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Abstract—Oceanic eddy is the ubiquitous ocean flow phe-
nomenon, which has been the key factor in the transportation of
ocean energy and materials. Consequently, oceanographic under-
standing can be enhanced by the intelligent identification of eddy.
The state-of-the-art deep learning technologies are gradually
improving the identification methods. This letter proposes the
pyramid split attention(PSA) eddy detection U-Net architecture
(PSA-EDUNet) that targets oceanic eddy identification from
ocean remote sensing imagery. As for the PSA-EDUNet, its inspi-
ration comes from U-Net, which contains encoder and decoder
parts, making the integration of inferior and senior features
efficiently and ensuring the feature information will not be lost in
large quantities through non-linear connection mode. Meanwhile,
PAS module is introduced to enhance feature extraction. In terms
of the fusion data, the sea surface feature is the main criterion
of eddy identification, including sea surface temperature (SST)
and sea level anomaly (SLA). The experiments are implemented
on the Kuroshio Extension and the South Atlantic regions, the
results demonstrate that the proposed method can outperform
other methods, especially for eddy edges and small-scale eddies.

Index Terms—Oceanic eddy identification, Deep learning,
Pyramid split attention, U-Net network

I. INTRODUCTION

ESOSCALE eddies are the rotating structures that exist
in the global ocean and are a common and complex
ocean flow phenomenon, and provide most of the kinetic
energy for global ocean circulation [1]. Moreover, mesoscale
eddies also affect the mixing and transport of salt [2], heat
[3], carbon [3], and other nutrients in the ocean [4]. The
effects of mesoscale eddies on ocean dynamics, energy, and
large-scale circulation influence global climate change [5].
Especially, eddies have been shown to affect the winds, clouds,
and precipitation on the local sea surface to a certain degree
through their effects on atmospheric boundary layer turbulence
[6]. Accordingly, the identification of mesoscale eddies has a
unique significance and research value in the field of ocean
science.
According to the direction of rotation, eddies are tradition-
ally divided into cyclonic eddies (CEs) and anticyclonic eddies
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(AEs), corresponding to negative (positive) SLA. Furthermore,
due to the rotation of the earth, the sea water on the surface
of the CEs (AEs) is divergent (convergent), which makes
the lower (upper) sea water rise (fall) as a supplement,
thus making the sea surface present a low (high) SST [7].
Consequently, the distinct characteristics of oceanic eddies can
be identified from SLA and SST. With the gradual maturity
of satellite observation technology, the spatial resolution of
sea surface feature data is competent for eddy identification
[8]. The detection methods of mesoscale eddies can be mainly
divided into physical parameter based methods [9], geometric
contour based methods [10] and artificial intelligence (AI)
based methods [11]. Among the AI methods, deep learning
technology is the most popular.

In terms of AI methods, Lguensat et al. [12] put forward
an EddyNet model rooted in the U-Net architecture [13] for
automatic eddy detection and classification. Later, Lguensat
et al. proposed EddyResNet and EddyVNet models that out-
performed EddyNet respectively [14]. Xu et al. [15] applied
the pyramid scene parsing network to eddy detection and
identification, which can fully utilize global information to
capture details, and identify AEs and CEs from sea surface
height anomaly (SSHA) data. The eddy detection models with
an encoder-decoder structure are summarized in [16]. These
exploratory researches [17] can provide insights and feasibility
for eddy identification using deep learning [18], however, the
acquisition of edge information and small-scale eddies remains
a challenge [19].

This letter aims to achieve a high-precision eddy identi-
fication method based on U-Net architecture, adopting the
pyramid split attention module and skip connection method.
The remaining parts are organized as follows. Section II
describes the study area and materials. The architecture of the
proposed PSA-EDUNet is depicted in Section III. Section IV
presents a detailed analysis of the segmentation results while
presenting the eddy identification results of different methods.
Finally, Section V summarizes this study and points out future
research directions.

II. STUDY AREA AND MATERIALS

SST data with temporal and spatial resolutions of days and
0.25° x 0.25° was acquired from National Oceanic and Atmo-
spheric Administration (NOAA) Optimum Interpolation(OI)
SST product. As for the SLA data, it is a grid L4 product
published by the Copernicus Marine Environment Monitoring
Service (CMEMS), which has the same spatio-temporal res-
olutions as SST data. The training of the model requires not



only the sea surface feature data but also the eddy labeling data
at the same resolution as its feature data, which needed to be
constructed from the ocean eddy identification and tracking
dataset based on the satellite altimeter provided by the Big
Earth Data Science Engineering Project (CASEarth).

The eddy identification and tracking dataset contain eddy
trajectory information from 2004 to 2018. This letter selects
the data from 2004 to 2017 to form a training set, and
data from 2018 to form a testing set for training and testing
models. To construct the eddy labels, the following processing
was performed. (1) First, extract the eddies whose contour
boundary value is not empty and classify them into CEs and
AEs according to the eddy label. (2) Second, determine the
inner region of each eddy. According to the eddy contour,
the thresholds of the eddy latitude and longitude are obtained.
Meanwhile, the edge and interior points of the rectangle are
determined. Considering each eddy is an irregular polygon, the
mathematical ray method is used to judge whether each test
point is within the eddy contour. (3) Finally, pixels within
each polygon are labeled to represent the category of the
eddy to which they belong, 0, 1, and 2 represent Non-eddy,
anticyclonic eddy, and cyclonic eddy, respectively.

In this letter, the Kuroshio Extension (KE) and the South
Atlantic Ocean (SAO) regions are chosen as study areas. The
geographic locations of the two study areas in the global
ocean, as well as the SST, SLA, and eddy distributions are
shown in Fig.1.

III. METHODOLOGY
A. Overall architecture of Pyramid Split Attention U-Net

Following encoder-decoder architecture, the PSA-EDUNet
based on the U-Net [13] is proposed to implement eddy
identification from SLA and SST data. Meanwhile, the PSA
[20] module is adopted and the way of skip connections is
optimized to achieve high efficiency. The overall structure of
PSA-EDUNet is depicted in Fig.2. In addition, all the sub-
architectures are described detailedly in the following sections.

1) Encoder: SLA and SST data are input into feature map
with channel dimension of 2, and then the hierarchical feature
representation is generated through three consecutive encoder
hierarchical feature representation (Encoder-HFR) modules.
Specifically, each Encoder-HFR consists of an HFR block re-
sponsible for feature learning representation and a max pooling
layer with kernel size of 2 responsible for down-sampling. The
feature map first enters two consecutive convolutional layers
with a kernel size of 3. Particularly, each convolution layer is
followed by a normalization layer and a Relu activation layer.
Then the feature map will be input into the PSA module. In the
first stage of Encoder-HFR, the width and height of the feature
map become half of the initial size, and the number of channels
becomes C'. In the remaining two stages of Encoder-HFR, only
the resolution changed, while the number of channels remains
the same. So the hierarchical features with size and channel
of H2x W/2x C, H/4xW/4x C, and H/8 x W/8 x C
are obtained, respectively.

2) Bottleneck: HFR blocks are employed for deep feature
representation learning at the bottleneck, thus the resolution
and dimension of the feature remain unchanged.
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Fig. 1. The geographical locations, SLA data, SST data, and
ground truth of the study areas. (a) The location of study areas
is highlighted by the red square. (b-g) The SLA, SST, and
ground truth of the two study areas, respectively.

3) Decoder: Corresponding to the encoder, the decoder part
consists of three hierarchical feature representation (Decoder-
HFR) modules. In each Decoder-HFR, the feature map is first
input into a transposed convolutional layer with a kernel size of
2 for up-sampling, which doubles the size of the feature map.
Next, the feature maps from the up-sampling and the Encoder-
HFR are spliced together to obtain the feature map with 4C
channels. Finally, the spliced feature map is input into an HFR
module for feature learning and representation, which keeps
the size unchanged, and the number of channels is restored to
C'. In detail, the resolution and channel number of the feature
maps output by the three-stage Decoder-HFR are H/8x W /8x
C, H/Ax W/4 x C, and H/2 x W/2 x C respectively. A
convolutional layer with a kernel size of 1 followed decoder
is applied to map the number of feature channels to the number
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Fig. 2. The architecture of PSA-EDUNet.

of classes predicted by the experimental segmentation, which
results in a pixel-level segmentation prediction of the original
feature map.

4) Hierarchical skip connections: To prevent learned fea-
tures from being gradually forgotten as the model depth
increases, the way of skip connections is improved. We apply
max-pooling layers and transposed convolutional layers with
different-sized convolution kernels to the feature maps output
by Encoder-HFR at different stages to generate corresponding
feature representations. Then we concatenate the hierarchical
features of the same resolution generated by the three Encoder-
HFRs by channel and input them into the Decoder-HFR of the
corresponding feature map resolution.

5) PSA module: Compared with the Squeeze-and-
Excitation (SE) Weight module [21], the PSA module [20]
is more cfficient, as illustrated by Fig.2(b). The advantage
of this algorithm lies in that the feature space is enriched
by capturing spatial information at different scales, and the
channel attention is considered at the same time. Specifically,
the PSA module consists of four steps.

First, multi-scale features are extracted through the Squeeze
and Concat (SPC) module. A detailed description of the SPC
module when S=4, is displayed in Fig.2(c). For the input X,
the number of channels of X is C. First, divide X into S parts,
which are represented by F;(i =0,1,...,5 — 1) , the number
of channels of each divided part both are C' = C/S. Tt is
worth noting that C' must be divisible by S. Since the number
of parameters can be reduced by grouping convolution, the
multi-scale convolution kernel grouping convolution method
is used to extract spatial information of different scales for
each channel feature map divided. The relationship between
group and kernel size is G = 2%, where K and G represent
kernel size and group size, respectively. Therefore, the specific
calculation method of the multi-scale feature extraction pro-
cess is as the following Eq. 1.

FiZCOTLU(ki Xk“GIL)(X) iZO,l,...,S—l (1)

Where k; = 2 x (i + 1) + 1 denotes the ith kernel
size, G; = 2%denotes the ith group size. Moreover,
F; € RE*H*Wdenotes the feature maps of different scales.

After convolution of different sizes, the obtained fea-
ture maps are spliced on the channel to get F =
Cat([Fy, F1, ..., Fs_1]), where ' € RE*HXW,

Second, channel-level attention vectors, which can be ex-
pressed as Eq. 2, are obtained by extracting attention from
feature maps at different scales using the SE-Weight module.

i=0,1,..,8—1 )

Where Z; € RC *1x1 i the attention weight. Meanwhile,
the obtained attention vectors are spliced to better realize the
interaction and fuse cross dimensional attention information,
as shown in Eq. 3.

Z=20021D..DZs—1 3)

Where @& represents the splicing operation of the vector,
Z; is the attention value corresponding to F;, and Z is the
multi-scale attention weight vector.

Third, re-calibration weights for multi-scale channels are
obtained by re-calibrating the channel-wise attention vector
using Softmax. To achieve the interactive connection between
local and global channel attention, Softmax is used for nor-
malization, as shown in Eq. 4.

exp(Zi)
51
>im1 exp(Zi)
Finally, the element-level multiplication operation is applied
between the recalibrated weights and corresponding source

feature maps to obtain weighted feature maps. The multipli-
cation process is illustrated in Eq. 5.

att; = Softmax(Z;) = “4)

Y, =F ®att; i=0,1,..,8—1 (5)

Here, ® means the multiplication of channel direction, and
Y, represents the obtained feature map of the attention weights



in the multi-scale channel direction. The final output is Out =
Cat([Yo, Y1, ..., Ys_1]).

B. Evaluation metrics

The pixel level alone cannot reflect the structural informa-
tion of ocean dynamics. Therefore, the pixel accuracy (PA) and
mean dice coefficient (MD) at the pixel level as well as the
accuracy, precision, and recall at the structure level are used to
evaluate the performance of PSA-EDUNet in an overall way.

IV. EXPERIMENTAL RESULTS

The RMSprop optimizer is used to optimize the experiment.
The loss function is the cross entropy loss function, and the
learning rate is le-3. Each small batch is composed of 8
images. When the training set loss stopped improving for 30
consecutive epochs, the strategy of reducing the learning rate
will be employed to improve the learning process. The code
is written using the Pytorch deep learning library. Training is
performed using an Nvidia GeForce RTX 3090 GPU.

To confirm the performance of the PSA-EDUNet, the com-
parative experiments results are presented in TABLE I and
TABLE II. In the KE region, the average pixel accuracy of
our model can reach 91.09%, which is 2.77%, 3.45%, 1.82%,
8.76%, and 3.45% higher than the EddyNet [12], Swin-Unet
[22], U-Net [13], DeepLabV3+ [23] and a two branch convo-
Iutional neural network (TBCNN) [24] models respectively;
while in the SAO region, the average pixel accuracy of our
model is 91.27%, which is increased by 1.98%, 4.26%, 2.07%,
9.76% and 2.89% respectively based on EddyNet, Swin-Unet,
U-Net, DeepLabV3+, and TBCNN models. The proposed
PSA-EDUNet has the most brilliant performance. EddyNet
and U-Net models have comparative performance in eddy
identification. Swin-Unet and TBCNN models are inferior to
the U-Net model. In addition, the ablation experiment for
the PSA module has also been completed, and the results in
TABLE I and TABLE II can demonstrate the effectiveness of
the PSA module.

TABLE 1. Metric evaluation results of 6 models on the 2018
KE regional testing set.

Method PSA-EDUNet EddyNet Swin-Unet U-Net DeepLabV3+{| TBCNN

all no psa [12] 22] [13] 23] [24]

Region* KE KE KE KE KE KE KE
Test PA 91.09% 89.88% 88.32% 87.64% 89.27% 82.33% 87.64%
MD 88.65% 87.26% 84.57% 84.17% 86.34% 77.16% 83.98%
Accurac; 94.06% 93.25% 92.21% 91.76% 92.84% 88.22% 91.76%
Precision||  88.72% 86.64% 87.04% 84.69% 86.41% 77.94% 85.17%
Recall 88.62% 87.99% 82.70% 83.75% 86.34% 76.52% 82.97%

* Lon: 120.125° — 176.125°FE  Lat: 0.125° — 56.125° N

TABLE II. Metric evaluation results of 6 models on the 2018
SAO regional testing set.

Method PSA-EDUNet EddyNet Swin-Unet U-Net DeepLabV3+|[ TBCNN

all no psa [12] [22] [13] 23] [24]

Region* SAO SAO SAO SAO SAO SAO SAO
Test PA 91.27% 90.54% 89.29% 87.01% 89.20% 81.51% 88.38%
MD 88.95% 88.00% 86.18% 83.52% 86.34% 76.09% 85.22%
Accurac; 94.18% 93.67% 92.86% 91.34% 92.80% 87.671% 92.25%
Precision]|  89.13% 88.26% 87.57% 87.57% 86.40% 77.11% 85.66%
Recall 88.89% 87.74% 84.98% 83.25% 86.35% 75.23% 84.91%

* Lon: 3.875° — 59.875°W  Lat: 5.375° — 61.375°S

Fig.3 is the learning curve on the training set. Combined
with the evaluation results in TABLE I and TABLE II, the

loss value of the U-Net model is lower than that of PSA-
EDUNet, but the test results are not as good as PSA-EDUNet,
which shows that the model proposed in this letter has better
generalization ability than U-Net. In addition, the loss value
obtained by PSA-EDUNet on the training set and the results
of the testing set are superior to the EddyNet, DeepLabV3+
and TBCNN models, which indicates that the proposed PSA-
EDUNet has excellent learning ability and can adapt to dif-
ferent situations of dataset to learn the features of the data.
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Fig. 3. Learning curves of the different methods. The x-axis
represents the quantity of epochs in the training process, and
the y-axis represents the loss value.

For the convenience of comparison, we take the last day
of 2018 as an example to draw the eddy identification results
in the KE region. As shown in Fig.4 and Fig.5, the results
demonstrate that deep learning methods can identify most of
the eddy regions, and the segmentation results of the PSA-
EDUNet are most approximate to the ground truth, especially
in the segmentation of small-scale eddies and eddy edges.
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Fig. 4. Oceanic eddy identification results of different methods
in the KE region on 31 December 2018: AEs (red), CEs (blue),
Non-eddy (white).
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Fig. 5. Oceanic eddy identification results of different methods
in the local area of KE region on 31 December 2018: AEs
(red), CEs (blue), Non-eddy (white), unrecognized AEs (pink)
and CEs (cyan), newly recognized AEs (orange) and CEs
(green).

V. CONCLUSIONS

This letter builds a multivariate fusion dataset consisting of
SLA and SST. With the fused dataset, a high-precision eddy
identification model PSA-EDUNet is proposed. The proposed
method can capture spatial information of different scales from
channel and spatial attention directions, enrich the feature
space by the PSA module and improve the way of skip
connection, thus ensure the integrity of feature information
in the decoder to the greatest extent. In addition, grouped
convolution is also employed to avoid the problem of excessive
data volume during the learning process. It can be reached
from the identification results that the proposed PSA-EDUNet
approach is superior to other methods. Meanwhile, the results
also indicate the presence of eddies in the region with no
eddies on the ground truth.
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