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Abstract.  

The development of new thermal barrier coatings (TBC’s) capable of increasing the efficiency of 

gas-powered turbines requires an understanding of how the tensile behavior and ductile to brittle 

transition temperature (DBTT) of MCrAlY bond coats are influenced by the coating microstructure. 

In this study, small punch tensile (SPT) tests were conducted on two high velocity oxy-fuel 

(HVOF) NiCoCrAlY coatings. Both coatings, referred to as BC1 and BC2, comprised a BCC β-

NiAl matrix with FCC γ-Ni and TCP σ-Cr2Co secondary phases. Coating BC2 also contained FCC 

γ’-Ni 3Al. Small punch tensile (SPT) tests were conducted on the coatings between RT and 750 °C. 

The DBTT’s of coatings BC1 and BC2 were found to be 600-700 °C and 650-750 °C respectively. 

Lower phase fractions of γ-Ni were shown to increase the DBTT. The main mode of crack 

propagation in both coatings was intergranular fracture along the grain boundaries of differing 

phases. Schematic models were used to demonstrate the change in tensile behavior across the 

DBTT and explain the influence of the coating microstructure on the fracture behavior of both 

coatings.  

1. Introduction  

Thermal barrier coatings (TBC's) are multilayer composite systems comprising: a ceramic top coat, 

a metallic alloy bond coat and substrate alloy. TBC’s are extensively employed in gas turbines to 

lower the operating temperature of alloy substrate; typically a nickel-based superalloy [1-3]. The 
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ceramic top coat provides thermal resistance to the system and is adhered to the substrate through 

the bond coat, which provides oxidation resistance to the substrate and accommodates strain 

mismatch between the substrate and ceramic top coat.  Recently, MCrAlY (M=Ni,Co) overlay bond 

coats deposited by high velocity oxy-fuel (HVOF) thermal spraying have become widely used in 

TBC’s because of advantages such as low cost and the possibility to employ complex MCrAlY 

alloys with tailored microstructures [4-6]. The composition of HVOF MCrAlY bond coats can be 

adjusted without needing to alter the composition of the substrate; offering greater flexibility over 

traditional diffusion coatings which require a coating composition similar to the substrate 

composition [1, 7-8]. MCrAlY’s can comprise FCC γ-Ni, BCC B2-β-NiAl, ordered γ'-Ni3(Al,Ti) 

and σ-(Cr,Co) [9-11]. The B2-β-NiAl phase, commonly present in MCrAlY overlay coatings, is 

brittle at lower temperatures and shows increasing strain to fracture above a critical temperature 

termed the ductile to brittle transition temperature (DBTT); around 750 °C for NiAl. Hence, overlay 

coatings containing β-NiAl also exhibit a transition in strain to cracking behaviour above the DBTT 

[12-13]. This can be problematic for TBC’s that undergo thermal cycling as cracks can form as the 

operating temperature decreases below the DBTT. Hence, detailed understanding of the DBTT and 

temperature dependent mechanical behaviour is essential in order to develop life prediction models 

of TBC’s.  

Moreover, as the microstructure of a bond coat is directly influenced by the thermal spray 

deposition process and any subsequent thermal treatment during manufacturing [4, 6, 14], it is 

essential to determine bond coat mechanical properties of thin, freestanding coatings manufactured 

in a similar way to industrial TBC processes.  

Investigations into the mechanical properties of MCrAlY coatings have been carried out using a 

variety of experimental techniques (i.e. 4 point bending, local indentation) [5, 14-18] but there is 

still little consistent data for any single MCrAlY coating. Recently, studies have employed the small 

punch tensile (SPT) test to determine the mechanical properties and DBTT of MCrAlY coatings 

[12, 19-20]. The SPT test is suitable for coatings as it employs small specimens: 8 mm diameter 

discs of 0.5 mm thickness. The SPT test has been widely validated as an effective method to 

determine the mechanical properties and DBTT of steels [21-27] and the recent studies have 

demonstrated the applicability of the SPT test for MCrAlY coatings.  

The current work aims to investigate the influence of coating microstructure on the mechanical 

properties and ductile to brittle transition behaviour of two NiCoCrAlY bond coats manufactured by 

HVOF thermally spraying, which have potential as new bond coat alloys. The DBTT and 

mechanical properties of the coatings were determined by small punch tensile testing between RT 
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and 750 °C. The macroscopic and microscopic fracture behaviour of both coatings was investigated 

with reference to the coating microstructures.  

 

2. Experimental Methods 

  

2.1. Materials, HVOF Thermal Spraying and Heat Treatment.  

The coatings were prepared by HVOF thermal spraying using powders with the following nominal 

composition: Ni-20Co-22.3Cr-12.2Al-0.3Y and Ni-20Co-22.3Cr-12.2Al-0.3Y-4Ta (wt.%) denoted 

BC1 and BC2 respectively. The coatings were deposited onto mild steel substrates of dimensions 60 

× 25 × 1.8 mm using a Met Jet III liquid fuel HVOF gun. The spraying procedure is detailed 

elsewhere [28]. The mild steel substrates were not grit blasted to aid debonding after spraying. 

Coatings were sprayed to a thickness of approximately 600 µm and were then debonded from the 

mild steel by bending around a mandrel to produce free standing coatings. Vacuum heat treatment 

was carried out on free-standing samples at 1100 °C for two hours in an Elite Thermal Systems 

TVH12 vacuum tube furnace held at approximately 10-9 bar followed by furnace cooling to room 

temperature over a period of 6 hours. This treatment was applied in order to approximately replicate 

the initial heat treatment given to bond coats during the manufacture of thermal barrier coatings. 

This type of heat treatment has been shown to reduce the porosity commonly present within sprayed 

coatings and allow the precipitation of secondary phases [19, 20, 28]. Specimens for SPT tests, in 

the form of 8 mm diameter discs, were cut from the heat treated coatings by electro-discharge 

machining. The specimens were ground down from the as-deposited thickness to a final thickness 

of 400 µm on 1200 grade silicon carbide paper. The final thickness, taken as the average of four 

measurements per specimen, was controlled to within ± 5 µm as measured by a digital micrometre 

and both surfaces had the same finely ground surface finish. 

 

2.2 Microstructural Characterisation.  

Cross sections of the heat treated coatings were mounted, ground and polished to a 1 µm diamond 

finish. Scanning electron microscopy (SEM) was carried out using a FEI XL30 scanning electron 

microscope equipped with an Oxford Instrument Link ISIS-3000 energy dispersive X-ray analysis 

(EDX) detector. Backscattered electrons (BSE) were used to form images and semi-quantitative 

EDX was utilised to aid phase identification through chemical microanalysis.  Samples for electron 

back-scatter diffraction (EBSD) required a further stage of chemical/mechanical polishing using 

colloidal silica to achieve a surface finish of 0.02 µm with minimal surface deformation. SEM-

based EBSD was carried out on a Zeiss 1530 VP field emission gun scanning electron microscope 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

4 
 

(Carl Zeiss, Inc., Maple Grove, MN) with an EDAX Pegasus combined electron backscatter 

diffraction system (EDAX, Mahwah, NJ, USA). The EBSD patterns were recorded at a specimen 

tilt angle of 70 ° with an accelerating voltage of 20 kV and a beam current of 26 nA. EBSD maps of 

the specimen were collected over an area of 50 µm × 50 µm at a step size of 0.1 µm. 

BSE images and EBSD phase distribution maps were used to measure the volume fractions of the 

different phases within the coating. Quantitative image analysis was carried out using the ImageJ 

and Gimp 2.0 software packages. Volume fractions are the mean of four measurements.  

 

2.3 Small Punch Tensile Testing.  

Displacement controlled small punch tests were carried out at a displacement rate of 1 × 10-6 ms-1 at 

room temperature (RT) and between 500-750 °C on a custom built rig installed on a Tinius Olsen 

H5KS single column materials testing machine. The temperature range was chosen to achieve 

brittle failure at the lower temperature and ductile failure at the higher temperature.  A schematic of 

the small punch rig is shown in Figure 1. Full details on the SPC rig can be found at [20].  A three 

tier, 3 kW furnace was used to heat the specimens. Three K-type thermocouples, accurate to 5 °C, 

were used to measure the furnace temperature in the top, middle and bottom tiers. The temperature 

variation across the three tiers was ≤ 2 °C. Temperature variations across the specimen were 

considered to be negligible due to the small specimen size and minimal temperature variation across 

the furnace. All tests were carried out in accordance with the CEN workshop agreement [29] in a 

temperature controlled room held at 21 °C. The load was applied through a 2.5 kN load cell and the 

punch head displacement was measured by two linear variable differential transformers (LVDTs).  

 

 

Figure 1. Schematic (not drawn to scale) cross section of the small punch rig showing the application of  
load through a hemispherical punch head and resultant specimen displacement (δ ) where ap , Rs and t0 are 
the radius of the receiving hole (4 mm), punch head radius (1 mm) and specimen thickness (0.4 mm) 
respectively.   

 

3. Data Analysis 
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Small punch tensile testing induces a complex biaxial stress state in test specimens [21, 30-32]. The 

load-displacement curves obtained from SPT tests typically exhibit up to four distinct bending 

regions [33], as shown in Figure 2, and there is currently no analytical solution available that allows 

strain to be calculated from all four bending regions without finite element analysis. The available 

solutions allow elastic biaxial strain to be calculated within the elastic bending regime of a SPT 

curve [21] and biaxial fracture strain to be calculated at the point of fracture [30]. However, there 

are also multiple approaches to determine the point of failure in a SPT test. As such, the 

methodology used to calculate strain from SPT tests must be carefully considered in order to allow 

accurate interpretation of the calculated values. The following section illustrates the equations used 

in this work to calculate strain and the method used to identify the point of failure in the SPT load-

displacement curves.  

 

 

Figure 2. Schematic diagram of a typical load-displacement curve obtained from small punch tensile testing 
of a ductile material [33]. The four bending regions are: (i) elastic bending; (ii) plastic bending; (iii) 
membrane stretching and (iv) progressive plastic instability. Fm and Um indicate the maximum load and the 
displacement at maximum load respectively.  

 

3.1 Determination of strain from SPT test  

In small punch tensile (SPT) tests the elastic biaxial strain in the specimen is calculated by 

considering biaxial bending of a thin disc clamped at its circumference. A solution to calculate the 

elastic biaxial strain (ε) at the outer surface of the sample at its central point was provided by Huang 

et al.  [21]: 

 

� = 	 ��	�
(�	
 +	�
)	. 

(1) 
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where t0 is the original specimen thickness (mm), δ is the specimen displacement (mm) and ap is the 

radius of the receiving hole (mm), as shown in Figure 1.   

The solution provided by Huang et al. [21] allows the elastic biaxial strain to be calculated within 

the elastic bending regime of the SPT load-displacement curve but ceases to be applicable once 

plastic deformation occurs. The elastic-plastic biaxial stain cannot be related to the punch 

displacement by simple analytical equations due to the complex nature of the SPT load-

displacement curve, although finite element solutions are available for specific alloys and test 

configurations.  However, a semi-empirical solution can be used to calculate the equivalent biaxial 

strain of a SPT specimen once it has fractured. The semi-empirical relationship was provided by 

Mao et al. [30] and calculates the biaxial fracture strain (ε*) of a small punch sample from the 

displacement at fracture (δ*) and original specimen thickness (t0). The solution was derived by 

correlating the thickness change at fracture of various alloys to the specimen displacement and rig 

geometry. The solution can be used to calculate the approximate biaxial strain at fracture for SPT 

specimens exhibiting plastic deformation.   

 

�∗ = 0.15	 ��
∗

���
�.�

 (2) 

 

3.2 Identification of point of fracture 

The DBTT of coatings is commonly identified by plotting coating ductility as a function of 

temperature and identifying the transition from high temperature ductile behaviour to low 

temperature brittle behaviour [1]. A schematic demonstrating this is shown in Figure 3, where the 

DBTT is defined as the difference between the highest temperature at which no ductile behaviour is 

observed, and the lowest temperature at which full ductile behaviour is observed. The ductility is 

measured as the strain to initiate first cracking as is typical for bond coats [34].   

 

Figure 3. Schematic showing ductility, measured as strain to first cracking, as a function of temperature. 
The DBTT is measured as the transition from high temperature ductile behaviour to low temperature 
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brittle behaviour. Schematic based on figures in [1].  
 

A crucial element of the SPT test is the ability to assess, in a reproducible manner, this strain to 

initiate first cracking from the experimental SPT test curve. For ductile materials the point of failure 

in a SP tensile test is often taken at the maximum load [29]. However, brittle materials may exhibit 

load drops prior to the maximum load, which are known to be associated with cracking in the 

sample [31]. Materials may also exhibit a characteristic change in slope of the load-displacement 

curve. Such changes may occur due to cracks forming on the tensile surface of the specimen. The 

deflection of the disc varies as the cube of the thickness, hence the load-displacement curve will be 

strongly altered when the outside fibres of the disc first crack [21].  

Therefore in the present study the point of failure onset is defined as the first measurable load-drop 

or a characteristic change in the slope of the load-displacement curve which is not associated with 

one of the four bending regions typically associated with SPT testing i.e. elastic bending (i), plastic 

bending (ii), membrane stretching (iii) and maximum load and progressive plastic instability (iv) 

[33]. 

 

4. Results 

 

4.1 Microstructure of Heat Treated Coatings.  

Figure 4 and Figure 5 show BSE images and EBSD maps of coatings BC1 and BC2 respectively. 

The BSE images show both coatings exhibit thin, dark elongated features which are regions of 

Al 2O3 that formed during spraying. The oxide content was measured as ~ 4 vol.% for both coatings.  

In the BSE images of both coatings the dark grey phase corresponds to the BCC β-NiAl phase as 

identified by EDX. The light grey phase is either FCC γ-Ni or TCP σ-Cr2Co phase, both of which 

exhibit a similar BSE contrast. The sigma phase is referred to as σ-Cr2Co as this reflects the phase 

composition more accurately than σ-CrCo. This observation has previously been reported by 

Toscano et al. [10]. In the case of the BC2 coating, the bright phase in the BSE images corresponds 

to the FCC γ’-Ni 3Al phase. In the EBSD phase maps the β-NiAl and σ-Cr2Co phases can be 

identified and are coloured red and yellow respectively. The γ-Ni and γ’-Ni 3Al phases are both FCC 

so could not be distinguished in the phase maps. As such, both phases are coloured green. The 

phase fractions for each coating were calculated using a combination of the BSE images, in which 

regions of γ’-Ni 3Al could be distinguished, and the EBSD phase maps, in which regions of σ-Cr2Co 

could be distinguished. The phase fraction of γ-Ni was then calculated from the difference between 
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the BSE images and EBSD phase maps. The phase fractions for each coating as listed in Table 1 

and the composition of each phase, as measured by EDX, is presented in Table 2.  

The random assortment of colours in the IPF (Z) maps indicates that there is no preferred grain 

orientation for either coating. The finer grains indicate areas of the coatings which underwent 

melting and resolidification during thermal spraying. The areas of larger grains highlight powder 

particles which retained in part, the original powder microstructure during HVOF thermal spraying.  

 

 

 Phase Fraction (vol.%) 

 β-NiAl γ-Ni σ-Cr2Co γ’-Ni 3Al 

BC1 60 ± 2 27 ± 2 13 ± 2 - 

BC2 56 ± 2 14 ± 2 21 ± 2 9 ± 1 

Table 1. Phase fractions (vol.%) of coatings BC1 and BC2 as measured by image analysis using a 

combination of BSE images and EBSD phase maps.  

 

Coating Phase 
Phase Composition (wt.%) 

Ni Co Cr Al Ta 

BC1 

β-NiAl 57 ± 3 14 ± 3 8 ± 1 20 ± 2 - 

γ-Ni 38 ± 2 29 ± 3 27 ± 2 8 ± 1 - 

σ-Cr2Co 19 ± 2 27 ± 2 49 ± 2 3 ± 1 - 

BC2 

β-NiAl 52 ± 2 17 ± 1 9 ± 1 20 ± 1 2 ± 1 

γ-Ni 36 ± 4 23 ± 1 27 ± 4 10 ± 2 3 ± 1 

σ-Cr2Co 18 ± 2 27 ± 1 47 ± 2 3 ± 1 4 ± 1 

γ’-Ni 3Al 48 ± 2 15 ± 1 8 ± 1 10 ± 1 18 ± 1 

Table 2. Phase compositions of coatings BC1 and BC2 as measured by EDX analysis. The values 

shown are an average of 4 spectra and the errors shown are the standard deviations.  

 

  

 

 (a) (b)  
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Figure 4. BSE images (a-b) of the heat treated BC1 coating. The light contrast phase is an FCC Ni-γ-phase 
and the dark contrast phase is a BCC NiAl-β-phase. The dark regions are Al2O3 oxides. Images (c) and (d) 
are EBSD scans presented as a phase map and grain orientation map respectively. The letters A and B 
indicate areas of large and fine grains respectively. The letter C indicates twinning in the γ-Ni phase. 

 

4.2 Load–Displacement Curves and Macroscopic Fracture Patterns 

Representative load-displacement plots are shown in Figure 6 for BC1 and BC2 specimens 

following SPT tests at room temperature (RT) and between 500-750 °C. The corresponding 

macroscopic fracture patterns observed on the tensile surfaces of the specimens are shown in Figure 

7 and Figure 8 for coatings BC1 and BC2 respectively.  

Figure 5. BSE images (a-b) of the heat treated BC2 coating. The light contrast phase is a FCC Ni-γ-phase 
and the dark contrast phase is a BCC NiAl-β-phase. The dark regions are Al2O3 oxides. Images (c) and (d) 

 

  

 

 (c) (d)  

 

  

 

 (a) (b)  

 

  

 

 (c) (d)  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

10 
 

are EBSD scans presented as a phase map and grain orientation map respectively. The letters A and B 
indicate areas of large and fine grains respectively. The letter C indicates twinning in the γ-Ni phase. 

 

There is a distinct change in the load-displacement behaviour for both coatings as the temperature is 

increased. At high temperatures (700 and 750 °C), the curves are similar to those reported 

elsewhere for ductile materials [22-23, 35] and display an initial linear region of elastic behaviour 

followed by plastic deformation, membrane stretching, maximum load and then progressive plastic 

instability, as indicated in regions (i)-(iv) in Figure 2 respectively. Failure occurs shortly after the 

maximum load, as has been observed for steels. At the lower temperatures, down from 600 and 650 

°C for coatings BC1 and BC2 respectively, the curves are predominately linear and feature sharp 

load drops which have been shown to indicate failure in non-ductile materials [20, 31, 36]. Hence, 

the point of failure, indicated by the arrows in Figure 6, is taken at the first load drop or 

characteristic change in the slope of the curve that is not associated with one of the four bending 

regions described above.   

The macroscopic fracture patterns shown in Figure 7 and Figure 8 clearly indicate the change in 

load-displacement behaviour corresponds to a change in macroscopic fracture behaviour for both 

coatings. At RT, cracks formed at the centre of the tensile surfaces of both coatings and propagated 

radially. As the punch head continued to push through the specimens the cracks propagated further 

and eventually caused the centre of the specimens to split into fragments, as shown in Figure 8c for 

the BC2 specimen tested at 500 °C. This type of cracking also occurred for the BC1 specimen 

tested at 500 °C but the central fragments became completely detached. This type of fracture has 

been previously reported for SPT specimens and is known to be associated with brittle failure [36]. 

At 700 and 750 °C for coatings BC1 and BC2 respectively, the coatings exhibited ductile behaviour 

and specimen failure occurred through the growth of a circumferential crack, shown clearly in 

Figure 7d and Figure 8d for the BC1 and BC2 coatings respectively. The cracks developed at a 

radial offset from the centre of the specimen and propagated along a circumferential path. This type 

of circumferential cracking is caused by thinning of the sample due to membrane stretching and is 

known to be associated with ductile failure during SPT testing [37].  
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(a) (b) 

Figure 6. Representative load-displacement curves for small punch tensile tests carried out between room 
temperature and 750 °C for coatings BC1 (a) and BC2 (b). The BC1 coating exhibits brittle behaviour down 
from 600 °C and ductile behaviour above 700 °C whereas coating BC2 exhibits brittle behaviour down from 
650 °C and ductile behaviour above 750 °C. The arrows indicate the point of failure.  

 

 

 

 

 

  

 

 (a) RT (b) RT  

 

  

 

 (c) 500 °C (d) 700 °C  

Figure 7. Tensile surfaces of the BC1 coating following SPT testing at (a-b) RT, (c) 500 °C and (d) 700 °C. 
The white boxes in (c) and (d) indicate the areas shown at higher magnification in Figure 10 and Figure 12 
respectively.   
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 (a) RT (b) RT  

 

  

 

 (c) 500 °C (d) 750 °C  

Figure 8. Tensile surfaces of the BC2 coating following SPT testing at (a-b) RT, (c) 500 °C and (d) 750 °C. 
The white boxes in (c) and (d) indicate the areas shown at higher magnification in Figure 11 and Figure 13 
respectively. 

 

4.3 Ductile to Brittle Transition Temperature  

The strain to first cracking as a function of temperature is shown for both coatings in Figure 9. For 

coating BC1, there is only a small increase in the strain at first cracking between RT and 600 °C, 

indicating that the ductility of the BC1 coating does not change significantly over that temperature 

range. Between 600 and 700 °C there is a large increase in the strain at first cracking which 

demonstrates there is a significant change in the ductility of the coating. Similar behavior is 

observed for coating BC2 with the increase in strain to cracking occurring between 650-750 °C. 

Therefore, the DBTT of coatings BC1 and BC2 are established as 600-700 °C and 650-750 °C 

respectively based on the definition of DBTT as explained in Figure 3.  
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(a) (b) 

Figure 9. The strain to first cracking as a function of temperature for coatings (a) BC1 and (b) BC2. 

 

4.4 Microscopic Fracture Path Analysis 

4.4.1 Low Temperature Fracture 

The change in fracture behaviour exhibited by both coatings across the DBTT can be better 

understood by looking at the microscopic fracture behaviour of each coating above and below the 

DBTT. Plan view images of the BC1 and BC2 coatings following SPT testing at 500 °C, taken from 

the areas indicated by the white boxes in Figures 7c and 8c respectively, are shown in Figure 10 and 

Figure 11 respectively, where (a) is a BSE image, (b) is an EBSD phase map and (c) is an inverse 

pole figure (IPF) (Z) that assigns a colour to separate grains based on orientation. The letter A 

indicates evidence of transgranular fracture through the β-NiAl phase, evidenced by a similar 

orientation of the β-NiAl phase grains either side of crack path. The letter B indicates evidence of 

intergranular fracture along the phase boundaries between the matrix β-NiAl phase and the 

secondary γ-Ni and σ-Cr2Co phases. This is the dominant mode of fracture in the BC1 coating at 

500 °C. The letter C indicates evidence of transgranular fracture through a grain of σ-Cr2Co phase. 

Transgranular fracture through the β-NiAl and σ-Cr2Co-phases appears to occur when the phase 

boundary is at a large angle to the direction of crack growth. There is no evidence of transgranular 

fracture through a grain of γ-Ni phase. It can be concluded that intergranular fracture along phase 

boundaries is the dominant mode of fracture in the BC1 coating at 500 °C and transgranular fracture 

through the β-NiAl and σ-Cr2Co phases is a secondary mode of fracture. 

Figure 11 shows two well defined cracks in the BC2 specimen following SPT testing at 500 °C. The 

letter A indicates evidence of transgranular fracture through a grain of β-NiAl phase. The letters B 

and C indicate evidence of intergranular fracture along the β-NiAl/ σ-Cr2Co and β-NiAl/ γ’-Ni 3Al 

phase boundaries respectively. The letter D indicates evidence of transgranular fracture through a 

grain of σ-Cr2Co phase. There is no evidence of intergranular fracture between two grains of β-NiAl 
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phase. The preferential path for crack propagation in the BC2 coating at 500 °C is variable: one 

mode of fracture is transgranular fracture through the β-NiAl phase; there is clear evidence of a 

crack originating within a grain of β-NiAl phase, indicated by A in Figure 11. Another mode of 

fracture is intergranular fracture along phase boundaries which is the dominant mode of fracture 

where phase boundaries between differing phases exist. The third mode of propagation is 

transgranular fracture through the σ-Cr2Co phase. This type of fracture appears to occur when the 

phase boundary is at a large angle to the direction of the crack growth. There is no evidence of 

transgranular through the γ-Ni or γ'-Ni3Al phase in the BC2 coating at 500 °C.  

 

   

(a) (b) (c) 

Figure 10. BSE image (a) and EBSD phase map (b) and IPF (Z) map (c) of a cross section of coating BC1 
following SPT testing at 500 °C. The letter A indicates evidence of transgranular fracture through the β-NiAl 
phase, the letter B indicates evidence of intergranular fracture along the phase boundaries between the β-
NiAl matrix phase and secondary γ-Ni and σ-Cr2Co phases. The letter C indicates evidence of transgranular 
fracture through a grain of σ-Cr2Co phase. 

 

  

(a) (b) 
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(c) 

Figure 11. BSE image (a) and EBSD phase map (b) and IPF (Z) map (c) of a cross section of coating BC2 
following SPT testing at 500 °C. The letter A indicates evidence of transgranular fracture through the β-NiAl 
phase, the letter B indicates evidence of intergranular fracture along the phase boundaries between the β-
NiAl matrix phase and secondary γ-Ni and σ-Cr2Co phases. The letter C indicates evidence of transgranular 
fracture through a grain of σ-Cr2Co phase. 

 

4.4.2 High temperature fracture 

Figure 12 and Figure 13 show cross sections of the BC1 and BC2 coatings tested at 700 and 750 °C 

respectively where (a) is a BSE image, (b) is an EBSD phase map and (c) is an inverse pole figure 

(IPF) (Z). The areas shown are highlighted by the white boxes in Figures 7d and 8d for the BC1 and 

BC2 coatings respectively. Considering coating BC1 first, the crack shown in Figure 12a is 

significantly wider than the low temperature cracks shown in Figure 10. This indicates slow crack 

growth and ductile tearing; clearly different to the thin cracks observed at 500 °C. It is clear from 

Figure 12a that the crack tip is growing in between regions of the dark contrast NiAl-β phase and 

the light contrast γ-Ni/σ-Cr2Co phase.   

Figure 12b is a BSE image showing an example of void formation in the BC1 coating in the area of 

high tensile stress in a SPT specimen. The letter A indicates evidence of void formation at the phase 

boundaries between the β-NiAl phase, the γ-Ni phase and/or the σ-Cr2Co phase. This intergranular 

void formation at the phase boundaries is the predominant type of void formation in the BC1 

coating at 700 °C and explains the phase boundary crack growth observed in Figure 12a.   

Figure 13 shows an example of void formation and crack growth in the BC2 coating at 750 °C. The 

letter A indicates evidence of void formation at the phase boundaries between the β-NiAl phase, the 

γ-Ni/γ’-Ni 3Al phase and/or the σ-Cr2Co phase. The letter B indicates evidence of intergranular 

fracture along the grain boundaries of adjacent grains of β-NiAl phase. The letter C indicates 

evidence of intergranular crack growth along the phase boundaries between the β-NiAl phase and/or 

the γ-Ni, γ’-Ni 3Al and σ-Cr2Co phases. The intergranular crack growth along grain boundaries of 

differing phases appears to be the dominant mode of crack growth in the BC2 coating at 750 °C and 
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is most likely caused by the void formation at the phase boundaries indicated by A. Intergranular 

crack growth between adjacent grains of β-NiAl phase appears to be a secondary mode of fracture. 

 

 

  

(a) (b) 

  

(c) (d) 

Figure 12. BSE images (a-b), EBSD phase map (c) and IPFZ map (d) of coating BC1 following SPT testing 
at 700 °C. The letter A indicates evidence of void formation at the phase boundaries between the β-NiAl 
phase, the γ-Ni phase and/or the σ-Cr2Co phase.   
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(a) 

 

(b) 

 

(c) 

Figure 13. BSE image (a) and EBSD phase map (b) and IPFZ map (c) of a cross section of coating BC2 
following SPT testing at 750 °C. The letter A indicates evidence of void formation at the phase boundaries 
between the β-NiAl phase, the γ-Ni/γ’-Ni 3Al phase and/or the σ-Cr2Co phase. The letter B indicates evidence 
of intergranular fracture along the grain boundaries of adjacent grains of β-NiAl phase. The letter C indicates 
evidence of intergranular crack growth along the phase boundaries between the β-NiAl phase and/or the γ-
Ni, γ’-Ni 3Al and σ-Cr2Co phases. 

 

5. Discussion 

 

5.1 Influence of Microstructure on Ductile to Brittle Transition Temperature 

The only available study concerning the DBTT of MCrAlY alloys with compositions similar to the 

BC1 and BC2 alloys was conducted by Hesbur and Miner [38], who reported a Ni-20Co-17Cr-

14Al-0.5Y coating exhibited a marked increase in ductility above 500 °C; which is consistent with 

the current findings. The DBTT is known to be sensitive to a number of factors including 

composition, phase distribution, microstructure and manufacturing process [1, 34]. As the BC1 and 

BC2 coatings received the same manufacturing process, the difference in the DBTT’s can be 

discussed with respect to the coating compositions and microstructures.  In general, the β-NiAl 

phase is considered the phase responsible for the ductile to brittle transition in MCrAlY alloys; 

increasing the phase fraction of β-NiAl is considered to increase the DBTT [1, 34-35, 39].This 

relationship is not useful for comparing the DBTT’s of the BC1 and BC2 coatings as both contain 
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similar fractions of β-NiAl. It is more useful to consider that most MCrAlY alloys comprise β-NiAl 

and γ-Ni, and so the DBTT of most MCrAlY’s is therefore inversely proportional to the phase 

fraction γ-Ni. This general trend is consistent with the current findings as the BC2 coating exhibits a 

lower phase fraction of γ-Ni and a higher DBTT compared to the BC1 coating. The BC1 and BC2 

coatings (14 and 27 vol.% γ-Ni respectively) also have a higher DBTT than an MCrAlY coating 

manufactured using similar spray parameters [20] that contained 70 vol.% γ-Ni and 30 vol.% β-

NiAl.  

The lower phase fraction of γ-Ni in the BC2 coating can be attributed to the addition of 4 wt.% Ta, 

which promoted the formation of γ’-Ni 3Al: Ta was shown to segregate heavily into the γ’-Ni 3Al by 

EDX measurements. The formation of γ’-Ni 3Al restricted the amount of Ni available to form γ-Ni, 

which in turn created a surplus of Co and Cr that led to the formation of σ-Cr2Co. Therefore, it is 

possible to state that the addition of 4 wt.% Ta increased the DBTT of coating BC2 due to the 

subsequent formation of γ’-Ni 3Al and σ-Cr2Co which lowered the phase fraction of the ductile γ-Ni 

phase.  

 

5.2 Influence of Microstructure on Fracture Behaviour 

In order to understand the change in tensile behaviour of each coating above and below the DBTT, 

and how this is influenced by the coating microstructures, it is necessary to consider the 

macroscopic and microscopic fracture behaviour of each coating. The macroscopic fracture patterns 

of the coatings show distinct characteristics above and below the ductile to brittle transition 

temperatures (600-700 °C and 650-750 °C for coatings BC1 and BC2 respectively). At 500 °C, 

below the DBTT of both coatings, cracking occurred in the centre of the tensile surface of the 

specimens. The cracking was associated with load-drops in the load-displacement curves and for 

each coating occurred at low strain. As the initial cracks became larger, the central regions of the 

specimens fractured into multiple fragments. These fragments eventually sheared away from the 

specimens as the tests continued. This also caused layers of coating to shear away from the tensile 

surface of the specimens. This additional shearing can be explained by the model shown in Figure 

14a: the initial radial cracks propagated to a small distance through the thickness of the specimen, 

as the central fragments then deformed normal to the specimen under the movement of the punch 

head, the sub-surface cracks spread through the horizontal plane of the specimen, causing the outer 

layer to detach. For the BC2 coating, the initial cracks propagated to the edge of the specimen, 

which is evidence that the magnitude of cracking was higher in the BC2 coating than in the BC1 

coating. As the γ-Ni phase is known to be a ductile phase, it can be assumed that during a SPT test 

it plastically deforms and dissipates energy. Hence, the lower phase fraction of γ-Ni phase in the 
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BC2 coating resulted in less energy dissipation during bending and a larger release of energy during 

crack propagation.   

The macroscopic fracture patterns of both coatings above the DBTT are characterised by 

circumferential cracking at a radial offset from the centre of the specimen, as shown in Figure 14b. 

Experimental observations and finite element models of the SPT test [31-32] have reported this type 

of failure and it is known to be characteristic of the small punch test for ductile materials. Specimen 

failure occurs at a circumferential offset because this is the area of maximum principle stress and 

corresponds to the location of the maximum thinning and plastic strain in the specimen.  

The change in macroscopic fracture behaviour below and above the DBTT can be understood by 

considering the evolution of the stress distribution within a SPT specimen. Finite element models 

[31-32] have shown that the region of high tensile stress develops underneath the punch contact 

area. At low displacements the punch contact boundary, and therefore region of high tensile stress, 

is limited to the centre of the specimen [31]. As the displacement increases the region of high 

tensile stress shifts radially as the punch contact area increases. The region of high tensile stress 

then stabilises at a radial offset that corresponds to the radius of the punch head. Below the DBTT 

of coatings BC1 and BC2, cracking occurs at low strain when the high tensile stress region is in the 

centre of the specimen. Above the DBTT, cracking occurs at high strain when the high stress region 

is at a radial offset from the centre of the specimen.  

 

  

(a) (b) 

Figure 14. Schematics showing the macroscopic fracture pattern development of the BC1 and BC2 coatings 
during SPT tests (a) below and (b) above the DBTT.   

 

Further understanding of the change in tensile and fracture behaviour of coatings BC1 and BC2 can 

be gained by considering the microscopic fracture behaviour of each coating. The main mode of 

crack propagation in the BC1 and BC2 coatings was intergranular fracture. This type of fracture is 

commonly observed in dual-phase (DP) steels, which typically consist of a ductile matrix phase 

inter-dispersed with hard precipitates. DP steels can be considered similar to the ductile γ-Ni and 
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hard β-NiAl and σ-Cr2Co phases in the BC1 and BC2 coatings. During plastic deformation of a dual 

phase steel, yielding starts in the soft ferrite phase whereas the hard martensite phase remains 

elastic. The strain incompatibility at the phase boundaries causes a build-up of local stress at the 

phase interface as well as internal stress in the martensite phase [40-42]. Once the internal stress 

surpasses the elastic limit of the hard phase, it either begins to deform or fractures. The strain 

incompatibility between the soft and hard phases also causes shearing of the phase interface which 

leads to void formation [41, 43-44].  

Figure 15 shows a simple model of a coating that contains γ-Ni and β-NiAl phases and subject to 

uni-axial tensile loading, where the γ-Ni and β-NiAl phases are considered to behave in a similar 

way to the ferrite and martensite phases in dual-phase steels: γ-Ni phase is known to be ductile and 

does not experience a DBTT [45]; whereas the β-NiAl phase, depending upon composition and 

processing method, experiences a DBTT between 400-900 °C [1, 39].  

Under tensile loading, the γ-Ni phase plastically deforms, which leads to a build-up of local stress at 

the phase boundaries as well as internal stress in the β-NiAl phase. At low temperature, voids and 

cracks form at the phase boundaries when the γ-phase deforms but the β-NiAl phase remains 

inelastic. This causes intergranular fracture as seen in the BC1 and BC2 coatings at 500 °C. At high 

temperature, the β-NiAl phase becomes ductile and deforms elastically. Voids and/or cracks still 

develop at the phase boundaries, but a higher amount of plastic deformation and thinning is 

achieved before intergranular fracture occurs.  

 

Figure 15. Schematic of void formation for a coating containing γ-Ni and β-NiAl phases subject to tensile 
loading below and above the DBTT.  

 

Figure 16a shows a similar model for a coating containing γ-Ni, β-NiAl and σ-Cr2Co. In this 

instance the σ-Cr2Co phase can be considered to be a hard undeformable phase that deforms less 

than the γ-Ni and β-NiAl phases. In this instance, voids and cracks form at the phase boundaries 
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between the three phases, as was observed for both coatings. As intergranular fracture is the 

dominant fracture mechanism in both coatings, an increase in the number of phase boundaries will 

increase the density of cracking and decrease the strain to fracture. A reduction in the amount of 

ductile γ-Ni phase will also reduce the strain to fracture, as was seen for the BC2 coating which 

contained a higher volume fraction of σ-Cr2Co phase and lower volume fraction of γ-Ni phase 

compared to the BC1 coating. The presence of γ'-Ni3Al phase did not appear to increase the density 

of crack formation in the BC2 coating, which can be attributed to the coherent interface between the 

γ-Ni and γ'-Ni3Al phases [45].  

 

 

Figure 16. Schematic of void formation for a coating containing γ-Ni, β-NiAl and σ-Cr2Co phase subject to 
tensile loading below the DBTT.  

 

5. Conclusions 

• The DBTT's of the BC1 and BC2 coatings are 600-700 and 650-750 °C respectively. 

This is the first time the DBTT’s of these alloys has been determined. 

• Decreasing the fraction of γ-Ni phase was shown to increase the DBTT, and reduce 

the ductility of the HVOF NiCoCrAlY coatings. The presence of σ-Cr2Co phase also 

reduced the ductility of the BC2 coating. The presence of γ'-Ni3Al did not appear to 

significantly reduce the ductility of the BC2 coating. 

• Below the DBTT of coatings BC1 and BC2, fracture occurred at low strain and was 

characterised by cracking in the centre of the specimen. Above the DBTT, circumferential 

cracking occurred at a radial offset from the centre of the specimen at high strain.  

• Intergranular fracture was the main mode of fracture in the BC1 and BC2 coatings 

above and below the DBTT’s and is considered to have occurred due to strain 

incompatibility between the different phases.  
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