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We propose a novel experiment combining fluid dynamics and strong magnetic field physics to
simulate cosmological scenarios. Our proposed system consists of two immiscible, weakly magnetised
fluids moved through a strong gradient magnetic field. The diamagnetic and paramagnetic forces
thus generated amount to a time-dependent effective gravity, which allows us to precisely control
the propagation speed of interface waves. Perturbations on the interface therefore experience a
nonstationary effective metric. In what follows, we demonstrate that our proposed system is capable
of simulating a variety of cosmological models. We then present a readily realisable experimental
setup which will allow us to capture the essential dynamics of standard inflation, wherein interface
perturbations experience a shrinking effective horizon and are shown to transition from oscillatory
to frozen and squeezed regimes at horizon crossing.

The physics of the early universe is deeply linked to
drastic changes in spacetime geometry. In the standard
scenario the primordial universe expanded in a nearly
exponential fashion, a phase known as inflation [1]. Ri-
val models to inflation include cyclic or ekpyrotic sce-
narios [2–7], while for earlier epochs even more exotic
scenarios have been proposed, involving transitions from
a Lorentzian to a Euclidian signature in the spacetime
metric [8–13]. Since these scenarios could have only been
realised at the very earliest periods in the evolution of
our universe – corresponding to energy scales unattain-
able in a laboratory experiment – we do not have direct
experimental access to their fascinating physics. Instead,
only their low-energy remnants can be observed and ex-
perimentally tested against theoretical predictions. As
we will argue in this letter, analogue simulators capable
of mimicking some of the elusive early universe processes
may offer an alternative avenue of investigation.

Pioneered by Unruh [14], analogue gravity setups fo-
cusing mainly on effects arising from black hole space-
time geometries [15–21] have offered the possibility to
recreate fundamental effects such as Hawking radiation
or superradiance. Experimental investigations in realis-
tic laboratory setups have resulted in a deeper under-
standing of these effects beyond their original domain of
applicability [22–28] and brought to light the strength
of analogue gravity. Extending the analogy, superfluids
have allowed the study of time-dependent spacetime ge-
ometries, both theoretically [29–34] and experimentally
[35, 36]. Building upon recent successes of analogue grav-
ity experiments using water-waves, we propose the first
classical fluid system to mimic wave-propagation in time-
dependent spacetimes.

We consider perturbations on the interface between
two immiscible liquids, a diamagnetic layer lying atop
a paramagnetic one, that can be moved at a precisely
controllable rate through a strong, spatially varying

magnetic field B(~x, t) generated by a superconducting
solenoid or a Bitter magnet (c.f. Ref. [37, 38]). The
combined magnetic and gravitational body forces ap-
plied to the liquid sample amount to an effective gravi-
tational force, which can be used to render the propaga-
tion speed c of the interfacial perturbations time depen-
dent. The corresponding analogue metric in our system
gµν ∝ diag(−c(t)2, 1, 1) can thereby be taylored to rep-
resent a variety of early universe cosmological scenarios,
such as inflation, cyclic universes, bounces, and signature
change events.

After a theoretical discussion of the system, we present
in detail our proposed experimental implementation and
compare, as a first example, explicit results in the linear
(dynamic) regime of a simulated experimental setup with
results for inflationary dynamics. Apart from demon-
strating the possibility for direct experimental investi-
gations of fundamental effects such as mode freezing and
quasi-particle production, our analogue system shows the
opportunity to provide insight into field dynamics at the
earliest times of our Universe through experiments in a
laboratory setup.

Two-fluid systems.—We consider an immiscible two-
fluid system (Fig. 1), with densities ρ1>ρ2, heights h1,2,
small magnetic susceptibilities |χ1,2| � 1, and flow ve-
locities v1,2. The system is subjected to a magnetic field
B(~x, t) with a large vertical gradient. The flow of an
inviscid and incompressible fluid is described by the con-
tinuity equation and Euler’s momentum equation with
the inclusion of the magnetic potential energy [39, 40]:

~∇ · ~vi = 0 (1)

ρi

(
∂t + ~vi · ~∇

)
~vi = ~∇

(
−pi +

χi
2µ0

B2

)
+ ρi~g . (2)

The index i = 1 (i = 2) labels the lower (upper) fluid,
pi is the fluid pressure, µ0 the vacuum permeability, and
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Figure 1. Schematics of the two-liquid system. Two immis-
cible liquids, with densities ρ1,2, magnetic susceptibility χ1,2,
and height h1,2, separated by the equilibrium interface at z0

(dotted line). Gravity interface waves distort the interface
layer (solid line) where each point is characterized by its am-
plitude ξ and velocity vx (vy). ∂S are the boundaries (here
depicted for fluid 2) given by a hard wall (upper), an interface
boundary (right), and a moving boundary at the interface of
the two liquids (lower).

~g = (0, 0,−g) is the acceleration due to gravity. The kine-
matic and, in case of a free surface, dynamic boundary
conditions are

~vi · ~n = ~V · ~n on ∂S (3)

[p] = σ(R−1
1 +R−1

2 ) , (4)

on a boundary ∂S with velocity ~V . Equation (3) states
that the velocity of the fluid equals the velocity of the
boundary along the outward normal ~n to the boundary.
The angled bracket [∗] denotes the jump in value across
the interface, here the jump in pressure p according to
the Young-Laplace law [41] with surface tension σ, and
principal radii of curvature R1,2.

We assume an irrotational velocity field ~vi = ~∇φi, and
a liquid-liquid interface ξ given by z = z0 + ξ(x, y, t).
We then linearise Eqs. (1) & (2) around a steady

background flow ~v0 = ~∇φ0 with φi = φ0 + ϕi. We fur-
ther take ∂zB � ∂xB. At the hard-wall upper and
lower boundaries Eqs. (1) & (3) lead to the Ansatz
ϕi =

∑
n cosh[εn(z − hi)]ϕi,n(x, y, t), where n labels the

eigenfunctions of the 2D-Laplacian, (∇2 + ε2n)ϕn = 0,
on the interface. With the inclusion of magnetic body
forces [39, 40], the linear equations of motion obtained
by Eqs. (2) – (4) evaluated at the free interface are [41]

ρ1Dtϕ1 − ρ2Dtϕ2 =

(
σ∇2 − [ρ]g0 +

[χ]

µ0
B∂zB

)
ξ (5)

Dtξ =
1

2
∂z (ϕ1 + ϕ2) , (6)

where the curvature for small deformations ξ is given
by (R−1

1 + R−1
2 ) ' −∇2ξ [41] and Dt = ∂t + v0 ·∇ is

the material derivative on the 2D interface. While the
preceding discussion is valid for arbitrary geometries of
the interface, flows, and heights, we now choose a plane
wave basis (with wavenumber n = k and ε2k = k2), a
vanishing background flow (Dt = ∂t, depicted with a
dot), and equal surface heights |h1| = |h2| ≡ h.

Since at the interface v1z = v2z (c.f. Eq. (3)), we get

with ϕk ≡ ϕ1,k

ϕ̈k + ω2
kϕk =

Ġk
Gk

ϕ̇k , (7)

where

Gk =
(
[ρ]geff + σk2

)
/ρ̃ , (8)

with ρ̃ = ρ1 + ρ2. The left hand side of Eq. (7) describes
the familiar oscillatory behaviour with frequency

ω2
k = Gkk tanh(kh) . (9)

The effective gravity [42],

geff = g − [χ]

[ρ]µ0
B∂zB , (10)

is modulated through the spatio-temporal dependence of
the external magnetic field B(~x, t), which introduces an
explicit time dependence of the frequency ωk ≡ ωk(t) as
well as an additional friction term (right hand side of
Eq. (7)).

Analogue Cosmology.—In order to make the connec-
tion with cosmology transparent we consider the shallow
water (or long wavelength) limit kh� 1 (i.e. linearizing
the tanh in Eq. (9)). The change in the effective gravity
(10) corresponds directly to a change in the propagation
speed ck of long wavelength perturbations. We define the
mode-dependent scale factor

a−2
k (t) ≡ c2k(t) = Gk(t)h , (11)

with which the equation of motion (7) takes the form

ϕ̈k + 2
ȧk
ak
ϕ̇k +

k2

a2
k

ϕk = 0 . (12)

Thus, our two fluid system in the shallow water limit
is equivalent to a massless scalar field in a Friedmann-
Lemâıtre-Robertson-Walker (FLRW) type rainbow uni-
verse [31].

Eqs. (8), (10) and (11) imply that it is possible to
change the sign of ak(t)2 for some, or all, of the modes
in the system. Within the analogy, this sign-change cor-
responds to a Hartle-Hawking-like [12, 13] change from
Lorentzian (with a hyperbolic equation of motion) to Eu-
clidian (with an elliptic equation of motion) signature in
the analogue spacetime geometry, cf. Eq. (13) below.

The k-dependence in Eq. (11) cannot in general be
neglected, even in the long wavelength regime, k → 0,
because the magnitude of [ρ]geff could approach σk2

(see Eq. (8)). However, the effect of the surface tension
is negligible in the regime [ρ]geff � σk2. The effective
metric for the perturbations then becomes

ds2 = gµνdx
µdxν = −dt2 + a2(t)(dx2 + dy2) , (13)

which is the exact FLRW solution to Einstein’s equations
for an expanding, homogeneous and isotropic universe
described by a (k-independent) scale factor a(t).
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Figure 2. Panel A depicts the effective gravity geff in the bore
of the magnet for the butanol-aqueous solution (z̈0 = 0). The
vertical axis gives the vertical position in the magnet z, and
the horizontal axis the radial position r. The magnitude is
given by the colorbar. The solid white lines are contours of
the effective gravity, with the dashed line depicting the region
over which geff changes sign. Panel B is the effective gravity
along the axis of the solenoid (r = 0). The inset rescales the
horizontal axis to better demonstrate the sign change of geff .

Experimental implementation.—
We propose experimental studies of a two-liquid sys-

tem consisting of a layer of butanol lying atop a denser
layer of a weak aqueous paramagnetic solution, with a
relatively small interfacial surface tension, σ = 1.8mN/m
[43] (immiscibility requires σ 6= 0). The liquids fill
completely a transparent toroidal vessel with diameter
d = 4cm, designed to fit within the bore of an 18T super-
conducting solenoid magnet used for magnetic levitation
experiments (e.g. [37, 44]). The azimuthal degrees of free-
dom of perturbations on the annular interface obey peri-
odic boundary conditions, with fundamental wavelength
λmax = πd. The relatively small interfacial tension and
maximal wavelength were chosen to minimize non-linear
contributions to the dispersion relation.

The versatility of the proposed setup can be seen by
considering the experimental parameters in Eq. (8) and
Eq. (10). When the vessel is inserted into the solenoid,
the effective gravity geff is altered in general due to a
step change in the magnetic susceptibility (see Eq. (10))
across the liquid-liquid interface, and may even be in-
verted [37, 39, 40, 44]. The effective gravity geff in the
region below the centre of the solenoid is depicted in Fig.
2.

Note the dramatic change in geff achievable within a

20cm interval. The monotonic relationship between geff

and z0 allows us to tune the scale factor to mimic the de-
sired cosmological model by controlling the motion of the
sample. The time-dependent position and acceleration of
the vessel in the magnet is determined by solving the dif-
ferential equation geff [z0, z̈0] = ak(t)2 (see Fig. 3A). z̈0 is
taken into account by substituting g → g+ z̈0 in Eq. (10),
and geff [z0, z̈0] is determined by the physical properties
of the fluids, and of the magnet.

The inversion of geff in our proposed setup allows us to
completely nullify the surface tension term σ for a single
(long-wavelength) mode in our system. This enables us
to produce arbitrarily large expansions as can be seen by
calculating the number of e-folds

N = ln

(
ak(tf)

ak(ti)

)
=

1

2
ln

(
σk2 + [ρ]geff(ti)

σk2 + [ρ]geff(tf)

)
, (14)

used in cosmology to describe the amount of cosmological
expansion.

Explicit results for cosmic Inflation.—

In order to demonstrate that our system is capable of
producing the rapid and substantial changes required of
cosmological models, we propose a simulation of stan-
dard cosmological inflation wherein the scale factor a(t)
(c.f. Eq. (13)) in the FLRW metric grows exponentially.
In this archetypical model, space expands so quickly that
fluctuations are stretched beyond the characteristic scale
of the expansion (known as the Hubble horizon), at which
point they stop propagating in time (the modes are said
to be frozen). By this process small initial perturbations
get amplified and converted to density fluctuations, even-
tually leading to the observed large-scale structure of our
universe.

For the experiment, we tune the scale factor ak(t) to
be exponential in the linear dispersion limit. The path
through the magnet z0(t), as well as the acceleration to
produce this expansion are shown in Fig. 3A (note the
magnitude of z̈0, as compared to geff in Fig. 2).

To understand the behavior of the field, it is common
to introduce the auxiliary field Xk = ak ϕk for which the
wave equation (7) takes the form of a time-dependent
harmonic oscillator with frequency

Ω2
k(t) =

k2

a2
k

− äk
ak

. (15)

Horizon crossing occurs at Ω2
k = 0, separating the os-

cillating solution dominated by the first term on the
right hand side of Eq. (15) from the exponentially grow-
ing / decaying solutions at late times, dominated by the
time-independent second term. The essence of inflation-
ary dynamics is fully captured for late times after a mode
has crossed the horizon, since the dynamics of the phys-
ical field ϕk freezes and becomes trivial, obeying a con-
stant solution in time.
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Fig. 3B depicts the numerical solution of the field
equation (7), including the full non-linear dispersion re-
lation (9), for the longest wavelength of our system. For
t < 0 the system is evolved in flat space, reducing Eq. (7)
to a simple harmonic oscillator. At t = 0 the system
begins to expand, leading to an oscillatory, damped time
evolution of the field. Upon crossing the effective horizon,
the field rapidly approaches a nearly constant solution.

The full model (including dispersive effects) exhibits
minor differences compared to a completely frozen field
solution, caused by the surface tension. The surface ten-
sion adds a small time-depence to äk/ak and in turn a
slow further evolution of the field outside the horizon.
Apart from a different effective expansion experienced
by high momentum modes, dispersive effects lead to the
mode re-entering the Hubble horizon, exhibiting oscilla-
tory behaviour at later times. Nevertheless, our system
is able to simulate mode freezing.

We further present the evolution of the surface height
ξk = a2

kϕ̇k, directly accessible in the experiment through
standard interface profilometry methods (see e.g. [45–
47]). The surface height exhibits a growing, non-
oscillatory solution after horizon crossing. Profilometry
measurements provide access to the full evolution of the
field, allowing us to observe mode freezing in real time
and providing direct evidence for inflationary dynamics
of the system.

Our proposed system allows us to stop the expansion
and to analyse the inflationary signatures in the result-
ing flat spacetime through the statistical properties of the
state. The associated definition of a well-defined ground
state leads to analogue cosmological quasi-particle pro-
duction, (mode amplification) and two-mode correlations
in direct analogy to the squeezed-state formulation of in-
flation [48, 49]. Mode amplification and correlations are
the result of the rapid effective expansion of our ana-
logue universe connecting two flat regions of spacetime
a(ti)→ a(tf) [50].

In line with field theory in curved spacetime, we in-
troduce the classical quasi-particle amplitudes bk in the
initial flat region of spacetime by expanding the field [51]
ϕk(x, t) =

(
f i
k(t)bk + f i

k(t)
∗
b∗−k
)

exp(ikx) in terms of
the time-dependent mode functions (fk, f

∗
k ), normalized

by the Wronskian 〈fk ; fk〉 ≡ i (f∗k∂tfk − (∂tf
∗
k )fk) = 1.

Conservation of the Wronskian implies that the ini-
tial and final flat regions of spacetime are related by a
Bogoliubov transformation f i

k(t) = αkf
f
k(t) + βkf

f
−k(t)

∗
,

where |αk|2 − |βk|2 = 1. The final state is fully described
by the corresponding transformation of the amplitudes
dk ≡ 〈f f

k(t) ; ϕk〉 = αkbk + β∗
kb

∗
−k. The measurable mode

intensity after the effective expansion in our system is

〈d∗kdk〉 =
(
2|βk|2 + 1

)
〈b∗kbk〉 . (16)

Here, 〈. . . 〉 denotes the arithmetic mean taken over suf-
ficiently many measurements, allowing us to assume
〈b∗−kb−k〉 = 〈b∗kbk〉.

Figure 3. Panel A shows the evolution of the vertical position
z0(t) (dashed red) and acceleration z̈0(t) (solid purple) of the
vessel in the magnet corresponding to an exponentially in-
flating analogue universe with Hubble parameter H = 3 s−1.
Panel B depicts the solution to the wave equation (12). The
solid (dashed) line is the real part (absolute value) of the ve-
locity potential φk (purple) and of the height field ξk (red).
The black dash-dotted lines represent different number of e-
folds N = 0, 1, 2 and 4 for the mode. The shaded region indi-
cates where the mode is outside the Hubble horizon. Panel C
depicts the maximal two-mode squeezing of the system pro-
jected onto the instantaneous eigenbasis at the times (equiv-
alently number of e-folds) indicated. The solid line indicates
the theoretical full width at half maximum for each distribu-
tion. The intensity plots represent the probability of a given
measurement of Xk and X−k after 2000 simulated experimen-
tal runs.

As anticipated from translational invariance in equa-
tion (12), the Bogoliubov coefficients αk, βk only mix
modes of opposite momenta:

〈d−kdk〉 = 2αkβ
∗
k 〈b∗kbk〉 . (17)

Wave amplification therefore occurs in the form of cor-
related, counter-propagating pairs. Defining the vari-
able Xk =

(
f f
k(t)dk + f f

k(t)∗d∗k
)
/|f f

k|, and the conjugate
quadratures (Xk ±X−k), we find from equation Eq. (17)
that the variance of a quadrature is lowered below its
initial value while the variance of its conjugate is raised
so that their product remains constant. Note that while
the freezing of the modes is sensitive to äk/ak ≈ const,
creation of counter-propagating pairs is generic (see e.g.
[52]).

Fig. 3C shows the build-up of correlations for an ini-
tial uncorrelated Gaussian state for varying numbers of
e-folds N during the expansion. The maximum squeezing
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|αk − βk|2 caused by the correlations (17) is seen to in-
crease with N (similar behaviour is found by increasing
the effective Hubble parameter H). Significant ampli-
fication of correlated counter propagating waves occurs
once the mode becomes frozen. Note that each mode it-
self shows no sign of squeezing and is simply amplified
according to Eq. (16). By automating the experiment
and controlling the initial state, we can sample from a
statistical ensemble of analogue universes. This allows
us to quantify the impact that deviations from the linear
theory will have on our system.

Conclusion.—The precise controllability of the effec-
tive metric in our novel system together with the con-
tinuous measurement of the field dynamics makes it a
versatile tool to explore fundamental questions of wave-
dynamics in time-dependent curved spacetimes. This has
the potential to elucidate the universality and robustness
of characteristic cosmological effects. The validation of
our experimental setup on known solutions, such as the
proposed inflationary model, allows to transfer the anal-
ogy to theoretically less understood models. For exam-
ple, it would provide an analogue simulator for evolv-
ing field fluctuations through bounces and/or signature
changes – an open problem in cyclic and pre-big bang
models. This work will advance the mutually beneficial
interconnection of cosmological and analogue gravity sys-
tems.
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[18] L.-P. Euvé, F. Michel, R. Parentani, T. G. Philbin, and
G Rousseaux. Observation of noise correlated by the
hawking effect in a water tank. ”Phys. Rev. Lett.”,
117(12):121301, 2016.

[19] J. Steinhauer. Observation of quantum hawking radi-
ation and its entanglement in an analogue black hole.
Nature Physics, 12(10):959–965, 2016.

[20] T. Torres, S. Patrick, A. Coutant, M. Richartz, E. W.
Tedford, and S. Weinfurtner. Rotational superradiant
scattering in a vortex flow. Nature Physics, 2017.

[21] D. Vocke, C. Maitland, A. Prain, F. Biancalana,
F. Marino, and D. Faccio. Rotating black hole geometries
in a two-dimensional photon superfluid. arXiv preprint,
arXiv:1709.04293, 2017.

[22] S. Corley, T. Jacobson. Hawking spectrum and high fre-
quency dispersion. Phys. Rev. D, 54:1568, Jul 1996.

[23] S. Corley. Particle creation via high frequency dispersion.
Phys. Rev. D, 55:6155, May 1997.
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