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Abstract  

  Lubrication is often employed in fretting contacts to reduce wear and stresses associated with 

high friction. Owing to the very small displacements associated with fretting, penetration of 

lubricating oils into the contact may not be effective. The efficacy of the penetration of the 

lubricant into the contact is very difficult to observe experimentally, and accordingly, this paper 

presents a numerical simulation of a lubricated fretting contact using a 

Coupled–Eulerian–Lagrangian (CEL) finite element method. Meso-scale CEL finite element 

models are developed to simulate the cylinder–on–flat arrangement used experimentally at the 

University of Nottingham in which the roughness of contact surfaces is characterized as fractal 

geometry by the Weierstrass-Mandelbrot (W-M) function. The fluid–solid and solid–solid contact 

in the lubricated fretting contact are simulated, and from these, wear and friction coefficients are 

determined. The effects of contact geometry on lubricated fretting contacts and lubricant on 

fretting wear are modelled and compared with experimental observations. Results indicate that oil 

lubrication reduces fretting wear and friction effectively in the less–conforming contacts but has 

little effect in the more–conforming contacts.  

 

* Corresponding Author: qinwj@bit.edu.cn 

 

Keywords Fretting; lubricated contact；Coupled–Eulerian–Lagrangian approach；wear and friction 

coefficients 

 

1 Introduction 

1.1 Lubricated fretting contact 

  Fretting is a special wear process which occurs in loaded contacts between two bodies when 

they are subjected to minute oscillations and usually leads to wear and fatigue damage [1]. There 

are many factors affecting the fretting damage, including contact pressure, tangential force, sliding 

amplitude, vibration frequency, surface roughness, temperature, surface hardness, lubrication and 

so on. The most important factor is the coefficient of friction [2].  

  Lubrication is an effective way to reduce friction. The effect of lubrication has been verified in 

the sliding contact of many friction pairs. However, owing to the very small displacements, 

lubricating oil is sometimes difficult to enter the contact interface, and the lubricating oil may be 

squeeze out even it enters the contact interface (called the self cleaning [3]). A number of reports 

in the literature that address lubricated fretting wear have argued that wear behaviour is influenced 

predominately by the ability of lubricant to penetrate contacts [4–6]. The effectiveness of 

penetration of lubricating oil into the contact will depend upon the geometry of the contact, the 

nature of the lubricant and the conditions. For example, the conformity of the contact is one of the 

important factors. In line contacts, lubricant is more likely to enter the contact interference with 
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smaller contact radius [7]. 

  Because it is difficult to form a full lubricating oil film, a fretting interface is usually in the state 

of mixed lubrication and boundary lubrication [4, 8]. The contact load is shared by the roughness 

solid and the lubricating oil of the contact. Therefore, the surface roughness will affect the 

characteristics of contact interface in fretting [9].  

 

1.2 Finite element simulating of fretting contact 

  For over one hundred years, fretting has been intensively investigated in the experimental and 

theoretical research. However, it is difficult to observe the state of lubricating oil between the 

contact surfaces directly in experiments, and it is also difficult to predict the behaviour of a real 

fretting tribo-system of complex geometry with surface roughness by theoretical research. With 

the rapid development of high performance computers and the methods for solving non-linear 

problems, finite element (FE) analysis has been applied to simulate the fretting process.  

  For examples, McColl and Ding et al. presented a FE method to simulate both the fretting wear 

and the evolution of fretting variables with number of wear cycles in a cylinder-on-flat fretting 

configuration based on Archard's model [10, 11]. Then Ding et al. presented a FE based fretting 

wear simulation tool which could model complex geometries like spline coupling and 

incrementally update the contact geometry with material removal [12]. Later, a kinematic 

hardening (continuum) plasticity model to represent the cyclic plasticity behaviour was used in the 

FE wear simulation which was employed to study the evolution of the surface and sub-surface 

fretting variables [13]. Most recently, the local temperature rise in fretting contact due to frictional 

power dissipation is also simulated by FE method [14, 15]. Furthermore, Cruzado et al. carried out 

a series of research on the FE based methodology for the prediction wear scars in thin steel wires 

under fretting wear conditions [16, 17].  

  The above studies are all aimed at the dry fretting contact without lubrication. The motivation 

of this paper is to present the methodology of modeling lubricated contacts in fretting contact 

using FE method. In this method, the roughness of contact surfaces is characterized as fractal 

surfaces by the Weierstrass-Mandelbrot (W-M) function, and the lubricated contact is simulated by 

a Coupled–Eulerian–Lagrangian (CEL) approach in which the solid is Lagrangian and the liquid 

(the lubricant) is Eulerian. According to the cylinder–on–flat arrangement used in the fretting wear 

experiment at the University of Nottingham, the corresponding CEL FE models are established, 

the wear and friction coefficients are determined. The effects of contact geometry on lubricated 

fretting contacts and lubricant on fretting wear in the less–conforming contacts are modelled and 

compared with experimental observations. 

 

2 CEL approach 

2.1 The Lagrangian and Eulerian formulation 

  An Eulerian coordinate, also called a spatial coordinate, specifies the location of a point in 

space, which describes the motion of different particles passing through a certain point in space. A 

Lagrangian coordinate, also called Material coordinates, labels a material point in a body, which 

describes the motion of a particle following its the motion. Corresponding to Lagrangian 

coordinates and Eulerian coordinates, there are two kinds of mesh — Lagrangian mesh and 

Eulerian mesh. In a Lagrangian mesh, the nodes are coincident with material points. In an Eulerian 

mesh, the nodes are coincident with spatial points.  
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  In the standard Lagrangian description, the mass, momentum, and energy equations are [18] 

0
t





   


v ,                              (1) 

D

Dt
   

v
σ b ,                             (2) 

:
De

Dt
 σ D ,                               (3) 

where ρ is the density, v is the material velocity, σ is the Cauchy stress, b is the body force, e is the 

internal energy per unit volume and D is velocity strain. 

  In Eulerian description, the three conservation equations as follows 

  0
t





 


v ,                           (4) 

( )
D

Dt


     

v
v v σ b ,                    (5) 

( ) :
e

e
t


 


v σ D .                           (6) 

  The Eulerian governing equations (4)–(6) have the general conservation form 

 
t


 


Φ S ,                            (7) 

where is the arbitrary solution variable, Ф is the flux function, and S is the source term. This 

equation can be divided into two equations 

t





S ,                                (8) 

  0
t


  


Φ ,                           (9) 

which can be then solved sequentially. 

  The first step (Lagrangian step) is to solve Eq. (8). The second step (Eulerian step) is to 

calculate the volume of material transported between adjacent elements and adjust the Lagrangian 

solution variables by the transport algorithms [18, 19]. Explicit dynamic contact analysis is used in 

the Lagrangian step, and the equation for the motion of a contact system is [20] 
i c e  Md F F F ,                         (10) 

where M is the diagonal lumped mass matrix, 
e

F  is the applied load vector, 
i

F  is the internal 

force vector, and 
c

F is the contact force vector. 

In order to obtain accurate results, incremental steps must be adequately small. The maximum 

time increment must be less than the critical value of the smallest transition time required for a 

dilatational wave to cross any element in the mesh. The critical value is defined by 
e

crit dt L c  , 

in which L
e
 is the length of the smallest element, cd is the wave velocity of the material. 

   

2.2 Motion of fluid interface 

  In this approach, the solid is Lagrangian and therefore its boundary is just defined by the 

element edges. Given that fluid elements tend to become ill-shaped resulted from inhomogeneous 

movements of the mesh points and reflects on the accuracy of the solution, the fluid (the lubricant) 

is Eulerian in this paper and the volume of fluid (VOF) method is used to reconstruct the fluid 
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interfaces based on the volumes fractions of the fluids in an element and its neighboring elements. 

In the VOF method, a volume fraction scalar field, Ck, is defined as Eq. (11) for each fluid k, 

determining the fraction of volume that occupies within each computational cell [21]. 

k
k

c

V
C

V
 ,                                (11) 

where Vk is the volume of fluid k for the cell and Vc is the volume of the entire cell. Ck=0 for cells 

that do not contain fluid k; Ck= 1 for cells that only contain the kth fluid and 0 < Ck < 1 if part but 

not all of a cell's volume is occupied by the kth fluid. 

  Assuming that the fluids are immiscible and that their movement is defined by a unique velocity 

field, the interface motion can then be captured by solving the conservation equation derived from 

Eq. (5) [21] 

( ) 0k
k

C
C

t


 


v ,                            (12) 

  Then the interface normal direction n can be calculated by various methods such as the Young's 

method or the least-squares volume-of-fluid interface reconstruction algorithm et al. [21, 22]. 

 

3 Modeling of oil lubricated fretting contact 

3.1 Description of rough surface 

  In this study, the rough surface is described by fractal geometry because it is characterized by 

the properties of continuity, nondifferentiability, scale invariance, and self-affinity, and its 

two-dimensional surface profile height is given by Weierstrass-Mandelbrot (W-M) function [23] 

   

2

1

1

2

cos 2
n n

D

D n
n n

x
z x G










  ，1 2D 

                  

(13) 

where D is the fractal dimension (1<D<2), G is the fractal scale coefficient, γ (γ>1) is a constant 

which controls the density of frequencies in the surface profile and γ=1.5 is typical for most 

surfaces, n is the fractal scale index and n1 and n2 are the lowest and highest cut-off indexes of 

frequency. Let ω=γ
n
 is the spatial frequency of the profile, then ωL is the starting frequency 

determined by the sample length L as ωL =1/L, and ωU is the upper limit of frequency which is 

determined by the profile resolution δ as ωU =1/2δ. 

  The method of determination of fractal dimension D and fractal roughness G described in [15] 

is used here. As a cylinder–on–flat arrangement (Fig. 1) used in the fretting wear experiment at the 

University of Nottingham is concerned, the coordinates of the surface profile of the fretting test 

specimens are obtained via non-contact laser measurement using Mitaka PF-60, which uses a laser 

autofocus method to determine the co-ordinates of the profile with a resolution of 0.1 µm in height 

direction and 0.5 µm in lateral direction. The 1 mm length of the measurement data of the cylinder 

and flat specimens are shown in Fig. 2. As the fretting amplitude is 50 μm and the contact width is 

less than 100 μm, the width of the rough contact surfaces to be modelled is limited to 300 μm. The 

modelled 300 μm long profile heights for the cylinder and the flat samples are shown in Fig. 3. 
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Fig. 1 Cylinder–on–flat specimen arrangement employed in fretting tests [15] 

 

 

(a) 

 

(b) 

Fig. 2 Measured profile heights: (a) cylinder surface; (b) flat surface. 

     

 

(a) 
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(b) 

Fig. 3 Modelled 300 μm long profile heights: (a) cylinder surface; (b) flat surface. 

 

3.2 CEL FE modeling of oil lubricated fretting contact 

  This study focuses on the modelling of the oil-lubricated fretting contact and simulating the 

penetration of lubricant into the contact and its effect on the wear. As the cylinder–on–flat 

arrangement (Fig. 1) is concerned, the contacting specimens are solids and are modelled as the 

Lagrangian meshes, while the oil lubricant is fluid and is modelled as Eulerian meshes because the 

flow displacement of the lubricant is large and there is a flow discontinuity when penetration is 

poor. The explicit dynamics method is applied to simulate the oscillations of the two bodies 

pressed against each other and the flow of the oil lubricant between the two bodies simultaneously.  

 

3.2.1 Material property 

  The solid material of the specimens used in the fretting wear experiment is a S132 steel. Given 

that only part of the contact load is supported by the solids in the lubricated contact and the yield 

stress of S132 steel (840 MPa) is relatively high, the plastic deformation is not likely to occur in 

the contact solids in this study, the flat and cylinder specimens are modelled as elastic bodies, and 

its material property parameters are listed in Table 1. 

Table 1. Material properties of S132 steel. 

Young's modulus of 

elasticity E (GPa) 

Poisson ratio  

ν 

Density  

ρsol (kg/m
3
) 

206.8 0.28 7850 

 

  The liquid (the lubricant) material is modelled using the Mie–Grüneisen equation of state (Eq. 

(14)) with a linear fit assumption for the shock velocity as a function of the particle velocity as Eq. 

(15) [24, 25].  

( )ref refp p Γ e e   ,                        (14) 

0s pU c sU 
,    

                        (15) 

where p is the pressure, e is the internal energy, pref and eref are the reference pressure and internal 

energy, Γ is the Mie–Grüneisen ratio and 0

0
Γ Γ






 

in which Γ0 is a material constant and ρ0 is 

the reference density , Us is the shock velocity, Up is the particle velocity, c0 is the zero-pressure 

isentropic speed of sound, and s is a dimensionless parameter which is related to the pressure 
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derivative of the isentropic bulk modulus. In this study, the parameters s and Γ0 are simplified to 0 

[26]. The material property parameters of the lubricant used in this study are listed in Table 2. 

Table 2. Material properties of the lubricant. 

Density 

ρlub (kg/m
3
) 

Dynamic viscosity 

η (Pa•s) 

Sound velocity 

c0 (m/s) 

Mie–Grüneisen 

ratio Γ 
s 

880 0.0596 1401 0 0 

 

3.2.2 FE model 

  The contact between the cylinder and the flat used in the fretting wear experiment is a 

nonconforming line contact and the contact pressure is concentrated in the zone of a contact width 

which is investigated here to specify how much is the real area of contact associated with the wear. 

Since the Eulerian part representing the oil lubricant should be modelled as a three-dimension 

body in ABAQUS and the sizes of the Lagrangian and Eulerian meshes are very small considering 

the concentrated contact stress and the thin oil film, the part structures of the cylinder and flat are 

built up to improve the calculation efficiency in this study. As to one model in which the radius of 

the cylinder is R=6 mm and the semi–contact–width is 41 μm under the load of 250 N applied on 

the top surface of the cylinder, the size of the upper specimen is defined as 0.3 mm0.2 mm1.0 

mm and that of the lower specimen is defined as 0.3mm0.1mm1.0mm, more than 20 times the 

semi–contact–width in the thickness direction. The lubricant is modelled as an Eulerian body. Its 

height is defined as 6μm, more than the sum of the roughness of the two specimens, and its length 

and thickness are defined 200μm more than those of the solids to ensure the enough lubrication. 

Considering the symmetry of the geometry and boundary conditions in the thickness direction, 

only half the structure is modelled in this study.  

  The solids are meshed with Lagrangian elements and the lubricant (Eulerian body) is meshed 

with Eulerian elements (see Fig. 4). The boundary conditions applied to the model includes: the 

z-symmetric displacement constraint is applied on the middle planes of the model; the bottom of 

the lower solid is fixed; the load (12.5 N) resulted from that used in the experiment is applied to 

the top of the upper solid; the oscillating motion with the displacement amplitude of 50 μm and 

the frequency of 200 Hz along the x direction ( ( ) 0.05sin(1256 )(mm)x t t ) is applied to the 

upper solid; the velocities along the normal directions of the upper and lower surfaces of the 

Eulerian part in Fig. 4 are set to zero to restrain the lubricant from flowing out of these surfaces; 

the solid–solid contact constraint is applied between the contacting surfaces of the solids; the 

fluid–solid contact constraint is applied between the solids and the lubricant. 

 

Fig. 4 The mesh model of the assembly 
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4 Simulation results 

4.1 Illustrative results 

  In the contact zone, 5 µm, 3 µm and 2 µm elements are used to investigate which size of 

element is required to adequately capture the contact behaviour. Table 3 gives the solid–solid 

contact stresses resulting from the models with different element sizes in the contact zone at the 

time of the first reversal of the upper solid. It can be seen that the difference between the contact 

stresses resulting from the models with 3 µm and 2 µm element sizes in the contact zone is 

relatively small (the relative difference is about 5%). Therefore, the model with a 3 µm element 

size in the contact zone is adopted in the simulations in this paper due to the computational 

efficiency. Fig. 5 shows the solid–solid contact pressure on the top surface of the lower solid 

resulting from the model with a 3 µm element size in the contact zone at the time of the first 

reversal of the upper solid. 

 

Table 3. Solid–solid contact stresses resulting from the models with different element sizes  

in the contact zone. 

Element size 5 µm 3 µm 2 µm 

Contact stress (MPa) 73.02 225.5 237.9 

 

 

Fig. 5 Solid–solid contact stress. 

 

  The solid–solid contact force in one fretting cycle (0.005 s) is investigated as shown in Fig. 6. 

From this figure, it can be seen that the solids contact occurs before and after the reversals (at 

t=0.00125 s and t=0.00375 s) since the velocities during these periods are relatively low which 

result in thinner oil film thickness and cause solid asperity–asperity contact. But the value of 

contact force is much less that the applied load which is 12.5N. This means that the lubricant has 

penetrated into the contact area and most of the load is supported by the lubricant. The result can 

be also verified by the volume fraction results of the fluid (the lubricant) as shown in Fig. 7. At the 

beginning of the cycle (see Fig. 7 (a)), the volume fraction value in the contact area is greater than 

zero, which means that there is lubricant all over the contact area. At the first reversal of the upper 

solid (see Fig. 7 (b)), the volume fraction is zero in some contact area, which means that the 

lubricant partially penetrated into the contact. 
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Fig. 6. Solid–solid contact force ratio in one fretting cycle (R=6 mm). 

 

 

(a)                                          

 

(b) 

Fig. 7. The volume fraction results:  

(a) at the beginning of the cycle; and (b) at the first reversal of the upper solid. 

 

4.2 Calculation of wear coefficient and friction coefficient 

4.2.1 wear coefficient 

  According to the Archard’s model [27], the wear volume can be calculated as 

V kPs                                (16) 

where k is the dimensional wear coefficient for dry contacts, P is the contact force, and s is the 

sliding distance.  

  During the lubricated fretting contact process, wear only occurs in solid–solid contact areas. 

Since the solid–solid contact force changes with the time, the wear volume is calculated as  

0
( ) ( )

T

sV kP t v t dt  ,                          (17) 

in which Ps (t) is the solid–solid contact force, v (t) is the sliding velocity and T is the contacting 

time duration. 
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  Using Eq. (17) to calculate the wear volume in a solid–solid contact as  
0

T

lV k P v t dt    , 

the wear coefficient for a lubricated contact can be obtained as 

 
 

 

0

0

0

( )
= [ ]=

T

T s

l T

k P t v t dt
k V / P v t dt

P T v t dt




 





,                  (18) 

  From the experiment carried out at the University of Nottingham, the wear coefficient k has 

been obtained as 2.25×10
-8 

mm
3
N

-1
mm

-1
 in [28]. Using the solid–solid contact force as shown in 

Fig. 6 and ( ) 0.05cos(1256 )(mm/s)v t t , the wear coefficient for the lubricated contact is 

determined as 1.6×10
-9 

mm
3
N

-1
mm

-1
 by Eq. (18). 

 

4.2.2 friction coefficient 

  In a lubricated contact, the friction is composed of the shearing force of roughness and the 

viscous resistance of lubricant. The friction coefficient for a lubricated contact is determined by 

( )s s l
l

fP A A
f

P

 
 ,                           (19) 

where A is the total nominal contact area, As is the solid–solid contact area which can be 

calculated in ABAQUS software, f  is the friction coefficient of the solid–solid contact, and τl (t) is 

the frictional shear stress of the oil film which is defined as 

( )
( )l

v t
t

h


  ,                              (20) 

in which h is nominal oil thickness, and η is the dynamic viscosity of the lubricant. 

  During the lubricated fretting contact process, since the solid–solid contact area
 
As is much 

smaller than the
 

total nominal contact area A, the friction coefficient can be determined 

approximately by 

0 0

( )
( )

T

l

T

s

v t
P t dt A dtf

h

P
f

T







  ,                     (21) 

 In this study, the friction coefficient of the solid–solid contact f has been obtained by experiment 

as 0.89 [28]. Using the solid–solid contact force as shown in Fig. 6, and determining the nominal 

oil film thickness by the distance between the two nodes which are located at the middle of the 

upper and lower nominal solid surfaces respectively, the friction coefficient for the lubricated 

contact is determined as 0.19.
 

 

4.3 Efficacy of contact conformity 

  In order to investigate the effect of contact conformity on fretting wear, the model with the 

larger radius of the cylinder, which is R=160 mm, is generated to represent the more conforming 

contact geometry. The other conditions are the same as the model with the cylinder radius of 6 mm. 

The resulted solid–solid contact force in one fretting cycle is shown in Fig. 8. 
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Fig. 8. Solid–solid contact force ratio in one fretting cycle (R=160 mm). 

 

  From this figure, it can be seen that the value of solid–solid contact force before and after the 

reversals is much greater than that with the 6 mm radius cylinder, and even greater than the 

applied load 12.5 N due to the reversal impact. This means it is difficult for the lubricant to 

penetrate into the contact area and most of the load is supported by the solid. Adopting the method 

in Section 4.2, the resulted values of wear coefficient and friction coefficient in lubricated contacts 

with the 6 mm and 160 mm radius cylinders compared with the experiment values under dry 

fretting contacts are listed in Tables 4. 

 

Table 4 Wear coefficient and friction coefficient results. 

Radius  

R /mm 

Wear coefficient / mm
3
N

-1
mm

-1
 Friction coefficient 

Lubricated contact Dry contact Lubricated contact Dry contact 

6 1.6×10
-9

 2.25×10
-8

 0.19 0.89 

160 6.0×10
-9

 8.0×10
-9

 0.93 1.35 

 

  This result shows that the wear coefficient and friction coefficient with the 160 mm radius 

cylinder is much greater than those with the 6 mm radius cylinder, which are also close to the 

corresponding values in dry contacts. But both the wear coefficient and friction coefficient with 

the 6 mm radius cylinder is much smaller than those for dry contacts. Therefore, it can be 

concluded that the oil lubrication can reduce fretting wear and friction effectively in 

less–conforming contacts (cylinder with a smaller radius) while has smaller effect on reducing 

wear and friction in the more–conforming contacts (cylinder with a larger radius). 

 

5 Simulation of fretting wear 

  The effect of the lubricant on reducing wear in less–conforming contacts is investigated by the 

FE wear simulation.The FE model for the cylinder-on-flat line contact with the 6 mm radius 

cylinder has been developed with the ABAQUS code to simulate the fretting wear. The contact is 

simplified to be a two-dimensional plane strain problem and very fine (about 3μm in element size) 

meshes are generated near the contact zone (see Fig. 9).  
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Fig. 9 Two-dimensional FE model for the cylinder-on-flat line contact. 

 

  The fretting wear modelling methodology first developed by McColl et al [10] has been applied 

to the model. Based on Archard’s wear law, the incremental local wear depth at each node can be 

calculated as: 

Δ Δh kp  ,                                (22) 

where p is the local contact pressure for each node, and Δδ is the incremental local slip distance.  

  Since most fretting tests have large numbers of cycles, to reduce the computational cost of the 

simulation, it is assumed that wear is the same in ΔN cycles. Therefore, 

Δ Δ Δh Nkp  .                              (23) 

  The worn surface geometry is updated incrementally (about 100 times for each fretting cycle) 

with Arbitrary Lagrangian-Eulerian (ALE) adaptive meshing through a Fortran based ABAQUS 

user subroutine. Using the wear coefficients for lubricated contacts and dry contacts, the simulated 

worn profiles of the flat part for 5,000 cycles, 20,000 cycles and 100,000 cycles under the loads of 

250 N, the displacement amplitude of 50 μm and the frequency of 200 Hz are illustrated in Fig. 

10. 

      

 (a)                                     (b) 

Fig. 10 Simulated worn profiles of the flat part: (a) lubricated contact; and (b) dry contact. 

 

  The results show that the wear depth value of the flat part after 100,000 fretting cycles (0.2 µm) 

is very small under lubricated condition, while the scar under dry condition is much more 

significant with the size of about 5.76 µm deep and 1 mm wide. This is close to the tested surface 

topography results of the wear scars, in which the width of the scar is about 1 mm and the maximum 

depth of the scare is 6.6 µm under dry condition while the scar under lubricated condition is much 

slight. The BSE images of the fretting wear scars on the flat specimens are compared in Fig. 11. 
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(a)                                       (b) 

Fig. 11 Fretting wear scars on the flat part: (a) lubricated contact; and (b) dry contact. [28] 

 

6 Conclusions 

  This paper presents a methodology of modeling lubricated contacts in fretting wear using a 

Coupled–Eulerian–Lagrangian (CEL) FE method. As the solid is Lagrangian and the liquid (the 

lubricant) is Eulerian, the fluid–solid and solid–solid contacts in fretting wear can be simulated 

and the wear and friction coefficients can be predicted quantitatively. According to the 

cylinder–on–flat arrangement used in the fretting wear experiment at the University of 

Nottingham, the corresponding meso-scale CEL FE models are developed and the efficacy of the 

penetration of the lubricant into the contact is investigated. 

  The penetration of lubricating oil into the contact is verified by the solid–solid contact forces 

and the volume fractions of the lubricant, and the effectiveness of the lubricant is found to depend 

upon the contact conformity. When the cylinder radius is 6 mm corresponding to the 

less–conforming contact, the solid–solid contact force is much smaller than the applied force and 

the volume fraction of the fluid is more than zero in most of the contact area. When the cylinder 

radius is 160 mm corresponding to the more–conforming contact, the value of solid–solid contact 

force is much greater than that with the 6 mm radius cylinder. This means that the lubricant can 

penetrate into the contact area effectively and most of the load is supported by the lubricant in 

less–conforming contacts, while it is difficult for the lubricant to penetrate into the contact area 

and most of the load is supported by the solid in more–conforming contacts. 

  The different efficacy of the penetration of the lubricant into the contacts causes that the wear 

coefficient and friction coefficient with the 160 mm radius cylinder is much greater than those 

with the 6 mm radius cylinder. Both the wear coefficient and friction coefficient with the 6 mm 

radius cylinder is much smaller than those for dry contacts. It can be concluded that the oil 

lubrication can reduce fretting wear and friction effectively in less–conforming contacts but has 

smaller effects in the more–conforming contacts. 

  The effect of the lubricant on reducing wear in the less–conforming contacts is investigated by 

the wear simulation using the FE model for the cylinder-on-flat line contact with the 6 mm radius 

cylinder. The results show that the wear depth value of the flat part is very small under lubricated 

condition, while the scar under dry condition is much more significant. The results are consistent 

with the corresponding experiment results. 
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