
photorefractive keratectomy: a 1-year confocal microscopic study.
Ophthalmology 107, 1235-1245.

Morgan, C., DeGroat, W.C., Jannetta, P.J., 1987a. Sympathetic innervation of the
cornea from the superior cervical ganglion. An HRP study in the cat. Journal of
the autonomic nervous system 20, 179-183.

Morgan, C., Jannetta, P.J., deGroat, W.C., 1987b. Organization of corneal afferent
axons in the trigeminal nerve root entry zone in the cat. Exp Brain Res 68, 411416.

2521 Morgan, C.W., Nadelhaft, I., de Groat, W.C., 1978. Anatomical localization of 2522 corneal afferent cells in the trigeminal ganglion. Neurosurgery 2, 252-258.

- 2523 Morishige, N., Takahashi, N., Chikamoto, N., Nishida, T., 2009. Quantitative
- evaluation of corneal epithelial oedema by confocal microscopy. Clin ExperimentOphthalmol 37, 249-253.
- 2526 Moss, S.E., Klein, R., Klein, B.E., 2000. Prevalence of and risk factors for dry eye 2527 syndrome. Archives of ophthalmology 118, 1264-1268.
- 2528 Moulton, E.A., Becerra, L., Rosenthal, P., Borsook, D., 2012. An approach to
- 2529 localizing corneal pain representation in human primary somatosensory cortex.2530 PLoS One 7, e44643.
- 2531 Mtui, E., Gruener, G., Dockery, P., 2015. Fitzgerald's clinical neuroanatomy and 2532 neuroscience, 7th ed. Elsevier, Edinburgh.
- 2533 Muller, L.J., Marfurt, C.F., Kruse, F., Tervo, T.M., 2003. Corneal nerves: 2534 structure, contents and function. Experimental eye research 76, 521-542.
- Muller, L.J., Pels, L., Vrensen, G.F., 1996. Ultrastructural organization of human
 corneal nerves. Investigative ophthalmology & visual science 37, 476-488.
- Muller, L.J., Vrensen, G.F., Pels, L., Cardozo, B.N., Willekens, B., 1997.
 Architecture of human corneal nerves. Investigative ophthalmology & visual science 38, 985-994.
- Murphy, P.J., Lawrenson, J.G., Patel, S., Marshall, J., 1998. Reliability of the
 non-contact corneal aesthesiometer and its comparison with the Cochet-Bonnet
 aesthesiometer. Ophthalmic & physiological optics : the journal of the British
 College of Ophthalmic Opticians 18, 532-539.
- Neelam, S., Mellon, J., Wilkerson, A., Niederkorn, J.Y., 2018. Induction of
 Contrasuppressor Cells and Loss of Immune Privilege Produced by Corneal Nerve
 AblationCorneal Nerve Ablation and Ocular Immune Privilege. Investigative
 Ophthalmology & Visual Science 59, 4738-4747.
- Nicholls, S.M., Shimeld, C., Easty, D.L., Hill, T.J., 1996. Recurrent herpes
 simplex after corneal transplantation in rats. Investigative ophthalmology & visual
 science 37, 425-435.
- Niederer, R.L., Perumal, D., Sherwin, T., McGhee, C.N., 2007. Corneal
 innervation and cellular changes after corneal transplantation: an in vivo confocal
 microscopy study. Invest Ophthalmol Vis Sci 48, 621-626.
- Nishimori, T., Sera, M., Suemune, S., Yoshida, A., Tsuru, K., Tsuiki, Y., Akisaka,
 T., Okamoto, T., Dateoka, Y., Shigenaga, Y., 1986. The distribution of muscle
 primary afferents from the masseter nerve to the trigeminal sensory nuclei. Brain
 Res 372, 375-381.
- O'Rahilly, R., 1983. The timing and sequence of events in the development of the
 human eye and ear during the embryonic period proper. Anat Embryol (Berl) 168,
 87-99.
- Oliveira-Soto, L., Efron, N., 2001. Morphology of corneal nerves using confocalmicroscopy. Cornea 20, 374-384.

Oliveira-Soto, L., Efron, N., 2003. Morphology of corneal nerves in soft contact
lens wear. A comparative study using confocal microscopy. Ophthalmic Physiol
Opt 23, 163-174.

Oudejans, L.C., Niesters, M., Brines, M., Dahan, A., van Velzen, M., 2017.
Quantification of small fiber pathology in patients with sarcoidosis and chronic
pain using cornea confocal microscopy and skin biopsies. Journal of pain research
10, 2057-2065.

- Parra, A., Gonzalez-Gonzalez, O., Gallar, J., Belmonte, C., 2014. Tear fluid
 hyperosmolality increases nerve impulse activity of cold thermoreceptor endings
 of the cornea. Pain 155, 1481-1491.
- Patel, D.V., Ku, J.Y., Johnson, R., McGhee, C.N., 2008. Laser scanning in vivo
 confocal microscopy and quantitative aesthesiometry reveal decreased corneal
 innervation and sensation in keratoconus. Eye.
- Patel, D.V., McGhee, C.N., 2005. Mapping of the normal human corneal subBasal nerve plexus by in vivo laser scanning confocal microscopy. Investigative
 ophthalmology & visual science 46, 4485-4488.
- Patel, D.V., McGhee, C.N., 2006. Mapping the corneal sub-basal nerve plexus in keratoconus by in vivo laser scanning confocal microscopy. Invest Ophthalmol Vis Sci 47, 1348-1351.
- Patel, D.V., McGhee, C.N., 2009. In vivo confocal microscopy of human corneal
 nerves in health, in ocular and systemic disease, and following corneal surgery: a
 review. Br J Ophthalmol 93, 853-860.
- Patel, S.V., Erie, J.C., McLaren, J.W., Bourne, W.M., 2007. Keratocyte density
 and recovery of subbasal nerves after penetrating keratoplasty and in late
 endothelial failure. Arch Ophthalmol 125, 1693-1698.
- Patel, S.V., McLaren, J.W., Hodge, D.O., Bourne, W.M., 2002. Confocal
 microscopy in vivo in corneas of long-term contact lens wearers. Invest
 Ophthalmol Vis Sci 43, 995-1003.
- Perez-Gomez, I., Efron, N., 2003. Change to corneal morphology after refractive
 surgery (myopic laser in situ keratomileusis) as viewed with a confocal
 microscope. Optom Vis Sci 80, 690-697.
- Petroll, W.M., Robertson, D.M., 2015. In Vivo Confocal Microscopy of the
 Cornea: New Developments in Image Acquisition, Reconstruction, and Analysis
 Using the HRT-Rostock Corneal Module. The Ocular Surface 13, 187-203.
- Petropoulos, I.N., Ferdousi, M., Marshall, A., Alam, U., Ponirakis, G., Azmi, S.,
 Fadavi, H., Efron, N., Tavakoli, M., Malik, R.A., 2015. The Inferior Whorl For
 Detecting Diabetic Peripheral Neuropathy Using Corneal Confocal Microscopy.
 Investigative ophthalmology & visual science 56, 2498-2504.
- 2601 Petropoulos, I.N., Ponirakis, G., Khan, A., Gad, H., Almuhannadi, H., Brines, M.,
- 2602 Cerami, A., Malik, R.A., 2019. Corneal confocal microscopy: ready for prime
- time. Clinical & experimental optometry.

2604 Piebenga, L.W., Laibson, P.R., 1973. Dendritic lesions in herpes zoster 2605 ophthalmicus. Arch Ophthalmol 90, 268-270. 2606 Pisella, P.J., Auzerie, O., Bokobza, Y., Debbasch, C., Baudouin, C., 2001. 2607 Evaluation of corneal stromal changes in vivo after laser in situ keratomileusis 2608 with confocal microscopy. Ophthalmology 108, 1744-1750. 2609 Podgorny, P.J., Suchowersky, O., Romanchuk, K.G., Feasby, T.E., 2016. 2610 Evidence for small fiber neuropathy in early Parkinson's disease. Parkinsonism & 2611 related disorders 28, 94-99. 2612 Prasad, S., Galetta, S., 2007. The trigeminal nerve, in: Goetz, C. (Ed.), Text book of clinical neurology, Third ed. Elsevier. 2613 2614 Pritchard, N., Edwards, K., Russell, A.W., Perkins, B.A., Malik, R.A., Efron, N., 2615 2015. Corneal confocal microscopy predicts 4-year incident peripheral neuropathy 2616 in type 1 diabetes. Diabetes care 38, 671-675. 2617 Qazi, Y., Kheirkhah, A., Blackie, C., Cruzat, A., Trinidad, M., Williams, C., 2618 Korb, D.R., Hamrah, P., 2015. In vivo detection of clinically non-apparent ocular 2619 surface inflammation in patients with meibomian gland dysfunction-associated 2620 refractory dry eye symptoms: a pilot study. Eye (Lond) 29, 1099-1110. Qi, H., Chuang, E.Y., Yoon, K.C., de Paiva, C.S., Shine, H.D., Jones, D.B., 2621 2622 Pflugfelder, S.C., Li, D.Q., 2007. Patterned expression of neurotrophic factors and 2623 receptors in human limbal and corneal regions. Molecular vision 13, 1934-1941. 2624 Qu, J.H., Li, L., Tian, L., Zhang, X.Y., Thomas, R., Sun, X.G., 2018. Epithelial 2625 changes with corneal punctate epitheliopathy in type 2 diabetes mellitus and their correlation with time to healing. BMC ophthalmology 18, 1. 2626 Raivio, V.E., Vesaluoma, M.H., Tervo, T.M., Immonen, I.J., Puska, P.M., 2002. 2627 2628 Corneal innervation, corneal mechanical sensitivity, and tear fluid secretion after 2629 transscleral contact 670-nm diode laser cyclophotocoagulation. Journal of 2630 glaucoma 11, 446-453. 2631 Ramirez, M., Martinez-Martinez, L.A., Hernandez-Quintela, E., Velazco-Casapia, 2632 J., Vargas, A., Martinez-Lavin, M., 2015. Small fiber neuropathy in women with 2633 fibromyalgia. An in vivo assessment using corneal confocal bio-microscopy. 2634 Seminars in arthritis and rheumatism 45, 214-219. 2635 Remeijer, L., Doornenbal, P., Geerards, A.J., Rijneveld, W.A., Beekhuis, W.H., 2636 1997. Newly acquired herpes simplex virus keratitis after penetrating keratoplasty. Ophthalmology 104, 648-652. 2637 2638 Rexed, U., 1951. Nerve regeneration in corneal grafts in the rabbit. Br J 2639 Ophthalmol 35, 89-97. 2640 Rezende, R.A., Uchoa, U.B., Raber, I.M., Rapuano, C.J., Laibson, P.R., Cohen, 2641 E.J., 2004. New onset of herpes simplex virus epithelial keratitis after penetrating 2642 keratoplasty. American journal of ophthalmology 137, 415-419. 2643 Richter, A., Slowik, C., Somodi, S., Vick, H.P., Guthoff, R., 1996. Corneal 2644 reinnervation following penetrating keratoplasty--correlation of esthesiometry and 2645 confocal microscopy. Ger J Ophthalmol 5, 513-517.

Richter, A., Slowik, C., Somodi, S., Vick, H.P., Guthoff, R., 1997. [In vivo imaging of corneal innervation in the human using confocal microscopy].
Ophthalmologe 94, 141-146.

Robertson, D.M., Winkelmann, R.K., 1970. A whole-mount cholinesterase
technique for demonstrating corneal nerves: observations in the albino rabbit.
Investigative ophthalmology 9, 710-715.

- 2652 Rodger, F.C., 1950. The pattern of the corneal innervation in rabbits. Br J2653 Ophthalmol 34, 107-113.
- Rosenberg, M.E., Tervo, T.M., Gallar, J., Acosta, M.C., Muller, L.J., Moilanen,
 J.A., Tarkkanen, A.H., Vesaluoma, M.H., 2001. Corneal morphology and
 sensitivity in lattice dystrophy type II (familial amyloidosis, Finnish type). Invest
 Ophthalmol Vis Sci 42, 634-641.
- 2658 Rosenberg, M.E., Tervo, T.M., Immonen, I.J., Muller, L.J., Gronhagen-Riska, C.,
 2659 Vesaluoma, M.H., 2000. Corneal structure and sensitivity in type 1 diabetes
 2660 mellitus. Invest Ophthalmol Vis Sci 41, 2915-2921.
- 2661 Rosenberg, M.E., Tervo, T.M., Muller, L.J., Moilanen, J.A., Vesaluoma, M.H.,
 2662 2002. In vivo confocal microscopy after herpes keratitis. Cornea 21, 265-269.
- Rozsa, A.J., Beuerman, R.W., 1982. Density and organization of free nerveendings in the corneal epithelium of the rabbit. Pain 14, 105-120.
- Ruskell, G.L., 1974. Ocular fibres of the maxillary nerve in monkeys. J Anat 118, 195-203.
- 2667 Sacchetti, M.S., V.; Mantelli, F.; Pocobelli, A.; Lambiase, A.; Bonini, S., 2014.
 2668 Neuropeptide levels in normal cornea and in keratoconus, ARVO.
- Schaumberg, D.A., Sullivan, D.A., Buring, J.E., Dana, M.R., 2003. Prevalence of
 dry eye syndrome among US women. American journal of ophthalmology 136,
 318-326.
- Schimmelpfennig, B., Beuerman, R., 1982. A technique for controlled sensory
 denervation of the rabbit cornea. Graefes Arch Clin Exp Ophthalmol 218, 2872674 293.
- Shaheen, B.S., Bakir, M., Jain, S., 2014. Corneal nerves in health and disease.Survey of ophthalmology 59, 263-285.
- Shin, J.O., 2002. Color atlas of nerve biopsy pathology, First ed. CRC Press,Florida.
- Sigelman, S., Friedenwald, J.S., 1954. Mitotic and wound-healing activities of the
 corneal epithelium; effect of sensory denervation. AMA Arch Ophthalmol 52, 4657.
- Simo Mannion, L., Tromans, C., O'Donnell, C., 2005. An evaluation of corneal
 nerve morphology and function in moderate keratoconus. Cont Lens Anterior Eye
 2684 28, 185-192.
- Singh, N., Said, D., Dua, H., 2018. Lamellar keratoplasty techniques. IndianJournal of Ophthalmology 66, 1239-1250.
- Sloniecka, M., Le Roux, S., Boman, P., Bystrom, B., Zhou, Q., Danielson, P.,
 2688 2015. Expression Profiles of Neuropeptides, Neurotransmitters, and Their
 2689 Receptors in Human Keratocytes In Vitro and In Situ. PloS one 10, e0134157.
- Smith, J.A., Albeitz, J., Begley, C., 2007. The epidemiology of dry eye disease:
 report of the Epidemiology Subcommittee of the International Dry Eye WorkShop
 (2007). The ocular surface 5, 93-107.
- Stepp, M.A., Pal-Ghosh, S., Tadvalkar, G., Williams, A., Pflugfelder, S.C., de
 Paiva, C.S., 2018. Reduced intraepithelial corneal nerve density and sensitivity
 accompany desiccating stress and aging in C57BL/6 mice. Experimental eye
 research 169, 91-98.
- Stepp, M.A., Tadvalkar, G., Hakh, R., Pal-Ghosh, S., 2017. Corneal epithelial
 cells function as surrogate Schwann cells for their sensory nerves. Glia 65, 851863.
- Stone, R.A., Kuwayama, Y., Terenghi, G., Polak, J.M., 1986. Calcitonin generelated peptide: occurrence in corneal sensory nerves. Exp Eye Res 43, 279-283.
- Streilein, J.W., Bradley, D., Sano, Y., Sonoda, Y., 1996. Immunosuppressive
 properties of tissues obtained from eyes with experimentally manipulated corneas.
 Investigative Ophthalmology & Visual Science 37, 413-424.
- Streilein, J.W., Okamoto, S., Sano, Y., Taylor, A.W., 2000. Neural control ofocular immune privilege. Ann N Y Acad Sci 917, 297-306.
- Sturniolo, G.C., Lazzarini, D., Bartolo, O., Berton, M., Leonardi, A., Fregona,
 I.A., Parrozzani, R., Midena, E., 2015. Small fiber peripheral neuropathy in
 Wilson disease: an in vivo documentation by corneal confocal microscopy.
 Investigative ophthalmology & visual science 56, 1390-1395.
- 2711 Sugimoto, T., Takemura, M., Wakisaka, S., 1988. Cell size analysis of primary2712 neurons innervating the cornea and tooth pulp of the rat. Pain 32, 375-381.
- Sugiura, S., Matsuda, H., 1967. [Electron microscopic observations on the corneal
 epithelium after sensory denervation]. Nippon Ganka Gakkai Zasshi 71, 11231137.
- 2716 Sugiura, S., Yamaga, C., 1968. [Studies on the adrenergic nerve of the cornea].
 2717 Nippon Ganka Gakkai Zasshi 72, 872-879.
- Tamm, E.R., Flugel-Koch, C., Mayer, B., Lutjen-Drecoll, E., 1995. Nerve cells in
 the human ciliary muscle: ultrastructural and immunocytochemical
 characterization. Investigative ophthalmology & visual science 36, 414-426.
- Tanelian, D.L., Beuerman, R.W., 1984. Responses of rabbit corneal nociceptors to
 mechanical and thermal stimulation. Experimental neurology 84, 165-178.
- Tavakoli, M., Marshall, A., Thompson, L., Kenny, M., Waldek, S., Efron, N.,
 Malik, R.A., 2009. Corneal confocal microscopy: a novel noninvasive means to
- diagnose neuropathy in patients with Fabry disease. Muscle & nerve 40, 976-984.
- Tavee, J., Zhou, L., 2009. Small fiber neuropathy: A burning problem. ClevelandClinic journal of medicine 76, 297-305.

2728 2729	Taylor, A.W., 2007. Ocular immunosuppressive microenvironment. Chem Immunol Allergy 92, 71-85.
2730 2731 2732	Taylor, P.B., Rieger, F., Shelanski, M.L., Greene, L.A., 1981. Cellular localization of the multiple molecular forms of acetylcholinesterase in cultured neuronal cells. The Journal of biological chemistry 256, 3827-3830.
2733 2734 2735	ten Tusscher, M.P., Klooster, J., van der Want, J.J., Lamers, W.P., Vrensen, G.F., 1989. The allocation of nerve fibres to the anterior eye segment and peripheral ganglia of rats. I. The sensory innervation. Brain Res 494, 95-104.
2736 2737 2738	ten Tusscher, M.P., Klooster, J., Vrensen, G.F., 1988. The innervation of the rabbit's anterior eye segment: a retrograde tracing study. Exp Eye Res 46, 717-730.
2739 2740	Tervo, K., Tervo, T., Eranko, L., Eranko, O., 1981. Substance P immunoreactive nerves in the rodent cornea. Neurosci Lett 25, 95-97.
2741 2742 2743	Tervo, K., Tervo, T., Eranko, L., Vannas, A., Cuello, A.C., Eranko, O., 1982. Substance P-immunoreactive nerves in the human cornea and iris. Invest Ophthalmol Vis Sci 23, 671-674.
2744 2745 2746	Tervo, T., 1976. Histochemical demonstration of cholinesterase activity in the cornea of the rat and the effect of various denervations on the corneal nerves. Histochemistry 47, 133-143.
2747 2748	Tervo, T., 1977. Consecutive demonstration of nerves containing catecholamine and acetylcholinesterase in the rat cornea. Histochemistry 50, 291-299.
2749 2750 2751	Tervo, T., Joo, F., Huikuri, K.T., Toth, I., Palkama, A., 1979. Fine structure of sensory nerves in the rat cornea: an experimental nerve degeneration study. Pain 6, 57-70.
2752 2753 2754	Tervo, T., Moilanen, J., 2003. In vivo confocal microscopy for evaluation of wound healing following corneal refractive surgery. Prog Retin Eye Res 22, 339-358.
2755 2756	Tervo, T., Palkama, A., 1976. Sympathetic nerves to the rat cornea. Acta ophthalmologica 54, 75-84.
2757 2758	Tervo, T., Palkama, A., 1978. Innervation of the rabbit cornea. A histochemical and electron-microscopic study. Acta anatomica 102, 164-175.
2759 2760 2761	Tervo, T., Tervo, K., Eranko, L., Vannas, A., Eranko, O., Cuello, A.C., 1983. Substance P immunoreaction and acetylcholinesterase activity in the cornea and Gasserian ganglion. Ophthalmic research 15, 280-288.
2762 2763 2764 2765	Tervo, T.M., Moilanen, J.A., Rosenberg, M.E., Tuominen, I.S., Valle, T., Vesaluoma, M.H., 2002. In vivo confocal microscopy for studying corneal diseases and conditions associated with corneal nerve damage. Adv Exp Med Biol 506, 657-665.
2766 2767	Tessier-Lavigne, M., Goodman, C.S., 1996. The molecular biology of axon guidance. Science 274, 1123-1133.

- Ting, D.S.J., Figueiredo, G.S., Henein, C., Barnes, E., Ahmed, O., Mudhar, H.S.,
 Figueiredo, F.C., 2018. Corneal Neurotization for Neurotrophic Keratopathy:
 Clinical Outcomes and In Vivo Confocal Microscopic and Histopathological
 Findings. Cornea 37, 641-646.
- Toivanen, M., Tervo, T., Partanen, M., Vannas, A., Hervonen, A., 1987.
 Histochemical demonstration of adrenergic nerves in the stroma of human cornea.
 Invest Ophthalmol Vis Sci 28, 398-400.
- Tubbs, R.S., Rizk, E., Shoja, M.M., Loukas, M., Barbaro, N.M., 2015. Pain,
 Treatment, Injury, Disease and Future Directions, 1st ed. Academic Press Inc,
 Verlag.
- Ueda, S., del Cerro, M., LoCascio, J.A., Aquavella, J.V., 1989. Peptidergic and
 catecholaminergic fibers in the human corneal epithelium. An
 immunohistochemical and electron microscopic study. Acta Ophthalmol Suppl
 192, 80-90.
- van der Kleij, H.P.M., Forsythe, P., Bienenstock, J., 2009. Autonomic
 Neuroimmunology, in: Squire, L.R. (Ed.), Encyclopedia of Neuroscience.
 Academic Press, Oxford, pp. 1003-1008.
- Vonderahe, A.R., 1928. Corneal and scleral anesthesia of the lower half of the eye
 in a case of trauma of the superior maxillary nerve. Journal of Neurology &
 psychiatry. Chicago 20, 836-837.
- Waring, G.O., 3rd, Rodrigues, M.M., Laibson, P.R., 1978. Corneal dystrophies. I.
 Dystrophies of the epithelium, Bowman's layer and stroma. Survey of
 ophthalmology 23, 71-122.
- Weddell, G., Zander, E., 1950. A critical evaluation of methods used to
 demonstrate tissue neural elements, illustrated by reference to the cornea. J Anat
 84, 168-195.
- Weigt, A.K., Herring, I.P., Marfurt, C.F., Pickett, J.P., Duncan, R.B., Jr., Ward,
 D.L., 2002. Effects of cyclophotocoagulation with a neodymium:yttriumaluminum-garnet laser on corneal sensitivity, intraocular pressure, aqueous tear
 production, and corneal nerve morphology in eyes of dogs. Am J Vet Res 63, 906915.
- Wells, J.R., Michelson, M.A., 2008. Diagnosing and Treating Neurotrophic
 Keratopathy, EyeNet Magazine. American Academy of Ophthalmology,
 https://www.aao.org/eyenet/article/diagnosing-treating-neurotrophic-keratopathy
 (accessed 20 November 2017).
- Wheeler, G.E., Coleman, R., Finean, J.B., 1972. Cholinesterase activities in
 subcellular fractions of rat liver. Association of acetylcholinesterase with the
 surface membrane and other properties of the enzyme. Biochimica et biophysica
 acta 255, 917-930.
- Whitear, M., 1960. An electron microscope study of the cornea in mice, withspecial reference to the innervation. J Anat 94, 387-409.

2809 Wilson, S.E., 2001. Laser in situ keratomileusis-induced (presumed) neurotrophic epitheliopathy. Ophthalmology 108, 1082-1087. 2810 2811 Wilson, S.E., Ambrosio, R., 2001. Laser in situ keratomileusis-induced 2812 neurotrophic epitheliopathy. Am J Ophthalmol 132, 405-406. 2813 Wolter, J.R., 1957. Innervation of the corneal endothelium of the eye of the rabbit. 2814 AMA Arch Ophthalmol 58, 246-250. 2815 Wolter, J.R., 1964. Hyper-Regeneration of Corneal Nerves in Bullous 2816 Keratopathy. American journal of ophthalmology 58, 31-38. 2817 Wolter, J.R., 1966. Hyper-regeneration of corneal nerves in a scarred transplant. 2818 American journal of ophthalmology 61, 880-885. 2819 Wolter, J.R., Hendrson, J.W., 1962. Lattice dystrophy of the cornea: a primary hyaline degeneration of corneal nerves and superficial stroma cells. Trans Am 2820 2821 Ophthalmol Soc 60, 176-194. 2822 Xia, Y., Chai, X., Zhou, C., Ren, Q., 2011. Corneal nerve morphology and 2823 sensitivity changes after ultraviolet A/riboflavin treatment. Exp Eye Res 93, 541-2824 547. 2825 Yam, G.H., Williams, G.P., Setiawan, M., Yusoff, N.Z., Lee, X.W., Htoon, H.M., 2826 Zhou, L., Fuest, M., Mehta, J.S., 2017. Nerve regeneration by human corneal stromal keratocytes and stromal fibroblasts. Scientific reports 7, 45396. 2827 2828 Yaprak, M., 2008. The axon reflex. Neuroanatomy 7, , 17–19. 2829 You, L., Kruse, F.E., Volcker, H.E., 2000. Neurotrophic factors in the human 2830 cornea. Investigative ophthalmology & visual science 41, 692-702. 2831 Yuksel, N., Emre, E., Pirhan, D., 2016. Evaluation of Corneal Microstructure in Pseudoexfoliation Syndrome and Glaucoma: In Vivo Scanning Laser Confocal 2832 Microscopic Study. Current eye research 41, 34-40. 2833 Yun, H., Lathrop, K.L., Hendricks, R.L., 2016. A Central Role for Sympathetic 2834 Nerves in Herpes Stromal Keratitis in Mice. Invest Ophthalmol Vis Sci 57, 1749-2835 2836 1756. 2837 Zander, E., Weddell, G., 1951a. Observations on the innervation of the cornea. J 2838 Anat 85, 68-99. 2839 Zander, E., Weddell, G., 1951b. Reaction of corneal nerve fibers to injury. Br J 2840 Ophthalmol 35, 61-88. 2841 Zhang, M., Chen, J., Luo, L., Xiao, Q., Sun, M., Liu, Z., 2005. Altered corneal 2842 nerves in aqueous tear deficiency viewed by in vivo confocal microscopy. Cornea 2843 24, 818-824. 2844 Zhang, X., Vadoothker, S., Munir, W.M., Saeedi, O., 2019. Ocular Surface Disease and Glaucoma Medications: A Clinical Approach. Eye & contact lens 45, 2845 2846 11-18. 2847 Zhang, Y.M., Wu, S.Q., Yao, Y.F., 2013. Long-term comparison of full-bed deep anterior lamellar keratoplasty and penetrating keratoplasty in treating keratoconus. 2848 2849 Journal of Zhejiang University. Science. B 14, 438-450.

2850

2851	12. Legends for Figures
2852	Fig. 1. Acetycholinestrase stained corneoscleral rim from a normal donor showing
2853	a dense network of fine and thick nerve bundles forming the limbal nerve plexus.
2854	They are derived from the long ciliary (uveal) nerves. Bar = 500 microns
2855	(Nanozoomer digital pathology microphotograph)
2856	Fig. 2. En face sequential light micrograph of whole mount Acetylcholinestrase
2857	stained cornea extending into limbal stroma showing a group of limbal nerve
2858	corpuscles (LNC, brown stained dots) and their nerve branches originating from
2859	the superficial limbal plexus anterior to the palisades. Bar = $250\mu m$ (Nanozoomer
2860	digital pathology microphotograph, 5 micron sections from A to F). Inset in 'A'
2861	illustrates a cross section of a subepithelial LNC, which is solid and shows a
2862	neuronal extension attached to it.
2863	Fig. 3. En face sequential light micrograph of whole mount Acetylcholinestrase
2864	stained cornea extending into limbal stroma showing limbal nerve corpuscles
2865	(LNC, arrows) that reside within the palisades of Vogt (P), which are all
2866	connected to fine nerve fibres (arrowheads) arising from the superficial limbal
2867	plexus anterior to the palisades. Bar = $100\mu m$ (Nanozoomer digital pathology
2868	microphotogra, 5 micron sections from A to F). Inset in 'A' illustrates a cross
2869	section of a subepithelial LNC, which is solid and shows a neuronal extension
2870	attached to it.

Fig. 4. In vivo confocal microscopy images of limbal nerve corpuscles (LNCs).
LNCs appear as hyper-reflective ovoid or elongated structures (arrows). Bar =

2873	100 μ m. Frame depth; A=45 μ m, B=40 μ m. Bar = 100 μ m. (Images were taken
2874	with Heidelberg Retina Tomograph II Rostock Corneal Module [RCM];
2875	Heidelberg Engineering GmbH, Heidelberg, Germany).
2876	Fig. 5. Scanning electron micrographs of a limbal nerve corpuscle (LNC) and its
2877	single terminal nerve branch using tissue maceration technique. LNC appears as
2878	an oval structure with a ruffled outer surface. Bar; $A = 100 \mu m$, $B = 20 \mu m$.
2879	Fig. 6. Cross section photomicrographs of Acetylcholinestrase stained
2880	corneoscleral disc. A. A large (brown stained) stromal nerve is seen in the mid-
2881	stroma of the peripheral cornea. B. Shows the image of a large stromal nerve
2882	within the anterior stroma (arrow) bifurcating into two nerves (white and black
2883	arrowheads) C. The same branches as in 'B' as they approach the surface of the
2884	peripheral cornea and conjunctiva. The photomicrographs were obtained from a
2885	corneoscleral disc used for endothelial keratoplasty. It is standard practice to
2886	remove the epithelium to increase the depth of cut to obtain thinner donor
2887	lenticules for Descemets stripping endothelial keratoplasty, hence the epithelium
2888	is not seen. Sparse endothelial cells were seen in some sections, the loss being
2889	related to processing through the two steps. Bar = 200 microns (light microscopy
2890	with haematoxylin and eosin counter stain).
2891	Fig. 7. Low (A) and high (B) magnification transmission electron micrographs of
2892	an Acetycholinesterase (AChE) stained normal human cornea showing a stromal
2893	keratocyte (K) in close contact (arrow) with a vertically-oriented stromal nerve
2894	(N). In this experiment, the tissue was first formalin fixed and taken through the

steps of AChE staining, then fixed in EM fixative and processed for TEM. The

2896	black dots are AChE stained particles. Although these particles can be seen
2897	scattered around the area of interest, they are clearly concentrated on either side of
2898	the nerve (not in the nerve itself) illustrating that the sheath is stained and nerve
2899	itself is not, with the AChE technique The pattern is regarded as strongly
2900	positive. Bar; A=20µm, B= 2µm.
2901	Fig. 8. Nanozoomer digital pathology photomicrographs of Acetylcholinestrase
2902	stained normal human cornea. The nuclei of the epithelial cells are clearly
2903	demonstrated in enface sections from the central and peripheral cornea,
2904	respectively (A & B). At a higher magnification, the epithelial cell nucleoli can
2905	also be seen (B). Enface sections of the anterior stroma show the heterogeneous
2906	morphology of keratocyte nuclei (C & D). A stromal nerve (arrow) is seen in
2907	section (C). Bar; A=50 µm, B=25µm, C=200µm, D=100µm.
2908	Fig. 9. Nanozoomer digital pathology photomicrograph of whole human corneal
2909	mount stained by the Acetylcholinesterase technique. A. Two bulb-like structures
2910	are seen (arrowheads) at the point where the sub-Bowman's nerve emerges in the
2911	sub-basal plane. B. A sub-Bowman's nerve is seen to emerge anterior to
2912	Bowman's layer and bifurcate with one branch terminating in two bulb-like

structures and the other in four blub-like structures (arrowheads). In both A and B,

- fine axon bundles are seen to arise from the blub-like structures, divide and
- 2915 reconnect to form the sub-basal plexus. Bars = $50 \mu m$. (reproduced with
- 2916 permission from the BMJ publishing group Ltd., author's own publication Al
- **2917** Aqaba et al. 2010).

2918

2919

2920

Fig. 10. Sequential enface nanozoomer digital pathology photomicrographs of
Acetylcholinestrase stained cornea (A-F at 5 micron intervals) showing the bulb
like termination of a stromal nerve at the perforation site anterior to Bowman's

2921 layer, from which a single sub-basal nerve bundle arises (arrowhead in section F). 2922 The epithelial cells in the close proximity to the bulb-like structure show dense 2923 nuclear staining with Acetylcholinestrase (arrows in C, D and E). Bar =10 μ m. 2924 Fig. 11. Electron microscopy images of the bulb like structures in normal human 2925 cornea. A, a scanning electron microscopy (SEM) image of a bulb-like structure 2926 (arrow) at the perforation site, from which a single sub-basal nerve arises. B, a 2927 SEM image of a bulb-like structure, (arrow) lying in the sub-basal plane anterior 2928 to a perforation site, from which two sub-basal nerves are seen to emerge. The 2929 basal surface of the basal cells of the epithelium are seen beneath the bulb-like 2930 structure as the specimen of the epithelial sheet has been flipped around to scan 2931 the basal surface. C & D, a transmission electron microscopy (TEM) image of a 2932 bulb-like structure at two different magnifications. A single stromal nerve bundle 2933 (arrowhead) is seen to run obliquely and anteriorly to perforate Bowman's layer 2934 and end in a bulb like structure (arrow). E-G, TEM images of a single bulb like 2935 structure at different magnifications. E&F, A single stromal nerve bundle 2936 (arrowhead) is seen to run anteriorly to perforate Bowman's layer (P) and end in 2937 a bulb like structure (arrow) in the sub-basal plane (Epi = basal epithelial cells,, K 2938 = keratocyte). G, the bulb-like structure appears to be made of convolutions of 2939 endoneurium surrounding bundles of neurofilaments (NF). Bar; $A = 10 \mu m$, B = 102940 μ m, C= 10 μ m, D=2 μ m, E=10 μ m, F=2 μ m, G=1 μ m. The letters and numbers in 2941 A and B relate to power and exposure during SEM imaging. C to G are sections of

2942 Acetylcholinestrase (AChE) stained whole mounts of corneal samples. The black 2943 dots are deposits of copper thiocholine crytals (CT in image G), which is an end 2944 product of the AChE staining method, and are electron dense. 2945 Fig. 12. In vivo confocal microscopy (IVCM) images of normal human corneas 2946 showing the termination of sub-basal nerves in bright hyper-reflective bulb-like 2947 structures at the basal epithelial plane (arrows). Bar 100µ. Frame depth; A=40µ, 2948 $B=44\mu$, $C=58\mu$, $D=46\mu$, $E=40\mu$, $F=46\mu$. These structures were first demonstrated 2949 in whole mount Acetylcholinesterase stained corneas but were missed on IVCM. 2950 IVCM confirmation was then possible on cadaver whole eyes and finally in living 2951 human eyes. (Images were taken with Heidelberg Retina Tomograph II Rostock 2952 Corneal Module [RCM]; Heidelberg Engineering GmbH, Heidelberg, Germany). Fig. 13. Scanning electron micrographs of the sub-basal nerve plexus. A. Nerve 2953 2954 fibres are seen running parallel on the Bowman's layer. B. A beaded nerve fibre 2955 (arrow) approximately 2µ diameter bifurcating from a 5µ non-beaded straight 2956 nerve fibre (arrowhead) is seen as it ascends from the Bowman's layer anteriorly 2957 towards the basal epithelial layers. C. Beaded appearance of a single fibre is seen 2958 (arrow). D. Larger and thinner fibres (arrows) bifurcating and interconnecting 2959 with adjacent fibres are seen posterior to the basal surfaces of the basal epithelial 2960 cells. The specimen of the epithelial sheet has been flipped around to scan the 2961 basal surface. Bar; $A=1\mu$, $B=10\mu$, $C=1\mu$, $D=1\mu$. The letters and numbers at the 2962 bottom of the images relate to power and exposure during SEM imaging. 2963 Fig. 14. In vivo confocal microscopy of the sub-basal nerve plexus in normal

human subjects. The sub-basal nerves form a series of complex anastomosis with

characteristic Y shaped bifurcations and H shaped interconnections. Bar = 100 μ.
Frame depth; A=49 μ, B=52μ. (Images were taken with Heidelberg Retina
Tomograph II Rostock Corneal Module [RCM]; Heidelberg Engineering GmbH,
Heidelberg, Germany).
Fig. 15. Nanozoomer digital pathology photomicrograph of whole human corneal

mount stained by the Acetylcholinesterase technique showing a clockwise whorl pattern of the sub-basal nerves in the infero-central cornea. Perforation sites and bulb-like structures in the sub-basal plane in the inferior (white arrowheads) and central (black arrowhead) cornea are seen. . A dark brown line (arrow) represents an artefactual corneal fold secondary to flattening of the cornea during processing. Bar = 0.5 mm. (reproduced with permission from the BMJ publishing group Ltd.,

author's own publication Al Aqaba et al. 2010).

2977 Fig. 16. In vivo confocal microscopy images of a patient with "pain without stain"

2978 A-C. Show activated anterior stromal keratocytes, giving rise to honeycomb-like

2979 pattern. D & E. Anterior stromal nerves show patchy areas of hyper-reflectivity

2980 (arrow). F. Dendritic cells appear as hyper-reflective bodies with an amorphous

2981 stroma. Bar = $100\mu m$. Frame depth; A=82 μm , B=59 μm , C=46 μm , D= 85 μm ,

2982 $E=119 \mu m$, $F=43 \mu m$. (Images were taken with Heidelberg Retina Tomograph II

2983 Rostock Corneal Module [RCM]; Heidelberg Engineering GmbH, Heidelberg,

2984 Germany)

Fig. 17. Nanozoomer digital pathology photomicrographs of Acetylcholinestrase
stained rabbit cornea showing corneal nerve damage induced by 'small incision
lenticule extraction' femtosecond Laser surgery. A. The nerves have three zones

2988	of progressive changes indicated by rectangles B, C and D. B. Normal peripheral
2989	zone (inset B) where the nerve maintains the normal structural features including
2990	nerve fibre striation. C. Abnormal mid-peripheral zone (inset C), where the nerve
2991	shows moderate damage including disruption of the Schwann cell tube and
2992	reduction of nerve fibre thickness. D. A central zone (inset D) where the nerve
2993	undergoes severe disintegration with extrusion of its contents. Bar: $A = 200 \ \mu m$;
2994	B and C = 50 μ m and D = 100 μ m. (unpublished observations Mehta J, Al Aqaba
2995	A, Jung C, Nubile M and Dua HS).
2996	Fig. 18. Image of a lenticule extracted by 'small incision lenticule extraction'
2997	femtosecond Laser surgery in a rabbit cornea stained with Acetycholinestrase. A
2998	significant number of medium and large stromal nerve bundles are removed by
2999	this procedure. The long-term consequences of this is unknown. Bar =1mm
3000	(unpublished observations Mehta J, Al Aqaba A, Jung C, Nubile M and Dua HS).
3001	Fig. 19. Nanozoomer digital pathology photomicrographs of whole-mount human
3002	cornea that had undergone Laser in situ keratomileusis with mechanical keratome
3003	for correction of myopia 'a few years' ago. A-C. The peripheral corneal stromal
3004	nerves show disruption (A), looping (B) and irregular thickening (C). D-F. Two
3005	adjacent stromal nerves show aberrant regeneration (D), which is magnified to
3006	demonstrate thickening, formation of loops and coiling, just central to the flap
3007	edge (E, F). (*) in figure A marks the area in figure B, (†) in figure A marks the
3008	area in figure C. (*) in figure D marks the area in figure E, (\dagger) in figure D marks
3009	the area in figure F

3010	Fig. 20. Nanozoomer digital pathology photomicrographs of whole-mount
3011	Acetylcholinesterase stained control and collagen cross-linked corneas. A,
3012	Normal-appearing central stromal nerves in the control cornea. B and C, Anterior
3013	stromal nerves terminate in bulb-like structures (arrows) from which no sub-basal
3014	nerves are seen to arise. Thickened stumps of the origin of sub-basal nerves are
3015	seen in 'C'. D, Central stromal nerves (arrowheads) show localised swelling and
3016	loss of nerve continuity (arrows). E and F, localised nerve thickenings (arrows)
3017	are seen probably representing disruption and discontinuity of nerves. G, These
3018	changes are more numerous in some areas (arrows). H, A prominent localised
3019	swelling (arrow) of a midperipheral stromal nerve within the treatment zone with
3020	loss of nerve continuity. I, Similar changes were not observed in corneas treated
3021	by transepithelial corneal crosslinking (CXL). A = control cornea; B-F = standard
3022	CXL (1/2 hour between CXL and fixation); $G =$ standard CXL (1 hour between
3023	CXL and fixation); $H =$ standard CXL (2 hours between CXL and fixation; $I =$
3024	transepithelial CXL. Bar: A-F = 100 μ m, G = 25 μ m, H-I = 100 μ m. (reproduced
3025	with permission from Elsevier Inc., author's own publication Al Aqaba et al.
3026	2012)
3027	Fig. 21. Nanozoomer digital pathology photomicrograph of a whole-mount
3028	Acetylcholinesterase-stained corneal graft button from an eye that underwent a

receipted on the standard content graft outfour from an eye that under work a
regraft. A. radially oriented sub-basal nerves (arrowheads) from the peripheral
cornea of the host extend across the graft-host junction (GHJ) into the peripheral
part of the graft (arrows). B. Radially oriented sub-basal nerves (arrowheads)
from the peripheral cornea of the host extend across the graft-host junction in to

3033 the peripheral part of the graft (arrows). C. Two thin and tortuous sub-basal

117

3034	nerves are seen running in the central zone of the graft. D. Stromal nerves from
3035	the host tissue stop at the peripheral edge of the GHJ. Some of them divide at the
3036	GHJ into branches (arrowheads) that run along the GHJ. A buried nylon suture
3037	related to the previous graft surgery is seen (asterisk). E. One stromal nerve has
3038	crossed the GHJ into the graft and extends for about 600 μm toward the graft
3039	centre (black arrow). Two thick stromal nerve trunks (black arrowheads) appear to
3040	extend for several millimetres along the GHJ, accompanied by a large blood
3041	vessel (blue arrowhead). A complex vascular arcade (blue arrows) in the graft is
3042	also seen. F. This image represents a higher magnification of the region outlined
3043	by a rectangle in (E). It shows a large nerve trunk (black arrowhead) and a blood
3044	vessel (blue arrowhead) running together at the edge of the GHJ but within the
3045	host tissue. Bars: A = 200 $\mu m,$ B = 100 μm , C = 100 $\mu m,$ D = 500 $\mu m,$ E = 500
3046	μ m, F = 100 μ m. (reproduced with permission from Elsevier Inc., author's own
3047	publication Al Aqaba et al. 2012).
3048	Fig. 22. Nanozoomer digital pathology photomicrograph of whole-mount
3049	Acetylcholinesterase-stained corneal graft button from an eye that underwent a
3050	regraft. Excessive regeneration of two types of nerves is seen. One type
3051	representing an attempt at normal regeneration with large straight nerve trunks,
3052	which demonstrate abrupt angulations along their course (arrows), and the other
3053	type, which demonstrates a highly tortuous and complex network of
3054	interconnecting nerves (arrowheads). In the centre of the button is an area that is
3055	relatively sparsely innervated. Scale bar = 2 mm . (reproduced with permission
3056	from Elsevier Inc., author's own publication Al Aqaba et al. 2012).

3057	Fig. 23. Nanozoomer digital pathology photomicrograph showing a whole-mount
3058	Acetylcholinestrase stained advanced keratoconus cornea. A. Exuberant
3059	overgrowth of the stromal nerves (grade 3) is seen to form a complex network of
3060	small and large nerve bundles at the central cornea corresponding to the area of
3061	the conical ectasia. The peripheral nerves demonstrate a near normal morphology.
3062	Bar = 2 mm. B. An overtly thickened central stroma nerve is seen with sprouting
3063	of short, tortuous aberrant nerves (arrows), (reproduced with permission from
3064	Elsevier Inc., author's own publication Al Aqaba et al. 2011)
3065	Fig. 24. In vivo confocal micrographs of the corneal nerves. A. Normal
3066	appearance of the sub-basal nerve plexus seen in a healthy control. Bulb-like
3067	termination of sub-basal nerves is shown in the inset. B. Sub-basal nerve plexus
3068	appearance in bullous keratopathy. There is a reduction in the density and
3069	thickness of the nerves. C. Tortuous sub-basal nerves in bullous keratopathy. D-F.
3070	Coiling, looping and twisting of tortuous stromal nerves, some surrounding dark
3071	lacunae, are seen at different depths within the stroma. Frame level; $A = 59 \mu m$,
3072	B=32, C=30 μ m, D = 189 μ m, E, 380 μ m, F =331 μ m. Bar =100 μ m. (reproduced
3073	with permission from Elsevier Inc., author's own publication Al Aqaba et al.
3074	2011a).
3075	Fig. 25. Correlation of confocal microscopy findings (Left column) with those
3076	observed on histology of whole mounts (Right column) in corneas with bullous
3077	keratopathy. A and B. A mid-stromal nerve characterised by localised nerve
3078	excrescences or thickenings (arrowheads) suggestive of early sprouting or
3079	representing stubs of degenerated nerves (arrows). C. A relatively thick stromal

3080 nerve with ill-defined margins at its bifurcation seen on confocal microscopy at

- the level of 126 μm. D. The confocal image in 'C' corresponds with extensive
- axonal sprouting seen at a stromal nerve bifurcation on histology. E and D.
- 3083 Confocal microscopy and histology images show looping and coiling of tortuous
- 3084 aberrant stromal corneal nerves. Bar = $100 \mu m$. (reproduced with permission from
- 3085 Elsevier Inc., author's own publication Al Aqaba et al. 2011a).

3086

Table 1. A list of techniques used for in vitro demonstration of corneal nerves.

Sensory nerves

1-Conventional light microscopy.

- Gold Chloride technique.
- Methylene blue staining technique.
- Sliver staining technique.
- Toluidine blue.

2-Light and electron microscopy after peptidergic and classic neurotransmitter staining.

- Whole mount cholinesterase technique.
- Calcitonin gene-related peptide detection.
- Substance P detection.
- Calcein acetoxymethyl ester
- Mixed staining technique.

3-Immunohistochemical staining.

• Anti-Class III β Tubulin (neuronal specific).

4-Retrograde nerve tracing technique.

• Horseradish peroxidise-wheat germ agglutinin (HRP-WGA) technique.

Autonomic nerves

1-Light and electron microscopy in ultrastructural immunohistochemical preparation.

- Antibodies against tyrosine hydroxylase.
- Sodium-potassium-glyoxylic acid-induced fluorescence technique.
- Formaldehyde-induced fluorescence technique.

2-Retrograde nerve tracing techniques.

• Horseradish peroxidise-wheat germ agglutinin (HRP-WGA) technique.

Highlights

- Sub-basal bulb-like structures and Limbal nerve corpuscles are two relatively recent discoveries where the structure has yet to be attributed a function.
- Dissociation of trophic and sensory functions, depending on the pre-ganglionic or post-ganglionic location of the lesion; and a discordance between objective signs and subjective symptoms in the clinical entities of 'pain without stain' and 'stain without pain' reflect the possible evolution of nerve pathology from hyperaesthesia to anaesthesia.
- In-vivo confocal microscopy and whole mount staining of normal and diseased corneas/corneal buttons has revealed that corneal nerves are not passive bystanders incorneal disease. It is likely that structural and/or functional nerve changes occur in all forms of corneal pathology.
- A wide range of pathology ranging from hyper-regeneration, aberrant regeneration, thickening, tortuosity, looping and coiling to thinning, disruption and complete absence, has been demonstrated in a number of conditions such as bullous keratopathy, keratoconus, dry eye disease, diabetic keratopahty, limbal stem cell deficiency, post-keratoplasty, refractive surgery and corneal infections.
- Inflammatory responses of resident epithelial cells, keratocytes and dendritic cells are integral to corneal nerve responses.

Author Statement

All authors contributed to the content of the manuscript as detailed below:

Al Aqaba M: Contributed to writing of the paper, montaging images and referencing.

Dhillon V: Contributed to the section on scanning electron microscopy of the sub-basal nerves and bulb-like structures.

Mohammed I: Contributed to the section on Limbal nerve corpuscles.

Said DG: Contributed to writing of the paper, reviewing the paper and montaging of images and referencing.

Dua HS: Contributed to the concept, outline, writing, reviewing and editing, critical discussion related to sections of the paper and montages of some images and part referencing.

All authors agree to the content of the paper.

Declaration of interests have been detailed in the title and affiliation page.

