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Abstract—Image super-resolution (SR) has been an active re-

search problem which has recently received renewed interest due 

to the introduction of new technologies such as deep learning. 

However, the lack of suitable criteria to evaluate the SR perfor-

mance has hindered technology development. In this paper, we fill 

a gap in the literature by providing the first publicly available 

database as well as a new image quality assessment (IQA) method 

specifically designed for assessing the visual quality of su-

per-resolved images (SRIs). In constructing the Quality Assess-

ment Database for SRIs (QADS), we carefully selected 20 refer-

ence images and created 980 SRIs using 21 image SR methods. 

Mean opinion score (MOS) for these SRIs are collected through 

100 individuals participating a suitably designed psychovisual 

experiment. Extensive numerical and statistical analysis is per-

formed to show that the MOS of QADS has excellent suitability 

and reliability. The psychovisual experiment has led to the dis-

covery that, unlike distortions encountered in other IQA data-

bases, artifacts of the SRIs degenerate the image structure as well 

as image texture. Moreover, the structural and textural degener-

ations have distinctive perceptual properties. Based on these in-

sights, we propose a novel method to assess the visual quality of 

SRIs by separately considering the structural and textural com-

ponents of images. Observing that textural degenerations are 

mainly attributed to dissimilar texture or checkerboard artifacts, 

we propose to measure the changes of textural distributions. We 

also observe that structural degenerations appear as blurring and 

jaggies artifacts in SRIs and develop separate similarity measures 

for different types of structural degenerations. A new pooling 

mechanism is then used to fuse the different similarities together 

to give the final quality score for an SRI. Experiments conducted 

on the QADS demonstrate that our method significantly outper-

forms classical as well as current state-of-the-art IQA methods.    

 
Index Terms—Full reference, image database, image quality 

assessment, image super-resolution. 

 

I. INTRODUCTION 

MAGE super-resolution (SR) is an important research prob-

lem in the field of image processing. It is extensively used in 

many applications, including high definition television, secu-

rity surveillance, coding and transmission [1], etc. The aim of 

SR is to generate images with higher spatial resolution that are 

free from aliasing and other artifacts. One of the key challenges 
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to the development of SR techniques is the assessment of the 

visual quality of the super-resolved images (SRIs). This paper 

fills a gap in the image SR literature by providing a carefully 

designed database and a state-of-the-art visual quality assess-

ment method for image SR research.   

A.  Image Super-resolution 

In the literature, different terminologies have been used to 

refer to the process of increasing the spatial resolution of an 

image, for simplicity, this work loosely refers to such a process 

as SR regardless of the underlying technique used. According 

to the available inputs, image SR techniques can be divided to 

multi-frame SR [2] and single-image SR [3]. In this work, we 

only consider the image super-resolved from one single 

low-resolution (LR) input. Some authors use image SR as a 

synonym of image upscaling [4]. Some early techniques are 

based on interpolation [5]. Commonly-used methods include 

nearest neighbor, bilinear, and bicubic interpolation [6], [7]. 

The traditional cubic convolution algorithm [6] is improved in 

[8] by modelling a non-separable convolution. In spite of the 

mathematical beauty in [6]-[8], image properties are not ex-

plicitly considered. To well capture the orientational property 

of images, the interpolation is performed along local isophotes 

in [9]. In all interpolation methods, image upscaling is treated 

as the problem of signal resampling. Different sampling kernels 

produce different methods. The sampling kernel can even be 

implicitly expressed, e.g., in an iterative correction [10] or in an 

iterative feedback [11]. Regardless of the expression of kernels, 

in the context of signal resampling, it is straightforward to use 

mean squared error (MSE) or peak signal-to-noise-ratio (PSNR) 

as the evaluation criterion [8]-[10].  

Instead of aiming at the design of sampling kernels, most SR 

methods try to learn extra information from training samples. 

One of the earliest learning-based SR methods employs linear 

neural networks and vector quantization to predict the missing 

information in SRIs [1] [12]. Another early method is known as 

example-based SR [13], where the nearest neighbors from the 

training samples is used in a Markov field. Locally linear em-

bedding (LLE) is employed in SR [14], based on the assump-

tion that LR and high-resolution (HR) patches form manifolds 

with similar local geometry. The methods in [13] and [14] are 

inefficient, since they crudely employ the raw training samples 

without any compact coding or transformation. In [15], SR is 

achieved by support vector regression in the discrete cosine 

transform domain. In [16], kernel ridge regression (KRR) with 

a sparse solution is utilized for SR. Sparse-coding based SR 

(SCSR) is introduced in [17] by assuming that natural images 
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can be represented sparsely using a specified dictionary. It has 

many extensions, such as adaptive sparse domain selection 

(ASDS) [18], semi-coupled dictionary learning (SCDL) [19], 

statistical prediction model (SPM) [20], compact kernel 

sub-dictionary learning [21], consistent coding scheme (CCS) 

[22], etc. These extensions have achieved success via the in-

corporation of more knowledge in the image priors. Efficiency 

SR in both the training and testing stages are also attractive. To 

avoid the tedious optimization process in sparse coding, the 

anchored neighborhood regression method [23] and its exten-

sion, known as A+ [24], make use of the collaborative repre-

sentation to infer HR images. The mapping between LR and 

HR features in [25] is formed as very simple functions (SF), 

and thus it is much fast. In some interesting work, the training 

samples are from self-exemplars, instead of external datasets 

[26]. Loosely speaking, we can call the methods in [12]-[26] as 

dictionary-based SR. In this kind of SR, PSNR or MSE is still 

the preferred choice to perform their quantitative comparisons 

[12]-[26]. In addition, structural similarity (SSIM) index [27], 

starts to become popular [18], [20]-[22], [25], [26]. However, 

neither of them is suitable for SR tasks [28].  

Recently, deep neural networks (DNN) have been applied to 

SR with remarkable success. A two-hidden-layer convolutional 

neural network (CNN) is exploited in [29] to imitate the coding 

and de-coding in the dictionary-based SR. In [30], sparse con-

straint is embedded in the CNN by inserting a sub-network to 

imitate the behavior of sparse coding. In [31], the deconvolu-

tion layer is moved to the end of CNN so that the parameter 

number is largely reduced. With a skip-connection, the works 

in [32] achieve a very deep SR (VDSR) network. In [33], the 

deep CNN is improved by multiple skip-connections and net-

work in network (DCSCN). In [34], the deep recursive residual 

network (DRRN) for SR is proposed by recursively using the 

same module, combined with skip-connections. The motivation 

behind [32]-[34] is to build much deeper networks for SR. 

Besides, the behaviors of skip-connections or residual modules 

are similar to that of ensemble learning [35]. The supervision 

on intermediate layers is used in a Laplacian pyramid SR net-

work (LapSRN) [36] to achieve large magnification factors. In 

[38], features of trained VGGNet [37], which are believed to 

relate to visual perception, are used as the loss function of SR. 

In [39], the SR using a generative adversarial network (SRGAN) 

is proposed by transferring the distribution of output images to 

that of the ground truth. The results of [38] and [39] are visually 

pleasing, but their PSNR and SSIM values are less competitive. 

In DNN-based methods, PSNR and SSIM continue to serve as 

the evaluation criteria in quantitative comparisons [29]-[39]. To 

show the superiority of SRGAN, the authors of [39] have to use 

mean opinion score (MOS) to complement PSNR and SSIM.  

B. Image Quality Assessment 

Image quality assessment (IQA) has attracted extensive re-

search interest in recent times [40]. In this work, we focus on 

full-reference (FR) IQA, where the image of ‘perfect’ quality is 

available. In the context of image SR, the ‘perfect’ image is the 

ground truth. The most popular FR IQA method is PSNR, but it 

is well known that the correlation between PSNR and perceived 

quality is low. This motivates the development of other IQA 

measures. In order to correlate with the human visual system 

(HVS) well, a straightforward idea is to incorporate the prop-

erties of the HVS. In [41], visual signal-to-noise-ratio makes 

use of the near-threshold and supra-threshold characteristics of 

human vision. In [42], a method named as the most apparent 

distortion (MAD) adaptively exploits Fourier transformation 

and log-Gabor filtering to extract visual features according to 

the visibility of the distortion. Moreover, in [41] and [42], 

different channel decompositions are employed in an attempt to 

exploit the discovery that there may exist multiple channels of 

octave spacing radial frequency in the visual pathway [43]. 

However, a complete understanding of the HVS is still una-

vailable, thus only part of its properties can be modelled [44].  

Based on the observation that the HVS is highly adaptive to 

specific structural information, the SSIM index [27] performs 

visual comparisons on three aspects, i.e., luminance, contrast, 

and structure. It has been utilized to replace PSNR in many 

applications of image processing, including SR. Some schemes 

aim at improving SSIM, e.g., [45]-[48]. In [45], multi-scale 

SSIM (MS-SSIM) index is achieved by performing SSIM on 

multiple scales of images. In [46], SSIM is performed in the 

wavelet domain. In [47], information content weighted SSIM 

(IW-SSIM) index focuses on the pooling strategy. A multi-

variate SSIM is proposed in [48] to assess the quality of hy-

perspectral images. In addition to mean, variance, and covari-

ance, many other features or cues are adopted in IQA. Infor-

mation fidelity criterion (IFC) [49], as well as its extension 

visual information fidelity (VIF) [50], calculates the visual 

quality as the mutual information between the reference and the 

distorted images. Besides, gradient features are adopted in IQA 

algorithms since it is believed that image gradients can convey 

important visual information. In [51], gradient magnitudes 

combined with phase congruency are employed to calculate 

feature similarity (FSIM) index. In [52], gradient similarity 

(GSIM) index is proposed to incorporate the gradient features 

with masking effect and distortion visibility. Gradient magni-

tude similarity deviation (GMSD) in [53] utilizes the global 

variation of local gradient similarity as the pooling strategy. In 

IQA, visual saliency of images is also utilized, as both the local 

features and pooling weights [54]. In some IQA methods, the 

predictability is used as a cue. In the method based on internal 

generative mechanism (IGM) [55], different strategies are 

adopted for the predicted and unpredicted portion of images. 

The difference of predicted coefficients is employed in [56] to 

measure the visual quality, followed by a CNN-based distortion 

compensation. Some work goes further in the description of 

image structure. The structure contrast defined in the discrete 

cosine transformation (DCT) domain is employed in [57]. To 

measure the image structure, directional anisotropy structure 

measurement (DASM) in [58] involves local gradient, anisot-

ropy, and directionality. In our recent work, a super-pixel-based 

similarity (SPSIM) index [59] is proposed to extract simple 

local features within each super pixel instead of image patch.  

Most of existing FR IQA methods emphasize the importance 

of distortions on structure, based on the consensus that image 

structure is dominant in the visual perception. However, for 
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SRIs, image details are also important. Moreover, some arti-

facts that may appear in the SRIs are not considered in the 

existing IQA methods. Therefore, these existing methods are 

not best suited for SRIs. 

C. This Work 

As discussed above, many researchers have been aware that 

PSNR and SSIM, the most popular criteria for performance 

evaluation of SR methods, are not suitable for the IQA of SRIs. 

In addition to SSIM and PSNR, several SR methods also turn to 

some other existing IQA methods, such as VIF used in  [21] and 

IFC used in [36]. Nevertheless, in this work, we will show that 

although VIF and IFC are much better than PSNR and SSIM in 

the context of image SR, their performances are still unsatis-

factory. Moreover, it is worthwhile to notice that the gradient is 

of great important in image SR. Hence, it seems the IQA 

methods using the gradient as a feature, e.g., [51]-[53], are 

promising in the visual quality assessment for SRIs. In this 

work, we have tested them on SRIs in Section IV. Unfortu-

nately, their performance is far from satisfactory. Another 

strategy to evaluate the SR methods is to use MOS by subjec-

tive evaluations, e.g., [39]. However, obtaining MOS is a la-

bor-intensive process. Furthermore, the reusability of MOS 

values is very low. Unlike the PSNR and SSIM values, the 

values of MOS obtained from one psychovisual experiment 

cannot be directly applied in new SR comparisons. It is because 

the settings to obtain MOS can hardly remain the same, and 

individuals involved in the evaluation are also varied. That is, 

the subjective evaluation would have to be re-performed from 

the beginning when new comparisons are required. Therefore, 

it is highly demanded to develop objective assessment algo-

rithms for SRIs, in accordance with human vision.  

To conduct IQA researches, an image database with MOS or 

differential MOS (DMOS) is necessary. Some well-known 

IQA databases, such as IVC [60], LIVE [61], MICT [62], 

TID2008 [63], CSIQ [42], and TID2013 [64], are publicly 

available and support the development of IQA. Recently, sev-

eral new IQA databases are built for different purposes. For 

example, a multiply distorted image database (MDID) is ex-

hibited in [65] to enable the research on the quality assessment 

for images with multiply types of distortions. To facilitate the 

IQA research in tone mapping of images with high dynamic 

range (HDR), an IQA database for tone-mapped images is 

presented in [66]. However, these IQA databases are unsuitable 

in the case of SRIs. Specifically, none of their images is a su-

per-resolved one. In most existing FR IQA databases [42], 

[60]–[65], the distorted images are produced by introducing 

some common distortions to reference images. In [66], the 

images are generated by 11 HDR processing algorithms. Many 

distortions or artifacts in the images of these databases, e.g., 

impulse noise, JPEG, JPEG2000, etc., can hardly be observed 

in SRIs while some possible artifacts in SRIs, e.g., jaggies and 

checkerboard, are not included in these IQA databases. To our 

knowledge, there is no publicly available database for the 

quality assessment of SRIs up to now. Thus, establishing an 

IQA database for SRIs is highly necessary and fills a gap in the 

literature.  

Motivated by the above, in this paper, we focus on the visual 

quality assessment for SRIs. Specifically, 

Firstly, a Quality Assessment Database for SRIs (QADS) is 

presented to facilitate the research. The benchmark database 

contains 20 HR images as the reference and 980 SRIs created 

using 21 SR methods. Almost all the artifacts that frequently 

appear in SRIs can be found in QADS. Using a psychovisual 

experiment procedure specifically designed for subjective as-

sessment of SRI visual quality, 100 individuals participated in 

the subjective evaluation to acquire reliable MOS. 

Secondly, based on the observation that the visual artifacts 

on the structure and the texture behave differently, we propose 

a new method to assess the visual quality of SRIs by separately 

considering the structural and textural parts of images. Since 

textural degenerations mainly manifest as dissimilar texture or 

checkerboard artifacts, we propose to measure the changes of 

textural distributions to take into account both types of textural 

artifacts. For the structural component, separate similarity 

measures are calculated to measure the artifacts of blurring and 

jaggies respectively. The pooling is first performed on indi-

vidual ingredients to get respective scores, and then the scores 

are fused to get the final single score. 

Thirdly, experiments conducted on QADS show that our new 

visual quality assessment method significantly outperforms 

classical as well as state-of-the-art IQA methods.  

II. DATABASE FOR SRI QUALITY ASSESSMENT 

In this section, we will introduce the details of QADS, in-

cluding the preparation of images, subjective evaluation and 

data analysis. The suitability and reliability of QADS will also 

be explained. This database is publicly available at [67].   

A. Preparation of Images 

In our QADS, the reference images, also known as source 

images, serve as the HR ground truth in image SR. Since image 

contents will have an impact on visual quality assessment, 

selection of reference images is nontrivial. The gen-

eral principle is that the reference images should be clean, and 

their contents ought to be varied [65], [68]. Initially, we se-

lected the 20 reference images in MDID [65] as our source. It 

has been demonstrated in [65] that these source images contain 

a wider range of spatial information (SI) and colorfulness [69] 

than other IQA databases. However, during the course of sub-

 
Fig. 1.  Illustration of source images. 
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jectively evaluating these images, we found that for two of the 

source images, many SR methods will generate visually indis-

tinguishable SRIs. It turns out that these two source images 

contain small SI values resulting in different SR methods 

producing visually similar results. This would make subjective 

scores less meaningful and even unreliable. To make the sub-

jective evaluation more meaningful and reliable, we replaced 

these two by another two images that frequently serve as the 

testing images in SR. The 20 reference images finally adopted 

in QADS are shown in Fig. 1. All the reference images were 

initially cropped into size 504×384 without scaling or rotation.  

For IQA databases, the ranges of SI and colorfulness, defined 

in [69], can be used to analyze the suitability of the selections of 

reference images. In the context of image SR, SI plays a more 

important role, since the aim of SR is to increase the spatial 

resolution. From the standpoint of building IQA databases with 

various image contents, larger range of SI is preferred. From 

the view of evaluating SRIs, the images with richer SI are more 

meaningful. Hence, in this work, we comprehensively analyze 

the range and value of SI by using the SI index defined as 

 

                           ( ) ( )mean ranged v v=                           

 

where d denotes SI index and v represents the SI values defined 

in [69]. The functions mean(·) and range(·) respectively return 

the mean value and the value range of their arguments, over all 

the reference images. Generally speaking, larger mean value 

implies richer SI. As can be seen in Table I, compared with 

other databases, QADS has the largest SI index, indicating the 

suitability of its reference images for SRI quality assessment.  

SRIs can be treated as distorted images from the view of IQA 

databases. To obtain the distorted images, we first use bicubic 

down-sampling to reduce the size of the reference images by a 

factor of k (k = 2, 3, 4), and then use 21 SR methods to su-

per-resolve the reduced image back to their original sizes. Note 

that the size of the original reference images is 504×384, the 

size of the SRI is cut to 500×380 to avoid the visual impacts 

from image borders. The reason is that the pixels from the 

borders of SRIs are often abnormal due to the padding opera-

tion in many SR methods, and we do not want these abnormal 

pixels to influence the opinions of subjects. 

The 21 methods include 4 interpolation-based methods, 11 

dictionary-based SR, and 6 DNN-based SR. The selected SR 

methods are representative, i.e., they are either widely-accepted 

or state-of-the-art. In Table II, the details of the 21 SR methods 

TABLE I 

COMPARISONS OF QADS WITH SOME OTHER IQA DATABASES  

IQA Databases SI index d Averaged SD† KL divergence 

IVC [60] 61.57 11.91 0.0824 

LIVE [61] 101.77 N/A 0.1324 

MICT [62] 88.92 14.73 0.1553 

TID2008 [63] 105.83 7.28 0.3831 

CSIQ [42] 105.56 7.80 0.1703 

TID2013 [64] 105.83 7.21 0.3910 

MDID [65] 107.78 6.48 0.0233 

QADS 108.59 6.76 0.0247 

† SD is normalized by SD/max(MOS)×100, since the score ranges in 

different databases are not the same. 
 

TABLE II 

SOME DETAILS IN GENERATING SRIS 

SR methods Factors Number 

Interpolation 

based 

Bilinear interpolation 2, 3, 4 60 

Bicubic interpolation 2, 3, 4 60 

Orientational interpolation [9] 2, 3, 4 60 

Fast up-sampling [11] 2, 3, 4 60 

Dictionary 

based  

Example-based SR [13] 3, 4 40 

LLE [14] 3, 4 40 

Sparse KRR [16] 2, 3, 4 60 

SCSR [17] 3, 4 40 

ASDS [18] 2, 3, 4 60 

SCDL [19] 2, 3, 4 60 

SF [25] 2, 3, 4 60 

SPM [20] 3 20 

A+ [24] 2, 4 40 

Self-exemplars [26] 3, 4 40 

CCS [22] 2, 4 40 

DNN based  

VDSR [32] 2, 3, 4 60 

VGGNet [38] 2, 4 40 

DCSCN [33] 3, 4 40 

DRRN [34] 3, 4 40 

LapSRN [36] 2, 4 40 

SRGAN [39] 4 20 

 

 
 

 
(a)  

 
(b) 

 
(c) 

 
(d) 

Fig. 2.  Examples of various artifacts in QADS. (a) Blurring. (b) Jaggies. (c) 

Dissimilar texture. (d) Checkerboard. In (a)-(d), the left is the reference 

image (HR ground truth), while the right is the distorted image, i.e., SRI. 
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and associated down-scaling/up-scaling factors are provided. 

The bilinear and bicubic interpolations were implemented 

using the built-in function of MATLAB. The method in [9] was 

implemented by ourselves. All the other methods were imple-

mented by the codes provided by their authors or downloaded 

from the homepages of their authors. For all the codes, we 

directly used the default settings of parameters and the dic-

tionaries or DNNs that had already been trained. This implies 

that the training data for different SR methods might be varied. 

However, it does not matter because our aim is just to produce 

real SRIs, instead of performing comparisons among these 21 

methods. Several methods use different down-scaling methods 

rather than bicubic to create their input images. For example, in 

the default setting, the input of SCDL is expected to be the 

down-sampled version of HR images using delta sampling 

kernel. Nevertheless, the same inputs are employed for all the 

methods in creating the database, since we believe that the 

artifacts caused by the inconsistency between testing inputs and 

training inputs should be taken into consideration. The number 

of SRIs produced by each method is also provided in the last 

column of Table II. By summing the last column of Table II, it 

can be shown that the total number of SRIs is 980. For each 

reference image, the number of SRIs is 49.  

In QADS, the distorted images, i.e., the SRIs, contains typ-

ical artifacts that frequently appear in image SR. Aliasing in 

high-frequency areas would appear due to the low sampling 

rate when generating digital images. The key of image SR is to 

retrieve the aliased high-frequency information. However, if 

the high-frequency information of SRIs fails to be recovered, 

the images would look blurry. A visual example of a reference 

image and the blurring artifact appears in its SR version is 

displayed in Fig. 2(a). Another type of commonly encountered 

artifact in SRIs is jaggies, which is also known as zigzags. The 

emergence of jaggies is derived from the aliasing as well. When 

anti-aliasing operations in the SR methods create incorrect 

high-frequency components, the jaggies would appear. An 

example of jaggies is provided in Fig. 2(b), where the part with 

obvious jaggies is highlighted. Some DNN-based methods may 

generate very sharp images but with dissimilar texture to the 

original, as shown in Fig. 2(c). Checkerboard artifacts, mainly 

caused by the overlapping pattern of convolution kernels in the 

deconvolution layer [70], also appear in QADS. Fig. 2(d) 

shows an example of checkerboard artifacts. In addition to the 4 

kinds of artifacts shown in Fig.2, other artifacts which often 

appear in SR also can be found in QADS, e.g., ringing artifacts 

in some over-sharpened SRIs. Obviously, the artifacts in 

QADS are essentially different from the distortions in existing 

IQA databases.  

B. Subjective Evaluation and Data Analysis 

Subjective evaluation is an important procedure in building 

IQA database, although it is laborious. A total of 100 subjects 

participated in this procedure. The subjects were postgraduates 

from different disciplines, and all of them were with normal 

eyesight. The environment as well as the devices to perform the 

subjective evaluation were fixed. Specifically, all the subjects 

were required to accomplish their evaluations in an indoor 

environment without any background light. The device to show 

the evaluation interface was a 23.8-inch liquid crystal display 

monitor with spatial resolution of 1440×900. The other con-

figurations of the monitor, such as the brightness and color 

temperature, remained default and unchanged during the whole 

subjective evaluation. A photograph of the evaluation envi-

ronment is provided in Fig. 3.  

The software interface used in subjective evaluation is illus-

trated in Fig. 4, where there are four image windows shown 

simultaneously. Therein, the top row is two SRIs to be evalu-

ated, they share the same reference image shown in the bot-

tom-right window. Furthermore, we propose to use the bot-

tom-left window to show an image that can be controlled by the 

subjects during the evaluation. The participant can control 

which of the 3 other images will be shown in this window by 

pressing the key “1”, “2”, or “3” on the keyboard. In the psy-

chovisual evaluation, we find that the subjects can make their 

decisions much more quickly and more precisely by flipping 

the three images at exactly the same position, i.e., the bot-

tom-left window, than only observing them in a side-by-side 

display. During the evaluation, subjects were required to make 

their decisions as soon as possible and were instructed to click 

the button “>”, “<”, or “=” on the interface to indicate their 

judgements. The initial distance between the subjects and the 

monitor was approximately twice the screen height, as sug-

gested in [68]. After starting a round of evaluation, the subject 

was able to slightly adjust the viewing distance to make more 

precise decisions. For more details about the psychovisual 

 
Fig. 3. Photograph of the evaluation environment. 

 
Fig. 4.  Screenshot of the software interface used in subjective evaluation. 

The resolution of the interface is 1440×900, which is the same as that of the 
monitor. With this resolution, the images in the interface can be exhibited 

completely without scaling.  
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evaluation, please refer to the online materials in [67]. To rec-

ord and process judgements by the subjects, we employed the 

pair comparison sorting (PCS) algorithm [65], which enables 

the option of “=” in the sorting of subjective evaluation. After 

sorting the subject scores, for each SRI, we can obtain a number 

that indicates the index of its quality. Since there are 49 SRIs 

for each reference image in QADS, the numbers range from 1 

to 49. A smaller number means worse quality.  

The MOS for each SRI is calculated as follows: First, indi-

vidual scores are normalized to the range of (0, 1). Subse-

quently, outlier removal and subject rejection are conducted 

based on a method described in LIVE [61] to exclude the un-

reliable individual scores. Finally, MOS for each SRI can be 

calculated as the average of the remaining valid scores.  

Although much previous experience on the subjective eval-

uation can be followed, it is still necessary to check the relia-

bility and suitability of the final scores. The reliability can be 

measured by using the standard deviation (SD) of individual 

scores per upscaled image while the suitability can be measured 

by the uniformity of MOS [69]. A small SD means the con-

sistency on the visual quality among different subjects is high, 

thus the score is believed to be reliable. Table I provides the 

averaged SD over all the SRIs of QADS and some other FR 

IQA databases. The uniformity of MOS expects that they 

should be uniformly distributed so that the full range of the 

rating scale can be fully utilized. We calculate the 30-bin his-

tograms of MOS or DMOS for different databases, and the 

Kullback–Leibler (KL) divergences between them and uniform 

distributions are given in Table I. A small value of KL diver-

gence indicates that the uniformity of MOS or DMOS is high. 

In Table I, comparisons with other well-known IQA databases 

demonstrate the reliability and suitability of MOS in QADS. 

III. IQA FOR SRIS USING STRUCTURE-TEXTURE 

DECOMPOSITION 

During the construction of QADS, we observed that some 

artifacts, e.g., those shown as Figs. 2(c) and (d), do not change 

the image structure much but are noticeable in the psychovisual 

evaluation. This enlightens us to develop quality assessment for 

SRIs by considering the structural and textural parts of the 

images separately. Therefore, we make use of structure-texture 

decomposition (STD). As a widely known image processing 

technique, STD decomposes an image into two parts, i.e., 

structural component and textural component [71]. It has been 

successfully used to solve many problems, e.g., road detection 

[72] and defocus estimation [73]. In this work, we propose an 

FR IQA method for SRIs using STD, which enables us to de-

sign specialized IQA measurements for different types of arti-

facts. In fact, some artifacts in SRIs are conspicuous in the 

textural part while the other artifacts mainly exist in the struc-

tural component. Two visual examples are provided in Fig. 5. 

By comparing Figs. 5(a) and (b), we can readily observe the 

dissimilar texture in the textural component while the jaggies 

remains in structural part, as shown in Figs. 5(c) and (d).  

The proposed method is further motivated by the fact that 

humans perceive the textural and structural components dif-

ferently. Specifically, if the textures of two image regions be-

long to the same textural type, their differences can be difficult 

to perceive, even the difference at a fixed image location is 

large. Conversely, a large structural disparity at a fixed location 

can be easily perceived. Thus, the artifacts in the texture 

component will be clustered together while the artifacts in the 

structure component will appear at specific structural locations. 

Since the HVS is more sensitive to the changes on structures 

than on textures, the focus of most FR IQA methods is on the 

description of structural distortions. Nevertheless, for SRIs, it is 

essential to investigate the artifacts on texture, rather than ig-

noring them.  

A. Textural Similarity 

As mentioned above, for textures, the HVS concentrates on 

the textural type mainly. The difference between two com-

pletely different textures can be easily perceived, whereas the 

textures sharing similar distributions provide similar visual 

perception. Therefore, we use a statistical descriptor to capture 

the textural distribution, instead of structural features. Mean-

while, as suggested in [27], it is better to get a spatially varying 

      
(a)                        (b) 

  
(c)                        (d) 

Fig. 5.  Impacts of artifacts on textural and structural components. (a) A reference image and its textural component. (b) An SRI and its textural component. (c) A 

reference image and its structural component. (d) An SRI with its structural component. 
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quality map so that the spatial information of the artifacts can 

be made available. To achieve these, in this work, we employ 

the well-known descriptor of scale-invariant feature transform 

(SIFT) [74] in a dense way. Specifically, the SIFT feature with 

one scale and no rotation is calculated for each pixel of the 

textural component. The reasons to exclude the multiscale 

operations and rotations are twofold. Firstly, it is more com-

putationally efficient to consider the feature in only one scale 

and without rotation. Secondly and crucially, our purpose is to 

describe textural distributions, instead of robust key points. In 

other words, the textures with varied scales or rotations should 

be distinguished in the context of image SR. The dense SIFT 

feature, essentially, is a concatenated histogram to describe the 

distribution of gradients in an image region. With the histo-

gram-based feature, the textural similarity for the i-th pixel Mt(i) 

is measured as  
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where ||·||2 denotes L2-norm, <·, ·> denotes inner product, and 

fr(i) and fu(i) are the feature vectors of histograms at the i-th 

pixel in the textural components of the reference image and the 

SRI, respectively, and Kt is an adaptive variable, defined as  
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where tr(i) and tu(i) represent the patches centered at the i-th 

pixel in the textural components of the reference image and the 

SRI, Ct is a positive constant to adjust the range of Kt, var(·) 

calculates the variance of elements in its argument, and max(·, ·) 

returns the maximum value of its arguments. The function of Kt 

is somewhat similar to that of the masking parameter in [52].  

Through (1) and (2), we can find several characteristics of 

the textural similarity Mt. First, it is easy to prove that Mt ranges 

from 0 to 1. And a high correlation between normalized fr and fu, 

which indicates similar distributions of textures, would produce 

a large value of Mt. Second, Kt has little impact on Mt if either 

the reference or the super-resolved patch is with rich texture, 

i.e., large variance. In this case, the value of Mt is only deter-

mined by fr and fu. Third, if both the reference and the su-

per-resolved patches are with little texture, e.g., invisible tex-

ture, the value of Kt would be very large and force Mt to 1. A 

more sensible way from the view of psychophysics is to con-

duct a frequency analysis, incorporating the contrast sensitivity 

function, to judge the visibility of texture. However, we find 

that using the simple variance in (2) can already achieve satis-

factory results in this work. After calculating Mt for each pixel, 

we can get a map of textural similarity. 

An example of the textural similarity is provided in Fig. 6. 

From Fig. 6(e), it can be seen that Mt captures the regions with 

artifacts on the texture well. It is worth to note that although 

SIFT-based feature is used in this work, other texture de-

scriptors may also be used. More analysis on the selection of 

texture descriptors can be found in the online supplement ma-

terials in [67]. 

B. Structural Similarity 

Although dissimilar texture and checkerboard mainly man-

ifest in the textural component, other artifacts, e.g., jaggies, 

would mainly appear in the structural component of images. 

Jaggies, a kind of commonly encountered artifacts in SRIs, 

generally cause directional distortions on the structure, e.g., 

Fig.2 (b) and Fig.5 (d). To measure the jaggies, we choose to 

compare the dominant directions of the gradients in the struc-

tural components. The dominant direction of a patch can be 

derived from the following positive semi-definite matrix J [75]: 
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where i is the location index of the patch center, gx and gy are 

the vectors containing gradients in lexicographic order along 

the abscissa and the ordinate, respectively. The matrix J has 

     
 (a)          (b)          (c)          (d)          (e) 

Fig. 6.  Illustrations of textual similarity. (a) Reference image. (b) SRI with dissimilar texture. (c) Textural component of (a). (d) Textural component of (b). (e) 

Quality map of textural similarity. In (e), the smaller intensity means lower textural similarity. 

 

     
 (a)          (b)          (c)          (d)          (e) 

Fig. 7.  Illustrations of structural similarity. (a) Reference image. (b) SRI with jaggies. (c) Structural component of (a). (d) Structural component of (b). (e) 

Quality map of structural similarity. In (e), the smaller intensity means lower structural similarity. 
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two eigenvalues, and the dominant direction can be represented 

by the eigenvector corresponding to the lower one. Similar to 

(1), the measurement of structural similarity for the i-th pixel 

Ms(i) is designed as 
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where |·| returns the absolute value, and nr(i) and nu(i) are the 

normalized eigenvectors, indicating the dominant directions at 

the i-th pixel in the structural components of the reference 

image and the SRI, respectively. And Ks is defined as 
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where gmr(i) and gms(i) represents the normalized gradient 

magnitude at the i-th pixel in the structural components of the 

reference image and the SRI respectively, and Cs is a positive 

constant to adjust the range of Ks. It should be noted that if n is 

a normalized eigenvector corresponding to a given eigenvalue, 

-n is also an eigenvector corresponding to the same eigenvalue. 

Therefore, the absolute value in (4) is nontrivial.  

Obviously, Ms in (4) has the similar characters as Mt in (1), 

since they share similar mathematical formulas. For instance, 

the range of Ms is also from 0 to 1. If the vectors nr(i) and nu(i) 

point to the same direction, the structural similarity reaches 1, 

i.e., the maximum value. The role of Ks in (4) is also similar to 

that of Kt in (1). Specifically, if either the reference image or the 

SRI has strong gradients in the structure, the impact of Ks on (4) 

can be ignored. On the other hand, if both the reference image 

and the SRI are smooth in the structure, the estimations on the 

dominant directions would be susceptible to noises and thus 

unreliable. In this case, Ks would play a vital role in obtaining 

reasonable results by pushing Ms to 1. The characteristics of Ms 

and Mt show that the design of textural and structural similarity 

is in accordance with visual perception qualitatively.  

To show the validity of the proposed structural similarity, we 

show an example in Fig. 7, where a region with severe jaggies 

is highlighted. From Fig. 7, it can be observed that jaggies with 

directional distortions can be captured. 

C. High-frequency Similarity 

The loss of high-frequency details in SRIs would make them 

look blurry. Although both the textural and structural parts of 

images can suffer from blurring, the textural similarity defined 

in (1) has the capacity to distinguish blur textures from sharp 

ones. Thus, in this work, the similarity of high frequency is only 

calculated on the structural component of images. Since this 

similarity only depends on the structural component, it can also 

be regarded as one kind of structural similarity. Here, we name 

it as high-frequency similarity to distinguish it from (4).  It is 

worthwhile to note that structural component is not a synonym 

of low-frequency part, although some high-frequency details 

exist in the textural component. Actually, the structural com-

ponent of the reference images can have very sharp edges, e.g., 

Fig. 8(c). Losing their energy in high frequency, sharp edges in 

the structural component would become blur, such as Fig. 8(d). 

To measure the high-frequency energy h at the position of the 

i-th pixel, we propose to use a simple but effective expression 

as follows 
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where j is a location index, N(i) is the neighborhood of i, NN is 

the number of neighbors, s is the structural component, and sσ is 

obtained via convolving s by the Gaussian filter with an SD of σ. 

In (6), sσ represents the low-frequency part of s. Comparing the 

high-frequency energy in the reference image and the SRI, the 

high-frequency similarity for the i-th pixel Mh(i) is given by 
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where hr and hu are calculated using (6) in the reference image 

and SRI, respectively, Ch is a positive constant to avoid the 

instability caused by a small denominator. The mathematical 

form of (7) has been demonstrated to be consistent with the 

masking effect in many previous works [27], [52], [57], [59].  

Similar to Figs. 6 and 7, we also provide a visual example of 

high-frequency similarity in Fig. 8. From the examples in Figs. 

6-8, it can be observed that the artifacts in the textural part 

cluster in an image region, while the artifacts in the structural 

component lie in sparse locations. These results support the 

rationale of measuring the artifacts based on STD.  

D. Pooling 

Given a reference image and its corresponding SRI, we need 

to pool the above quality maps into a single score, which in-

dicates the final quality of the SRI. The traditional strategy is 

first fusing the multiple quality maps into one map, and then 

 

 
 (a)          (b)          (c)          (d)          (e) 

Fig. 8.  Illustrations of high-frequency similarity. (a) Reference image. (b) SRI with blurring. (c) Structural component of (a). (d) Structural component of (b). (e) 

Quality map of high-frequency similarity. In (e), the smaller intensity means lower high-frequency similarity. 
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pooling the pixel-wise scores into a single one. However, in our 

method, the three quality maps describe quite different aspects 

of the properties during the process of image SR. It would be 

more meaningful to investigate the individual similarities to 

discover the possible weakness of a given SR method. There-

fore, we first pool the three quality maps into three scores, and 

then fuse the three scores into one. The pooling for each map is 

achieved by weighted mean, i.e.,  

 

            ( ) ( )
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=                      (8)  

 

where N is the number of pixels in the images, the subscript q

∈ {t, s, h} is an index of the three similarities, pq is the score of 

each similarity, and wq is the weight for each pixel. In (8), the 

weights are calculated by considering the contents in each map:  
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The denominators in (9) are used for normalization. The design 

of the weights is straightforward, since the individual score for 

each map is calculated at first. As an example, for the textural 

similarity, it makes senses that the patches with rich textures in 

either the reference image or the SRI have higher weights. But 

if multiple quality maps are first fused to one map, the design of 

weights would be much more complicated.  

The final single score p is obtained by fusing the above three 

scores as follows,   

 

            ( ) ,t s hp p p p
=                              (10)  

 

where α >0 and β >0 are used to adjust the impact of different 

similarities. The scores of the structural and high-frequency 

similarities share the same parameter β, since both of them are 

estimated in the structural component. Empirically, β should be 

larger than α, due to the importance of structure in the HVS. 

Without loss of generality, we can simply set α to 1. To obtain 

the value of β, we heuristically use the ratio between the mean 

intensities of structural and textural parts. Specifically, 

 

       
( )( )
( )( )

log mean
,

log mean





= =

s

t
                       (11)  

 

where s and t are the intensities of the structural and textural 

components of the images, respectively. In (11), the log(·) 

function is adopted to follow the Weber-Fechner law. Since 

structural intensities are generally lager than textural intensities, 

β is larger than 1. In this work, we make use of external images 

to estimate the parameter β instead of the images in QADS. 

IV. EXPERIMENTS 

In this section, the STD-based IQA method for SRIs, or SIS 

for short, is tested on the newly established database, i.e., 

QADS, and compared with some other representative FR IQA 

methods, including PSNR, SSIM [27], MS-SSIM [45], IFC 

[49], VIF [50], MAD [42], IW-SSIM [47], FSIM[51], GSIM 

[52], IGM [55], GMSD [53], DASM [58], and SPSIM [59]. 

The settings of SIS are as follows. The positive constants in 

(2), (5), and (7) are simply set to 1, i.e., Ct=Cs=Ch=1. The gra-

dient operators used in (3) and (5) are the widely-used Sobel 

operators. The STD is performed via the default implementa-

tion of our previous work in [73]. The dense feature in (1) is 

also implemented in the default configuration, resulting in a 

128-bin histogram for each location. And σ in (6) is set to 5 

empirically. To obtain the value of β in (10), we employ the 

reference images from LIVE [61] as the external images in (11). 

Based on this, the estimated value of β is 3.9709. For the other 

IQA methods, their default settings are adopted. 

Four criteria are utilized to evaluate the performance of SIS 

and compared IQA methods on QADS. They are Spearman 

rank order correlation coefficient (SROCC), Kendall rank order 

correlation coefficient (KROCC), Pearson’s linear correlation 

coefficient (PLCC), and root mean squared error (RMSE) be-

tween the predicted scores of IQA methods and the MOS ob-

tained in Section II. Among them, SROCC and KROCC indi-

cate the prediction monotonicity, while PLCC and RMSE are 

used to measure the prediction accuracy. To calculate the 

PLCC and RMSE, a non-linear regression is required to relate 

objective scores and subjective ones. Based on the suggestion 

of [68], we use the following logistic function for the regression 
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where x denotes the output of IQA methods, y represents the 

TABLE III 

PERFORMANCE TESTING OF DIFFERENT METHODS ON QADS  

Criteria 

IQA Methods 

PSNR 
SSIM 

[27] 

MS-SSIM

[45] 

IFC 

[49] 

VIF 

[50] 

MAD 

[42] 

IW-SSIM

[47] 

FSIM 

[51] 

GSIM

[52] 

IGM 

[55] 

GMSD

[53] 

DASM

[58] 

SPSIM

[59] 
SIS 

SROCC 0.3544 0.5290 0.7172 0.8609 0.8152 0.7234 0.8195 0.6885 0.5538 0.7145 0.7650 0.7512 0.5751 0.9232 

KROCC 0.2441 0.3689 0.5299 0.6816 0.6249 0.5293 0.6283 0.5020 0.3908 0.5231 0.5689 0.5622 0.4071 0.7541 

PLCC 0.3897 0.5327 0.7240 0.8657 0.8210 0.7311 0.8234 0.6902 0.5684 0.7192 0.7749 0.7585 0.5822 0.9230 

RMSE 0.2530 0.2325 0.1895 0.1375 0.1568 0.1874 0.1559 0.1988 0.2260 0.1907 0.1736 0.1790 0.2233 0.1057 
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regression values of x, and η1–η5 are the parameters to be fitted. 

After the non-linear regression, the values of PLCC and RMSE 

can be calculated by using y and MOS, rather than x and MOS. 

A method is a good one if it has large SROCC, KROCC, and 

PLCC, as well as a small RMSE. 

A. Performance Testing 

The experimental results of different methods on QADS are 

given in Table III, where the best result for each criterion is 

highlighted in boldface. From Table III, we can see that, for the 

SRIs, the compared methods do not correlate well with sub-

jective perception. To name just a few, the performance of 

PSNR for the SRIs is rather poor. SSIM also performs poorly, 

although it is better than PSNR. It means that the widely-used 

evaluation criteria in the research of SR are not appropriate. 

The performance of the methods based on image gradients, e.g., 

FSIM, GSIM, and GSMD, is also unsatisfactory, although 

image gradients are important in SR. Among the compared 

methods, IFC has the best performance. This observation is 

consistent with the experiments in [3], where it can be found 

that IFC has the highest correlation with the perceptual scores 

in the context of SR evaluation. It is worth to notice that this 

consistency can also support the reliability of our QADS. 

Nevertheless, the performance of IFC is far from satisfactory as 

well. Their poor performance on QADS may be caused by not 

including the texture. In visual comparison of SRIs, the textural 

details should not be ignored. Furthermore, some possible 

artifacts in the SRIs are not taken into consideration in the 

compared methods. From Table III, it can be observed that SIS 

significantly outperforms all the competitors.  

In Fig. 9, the scatter plots of subjective scores and objective 

predictions by the above methods are provided. The points 

obtained by SIS distribute more tightly along the fitted curve, in 

contrast to the compared methods. This also demonstrates the 

superiority of SIS. 

B. Group-wise Analysis 

In the IQA research, it is meaningful to perform comparisons 

on individual distortion types [47], [51]-[56]. However, for 

SRIs, multiple types of artifacts may simultaneously appear in 

one image. For example, some SRIs suffer from jaggies as well 

as blurring. Thus, it is difficult to examine the behaviors of IQA 

methods on each type of SR artifacts. Instead, we group the 21 

methods into three categories and perform a group-wise anal-

 
(a)          (b)          (c)          (d)          (e) 

 
(f)          (g)          (h)          (i)          (j) 

 
(k)          (l)          (m)          (n)   

Fig. 9. Scatter plots of FR IQA methods. (a) PSNR, (b) SSIM, (c) MS-SSIM, (d) IFC, (e) VIF, (f) MAD, (g) IW-SSIM, (h) FSIM, (i) GSIM, (j) IGM, (k) GMSD, (l) 

DASM, (m) SPSIM, (n) SIS. In all the sub-figures, the abscissa is the predicted scores of IQA methods, and the ordinate is the MOS. The points marked by the 

green “+” represent the images in QADS, and the red curves are fitted with the logistic function in (12). 
 

TABLE IV 

SROCC VALUES OF DIFFERENT METHODS ON INDIVIDUAL SR CATEGORY 

SR 

Category 

IQA Methods 

PSNR 
SSIM 

[27] 

MS-SSIM

[45] 

IFC 

[49] 

VIF 

[50] 

MAD 

[42] 

IW-SSIM

[47] 

FSIM 

[51] 

GSIM

[52] 

IGM 

[55] 

GMSD

[53] 

DASM

[58] 

SPSIM

[59] 
SIS 

(I) 0.2849 0.5050 0.7239 0.8662 0.8177 0.6125 0.8357 0.6805 0.5068 0.6858 0.7432 0.7315 0.5677 0.8936 

(II) 0.3807 0.5338 0.7306 0.9000 0.8368 0.7445 0.8340 0.6570 0.5186 0.7399 0.7737 0.7894 0.5331 0.9202 

(III) 0.2655 0.5120 0.6972 0.7792 0.7281 0.6397 0.7229 0.6637 0.5661 0.6625 0.7168 0.7065 0.5870 0.8552 

Overall 0.3544 0.5290 0.7171 0.8609 0.8152 0.7234 0.8195 0.6885 0.5538 0.7145 0.7649 0.7512 0.5751 0.9232 
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ysis on each kind of SR methods.  In accordance with Table II, 

the three categories are named as (I) interpolation-based SR, (II) 

dictionary-based SR, and (III) DNN-based SR. Generally, the 

methods in one SR category share some common characteris-

tics in their artifacts. For instance, the checkerboard artifacts 

would only appear in DNN-based SR methods, and cannot be 

found in interpolation-based or dictionary-based methods. The 

group-wise analysis based on SROCC are provided in Table IV. 

The quantitative results show that SIS still outperforms the 

compared IQA methods on every SR category. Besides, from 

Table IV, it can be observed that, for most IQA methods, the 

performance on the dictionary-based SR is better than that on 

the DNN-based SR. This indicates the difficulty in assessing 

the visual quality of DNN-based SR results. Specifically, some 

competitors, e.g., IFC, achieve comparable results with SIS for 

dictionary-based SRIs. However, for DNN-based SRIs, the 

advantage of the proposed method is obvious in comparison 

with other IQA methods. 

C. Statistical Significance 

The testing of statistical significance is recommended in [61] 

to determine whether one method is statistically distinguishable 

from another one. In IQA research, the F-test is commonly 

performed for this purpose, e.g.,[53], [56], and [59]. Recently, 

the Pitman test is suggested in [76] to relax the assumption of 

the independence between residuals. In this work, we conduct 

both the hypothesis tests to show the statistical significance of 

the above IQA methods on QADS. The results are given in Fig. 

10, where competitors are sorted according to their perfor-

mance. An element of the array in Fig. 10 is filled with “1”, if 

the method in its row statistically surpasses the one in its 

column. Otherwise, the element is filled with “0”. From Fig. 10, 

it can be observed that, based on both the F-test and the Pitman 

test, SIS is significantly better than all the competitors. 

D. Performance of Individual Similarities 

In this sub-section, we investigate the performance of each 

similarity of SIS, i.e., the textural similarity pt, structural sim-

ilarity ps, and high-frequency similarity ph. The quantitative 

results are shown in Table V. It can be observed that either the 

textural or high-frequency similarity has already achieved 

similar performance as IFC. It is unsurprising that the structural 

similarity alone does not perform well, since only the direc-

tional artifacts are measured in ps. However, the three similari-

ties describe SRIs from the different views of visual defects, 

which are complementary. Actually, the integrated perfor-

mance is much better than the individual performance, 

demonstrating the benefit to incorporate the three similarities.  

It is interesting to note that the textural similarity has the best 

performance among the individual similarities, but it has the 

lowest impact, i.e., α < β, on the final result. An intuitive idea is 

to emphasize the impact of the textural similarity, i.e., reduce 

the value of β, due to its relatively good performance. Here, a 

series of β, ranged from 0 to 10 with a step of 0.1, is adopted to 

test SIS. The quantitative results in term of SROCC are illus-

trated in Fig. 11. If β = 0, only the textural similarity is used and 

the value of SROCC is 0.8608. As β increases, the impact of ps 

and ph becomes greater and the SROCC value also increases. 

The maximum value of SROCC is 0.9234 when β = 4.3 that is 

larger than α = 1. The change of SROCC is slow near the 

maximum value. And the default value of β, which is estimated 

by (11) using the reference images in LIVE, is also in the area 

with slow change. As β continues to increase, the SROCC 

gradually reduces. Hence, the following two conclusions can be 

drawn. On the one hand, for SRIs, the measures on the image 

structure still play a more important role in visual perception. 

On the other hand, the measure on image texture is also essen-

tial to assess the visual quality of SRIs.  

E. Benefit of STD 

To demonstrate the advantage of using STD in SIS, we fur-

ther directly perform each similarity on non-decomposed SRIs. 

TABLE V 

COMPARISONS ON INDIVIDUAL SIMILARITIES 

Criteria pt ps ph p  

SROCC 0.8608 0.5612 0.8335 0.9232 

KROCC 0.6741 0.3891 0.6403 0.7541 

PLCC 0.8627 0.5603 0.8368 0.9230 

RMSE 0.1389 0.2274 0.1504 0.1057 
 

 
Fig. 11.  Performance of SIS in term of SROCC versus the parameter β in (10). 

 

TABLE VI 
RESULTS ON NON-DECOMPOSED SRIS 

Criteria pt’  ps’ ph’ p’  

SROCC 0.8528 0.5365 0.7156 0.6167 

KROCC 0.6683 0.4554 0.5229 0.4370 

PLCC 0.8507 0.5387 0.6904 0.6205 

RMSE 0.1444 0.2314 0.1988 0.2154 

 

 
(a) 

 
(b) 

Fig. 10.  Results of statistical significance tests based on (a) F-test, and (b) the 

Pitman test. 
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The quantitative results are provided in Table VI, where pt’, ps’, 

and ph’ represent the texture similarity, structure similarity, and 

high-frequency similarity on the original distorted images. The 

final single score without STD is denoted as p’ in Table V. By 

comparing the results in Table V (using STD) and those in Table 

VI (without STD), it can be found that our method greatly ben-

efits from the STD. Without STD, the performance becomes 

poorer. This result is easy to understand. The behaviors of HVS 

on structural and textural components are totally different. 

Measuring the same similarity on different components cannot 

well capture their respective properties. Taking textual simi-

larity for example, pt has better performance than pt’, although 

non-decomposed images are more informative than their tex-

tual components. More importantly, without STD, the com-

plementarity among the three similarities is undermined. Con-

sequently, the fused score p’ is with much worse performance. 

Therefore, the usage of STD is beneficial and important. 

V. CONCLUSION AND FUTURE WORK 

In this paper, we focus on FR IQA for SRIs. A benchmark 

database, named as QADS, with 980 SRIs and their MOS is 

presented. The database contains commonly encountered arti-

facts in SRIs. 21 SR methods and 100 subjects are involved in 

building QADS. The suitability of the selection of reference 

images is demonstrated by the SI index, while the suitability 

and reliability of subjective scores are also confirmed. Besides, 

an FR IQA method based on the STD is proposed for SRIs. 

Different measurements are employed for textural and struc-

tural components, since some artifacts appear in the textural 

part while others exist in the structural component. Furthermore, 

the perceptual properties of the textural and structural degen-

erations are distinctive. For textural components, we measure 

the similarity of feature distributions. For structural compo-

nents, the similarities of the dominant directions and 

high-frequency energy are taken into consideration. To obtain 

the final visual quality score, three individual similarity maps 

are first pooled to three scores, which are then fused into one.  

In the future, we would like to extend this work in the fol-

lowing two aspects. The first is to increase the size of the da-

tabase. More reference images and SRIs can be included. For 

reference images, in addition to nature images, we can also add 

some synthetic ones that are sensitive to the changes of spatial 

resolution, e.g., the EIA-1956 Resolution Chart. For SRIs, 

results from multi-frame SR can be involved. The multi-frame 

SR would introduce new artifacts, such as the artifacts caused 

by inexact registrations. The second is to develop IQA methods 

without any reference images. In many real applications, the 

reference image, i.e., HR ground truth, is not available, while 

the LR input is known definitely. Since the LR input only 

contains reduced information of the ground truth instead of full 

information, it can be regarded as reduced-reference IQA. 
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