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ABSTRACT 

With the current advances in the Internet of Things (IoT), 

smart sensors and Artificial Intelligence (AI), a new 

generation of condition monitoring solutions for smart 

manufacturing is starting to emerge. Computer 

Numerical Control (CNC) machines can now be 

sensorised and the vast amount of data generated can be 

processed using Machine Learning (ML) techniques. 

These can provide insights about the condition of the 

machine or tool in real-time, which can then be used by 

decision makers. This is fundamental in order to reach a 

new level of manufacturing capabilities in the context of 

Industry 4.0 (Lasi et al, 2014). Most current monitoring 

solutions rely on the off-line generation of models before 

they can be used online. This is not ideal when the data 

holds complex evolving features. There is a lack of 

approaches that are capable of determining what to learn 

and when to learn. This paper presents preliminary 

results on a new deep learning approach based on 

Bayesian Convolutional Neural Networks (BCNN) for 

online tool condition classification. Based on the 

uncertainty of the model, the proposed approach can 

determine using an entropy acquisition function if the 

incoming data cannot be classified, and therefore needs 

to be labelled and used for re-training. This constitutes 

the first step towards an online active learning tool 

condition monitoring approach. We demonstrate using a 

machine tool data set that the active learning approach 

can achieve similar accuracy of a deterministic 

Convolutional Neutral Network (CNN) with a smaller 

training data set. 

 
INTRODUCTION 

Industry 4.0 is a new paradigm which proposes the 

integration of Information and Communication 

Technology (ICT) into a “decentralized” production 

(Lasi et al, 2014). With sensorised manufacturing 

machines connected to a wireless network, controlled by 

advanced computational intelligence techniques, and a 

range of smart solutions for the monitoring, adaptation, 

simulation and optimisation of factories, Industry 4.0 is 

looking to attain new levels of manufacturing capability 

and adaptability.  

 

Intelligent machine condition monitoring is an important 

task in smart manufacturing. For machining operations 

with cutting tools such as drilling, milling or turning, the 

early detection of tool degradation is extremely important 

because worn tools have a negative effect on the surface 

quality of the workpiece and may even damage the 

machining system (Bonifacio and Diniz, 1994; Ambhore 

et al, 2015). Having a Tool Condition Monitoring (TCM) 

system to detect this degradation on time, can avoid 

either removing the tool too soon or too late, maintaining 

the quality of the workpiece. 

 

Real-time tool wear measurement is difficult to put in 

practice, as the tool is in continuous contact with the 

workpiece. The tool or workpiece would be analysed at 

the end of the machining cycle, through optical 

measurement, surface finishing measurement, chip size 

measurement, etc. If these procedures were to be done 

during the machining cycle, it would require frequent 

production stops to be able to detect degradation on time. 

Many of these stops would be unnecessary when the tool 

is in good condition, incurring in additional costs. To 

tackle this problem, prognostic approaches that work on 

indirect measurements have been proposed. These are 

normally based on sensor signals such as forces (Gosh et 

al., 2007), vibrations (Gouarir et al. 2018), acoustic 

emissions (Kima et al., 1999) and power consumption 

(Ambhore et al, 2015). 

 

Prognostic approaches can be classified into two types; 

model-based and data-driven. The major limitation of 

model-based solutions is that they rely on the prior 

understanding of the underlying dynamics of the system 

to be modeled (Hou et al., 2014).  For this reason, there 

has been an increasing interest on the use of data-driven 

approaches, where models are discovered using ML 

techniques. Support Vector Machines (SVMs), for 

example, have been successfully applied for tool 

condition monitoring in (Sun et al, 2004). The authors 

use Automatic Relevance Determination (ARD) on 
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acoustic emission data, to select nine features as inputs 

for classification. In (Salgado and Alonso, 2007), a least 

squares version of an SVM (LS-SVM) is used to estimate 

tool condition. The approach relies on the extraction of 

features of current and sound signals using techniques 

such as Singular Spectrum Analysis (SSA). Artificial 

Neural Networks (ANNs) have also been extensively 

applied for tool wear prediction. These commonly use a 

combination of cutting parameters such as cutting speed, 

feed rate, axial cutting length and statistical features of 

forces, vibrations and acoustic emission (Chungchoo and 

Saini, 2002; Ӧzel et al, 2005; Sanjay et al, 2005; 

Palanisamy et al, 2008). In applications such as drilling 

and milling, it has been shown how ANNs can 

outperform regression models. In (Wu et al, 2016), a tool 

wear prediction method based on Random Forests (RFs) 

is proposed. Although this approach has outperformed 

ANN and SVM based methods, it relies on the manual 

selection of features in order to build the internal 

classification structures. A thorough review on the use of 

sensor signals for indirect tool-wear monitoring can be 

found in (Dimla, 2000; Abellan-Nebot, 2010). 

 

Although classical ML techniques have been successful 

in TCM applications to some extent, there are several 

aspects that still need to be addressed. The large amount 

of data in smart manufacturing imposes challenges such 

as the proliferation of multi-variate data, high 

dimensionality of feature space and multicollinearity 

among data measurements (Wuest et al., 2016). In 

addition, most data-driven methods derive models from 

historical data, in a batch learning approach, which is not 

compatible with real-time processing. These methods 

assume that the distribution of data will not change 

through time, and require a complete dataset covering all 

possible situations in the monitoring process and a 

complete retraining from scratch when new patterns are 

observed. Data-driven methods lack in general of a way 

to determine when to learn and what to learn. In the 

Industry 4.0 context, industries are integrating Internet of 

Things (IoT) technologies and techniques, which demand 

more advanced solutions that can cope with online 

dynamic characteristics of the machining process 

(Pratama, 2017). 

 

This paper explores the application of BCNNs for the 

online classification of tool condition using sensor data 

streams. While the deep learning aspect of the approach 

allows automatic feature selection, the introduction of a 

probability distribution on the weights using Bayes offers 

better robustness to over-fitting on small data sets 

compared to traditional deep learning approaches. In 

addition, Bayesian deep learning allows the 

representation of the model uncertainty. This uncertainty, 

coupled with an acquisition function, can allow the 

implementation of an online active learning approach to 

tool condition monitoring. 

 

The rest of this paper is organised as follows: further 

details on related work on deep learning and active 

learning is provided. The methodology is then presented, 

providing the details of the classification method used, 

and how the data was generated and pre-processed. Then 

preliminary experiments and results of the proposed 

approach are presented followed by a discussion and 

future work. 

 

RELATED WORK 

 

Deep learning has offered better solutions than classical 

ML techniques when dealing with high dimensional 

evolving features. Its success has led to an emerging 

study of deep learning methods for condition monitoring. 

CNNs (LeCun, 2015), for example, have been used for 

the detection of faulty bearings (Li et al., 2017) by 

feeding raw vibration data, reducing the computational 

complexity of feature extraction. In construction, CNNs 

have also been applied for the real-time detection of 

structural damage in joints.  In (Terrazas et al., 2018), a 

time series image encoding method together with a CNN 

is used to perform the classification of a machine tool 

wear in real-time. The approach achieves good accuracy, 

however, the CNN is always expected to provide a 

classification, with no information regarding the 

confidence level of such classification. Recurrent Neural 

Networks (RNN) have been successful for the long-term 

prognosis of rolling bearing health status (Malhi et al., 

2011) and for the prediction of tool wear, gear fault and 

bearing fault diagnosis (Zhao et al., 2018). Another 

architecture that has been used is the bi-directional long 

short-term memory (LSTM) CNN. In (Zhao et al, 2017), 

this approach extracts local features from raw sensor data 

for the prediction of tool wear during milling. The 

technique achieves good accuracy when compared to 

other methods like RNN, although it performs a 

substantial reduction of the data, making unclear to what 

extent it affects the temporal correlations in the data. 

Although current deep learning solutions claim to have 

achieved high accuracy in different condition 

classification applications, the vast majority of these still 

carry out some sort of feature extraction, such as wavelets 

and Fourier Transforms (FFT) as a data pre-processing 

step, that could be argued is against the philosophy of 

deep learning (Khan and Yairi, 2018).  

 

In addition to the use of manual feature extraction, deep 

learning techniques that have been applied to TCM lack 

an active learning feature. Models need to be able to 

adapt as the characteristics of the sensor data streams 

change. A big challenge in many deep learning 

applications is obtaining large quantities of labelled data. 

A framework where a system could learn from small 

amounts of data and choose by itself what data needs 

labelling would make deep learning more flexible and 

more widely applicable. The idea behind active learning 

is to develop a model on an initial small training set and 

then use an acquisition function, often based on the 

model’s uncertainty, to decide which data points to ask  



 

 

an external oracle for a label. The acquisition function 

selects one or several data points from a pool of unlabeled 

data which is not currently on the training set. These 

selected data points are labelled by the oracle (usually the 

human expert) and then added to the training set for a new 

model to be trained. The advantage of these types of 

approaches, is that, in general, they tend to need less data 

to train than a conventional ML technique (Ghahramani 

et al., 2017).  

 

There have been some efforts on the application of active 

learning approaches for condition monitoring. Moshour 

et al. apply One Class Classifiers based on Self 

Organising Maps (OCSOM) and Support Vector 

Machines (OCSVM) to detect changes in vibration 

patterns for the diagnosis of broken bearings (Moshou et 

al, 2014). The proposed approach is able to progressively 

learn different stages of faults by generating new training 

sets as the one-class classifiers detect outliers. The 

construction of such one-class classifiers, however, 

depends on the manual extraction of features on the 

vibration data. Nguyen et al. present an active learning 

approach for the detection of the partial discharge of 

electrical assets in power grids (Nguyen et al., 2015). 

This approach relies on the feature extraction of power 

signals prior to training. To decide what new data points 

to select for training, a calculation of the posterior 

probability from the trained model is used. It is concluded 

that using an active learning approach, good accuracy can 

be achieved without having to train with a complete 

labelled data set. Pratama et al. develop an online tool 

condition monitoring based on an ensemble of fuzzy base 

classifiers and cutting forces (Pratama et al., 2018). The 

approach uses FFT to pre-process the dynamic occurring 

forces measured, and together with the mean value form 

the input data samples. Despite extensive literature 

review, there is no published implementation of a deep 

learning approach with automatic feature extraction from 

sensor data for condition monitoring that can provide 

uncertainty estimation of the tool state. The advantage of 

providing an uncertainty measure is that it can allow the 

implementation of an active learning method that can 

deal with changes in the distribution of sensor data 

streams.  

 
METHODOLOGY 

This section presents the two main steps of the 

methodology: the imaging of sensor signals using 

Gramian Angular Summation Fields (GASF) (Wang and 

Oates, 2015) and the classification and uncertainty 

characterisation of tool condition using a BCNN and an 

entropy-based acquisition function. This two-step 

methodology is presented in Figure 1.  

 

Time Series Imaging 

 

With the success of deep learning approaches for image 

classification, there has been a recent interest in 

reformulating time series data as images in order to 

improve their classification. In this work, we use the 

GASF method proposed by Wang and Oates to encode 

sensor data as images that will be later used for training 

the model. This image encoding method consists of two 

steps. First, the time series is represented in a polar 

coordinate system instead of the typical Cartesian 

coordinates. Thus, given a time series X= x1, x2, …, xn of 

n real-valued observations, X is rescaled so that all values 

fall in the interval [-1,1]. The time series can then be 

represented in polar coordinates by encoding the value as 

the angular cosine and the time stamp as the radius. In a 

second step, the angular perspective is exploited by 

considering the trigonometric difference between each 

point to identify the temporal correlation within different 

time intervals. Given a time series of size n, the resulting 

GASF image will be a matrix of n × n. Figure 2 shows 

an example of the steps explained.  

 

To reduce the size of the image, Piecewise Aggregation 

Approximation (PAA) is applied to smooth the time 

series while keeping the trends (Keogh and Pazzani, 

2000). As explained in the Experiments and Results 

Figure 1. Proposed methodology combining time series encoding and BCNN for active learning 

 

 



 

 

section, the amount of time series data that is acquired 

from the sensors is large, so PAA is fundamental to keep 

the images at a reasonable size without losing time 

coherence.  

 

Bayesian Convolutional Neural Networks 

 

CNNs have been very successful for image processing by 

extracting complex features automatically (Krizhevsky et 

al, 2012). However, they heavily rely on the availability 

of large amounts of data to avoid overfitting. Bayesian 

Neural Networks (BNNs), on the other hand, are robust 

to over-fitting when learning from small training sets. In 

addition, BNNs offer a probabilistic interpretation of 

deep learning models by inferring distributions over the 

models’ weights. This is done by adding dropout layers 

after all convolutional layers as well as inner-product 

ones (Gal and Ghahramani, 2016).   

 

Bayesian CNNs are CNNs with prior probability 

distributions placed over a set of model parameters w = 

{W1,…,WL}: 

                                     w ~ p(w)                               (1) 

 
with for example a standard Gaussian prior p(w). For 

the case of classification, the likelihood model is 

defined as: 

 

                       p(y=c|x,w) = softmax(fw(x))                (2) 

 

where fw(x) is the model output with parameters (w). To 

perform approximate inference in the Bayesian CNN 

model, stochastic regularisation techniques such as 

dropout are applied. Inference is done by training a model 

with dropout before every weight layer, and by 

performing dropout at test time as well to sample from 

the approximate posterior. Dropout can be interpreted as 

a variational Bayesian approximation, where the 

approximating distribution is a mixture of two Gaussians 

with small variances and the mean of one of the 

Gaussians is fixed to zero.  

 

The uncertainty in weights induces prediction uncertainty 

by marginalising over the approximate posterior using 

Monte Carlo integration, which can be written as: 

 

               p(y=c|x,Dtrain)≈ (1/T)(Σt=1p(y=c|x,ŵt))          (3) 

 

This is equivalent to performing T stochastic forward 

passes through the network and averaging the results. 

The uncertainty information provided by the model can 

then be used with an acquisition function appropriate for 

image classification to determine what new incoming 

images should be labeled. There are several acquisition 

functions such as Variation Ratios, Mean Standard 

Deviation, Information Gain (BALD), Entropy, among 

others (Gal et al, 2017). Here the Entropy maximisation 

was used (Eq. 4). 

 

H[y|x,Dtrain] = -Σcp(y= c|x,Dtrain)logp(y= c|x,Dtrain)  (4) 

 

EXPERIMENT AND RESULTS 

 

The proposed approach is studied for the classification of 

tool condition in an active learning scenario and 

compared to a deterministic CNN. In order to test the 

approach in the described scenarios, it was important to 

capture sensor signals accurately and to harvest and 

characterise the right data beforehand. To achieve this, a 

machining experiment was designed.  

 

Measurement of Forces During Dry Milling 

 

Cutting force is an important feature in milling, closely 

related to tool design geometry. For this reason, it was 

decided to monitor the cutting force as a preliminary 

experiment. This was done using a dynamometer (Kistler 

9255B) placed on the table of a Hermle C20U CNC 

milling machine. Forces (on the three axes) produced 

while face milling a mild steel workpiece were amplified 

and captured with a National Instruments data acquisition 

system. The workpiece (180×125×25mm) surface was 

machined line-by-line along the x axis with a 6mm two-

flute cutter. After finishing one pass along the x axis, the 

tool was retracted to start a new pass. This was done until 

half of the surface (half layer) was removed. Then the 

tool was removed from the tool holder and taken to a 

digital microscope, where high resolution images of the 

tool flutes were taken. These were then manually 

processed to measure the flank wear (VBb). The tool was 

returned to the tool holder to machine the remaining half 

layer of the workpiece and the flank wear measurement 

was taken again. This process was repeated until 9 layers 

of material were removed, point at which the tool was 

completely worn out. The cutting parameters used in the 

machining experiment were fixed to S = 4775 RPM, f = 

287mm/min, ae = 2.7mm and ap = 0.3mm. The 

experimental setup is shown in Figure 3. 

 

Figure 2. Imaging of time series using GASF 

 



 

 

 

 

Figure 3. Machining experimental setup. Interior of the 

Hermle CNC machine with (1) end milling tool, (2) 

mild steel workpiece and (3) Kistler 9255B 

dynamometer 

 

Data Pre-Processing 

 

Once the sensory data was acquired, it was cleaned to 

remove those force measurements that were taken while 

the tool was not in contact with the workpiece (end and 

beginning of each tool pass). From all the data collected 

while machining, it was decided to only use the data that 

corresponded to the middle part of the workpiece in order 

to disregard any potential noise that could be affecting 

the force signals when entering and exiting the 

workpiece. From each layer and middle section, 4800 

samples of 2000 measurements each were taken. The 

cutting forces of each sample, Fx, Fy and Fz, were 

encoded as separate images using GASF, and then 

reduced with PAA from an image of 2000 × 2000 pixels 

to an image of 256 × 256 pixels. The three images 

corresponding to one sample were then combined as one 

3-channel image.  

 

To label the images, four classes were defined, according 

to how the tool flank wear progressed through the 

machining experiment. Classes are defined as Break-in, 

Steady, Severe and Failure as shown in Figure 4. Once 

the classes were defined, the images were labeled 

according to the removed layer they belong to.  

 

 
Figure 4. Evolution of the tool flank wear across the 

Break-in, Steady, Severe and Failure classes 

 

 

 

Model Training and Testing 

 

The Bayesian CNN and the active learning algorithm 

were implemented in Python using Keras libraries 

(following the implementation from Gal et al. (Gal et al., 

2016)). The structure used was as follows: convolution-

relu, maxpooling, convolution-relu, maxpooling, 

dropout, dense (384 units), relu, dropout, dense (192 

units), relu, dropout, dense softmax, with 64 convolution 

kernels (16x16) in the first convolution, 64 convolution 

kernels (8x8) in the second convolution and dropout 

probabilities 0.25 and 0.5.  

 

As it can be seen in Figure 4, the sensor data is 

unbalanced, with less samples of the Break-in class 

compared to other classes. However, since the data set is 

large (4800 images per layer), a subset of these was taken 

as an initial training and test set, making sure classes were 

represented equally (balanced). The balanced dataset set 

comprised of 1428 images, of which 70% was used for 

training (250 images per class) and 30% for testing. The 

active learning approach was implemented as follows: 

the model described above was first trained for 100 

epochs with a small data set of 100 images, 25 of each 

class, using a validation set of 200 images. The rest of the 

training samples (600 images) were used as the pool from 

which the new images will be selected for labelling and 

training. Once trained, the approach determines which 

images from the pool maximise the predictive entropy 

and selects the top 100 to be labelled and incorporated in 

the existing training set. The model is re-trained (100 

epochs) and this is repeated until good accuracy is 

achieved. A result previously reported in (Terrazas et al, 

2018) was used as reference accuracy value. The reported 

results were obtained on a deterministic CNN with the 

same architecture and same training/test set. 

 

Results 

 

The CNN experiment reported in (Terrazas et al., 2018) 

achieved an accuracy of 78% using the complete training 

set (1000 images) and executed for 100 epochs. This was 

used as a reference value in the active learning 

experiment. Two experiments of the active learning 

approach were executed, one using the entropy 

acquisition function, and another one using a random 

acquisition function, which samples from a uniform 

distribution. This was done to make sure the entropy 

acquisition function could provide an improvement over 

a purely random approach. Figures 5 and 6 show the 

training and test set accuracy results obtained at each 

acquisition iteration, starting from acquisition 0 (initial 

random training set) up to acquisition 3 for both 

experiments. 

 



 

 

 
Figure 5. Accuracy on the training set at different 

acquisition iterations using entropy maximization and a 

random approach 

 

As it can be observed, the experiment using the entropy 

acquisition function can achieve a similar accuracy as the 

deterministic CNN with far less images. Also, it can be 

seen that the entropy compared to the random 

acquisition, allows the approach to make use of the 

uncertainty information to determine which new images 

need to be labelled and used for re-training, improving, 

as a result, the test accuracy over time. It can also be 

observed in Figure 6 that at iteration step 3 the accuracy 

on the test set decreases for the first experiment. A 

possible explanation for this is that the algorithm selected 

in this iteration noisy images that increased the 

uncertainty of the model, decreasing the overall 

accuracy. An inspection of the images acquired at each 

iteration could provide more information to explain the 

decrease.  The active learning approach nevertheless 

provides an advantage over the use of a complete, 

labelled data set. 

 

 
Figure 6. Accuracy on the test set at different 

acquisition iterations using entropy maximization and a 

random approach 

 

 

CONCLUSIONS 

 

This paper presents an active learning approach to tool  

condition monitoring using Bayesian Deep Learning. 

Preliminary results show the ability of the approach to 

select those images that need to be labelled and used for 

re-training when using an acquisition function compared 

to a random selection. The active learning approach can 

achieve comparable results with less images than the 

deterministic CNN. Future work will include the 

experimentation with different architecture and training 

hyper parameters to improve accuracy as well as 

experimentation with other acquisition functions such as 

information gain maximisation (BALD), variation ratios, 

among others. Analysis of the images acquired at each 

iteration step will be performed to have a better 

understanding of how the acquisition function is 

working. 
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