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SUMMARY

This paper presents an algorithm for the computation of full-complexity polytopic robust control invariant
(RCI) sets, and the corresponding linear state feedback control law. The proposed scheme can be applied
for linear discrete-time systems subject to additive disturbances and structured norm-bounded or polytopic
uncertainties. Output, initial condition and performance constraints are considered. Arbitrary complexity of
the invariant polytope is allowed to enable less conservative inner/outer approximations to the RCI sets,
while the RCI set is assumed to be symmetric around the origin. The nonlinearities associated with the
computation of such an RCI set structure are overcome through the application of Farkas’ Theorem and a
corollary of the Elimination Lemma to obtain an initial polytopic RCI set, which is guaranteed to exist under
certain conditions. A Newton-like update, which is recursively feasible, is then proposed to yield desirable
large/small volume RCI sets. Copyright c© 0000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Robust Control Invariant (RCI) sets determine a bounded region to which the system state can be
confined, for all possible disturbances/uncertainties, through the application of a feedback control
law [1, 2]. Therefore, RCI sets are widely used in the analysis and design of robust control schemes
for uncertain systems. In particular, these sets are of primary importance in establishing the stability
and recursive feasibility of Robust Model Predictive Control (RMPC) Schemes, see e.g. [3], [4] and
the references therein. Invariant sets also form an important part of the tube-based MPC schemes
[5], [6]. Furthermore, they serve as suitable target sets in robust time-optimal control schemes [7],
[8].

Due to their widespread application, the problem of efficient computation of RCI sets has been
studied extensively over the past few decades, see [1] and [2] for a comprehensive literature survey.
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2 C LIU, FURQAN TAHIR AND I.M. JAIMOUKHA

The two main RCI set structures considered in the literature are polytopic and ellipsoidal [9]. For
these structures, the problem of computing the minimal- as well as the maximal-volume RCI set is
important and, in most cases, intractable. For example, it is shown in [9] that the exact computation
of the minimal invariant set for uncertain systems involves the Minkowski’s sum of infinitely many
terms, which leads to intractability unless the system dynamics are nilpotent [8]. Therefore, most
of the research has been focused on efficient computation of suitable (less conservative) inner/outer
approximations to the maximal/minimal RCI set, which is discussed in the following paragraphs.

In [10], a method to compute an outer approximation of the minimal invariant set has been
proposed for linear systems with additive disturbances. This approach was subsequently extended
in [11] to the degenerate disturbance case. However, both these schemes employ a constant, pre-
computed feedback control law which can lead to excessive conservatism. In [12] and [13], in
contrast, methods are derived to compute control laws which render a fixed set invariant. It is clear
that in order to optimize the size of the invariant set, the best approach is to simultaneously consider
both the feedback control law and RCI set as decision variables in the optimization. In this regard,
[14] presents a method to compute both the inner ellipsoidal approximation of the RCI set as well
as the nonlinear control law for controllable linear system. However, as discussed in [1], generally
the polytopic representation is not only less conservative than its ellipsoidal counterpart but also
more naturally captures the physical constraints on state and control variables. Therefore, we focus
on polytopic RCI sets in this paper.

In [15] and [16], the invariance conditions for the computation of polytopic RCI sets for discrete-
time systems without uncertainty or disturbances have been presented. [17] presents a method of
obtaining the maximal RCI set by iteratively imposing auxiliary constraints for linear systems with
polytopic uncertainty and linear state feedback under the assumption that the system is robustly
asymptotically stable. Algorithms for computing maximal RCI sets for stabilizable linear systems
with polytopic uncertainty are also reported in [18] (for variable controllers) and [19] (for fixed
controllers).

More recently, research in the literature has focused on the computation of low-complexity
polytopic RCI sets, in which the the maximum number of faces of the polytope is equal to twice
the dimension of the state–space. This is due to their computational advantages for the associated
control schemes as well as their reduced conservatism in comparison to ellipsoidal RCI sets (see
[20] for details). In [21], necessary and sufficient conditions are derived for the existence of
a low-complexity polyhedral RCI set for discrete-time systems with uncertainty, and the set is
computed, for a given feedback control law, by solving a quadratic optimization problem. A unified
approach to determine the maximal RCI set for saturated linear system under some mathematical
assumption is proposed in [22]. An algorithm that optimizes both the maximal polytopic RCI set
and the feedback controller simultaneously is proposed in [23] for nonlinear systems, though the
computation complexity for obtaining such an RCI set is substantially increased owing to the
large number of variables involved. In [24], an efficient method was proposed to compute the
maximal/minimal hyper-rectangular RCI set (which is a special case of low-complexity polytopic
set) and the corresponding control law for linear discrete-time systems subject to bounded additive
disturbances and polytopic input constraints in one step through a single LMI optimization problem.
However, the hyper-rectangular set structure is, in general, conservative. In [20], a new algorithm
to compute both the maximal low-complexity RCI set as well as the corresponding control law was
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proposed for systems with polytopic uncertainties. Finally, in [25], the authors developed an LMI-
based algorithm, using a slack variable approach, to compute the maximal/minimal low-complexity
RCI set for norm-bounded uncertain systems with additive disturbances. The results reported in this
work demonstrated an improved set-volume in comparison to the existing schemes in the literature.

Although less conservative than the ellipsoidal set, the low-complexity polytopic RCI set structure
is still restrictive due to the constraint on the number of faces of the polytope. To remedy this, [26]
proposed a full-complexity RCI set, where an arbitrarily large number of faces could be specified
for the polytope. However, the scheme considered linear discrete-time systems with only additive
disturbances and state/input constraints and proposed a simple maximization update procedure.

In this paper, we substantially extend the work in [26] by proposing an algorithm to efficiently
compute full-complexity RCI sets, for linear systems with structured norm-bounded/polytopic
uncertainty as well as additive disturbances. Moreover, in addition to the state/input constraints,
output constraints as well as initial condition and H2 performance constraints are also handled
within the formulation in a unified framework. The proposed scheme enables the computation of
inner/outer approximations to both maximal/minimal RCI sets (the scheme in [26] only considered
the maximization problem). The proposed method computes an initial full-complexity inner/outer
approximation to the maximal/minimal RCI set as well as the corresponding feedback gain through
convex/LMI optimization. The volume of this initial invariant set is then iteratively optimized
(minimized/maximized) based on a Newton-like update procedure. Through numerical examples, it
is shown that the proposed algorithm can result in a substantially improved RCI set (volume-wise) as
compared to the low-complexity set computation methods proposed in the literature. Furthermore,
the iterative algorithm guarantees recursive feasibility and the existence of an initial solution under
certain conditions. Finally, unlike the simple update procedure given in [26], the proposed iterations
are based on a Newton-like update which results in an observed quadratic speed of convergence.

The efficiency of the proposed algorithm is compared with that in the literature in Section 7. The
first example presents a 4th order nominal system, and our algorithm provides a larger maximal
approximations of the RCI sets compared with the methods used in [27] and [28]. The second
example demonstrates the efficiency of our proposed result (Theorem 4) to obtain an initial RCI set,
and illustrates that the proposed algorithm can provide smaller minimal approximations of the RCI
sets compared with the methods in [29] and [10]. The third and fourth examples show the efficiency
of the proposed algorithm for systems with polyhedral and norm-bounded uncertainty, respectively.
Notation: The notation A � 0 (A ≺ 0) denotes that the symmetric matrix A is positive (negative)
definite. For an integer m ≥ 1, we define Im = {1, . . . ,m}. The comparison between two vectors
a, b ∈ Rn is taken element-wise with a > b implying that ai > bi, ∀i ∈ In (similarly for a < b,
a ≥ b, and a ≤ b ). Dm+ denotes the set of positive semidefinite diagonal and Sm+ denotes the
set of positive definite symmetric matrices of dimension m×m. The m×m identity matrix is
denoted as Im and its ith column, where m is defined by the context, is denoted as ei. The symbol
0m×n represents the m× n null matrix, with the dimensions omitted when defined by the context.
The vector of ones is denoted as e with the dimension deduced from the context. The block
diagonal matrix with the ith diagonal block Ai is denoted as diag(A1, . . . , Am). A congruence
transformation T for the matrix inequality A ≺ 0 implies pre- and post- multiplication by T and
TT for the inequality to deduce TATT ≺ 0. A Schur complement corresponds to the result that
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C −BTA−1B ≺ 0 is equivalent to

[
A B

? C

]
≺ 0 if A = AT ≺ 0 and C = CT , where ? denotes

a term deduced from symmetry. For P ∈ Rm×n and 0 < b ∈ Rm, we use the notation P(P, b) to
donate the polytope {x ∈ Rn : −b ≤ Px ≤ b}. For Q ∈ Sn+, we use the notation E(Q) to denote the
ellipsoid {x ∈ Rn : xTQx ≤ 1}.

2. PROBLEM DESCRIPTION

This paper considers constrained, linear discrete-time systems. In this section, the structure of the
disturbances and uncertainties of the system are stated, and some preliminary results for the RCI set
computation are introduced.

2.1. System model

Consider a linear discrete time system with disturbances, model uncertainties and state feedback

[
x+

y

]
=

[
Ã B̃ Bw

C D Dw

] x

u

w

, u = Kx, (1)

with

[
x+

y

]
∈

[
Rn

Rny

]
,

[
Ã B̃ Bw

C D Dw

]
∈

[
Rn×n Rn×nu Rn×nw

Rny×n Rny×nu Rny×nw

]
,

 x

u

w

∈
 Rn

Rnu

Rnw

,
where x is the current state, x+ is the successor state and u and w denote the current control and
disturbance signals, respectively. Here, Ã and B̃ belong to the norm–bounded structured uncertainty
set:

Ω := {(Ã, B̃) : [Ã B̃] = [A B] +Bp∆[Cq Dq], ‖∆‖ ≤ 1, ∆ ∈∆ ⊆ Rnp×nq}, (2)

where A ∈ Rn, B ∈ Rn×nu , Bp ∈ Rn×np , Cq ∈ Rnq×n and Dq ∈ Rnq×nu are given matrices, and
where it is assumed that the subspace B associated with the structured subspace ∆ in Lemma 1
below can be defined. We also consider polytopic model uncertainty; see Remark 7 below. We
assume that the disturbance w belongs to a bounded polytope W := P(V, d) where V ∈ Rmw×nw

and 0 < d ∈ Rmw are given. In the sequel, we consider two types of constraints: an output constraint
related to the signal y in (1) and an H2-norm performance constraint.

2.2. Robust control invariant set

Standard procedures of calculating admissible RCI sets require a pre-defined structure for
computational tractability [1]. A full-complexity polytopic structure, whose advantages have been
shown in [26], will be considered in this paper. This has the form P(P, b) = {x ∈ Rn : −b ≤ Px ≤

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
Prepared using rncauth.cls DOI: 10.1002/rnc.4573



POLYTOPIC RCI SETS 5

b} where 0 < b ∈ Rm, P ∈ Rm×n and m ≥ n; m can be chosen based on the required accuracy.
Note that for m = n, P(P, b) reduces to a low-complexity polytope (see e.g. [20, 25]).

The requirements on an RCI set [30] include invariance and output constraint satisfaction. For
system (1), set P(P, b) and given 0 < ȳ ∈ Rny , these can be written as

x ∈ P(P, b)

w ∈ W
(Ã, B̃) ∈ Ω

⇒ x+ ∈ P(P, b) (Invariance) (3)

and {
x ∈ P(P, b)

w ∈ W

}
⇒ y ∈ Y (Output constraint) (4)

respectively, where Y := P(Iny
, ȳ). Since RCI sets are in general not unique, the maximal RCI set

is defined in terms of unions of all such sets, and the minimal RCI set under a specific control law is
defined in terms of intersections of the RCI sets corresponding with that control law. For RCI sets
of a pre–defined structure, this definition is modified to optimize the volume of these sets. Maximal
RCI sets are associated with target sets in the state–space and are required to be large, since they
are associated with switching from on–line to off–line control once the state is inside the set. Since
a direct characterization of the volume of a polytope is not feasible when m>n, we introduce an
inner bounding ellipsoid E(Q), require ∃Q ∈ Sn+ such that

E(Q) ⊂ P(P, b) (Inner bounding ellipsoid) (5)

and maximize log det(Q−1). Maximal RCI sets are also required to be sufficiently small so that the
performance is acceptable once the state is inside. While the volume is to some extent limited by
the output constraint requirement, we further impose a performance constraint as follows. Consider
the cost signal

z = C2x̄+D2ū, (6)

where z ∈ Rnz , C2 ∈ Rnz×n, D2 ∈ Rnz×nu , and x̄+ = Ãx̄+ B̃ū, ū = Kx̄ represent the nominal
system of (1). With zk denoting the current cost signal z and r a required performance level, we
require {

x̄ ∈ P(P, b)

(Ã, B̃) ∈ Ω

}
⇒ J :=

∞∑
k=0

‖zk‖2 < r2 (H2−norm constraint) (7)

Note that the cost signal z is exclusive of additive disturbance.
Minimal RCI sets are associated with initial states, and are required to be small. To this end, we

introduce an outer bounding ellipsoid E(Q̄), requiring ∃Q̄ ∈ Sn+ such that

P(P, b) ⊂ E(Q̄) (Outer bounding ellipsoid) (8)

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
Prepared using rncauth.cls DOI: 10.1002/rnc.4573



6 C LIU, FURQAN TAHIR AND I.M. JAIMOUKHA

and minimize log det(Q̄−1). Minimal sets are also often required to include an initial state set [5]
and so, for given P0 ∈ Rm0×n and 0 < b0 ∈ Rm0 , we require

P(P0, b0) ⊆ P(P, b) (Initial constraint) (9)

For given system (1) and (6), sets Ω,W,Y,P(P0, b0), parameter r and m ≥ n, and with (P, b,K) ∈
Ψ := Rm×n ×Rm ×Rnu×n, we present convex algorithms, based on semidefinite programs (SDP),
to solve the optimizations:

max
P, b,K

log detQ−1, min
P, b,K

log det Q̄−1.

subject to (3), (4), (5), (7) subject to (3), (4), (8), (9)
(10)

A triple (P, b,K) ∈ Ψ satisfying either of the constraints in (10) will be called admissible.

3. NONLINEAR FORMULATION

In this section, we derive conditions, in the form of nonlinear matrix inequalities (NLMIs), for the
admissibility of (P, b,K) ∈ Ψ. While previous work uses Farkas’ Lemma, we will use the following
version of Farkas’ Theorem instead since expressing the constraints in quadratic form will be shown
to offer computational advantages.

Theorem 1 ([31])
Suppose that C ⊆ Rr and f1, . . . , fs : Rr → R are convex and satisfy the Slater condition (i.e.
∃z̄ ∈ relint(C)⇒ fj(z̄) ≤ 0, j = 1, . . . , s) [32]. Let f0 : Rr → R and define the system

S : {f0(z) < 0; fj(z) ≤ 0, j = 1, . . . , s; z ∈ C}.

Consider the statements

(a) ∃y1, . . . , ys ≥ 0 : f0(z) +
∑s

j=1 yjfj(z) ≥ 0,∀z ∈ C.
(b) S is not solvable.

Then (a) ⇒ (b). Furthermore, if f0 is convex, then (a) ⇔ (b).

The next well–known result is used for norm–bounded structured uncertainties.

Lemma 1 ([33])
Given T1 = TT1 ∈ Rr×r, T2 ∈ Rr×np , T3 ∈ Rnq×r and ∆ ⊆ Rnp×nq . Define the subspace

B = {(S, T,R) ∈ Snp

+ × S
nq

+ ×Rnp×nq : S∆ = ∆T , ∆RT +R∆T = 0 ∀∆ ∈∆ },

and consider the statements:

(a) ∃(S, T,R) ∈ B :

[
T1 − T2ST

T
2 TT3 + T2R

? T

]
� 0.

(b) T1 + T2∆T3 + (T2∆T3)T � 0 ∀∆ ∈∆, ‖∆‖ ≤ 1.

Then (a)⇒(b). Furthermore, if np = nq and ∆ = Rnp×np , then (a)⇔(b).
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The following theorem uses the previous two results to derive conditions, in the form of NLMIs,
for the existence of an admissible triple (P, b,K) ∈ Ψ [26].

Theorem 2
Let all definitions be as above and denote

AK := A+BK, CK := C +DK, CKq := Cq +DqK, C
K
2 := C2 +D2K.

Then for (P, b,K) ∈ Ψ we have:

1. The invariance condition (3) is satisfied if (and only if when np = nq and ∆ = Rnp×np),


Di∈Dm+
Wi∈Dmw

+

(Si,Ti,Ri)∈B

,



2eTi b−bTDib−dTWid eTiP
[
Bw BpSi BpRi A

K
]

?


V TWiV 0 0 0

? Si 0 0

? ? Ti CKq

? ? ? PTDiP




� 0,∀i∈Im. (11)

2. The output constraint condition (4) is satisfied if and only if,

[
Ej ∈ Dm+
Gj ∈ Dmw

+

]
,

2eTj ȳ − bTEjb− dTGjd eTj Dw eTj C
K

? V TGjV 0

? ? PTEjP

 � 0,∀j ∈ Iny . (12)

3. The inner bounding ellipsoid condition (5) is satisfied if and only if

Q ∈ Sn+; µi ≥ 0,

[
2eTi b− µi eTi P

? µiQ

]
� 0, ∀i ∈ Im. (13)

4. The H2-norm constraint condition (7) is satisfied if

 Q ∈ Sn+
Dz ∈ Dm+

(S, T,R) ∈ B

,

Q−BpSBTp 0 BpR AK

? rI 0 CK2

? ? T CKq

? ? ? Q−1

�0,

[
Q I

? PTDzP

]
�0, r>bTDzb. (14)

5. The outer bounding ellipsoid condition (8) is satisfied if[
D̄ ∈ Dm+
Q̄ ∈ Sn+

]
, PT D̄P − Q̄ � 0, 1 > bT D̄b. (15)

6. The initial constraint condition (9) is satisfied if and only if

Fi ∈ Dm0
+ ,

[
2eTi b− bT0 Fib0 eTi P

? PT0 FiP0

]
� 0,∀i ∈ Im. (16)
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Hence solutions to the optimizations in (10) can be obtained by solving the nonlinear SDPs

max log detQ−1, min log det Q̄−1.
P,b,K,Di,Wi,Si,Ti,Ri,Ej ,Gj ,µi,Q,Q,Dz,S,T,R P,b,K,Di,Wi,Si,Ti,Ri,Ej ,Gj ,D̄,Q̄,Fi
subject to (11), (12), (13), (14) subject to (11), (12), (15), (16)

(17)

Proof
The proof is an application of Lemma 1 and Farkas’ Theorem. In more detail:

1. The invariance condition (3) is equivalent to the requirement that for all i ∈ Im and for all
(Ã, B̃)∈Ω,{

(eTj Px)2 − (eTj b)
2 ≤ 0,∀j ∈ Im

(eTk V w)2 − (eTk d)2 ≤ 0,∀k ∈ Imw

}
⇒ 2eTi

(
b− P ((Ã+ B̃K)x+Bww)

)
≥ 0.

For each i ∈ Im, we use Theorem 1 with C = Rr, r = n+ nw, s = m+mw, zT =[
xT wT

]
, and

f0(z) = 2eTi
(
b− P ((Ã+ B̃K)x+Bww)

)
= 2eTi b− eTi P

[
Ã+ B̃K Bw

]
z − zT

[
(Ã+ B̃K)T

BTw

]
PT ei;

fj(z) = zT

[
PT

0

]
eje

T
j

[
P 0

]
z − bT ejeTj b, j = 1, 2, . . . ,m;

fj(z) = zT

[
0

V T

]
eje

T
j

[
0 V

]
z − dT ejeTj d, j = m+ 1,m+ 2, . . . ,m+mw.

Note that in the last two expressions for fj(z), ej has different dimensions which can be
deduced from the context. Then we have f0(z) +

∑s
j=1 yjfj(x) = aTNia, where aT :=[

−1 wT xT
]
, and

Ni :=

2eTi b− bTDib− dTWid eTi PBw eTi P (Ã+ B̃K)

? V TWiV 0

? ? PTDiP

,
with Di = diag(y1, y2, . . . , ym) and Wi = diag(ym+1, ym+2, . . . , ym+mw

). Since f0 is linear,
it is convex, and it follows from Theorem 1 that for Di∈Dm+ , Wi∈Dmw

+ , and (P, b,K) ∈ Ψ,
the invariance condition is equivalent to Ni � 0.
Now for each i ∈ Im, let Ni = T i1 + T i2∆T i3 + (T i2∆T i3)T with (T i2)T =

[
BTp P

T ei 0 0
]

and T i3 =
[
0 0 (Cq +DqK)

]
. Then following Lemma 1, we have ∃(Si, Ti, Ri) ∈ B :


2eTi b− bTDib− dTWid− eTi PBpSiBTp PT ei eTi PBw eTi PA

K eTi PBpRi

? V TWiV 0 0

? ? PTDiP (CKq )T

? ? ? Ti

 � 0
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as a sufficient condition for Ni � 0. Following a congruence transformation
1 0 0 0

0 I 0 0

0 0 0 I

0 0 I 0

,

and a Schur complement for the (1, 1) entry provide the sufficiency of (11).

2. The proof is similar to Part 1 and follows from Theorem 1 and some manipulations.

3. The inner bounding ellipsoid condition (5) is equivalent to the requirement that for all i ∈ Im,

xTQx− 1 ≤ 0⇒ 2eTi (b− Px) ≥ 0.

The result then follows from Theorem 1 using a procedure similar to Part 1.

4. For any x̄ ∈ P(P, b), a minor extension of the results in [34] (Theorem 1 in Section 3.1) gives
the first inequality in the H2-norm constraint condition (14) and

r − x̄TQ−1x̄ ≥ 0 (18)

as sufficient conditions for J < r2,∀(Ã, B̃) ∈ Ω. Using a procedure similar to Part 1,
Theorem 1 then gives the second and third inequalities in (14) as sufficient conditions for
(18) to be satisfied for all x̄ ∈ P(P, b).

5. The outer bounding ellipsoid condition (8) is equivalent to the requirement that

(eTj Px)2 − (eTj b)
2 ≤ 0 ∀j ∈ Im ⇒ 1− xT Q̄x ≥ 0.

The result then follows from Theorem 1.

6. The initial constraint condition (9) is equivalent to the requirement that for all i∈Im,

(eTj P0x)2 − (eTj b0)2 ≤ 0 ∀j ∈ Im0
⇒ 2eTi (b− Px) ≥ 0.

The result then follows from Theorem 1.

Finally, (17) follows from 1–6 above.

Remark 1
Although we give non-strict inequalities in (11)-(13), and (16) in order to emphasize the necessity
and sufficiency of the statements, these will be replaced by strict inequalities in the sequel in order
to avoid dealing with numerical difficulties associated with optimality. It follows that, in common
with other LMI problems [35], the algorithms resulting from the use of Theorem 2 may become
badly conditioned near optimality.

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
Prepared using rncauth.cls DOI: 10.1002/rnc.4573



10 C LIU, FURQAN TAHIR AND I.M. JAIMOUKHA

4. LINEARIZATION AND INITIAL COMPUTATION

Nonlinearities of the conditions derived in Theorem 2 exist in the terms eTi PH (where H denotes
BpSi, BpRi, or AK), bTHb (where H denotes Di, Ej , or D̄), PTHP (where H denotes Di, Ej ,
Dz , or D̄), and µiQ. Furthermore, the fact that matrix P is considered to be non-square prevents
the direct application of the linearization procedure presented in [25]. In this section we propose a
linearization algorithm, extending the basic ideas proposed in [26], that involves the computation of
an initial solution. An update algorithm is then presented in the next section.

We set
P(P, b) = P(PrX, br) = {x ∈ Rn : −br ≤ PrXx ≤ br}

as an initial full-complexity inner/outer approximation to the maximal/minimal RCI set, where br
and Pr are given (see Remark 2), and where X ∈ Rn×n is a variable used to reshape (rotate and
scale) the polyhedral set defined by Pr.

The following is a corollary of the Elimination Lemma [36] and is used for the initial linear
solution.

Corollary 1
[26] Given T ∈ Sn+, E∈ Rn×p, F ∈ Rp×m, Z∈ Sm+ and Y ⊆ Rp×p. Consider the statements:

(a)

T EY 0

? Y T + Y F

? ? Z

 � 0 holds for some Y ∈ Y.

(b)

[
T EF

? Z

]
� 0.

Then (a) ⇒ (b). Furthermore, if Y = Rp×p, then (a) ⇔ (b).

The following result gives sufficient conditions for the admissibility of the triple (PrX, br,K) in
the form of LMIs by using Corollary 1.

Theorem 3
Let all the definitions be as above and let P = PrX and b = br, where Pr ∈ Rm×n and br ∈ Rm are
given and where X ∈ Rn×n. Denote

X̂ := X−1, K̂ := KX−1, Â := AX̂ +BK̂,

Ĉ := CX̂+DK̂, Ĉq := CqX̂+DqK̂, Ĉ2 := C2X̂+D2K̂.

Then

1. The invariance condition (11), hence (3), is satisfied if, with

l̂i(λi, D̂i, Ŵi) := 2λie
T
i br − bTr D̂ibr − dT Ŵid,
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
λi > 0
D̂i ∈ Dm+
Ŵi ∈ Dmw

+

(Ŝi,T̂i,R̂i)∈B

,


l̂i(λi,D̂i,Ŵi) λie
T
iPr 0 0 0

? X̂+X̂T−BpŜiBTp Bw BpR̂i Â

? ? V TŴiV 0 0

? ? ? T̂i Ĉq

? ? ? ? PTr D̂iPr


�0,∀i∈Im. (19)

2. The output constraint condition (12), hence (4), is satisfied if and only if

[
Ej ∈ Dm+
Gj ∈ Dmw

+

]
,

2eTj ȳ − bTr Ejbr − dTGjd eTj Dw eTj Ĉ

? V TGjV 0

? ? PTr EjPr

�0,∀j ∈ Iny . (20)

3. The inner bounding ellipsoid condition (13), hence (5), is satisfied if

Q−
1
2 ∈ Sn+;

[
µ̂i > 0
γi > 0

]
,

2γie
T
i br − µ̂i γie

T
i Pr 0

? X̂ + X̂T Q−
1
2

? ? µ̂iIn

 � 0,∀i ∈ Im. (21)

4. The H2-norm constraint condition (14), hence (7), is satisfied if


ζ > 0

Q̂ ∈ Sn+
D̂z ∈ Dm+

(Ŝ, T̂ , R̂)∈B

 ,

Q̂−BpŜBTp 0 BpR̂ Â

? (2−ζ)rI 0 Ĉ2

? ? T̂ Ĉq

? ? ? X̂+X̂T−Q̂

�0,

[
Q̂ X̂

? PTr D̂zPr

]
�0, ζr > bTr D̂zbr. (22)

5. The outer bounding ellipsoid condition (15), hence (8), is satisfied if

[
D̄ ∈ Dm+
Q̄−1 ∈ Sn+

]
,

[
Q̄−1 X̂

? PTr D̄Pr

]
� 0, 1 > bTr D̄br. (23)

6. The initial constraint condition (16), hence (9), is satisfied if and only if

[
νi > 0

F̂i ∈ Dm0
+

]
,

2νie
T
i br−bT0 F̂ib0 νie

T
i Pr 0

? X̂+X̂T In

? ? PT0 F̂iP0

�0,∀i ∈ Im. (24)

Hence initial solutions to the optimizations in (10) can be obtained by solving the convex SDPs

max log detQ−
1
2 , min trace(Q̄−1).

X̂,K̂,λi,D̂i,Ŵi,Ŝi,T̂i,R̂i,Ej,Gj,Q
− 1

2,µ̂i,γi,ζ,Q̂,D̂z,Ŝ,T̂,R̂ X̂,K̂,λi,D̂i,Ŵi,Ŝi,T̂i,R̂i,Ej,Gj,D̄,Q̄
−1,νi,F̂i

subject to (19),(20),(21),(22) subject to (19),(20),(23),(24)
(25)
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12 C LIU, FURQAN TAHIR AND I.M. JAIMOUKHA

Proof
The proof consists in manipulating each of (11)-(16) into the form of statement (2) of Corollary 1
and then use the corollary to show that (19)-(24), after some manipulation, correspond to statement
(1) with an appropriate Y , and are therefore sufficient conditions for (11)-(16) and hence for (3)-(9),
respectively. In detail:

1. Applying Corollary 1 on the invariance condition (11) (with E = eTi PrX and Y = λiX
−1),

effecting a Schur complement and the congruence diag(λ
1
2

i , λ
− 1

2

i In, λ
1
2

i Inw
, λ
− 1

2

i Inq
, λ

1
2

i X
−1)

shows that (19) implies (11) upon the redefinitions

D̂i := λiDi, Ŵi := λiWi, Ŝi := λ−1
i Si, T̂i := λ−1

i Ti, R̂i := λ−1
i Ri. (26)

2. Effecting the congruence diag(1, Inw
, X−T ) on the output constraint condition (12) shows

that it is equivalent to (20).

3. Applying Corollary 1 (with E=eTi PrX and Y =γiX
−1) on the inner bounding ellipsoid

condition (13), implementing the congruence diag(γ
1
2

i , γ
− 1

2

i In, γ
1
2

i Q
− 1

2 ) shows that (21)
implies (13) upon the redefinition

µ̂i := γiµi. (27)

4. Effecting the congruence diag(ζ−
1
2 In, ζ

1
2X−T ) shows that the second inequalities of (14)

and (22) are equivalent while the third inequality in (22) is ζ times the third in (14).
Effecting the congruence diag(In, 1, Inq

, Q) and applying Corollary 1 on the first inequality
in (14) (with F =Q and Y =ζX−1) followed by a Schur complement, the congruence
diag(ζ−

1
2 In, ζ

− 1
2 , ζ−

1
2 Inq

, ζ−
1
2 In) shows that (22) implies (14) since ζ−1 ≥ 2− ζ for all

ζ > 0 upon the redefinitions

Q̂ := ζ−1Q, D̂z := ζDz, Ŝ := ζ−1S, R̂ := ζ−1R, T̂ := ζ−1T. (28)

5. For the first inequality in the outer bounding ellipsoid condition (15), effecting the congruence
X−T and then using a Schur complement shows that (23) is equivalent to (15).

6. Applying Corollary 1 (with E=eTi PrX and Y =νiX
−1) on the initial constraint condition

(16) and implementing the congruence diag(ν
1
2

i , ν
− 1

2

i In, ν
1
2

i In) shows that (24) implies (16)
upon the redefinition

F̂i := νiFi.

Finally, (25) follows from 1–6 above and the fact that det(Z) ≤
(

trace(Z)
n

)n
for any n× n positive

definite matrix Z.

Remark 2
The conservatism introduced by the linearization in Theorem 3, compared to Theorem 2, can be
traced back to the use of Corollary 1 and to the choice of Pr and br. Note that we restrict Y for
a tractable solution. Although this restriction can be relaxed, the resulting optimization becomes
nonlinear and this will not be pursued here. In our examples, we used the vector of ones for br and
the regular polytope with 2m faces for Pr. Since the initial polytope is P(PrX, br), then X provides
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scaling and rotational degrees of freedom. A possible choice of the initial polytope P(PrX, br),
which is guaranteed to be feasible under some assumptions, is outlined in the next theorem.

Getting an initial RCI set is a very important step since the procedure of obtaining the
maximal/minimal RCI set requires a feasible initial solution. In general, to guarantee the existence
of a polytopic RCI set is difficult, see [1, 16] for more details. Based on an idea in [20], the following
result gives conditions which guarantee the existence of an initial solution, under a mild assumption,
satisfying the invariance and inner and outer bounding ellipsoidal conditions (3), (5), and (8)
respectively, (which correspond to conditions (19), (21), and (23) in Theorem 3, respectively) in
the special case of no disturbances or uncertainties.

Theorem 4
Suppose that all the uncontrollable eigenvalues of the pair (A,B) have absolute value less than 1√

n
.

Letm = lnwhere l is any integer greater than 0. Then there exist Pr ∈ Rm×n, br ∈ Rm, X̂ ∈ Rn×n,
K̂ ∈ Rn×nu , Q̄−1, Q−1 ∈ Sn+, D̄ ∈ Dm+ and λi, µ̂i, γi > 0, D̂i ∈ Dm+ , for every i ∈ Im, such that the
invariance condition

Li :=

2λie
T
i br − bTr D̂ibr λie

T
i Pr 0

? X̂ + X̂T AX̂ +BK̂

? ? PTr D̂iPr

 � 0, (29)

and the, respectively, inner and outer bounding ellipsoid conditions (21) and (23) of Theorem 3 are
satisfied.

Proof
Note first that condition (29) and the invariance condition (19) are identical in the absence of
disturbances and uncertainties. Since all the uncontrollable eigenvalues of the pair (A,B) have
absolute value less than 1√

n
, there exists K ∈ Rn×nu such that all the eigenvalues of A+BK lie in

the open disc with radius 1√
n

centered on the origin of the complex plane. It follows from [37] that
this is equivalent to [

Q−1 (A+BK)Q−1

? 1
nQ
−1

]
� 0, (30)

for some Q−1 ∈ Sn+.
Let br ∈ Rm be the vector of ones and let Pr =

[
UT1 · · · UTl

]T
Q−

1
2 ∈Rm×n for any orthogonal

Uj ∈Rn×n, j = 1, . . . , l. Let X̂ = Q−1 and, for every i ∈ Im, define the unique integers li and ni
such that i = (li − 1)n+ ni where 1 ≤ li ≤ l and 1 ≤ ni ≤ n and let D̂i := 1

n (elie
T
li

)⊗ In ∈ Dm+
and λi = 1, where⊗ denotes the Kronecker product. Substituting these definitions in the expression
for Li gives

Li =

1 eTni
UliQ

− 1
2 0

? 2Q−1 AQ−1 +BK̂

? ? 1
nQ
−1

,
Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
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where K̂ = KQ−1. Using an upper Schur complement, we have

Li � 0 ⇔

[
Q−1 +Q−

1
2UTli (I − eni

eTni
)UliQ

− 1
2 AQ−1 +BK̂

? 1
nQ
−1

]
� 0

⇔

[
Q−1 (A+BK)Q−1

? 1
nQ
−1

]
+

[
Q−

1
2UTli (I − eni

eTni
)UliQ

− 1
2 0

? 0

]
� 0.

Therefore Li � 0 from (30).
Let γi = µ̂i = 1 for every i ∈ Im. Let α be such that 0 < α < 1 and define Q−1 = αQ−1.

Substitute all the values defined above into the inner bounding ellipsoid condition (21), following an
upper and a lower Schur complement, we have that (21) is equivalent to (1− α)Q−1 +Q−

1
2UTli (I −

eni
eTni

)UliQ
− 1

2 � 0, which is satisfied since α < 1, Q−1 � 0 and (I − eni
eTni

) � 0.
Let β be such that 0 < β < 1 and define D̄ = β

mIm ∈ D
m
+ and let Q̄−1 be any matrix in Sn+

satisfying Q̄−1 � n
βQ
−1. The second inequality in (23) is satisfied since bTr D̄br = β < 1 and a

Schur complement shows that the first inequality in (23) is equivalent to Q̄−1 � n
βQ
−1 which is

satisfied from the definition of Q̄−1.

Remark 3
Suppose that in addition, the initial polytope P(PrX, br) is also required to guarantee that the output
constraints in (20) are satisfied. Then, it can be shown that, in addition to (30), it is sufficient that,
for all j ∈ Iny [

(eTj ȳ)2 eTj (C +DK)Q−1

? 1
nQ
−1

]
� 0. (31)

The proof is similar to that of Theorem 4 and is therefore omitted.

Remark 4
The theorem provides a choice of the initial polytope P(PrX, br), where P(Pr, br) is not required
to be an RCI set nor satisfy any of the constraints, that guaranteed the feasibility of Theorem 3 under
the stated assumptions. The usefulness of this theorem is illustrated by the numerical examples in
Section 7.

5. UPDATE COMPUTATION ALGORITHM

Once an admissible initial triple (P, b,K) ∈ Ψ is obtained, this section presents an algorithm to
update the solution based on the following result.

Lemma 2
Let L, L ∈ Rm×n and D, D ∈ Sm+ . Define

LL,DL,D := LTD−1L+ LTD−1L− LTD−1DD−1L, (32)

NL,D := LTD−1L. (33)
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Then

NL,D � LL,DL,D, (34)

NL,D = LL,DL,D. (35)

Hence, if NL,D � 0 for some L ∈ Rm×n and D ∈ Sm+ , then there exist L ∈ Rm×n and D ∈ Sm+
such that LL,DL,D � 0. Furthermore, any L ∈ Rm×n and D ∈ Sm+ that satisfy LL,DL,D � 0 also satisfy
NL,D � LL,DL,D � 0.

Proof
Consider the identity

NL,D = LL,DL,D + (L−DD−1L)TD−1(L−DD−1L),

valid for all L, L ∈ Rm×n and D, D ∈ Sm+ . Then

NL,D − LL,DL,D = (L−DD−1L)TD−1(L−DD−1L) � 0,

since D � 0, which proves (34). Furthermore,

NL,D − LL,DL,D = (L−DD−1L)TD−1(L−DD−1L) = 0,

which proves (35). To prove the second part, suppose that NL,D � 0 for some L ∈ Rm×n and
D ∈ Sm+ . Then it follows from (35) that there exist L ∈ Rm×n and D ∈ Sm+ (e.g., take L = L

and D = D) such that LL,DL,D � 0. Finally, if L ∈ Rm×n and D ∈ Sm+ satisfy LL,DL,D � 0, then
NL,D � LL,DL,D � 0 from (34).

Remark 5
Suppose thatML,D is a linear matrix function ofL ∈ Rm×n andD ∈ Sm+ . Then Lemma 2 states that
if L ∈ Rm×n andD ∈ Sm+ are solutions to the nonlinear matrix inequalityML,D +NL,D � 0, then
there exist solutions L ∈ Rm×n and D ∈ Sm+ to the linear matrix inequality ML,D + LL,DL,D � 0

and, furthermore, these solutions also satisfy the original nonlinear matrix inequality ML,D +

NL,D � 0. Note also that the linear matrix equation ML,D + LL,DL,D =0 is the Newton update for
the nonlinear matrix equationML,D +NL,D =0 from the initial approximation L,D.

The next result extends this idea to derive Newton–like updates for the nonlinear matrix
inequalities of Theorem 2 starting from the initial approximations given in Theorem 3.

Theorem 5
With all definitions as above and N·,· and L·,··,· as defined in (32) and (33), respectively, let
(P , b,K)∈Ψ. Then

1. Suppose that (P, b,K,Di,Wi, Si, Ti, Ri),∀i ∈ Im satisfy the invariance condition (11). Then DDD−1
i ∈ Dm+

WWW i ∈ Dmw
+

(SSSi,TTT i,RRRi) ∈ B

 ,Mi + LLi(P,K,Si,Ri),Fi(D
−1
i )

Li(PPP,KKK,SSSi,RRRi),Fi(DDD
−1
i )
� 0,∀i ∈ Im, (36)
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where

Mi =



DDD−1
i bbb 0 0 0 0 0

? 2eTi bbb− dTWWW id 0 0 0 0 eTi PPP

? ? V TWWW iV 0 0 0 BTw

? ? ? SSSi 0 0 SSSiB
T
p

? ? ? ? TTT i CKKKq RRRTi B
T
p

? ? ? ? ? 0 (AKKK)T

? ? ? ? ? ? In


,

Li(P,K, Si, Ri) =

0 PT ei 0 0 0 0 0

0 0 Bw BpS
T
i BpRi AK 0

0 0 0 0 0 P 0

 ,
Fi(D

−1
i ) = diag(In, In, D

−1
i ).

Furthermore, the invariance condition (11) and (3) are satisfied by

(P, b,K,Di,Wi, Si, Ti, Ri) := (PPP ,bbb,KKK,DDDi,WWW i,SSSi,TTT i,RRRi).

2. Suppose that (P, b,K,Ej , Gj),∀j ∈ Iny satisfy the output constraint condition (12). Then

[
EEE−1
j ∈ Dm+

GGGj ∈ Dmw
+

]
,


EEE−1
j bbb 0 0

? 2eTj ȳ−dTGGGjd eTj Dw eTj C
KKK

? ? V TGGGjV 0

? ? ? LP,E
−1
j

PPP,EEE−1
j

�0,∀j ∈ Iny
. (37)

Furthermore, the output constraint condition (12) and (4) are satisfied by

(P, b,K,Ej , Gj) := (PPP ,bbb,KKK,EEEj ,GGGj).

3. Suppose that (P, b, µi, Q),∀i ∈ Im satisfy the inner bounding ellipsoid condition (13). Then

QQQ−
1
2 ∈ Sn+; µµµi > 0,

2eTi bbb−µµµi eTi PPP 0

? 2µiQ µiQQQQ
− 1

2

? ? µµµiIn

 � 0,∀i ∈ Im. (38)

Furthermore, the inner bounding ellipsoid condition (13) and (5) are satisfied by

(P, b, µi, Q) := (PPP ,bbb,µµµi,QQQ).

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
Prepared using rncauth.cls DOI: 10.1002/rnc.4573



POLYTOPIC RCI SETS 17

4. Suppose that (P, b,K,Q,Dz, S, T,R) satisfy the H2-norm constraint condition (14). Then

 QQQ ∈ Sn+
DDD−1
z ∈ Dm+

(SSS,TTT ,RRR) ∈ B

 ,

QQQ−BpSSSBTp 0 BpRRR AKKK

? rI 0 CKKK2

? ? TTT CKKKq

? ? ? LI,QI,QQQ

 � 0,

[
QQQ I

? LP,D
−1
z

PPP,DDD−1
z

]
�0,

[
DDD−1
z bbb

? r

]
� 0. (39)

Furthermore, the H2-norm constraint condition (14) and (7) are satisfied by

(P, b,K,Q,Dz, S, T,R) :=(PPP ,bbb,KKK,QQQ,DDDz,SSS,TTT ,RRR).

5. Suppose that (P, b, Q̄, D̄) satisfy the outer bounding ellipsoid condition (15). Then

[
D̄DD
−1 ∈ Dm+
Q̄QQ ∈ Sn+

]
,LP,D̄

−1

PPP,D̄DD
−1 − Q̄QQ � 0,

[
D̄DD
−1

bbb

? 1

]
� 0. (40)

Furthermore, the outer bounding ellipsoid condition (15) and (8) are satisfied by

(P, b, Q̄, D̄) := (PPP ,bbb, Q̄QQ,D̄DD).

6. Suppose that (P, b, Fi),∀i ∈ Im satisfy the initial constraint condition (16). Then

FFF i ∈ Dm0
+ ,

[
2eTi bbb− bT0FFF ib0 eTi PPP

? PT0 FFF iP0

]
� 0,∀i ∈ Im. (41)

Furthermore, the initial constraint condition (16) and (9) are satisfied by

(P, b, Fi) := (PPP ,bbb,FFF i).

Hence, max log detQ−
1
2

P, b,K,DDD−1
i ,WWWi,SSSi,TTTi,RRRi,EEE

−1
j ,GGGj ,µµµi,QQQ

− 1
2,QQQ,DDD−1

z ,SSS,TTT,RRR
subject to (36), (37), (38), (39)

 ≥ log detQ−
1
2 , (42)

 min − log det Q̄
P , b,K,DDD−1

i ,WWW i,SSSi,TTT i,RRRi,EEE
−1
j ,GGGj , Q̄QQ,D̄DD

−1
,FFF i

subject to (36), (37), (40), (41)

 ≤− log det Q̄ (43)

Proof
The proof is essentially an application of Lemma 2, congruences, Schur complements and some
re–definitions to show that (11)-(16) imply (36)-(41), which in turn imply (11)-(16) (with bold
variables) and therefore (3)-(9) (with bold variables), respectively, from Theorem 2. In more detail:
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1. Effecting an upper and a lower Schur complement on (11) and a manipulation show that (11)
is equivalent to

Mi +NLi(P,K,Si,Ri),Fi(D
−1
i )�0.

The result follows by applying Lemma 2 (see also Remark 5) on the second term.

2. This follows by applying a Schur complement on bTEjb and Lemma 2 on NP,E−1
j

= PTEjP

in (12).

3. This follows by applying Lemma 2 on NI,(µiQ)−1=Qµi and taking a Schur complement in
(13).

4. The result follows by applying Lemma 2 on NI,Q=Q−1 and NP,D−1
z

=PTDzP and a Schur
complement on the third inequality, in (14).

5. The second inequalities in (40) and (15) are equivalent using a Schur complement argument.
The result follows by applying Lemma 2 on the term NP,D̄−1 = PT D̄P in the first inequality
in (15).

6. The result is trivially satisfied since (16) is linear in the variables.

Finally, (42) and (43) follow from 1-6 above.

Remark 6
Note that taking D−1

i ,E−1
j ,D−1

z , D̄
−1 as variables allows us to use Lemma 2 to ensure recursive

feasibility, that is, the volume of the updated inner/outer approximation to the maximal/minimal
RCI set is at least as good (large for maximal and small for minimal sets) as that of the previous
set. It also allows us to use b as a variable, thus improving the updated solution. Our numerical
experience, part of which is reported below, as well as Remark 5, suggest quadratic convergence,
although a formal proof of this is beyond the scope of this work.

6. SOLUTION ALGORITHM

The following algorithm summarizes our solution.

Algorithm 1
Given system (1) and (6), Y=P(Iny

, ȳ) and sets Ω,W=P(V, d),P(P0, b0) and parameter γ.

1. Initial data: Choose m ≥ n, Pr ∈ Rm×n, 0 < br ∈ Rm and tolerance level tol.

2. Initial solution

(a) Use Theorem 3 to solve the convex SDPs in (25).
(b) Define Di,Wi, Si, Ti, Ri, Q,Dz, S, T,R and µi from (26)-(28) so that (11)-(16) are

satisfied.

3. Update Solve the optimizations in (42) or (43).

4. Stopping condition

(a) If det(Q−1)− det(Q−1) ≤ tol (for maximization) or det(Q̄−1)− det(Q̄
−1

) ≤ tol (for
minimization), stop.
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(b) Else update Z :=Z, where Z denotes a variable in the optimizations in (42) or (43), and
go to step 3.

5. End

Remark 7
Since our algorithms are linear, in the case of polyhedral uncertainty, that is, if (Ã,B̃)∈Ω where

Ω:={(Ã,B̃) : [Ã B̃]=

p∑
l=1

αi[Al Bl],

p∑
l=1

αi=1, αi≥0},

and where Al ∈ Rn×n and Bl ∈ Rn×nu are given matrices for all l ∈ Ip, all our algorithms are
applicable except that (A,B) are replaced by (Al, Bl) and the constraints need to be satisfied for all
l ∈ Ip. Note also that Theorem 4 can also be extended to provide an initial polytopic RCI set for
systems subject to polyhedral uncertainty (with the controllability condition on (A,B) given in the
theorem replaced by the existence of K ∈ Rn×nu such that all the eigenvalues of Al +BlK lie in
the disc with radius 1√

n
centered on the origin of the complex plane, for all l), although this is not

pursued here.

7. EXAMPLES

This section presents four examples that illustrate our results.

7.1. Example 1: Nominal System with High Dimension

Consider a fourth order system used in [27] with system matrices

A=


0.1 1 1 0.7

0 0.2 0.12 0.5

0 0.2 0.4 0.37

0.8 −0.2 0.56 0.32

, B=


1

0.4

0.27

0.64

, C=


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

, D=


0

0

0

0

1

, ȳ=


1

1

1

1

1

·

We set m=12 and starting from Theorem 4 with an initial polytope P(Pr, br). Applying
Algorithm 1 gives the final inner approximations to the maximal RCI set in yellow colour shown
in Figure 1a, with the final control law given as K = [−0.68 − 0.02 − 0.44 − 0.17]. Note that
for display purposes, the RCI set plotting is cut through x4 = 0. Our algorithm is implemented in
MATLAB using CVX toolbox with platform 64-bit Intel Core i5-7600 at 3.5GHz with 4GB DDR4.
The mean time to obtain an initial result is 0.78s and 20 iteration took 8.56s to give the final results.
For the same example in [27], the maximal invariant set is calculated using the standard iterative
algorithm in [28] with MPT3 toolbox in MATLAB. In the same platform, the referenced method
used 1.12s to obtain the result shown in red colour in Figure 1a. It can be seen that the maximum
approximation of the RCI set obtained using our proposed algorithm is larger than that obtained
using the algorithm in [28]. Figure 1b displays the convergence of log detQ−

1
2 with the update

times N , which illustrates that the objective value converges after 15 updates.
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(a) Final maximization results (in yellow) and results
using method in [28] (in red)

(b) Convergence of the objective value
log detQ−

1
2 with the iteration times N

Figure 1. Example 1

7.2. Example 2: System with Disturbance

Consider the system used in [29]:

x+ =

[
1 1

0 1

]
x+

[
0.5

1

]
u+ w,

with w ∈ W := P(V, d), where

V =

[
1 0

0 1

]
, d=

[
0.1

0.1

]
.

We set m=10 and produce a random initial polytope P(Pr, br). Applying Algorithm 1 gives an
initial solution in 0.92s as shown in Figure 2a in yellow colour with dashed border, and the final
result in 6.69s as shown in red colour with solid border in Figure 2a. The corresponding feedback
control law isK = [−1 − 1.5]. [29] provides a fast approach to compute the minimal RCI set, while
the minimal results is not as good as that of [10]. The smallest volume set given in [29] and [10]
is the ε-mRPI as shown in green colour with dotted border. The results illustrate that our proposed
Algorithm 1 can provide smaller outer approximations of the minimal RCI set. Figure 2b displays
the convergence of log detQ−

1
2 with the update times N , and illustrates that the objective value

converges after 8 iterations.

7.3. Example 3: System with Polyhedral Uncertainty

Consider the double integrator example in [17] and [18] with

A1 =

[
1 0.1

0 1

]
, A2 =

[
1 0.2

0 1

]
, B1 =

[
0

1

]
, B2 =

[
0

1.5

]
.

We set m=30, P(Pr, br) a regular hexacontagon, and follow Remark 7 and Algorithm 1 to obtain
the maximal approximations of the RCI set. Figure 3a shows the initial (in yellow, with solid
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(a) Initial (in yellow with dashed border) and
final approximations (in red with solid border)
and ε-mRPI results in [29] (in green with dotted

border)

(b) Convergence of the objective value

− log det Q̄ with the iteration times N

Figure 2. Example 2

(a) Maximization of RCI Sets
(b) Convergence of the objective value

log detQ−
1
2 with the iteration times N

Figure 3. Example 3

border) and final (in red, with solid border) inner approximation to the RCI set, with the final
control law given as K = [−0.0794 − 0.0781]. The blue cross marks and the dashed green line
shows the trajectory of the system states under the feedback control law (only one trajectory is
shown for clarity). The white box with dash-dot border shows the output constraints. Figure 3b
displays the convergence of log detQ−

1
2 with the update times N . The initial result is obtained in

1.47 seconds, then the updating result converge to a final value within 15 steps which takes 6.76

seconds. For comparison, the low-complexity (m = n = 2,) inner approximation to the RCI set
is also shown in Figure 3a (in blue color and with dashed border). Note that considering a full-
complexity RCI set leads to a much larger volume. [17] gives an optimal solution under the control
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gain K = [−0.3 − 0.1] as shown in green colour with dotted border in Figure 3a. Our result shows
that the volume of the RCI set can be greatly increased by treating the feedback gain as a decision
variable in the optimization.

Let

C2 =

0.1 0

0 0.1

0 0

, D2 =

 0

0

0.1

· (44)

Using (14), the H2–performance level, defined in (7), for the final inner approximation to the
maximal RCI set is given by γ = 6.36. We can improve the performance level by, for example,
setting γ = 3 and incorporating the H2 constraint condition (14) in our algorithm. The final inner
approximation to the RCI set with the improved performance requirement is shown in Figure 3a (in
magenta color and with dash-dot border). This illustrates the compromise between the volume of
the RCI set and the expected performance.

7.4. Example 4: System with Norm-bounded Uncertainty

Consider the example of a continuous-time DC motor system with norm-bounded structured
uncertainty proposed in [20], which is defined by the following matrices:

A =

[
−0.07 −0.86(1 + ω1)

0.06(1 + ω1) −ω2

]
, B =

[
1

0

]
, (45)

where the uncertainty is defined by

Ω = {(ω1, ω2)| − 0.2 ≤ ω1 ≤ 0.2, 0.0085 ≤ ω2 ≤ 0.5} .

We discretize the system with a sampling period T = 0.1s and express the discrete-time system
in the form of (1) and the uncertainty in the form of (2) with appropriate nominal system (A,B),
distribution matrices Bp, Cq and Dq and uncertainty set

∆ = {diag(δ1I2, δ2), δi ∈ R, |δi| ≤ 1}.

We also incorporate an additive disturbance and the state and input constraints are integrated into
our output constraint by setting

Bw =

[
0.1

0.1

]
, C =

 0 0.1

0.1 0

0 0

, D =

 0

0

0.1

, Dw =

0

0

0

,
V = 1, and d, and ȳ as vectors of ones with appropriate dimensions.

We set m = 8 and P(Pr, br) a regular hexadecagon. Using Algorithm 1 to find an outer
approximation to the minimal RCI set, we obtain the initial and final sets as shown in Figure 4a
with the final control law as K = [−9.9707 − 0.0588]. The convergence rate of log det Q̄

−1 with
the update times N is shown in Figure 4b . The initial result is obtained in 0.95 seconds using the
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(a) Minimization of RCI Sets
(b) Convergence of the objective value − log det Q̄

with the iteration times N

Figure 4. Example 4

CVX toolbox with SDP solver in MATLAB, the update result converge to the final result in 20 steps
in 7.42 seconds.

We can illustrate the effect of including the initial condition constraint (9) with

P0 =

[
4.167 5.159 0.397 3.571

4.167 0.397 5.159 −3.571

]T
,

and b0 as the vector of ones with appropriate dimensions. The final outer approximation to the
minimal RCI set with the initial constraint requirement is shown in Figure 4a (in red color and
with dash-dot border; the initial constraint is shown in white color with dotted border). Under this
requirement, the superiority of using full-complexity RCI set is obvious. For comparison, the outer
approximation to the minimal low-complexity (m = n = 2) RCI set is also shown in Figure 4a (in
blue color and with dashed border).

To illustrate the invariance condition, the blue cross marks and the dashed green line shows the
trajectory of the system states under the feedback control law (only one trajectory is shown for
clarity). The trajectory is representative since it starts from the edge of the set and is produced using
the worst case disturbances and uncertainties.

8. CONCLUSION AND FUTURE WORK

We have proposed a novel scheme, based on convex/LMI optimizations, for the computation
of full-complexity inner/outer approximations to polytopic maximal/minimal RCI sets and the
corresponding feedback control law (K) for linear discrete–time systems subject to additive
disturbances and model uncertainties as well as output, initial state and performance constraints.

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
Prepared using rncauth.cls DOI: 10.1002/rnc.4573



24 C LIU, FURQAN TAHIR AND I.M. JAIMOUKHA

This paper first derives necessary and sufficient conditions for the existence of an admissible RCI
set and feedback gain matrix, that are, in general, nonlinear and nonconvex. Farkas’ Theorem is
then used to relax the problem and obtain sufficient LMI conditions, thus rendering the optimization
problem tractable. An initial invariant polytope, and the associated control law K, are first obtained
and the set volume is then iteratively optimized by solving convex/LMI optimizations. These
iterations are reminiscent of Newton updates which appears to promote good convergence speed.
Furthermore, the proposed scheme is able to handle both structured norm–bounded as well as
polytopic model uncertainties.

Unlike many of the schemes in the literature, the algorithm places no restriction on the complexity
of the invariant polytope and allows for arbitrarily large values ofm. This, coupled with the fact that
K is treated as a variable of optimization, results in less conservative inner/outer approximations to
the maximal/minimal RCI sets. This is reflected in the results from the numerical examples, which
show that the proposed scheme can yield a polytopic RCI set with a substantially improved volume
as compared to other schemes from the literature.

Nevertheless, the proposed algorithm assumes a constant linear state feedback control structure,
and the disturbance, constraints and the RCI sets are considered to be symmetric to obtain a tractable
solution. In practice, these assumption will result in conservatism. Furthermore, the computational
complexity of proposed algorithm for large-scale systems requires further investigation. Future
research directions include modifying our approach for more complex feedback control structures
and reducing the conservatism further by considering asymmetric constraints and RCI sets.
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13. Dórea C, Hennet J. (A, B)-invariant polyhedral sets of linear discrete-time systems. Journal of optimization theory

and applications 1999; 103(3):521–542.
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