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Abstract 

Climate change is altering river temperature regimes, modifying the dynamics of temperature-sensitive 

fishes. The ability to map river temperature is therefore important for understanding the impacts of future 

warming. Thermal infrared (TIR) remote sensing has proven effective for river temperature mapping, but TIR 

surveys of rivers remain expensive. Recent drone-based TIR systems present a potential solution to this 

problem. However, information regarding the utility of these miniaturised systems for surveying rivers is 

limited. Here, we present the results of several drone-based TIR surveys conducted with a view to 

understanding their suitability for characterising river temperature heterogeneity. We find that drone-based 

TIR data is able to clearly reveal the location and extent of discrete thermal inputs to rivers, but thermal 

imagery suffers from temperature drift-induced bias which prevents the extraction of accurate temperature 

data. Statistical analysis of the causes of this drift reveals that drone flight characteristics and environmental 

conditions at the time of acquisition explain ~66% of the variance in TIR sensor drift. These results shed 

important light on the factors influencing drone-based TIR data quality, and suggest that further 

technological development is required to enable the extraction of robust river temperature data.  

Nonetheless, this technology represents a promising approach for augmenting in-situ sensor capabilities and 

improved quantification of advective inputs to rivers at intermediate spatial scales between point 

measurements and ‘conventional’ airborne or satellite remote sensing. 

 

1. Introduction 

Rivers exhibit mosaics of warm and cool water habitat, which are highly variable through space and time 

(Fullerton et al. 2018; Steel et al. 2017; Torgersen et al. 2001). Because water temperature influences 

physico-chemical processes and biological activity in rivers (Caissie 2006; Webb et al. 2008), this 

heterogeneity exerts considerable influence on the distribution, behaviour and abundance of numerous cold 

water-adapted fish species (e.g., Brewitt and Danner 2014; Isaak et al. 2015; Tonolla et al. 2012). River 

temperature regimes are changing, with both climate warming and cooling trends reported (Arismendi et al. 

2012; Chen et al. 2016; Hannah and Garner 2015). Despite increasing research, there remains considerable 

uncertainty regarding the response of specific river ecosystems to future climate change (Garner et al. 2017a) 

given complex interactions between climate, hydrology and human activity (Arnell and Gosling 2013; Jones 

et al. 2012; Kurylyk et al. 2015a; Taylor et al. 2012). There is therefore an urgent need to quantify river 

temperature heterogeneity to improve understanding of the nature and impacts of drivers of change on river 

systems. 

High resolution thermal infrared (TIR) remote sensing has been widely used to map river temperature 

variability (see Dugdale 2016 for review). Investigations using TIR have revealed the presence of temperature 

heterogeneity at two distinct spatial scales (termed diffuse and discrete herein; Dugdale 2016). Diffuse 

heterogeneity manifests as gradual warming or cooling of river temperature over streamwise scales of 102 – 

104 m. These longitudinal temperature trends are caused typically by spatial variability in energy fluxes 

(related to changes in altitude/topography), channel hydraulics and non-point source hydrological exchanges 

often linked to river basin properties (e.g., land-use, geology; Eschbach et al. 2017; Garner et al. 2017b; 

Wawrzyniak et al. 2016). Diffuse temperature heterogeneity does not necessarily imply a downstream 

warming trend (see Fullerton et al. 2015), but rather refers to gradual warming and cooling patterns 

contained within a river’s longitudinal temperature profile. Conversely, discrete heterogeneity refers to 

localised temperature changes caused by advective contributions from tributaries, localised groundwater 

upwelling (Dugdale et al. 2013) or other point sources. Heterogeneity at this scale can involve both ‘abrupt’ 

changes in temperature related to isolated advective inputs at the scale of 100 m (such as tributaries), but 



can also refer to inputs such as groundwater seepage which cause a less immediate change in temperature, 

but occur over larger distances (eg. 101). These discrete inputs of cool or warm water often play a crucial role 

in the provision of thermal refuges (Daigle et al. 2015; Ebersole et al. 2015; Kurylyk et al. 2015b). Despite the 

wealth of river temperature data that TIR has generated (Dugdale et al. 2015; Fullerton et al. 2015; Tan and 

Cherkauer 2013) and its role in improving process-based understanding of river temperature heterogeneity, 

TIR surveys of river corridors remain relatively costly, making it difficult to justify their use along shorter 

reaches or for multi-temporal surveys (Lee et al. 2016). 

Recent advances in small Unoccupied Aerial Systems (sUAS), commonly known as drones, provide a potential 

solution to this problem. sUAS are relatively inexpensive to obtain and deploy. Their versatility means that 

they can be used to rapidly image remote locations (e.g., 1 km in ≥ 15 min), and their ease of use enables 

multiple repeatable surveys. Thus, sUAS equipped with thermal infrared cameras have the potential to 

revolutionize the collection of river temperature data. While early examples of UAS-based TIR (e.g., Jensen 

et al. 2012; Lee et al. 2016; Wawrzyniak et al. 2013) used conventional ‘handheld’ thermal imaging cameras 

mounted to larger drones, advances in TIR sensor miniaturisation have heralded a new generation of 

compact TIR cameras that are integrated fully with sUAS. However, the only articles in the peer-reviewed 

literature demonstrating the use of these miniaturised systems in the river sciences (Abolt et al., 2018; Briggs 

et al, 2018) focus on their use for monitoring groundwater-surface water exchange.  No study has formally 

assessed the performance of these solutions for monitoring river temperature heterogeneity, particularly at 

spatial scales amenable to the enhanced understanding and management of river temperature regimes. In 

this context, this article evaluates the utility of an off-the-shelf lightweight integrated sUAS/TIR package for 

mapping river temperature heterogeneity. We report proof-of-concept results of sUAS-based TIR surveys 

conducted in two hydromorphologically and geologically distinct watersheds known to contain diffuse 

thermal heterogeneity (Baddoch Burn, Scotland, UK) and discrete temperature inputs (Onondaga Creek, New 

York, USA). Our specific objectives were: (1) to characterise diffuse and discrete river temperature 

heterogeneity from sUAS-based TIR data, (2) to compare sUAS-derived river temperature data to 

observations from in-stream temperature records and (3) to understand sources of bias in sUAS-based TIR 

data and discuss limitations/solutions. 

 

2. Methodology 

2.1 Study sites 

2.2.1 Baddoch Burn, Scotland 

The Baddoch Burn is a tributary of the Aberdeenshire River Dee, Scotland where Marine Scotland have 

monitored salmon populations since 1988 (Figure 1a). The catchment drains an area of ~23.0 km2. Mean 

annual discharge is ~0.92 m3 s-1; seasonal patterns of precipitation and snowmelt lead to lower flows during 

the summer months and increased discharge between autumn and spring. Land-use is predominantly open 

heather moorland. During summer of 2017, repeat thermal infrared imagery was obtained from a ~1.2km 

stretch of river to assess the ability of sUAS-based TIR to characterise diffuse stream temperature 

heterogeneity. The study stretch is a semi-confined channel (bankfull width ~10 m) with a relatively shallow 

gradient and wide floodplain. 

  



2.1.2. Onondaga Creek, NY, USA 

Onondaga Creek drains a catchment of 231 km2 in Syracuse, NY, USA (Figure 1b). Mean annual discharge is 

approximately 5.59 m3 s-1, with streamflow peaks in winter or spring in response to cycles of snowmelt and 

precipitation, and low streamflow through summer and fall. Study imagery in May and July of 2017 was 

collected along two reaches to assess the utility of sUAS-based TIR for quantifying discrete thermal inputs to 

streams. The first reach (bankfull width ~27 m; 170 m long) ends at a concrete spillway and contains a natural 

spring. The second reach (bankfull width ~15 m; 275 m long) includes inflow from an active stormwater 

culvert. 

 

2.2 Thermal image acquisition and processing 

2.2.1 Baddoch Burn, Scotland 

Thermal imagery of the Baddoch Burn was acquired on 10 occasions over three days in May and June 2017. 

We used a DJI Inspire 1 quadcopter equipped with a DJI Zenmuse XT Radiometric thermal imaging camera 

(336 x 256 pixels, 7.5-13.5 µm; based on the FLIR Tau 2 camera core). Flights were conducted between 11:00 

and 18:00 to capture the evolution in longitudinal temperature heterogeneity as the river warmed through 

the morning and early afternoon until its thermal maximum (generally between 16:00 and 17:00).  Further 

details of each flight are given in Table 1. ExifTool (Harvey 2018) was used to convert raw data to radiant 

temperature (TR) using Planck’s radiation law and flight altitude, air temperature and relative humidity as 

inputs. The resulting images were individually orthorectified using Agisoft Photoscan Professional (Agisoft 

2017). A custom MATLAB (MathWorks, 2016) script was applied to the TIR orthophotos to extract a 

temperature long profile for each of the 10 surveys by computing the mean temperature from a 5 m buffer 

at regularly intervals (2.5 m) along the river’s centreline. Temperature jumps resulting from the camera’s 

non-uniformity correction system were removed (as suggested by Dugdale, 2016). Finally, long profiles were 

filtered using a 10 m moving average to remove minor noise caused by non-water objects (i.e. bridges, 

exposed river gravel).  

 

2.2.2 Onondaga Creek, NY 

Thermal images were collected in Syracuse, NY, on 12 May and 19 July 2017 using an identical sUAS model 

and camera as used in Baddoch Burn. Flight characteristics were held constant for Syracuse flights (see Table 

2). Another application of TIR videography at this location from data collected in June 2017 can be found in 

Fitch et al. (2018). Images were post-corrected based on local air temperature, relative humidity, flight 

altitude and reflective temperature using FLIR Tools (FLIR 2018). Images were then georeferenced in ArcGIS. 

Radiant temperatures (TR) were determined from raw georeferenced TIR imagery and reported as a mean 

and standard deviation within the spring plume and within a 5 m buffer of the stream centreline. Apparent 

stream temperature gradients within each image resulting from solar and skylight reflections made the visual 

discrimination of discrete thermal inputs difficult from the raw image mosaics. Therefore, image digital 

number (DN) values were adjusted manually in Adobe Photoshop (Adobe 2017) to minimize temperature 

offsets between collocated images resulting from drift and solar reflections. This produced an adjusted TIR 

dataset that precluded quantitative extraction of stream temperatures but more clearly permitted 

delineation of thermal plumes resulting from discrete advective inputs.  

 



2.3 Evaluation of TIR-derived river temperature heterogeneity 

2.3.1 Diffuse temperature heterogeneity (Baddoch Burn) 

Kinetic (ie. in-stream) temperature data (TK) in the Baddoch Burn was recorded at 15 min intervals by three 

TinyTag Aquatic 2 loggers (cross-calibrated to give accuracy ±0.02 °C) and two Campbell Scientific 107 

temperature probes (accuracy ±0.2 °C) attached to two automated weather stations (AWSs). For each of the 

10 surveys, we compared temperatures recorded by the loggers to radiant temperatures extracted from 

corresponding locations in the TIR-derived long profiles. Prior to this comparison, it was necessary to remove 

systematic bias in the TIR data resulting from atmospheric distortion (eg. Dugdale 2016 and Handcock et al. 

2006). This can either be achieved through modifying the TIR image transmissivity values, or more simply 

through the addition/subtraction of a constant offset value (ie. correction factor).  Here, we applied a 

correction factor to each long profile to minimise the mean difference (bias) between TIR and corresponding 

kinetic temperature observations, thus removing the systematic atmospheric  bias. The ability of sUAS-based 

TIR to characterise diffuse temperature variability was subsequently evaluated by computing the root mean 

squared error (RMSE) and R2 between observations of TK and TR. We also compared the mean and standard 

deviation of each (entire) TR long profile against that of the TK loggers. 

All non-cooled microbolometer TIR cameras (such as the FLIR Tau 2) are susceptible to temperature drift (ie. 

non-monotic temperature bias between successive images correlated to camera operation time). This is 

generally caused by external radiative warming of the camera case and internal heating of the TIR sensor 

(Olbrycht et al. 2012; Strąkowki 2017; Wolf et al. 2016), but is typically automatically compensated by 

hardware and software on the sensor (eg. the inclusion of a thermistor to measure and thus correct for the 

temperature of the sensor’s electronics; Abolt et al. 2018). Preliminary analyses of data collected during the 

Baddoch Burn surveys indicated a substantially higher magnitude of drift than that reported by other studies 

employing non-cooled cameras (eg. Dugdale et al. 2013; Rautio et al. 2015; Wawrzyniak et al. 2016). To 

identify the potential drivers of this drift in our TIR imagery (and hence, inform potential avoidance 

strategies), we extracted metrics describing the sUAS flight characteristics and environmental conditions 

during each survey that could potentially influence this measurement error (see Supporting Information 

Table S1). These comprised sine and cosine of TIR camera yaw (sincam, coscam), sine and cosine of stream 

azimuth (sinazm, cosazm), altitude (alt), seconds elapsed since midnight (time) and meteorological conditions 

(air temperature (Ta), humidity (RH) incoming solar shortwave radiation (Kin) and net longwave radiation (Q*) 

derived from the AWSs) at time of image capture. We also applied the ‘Area Solar Radiation’ tool in ArcGIS 

(ESRI, 2014) to a 5m DEM of the study area to calculate the impact of topographic shading on solar radiation 

received above the stream. The resulting solar radiation raster (computed separately for each survey to 

account for the time/date of each drone flight) was subsequently sampled at discrete points along the stream 

centreline to give the streamwise variation in topographic shading (TS). All data were resampled at the 

resolution of the temperature long profiles using parametric cubic spline interpolation, and a random sample 

of 10% of these data retained for analysis to minimise spatial autocorrelation. Kin and Q* were strongly 

collinear so Q* was removed from the dataset; collinearity between the remaining metrics was minimal. We 

used stepwise multiple linear regression to identify links between the above metrics and temperature 

variability. Model selection was conducted by means of a step-up-down procedure using Bayesian 

Information Criterion (BIC) as model performance criterion. We started with an intercept-only model and 

subsequently added or removed predictors until BIC was no longer improved. The importance of each metric 

was assessed by removing it from the final model and computing the change in BIC (ie. the metric’s ΔBIC 

value). We subsequently applied canonical correlation analysis (CCA) to the data to visualise the resulting 

multi-dimensional relationship between the various metrics and the temperature long profiles. 



 

2.3.2 Discrete thermal inputs (Onondaga Creek) 

Onondaga Creek stream temperature (TK) was measured every 10 minutes with Thermochron iButton loggers 

(accuracy ±0.5°C, resolution 0.0625°C) secured within cavities just below the water surface on wooden 

stakes. Two stakes were installed within the main channel and two stakes were placed just before a 3 m long 

human-engineered rock channel that transmits spring water to the Creek (Figure 1b). Measurements of 

spring water temperature were made at this location to enable direct comparison to spring outflow, as the 

rock channel prohibited installation of any instrumentation nearer to the Creek confluence. The ability of 

sUAS-based TIR to quantify the temperature of discrete thermal inputs was assessed by comparing the mean 

temperature and temperature difference between in-stream observations from the loggers (TK) and 

corresponding locations in the thermal images (TR) for May and June 2017 flights.  

 

3. Results 

3.1 Characterisation of diffuse temperature heterogeneity (Baddoch Burn) 

Visual inspection of the thermal image mosaics generated by the TIR surveys of Baddoch Burn (Figure 2) 

indicates that the Zenmuse XT Radiometric (FLIR Tau 2 based-) camera suffers from substantial temperature 

drift (ie. inter-image bias). Indeed, comparison of temperature long profiles derived from this data with in-

stream records (figure 3) indicates that this drift results in an almost complete lack of association between 

the TIR-derived radiant temperature (TR) and logger values (TK; R2 = 0.01, RMSE = 2.61 °C, n = 50) over 10 

survey flights. Furthermore, the reach-averaged mean and standard deviation of computed from the TIR long 

profiles is markedly different to logger observations (see Supporting Information Table S2), meaning that 

even after the removal of global systematic bias (see 2.3.1) from the long profiles, considerable inter-image 

bias remains due to temperature drift. 

Despite these results, the TIR long profiles reveal several key features. First, certain long profiles (e.g., flights 

05 and 08) indicate a relatively low amount of drift within the streamwise confines of the loggers, with a 

standard deviation of < 1 °C. Second, several long profiles (e.g., flights 03 & 04, 05 & 08) display spatial 

(longitudinal) temperature patterns that persist across several surveys (ie. temperature peaks and troughs 

at broadly similar streamwise locations); this suggests that inter-image bias is spatio-temporally correlated 

and hence that TIR temperature drift may be the result of internal and external drivers. Indeed, the stepwise 

linear regression analysis (Table 3) and CCA (Figure 4) reveals that the temperature long profiles (and hence, 

magnitude of temperature drift) are significantly influenced by the flight characteristics and environmental 

metrics detailed in section 2.4. Results of these analyses indicate that the various metrics explained 66% of 

the variance in the temperature long profiles (R2 = 0.66, p < 0.001; Table 3), with Kin being the most important 

(influential) covariate (ie. greatest ΔBIC), followed by time, TS, RH and Ta. The influence of sincam, alt and sinazm 

were an order of magnitude smaller, albeit still significant, while coscam and cosazm were not significant. 

 

3.2 Quantification of discrete thermal inputs (Onondaga Creek) 

TIR surveys of Onondaga Creek highlight the utility of sUAS-based TIR to quantify the temperature difference 

and extent of discrete thermal inputs (i.e. springs, culverts, and tributaries). While average differences 

between thermal plumes and channel temperatures were approximated closely by TIR imagery in May (TK 



difference of 0.7°C; TR difference of 0.5°C; see Supporting Information Table S3), differences were poorly 

matched in July (TK difference of 5.0°C; TR difference of 2.1°C). The Syracuse data (and to a lesser extent, the 

Baddoch Burn dataset) also suffer from within-image biases due to solar and skylight reflections. This bias 

manifests as an apparent ‘warming’ gradient across each image frame, varying in magnitude but generating 

as much as 4 °C difference between the top and bottom of a single image, despite image acquisition at nadir. 

Even following manual adjustments, images displayed a streamwise thermal gradient (eg. cooling; Figure 5b; 

warming; Figure 5c). However, the existence of this gradient was not supported by stream temperature 

measurements taken during surveys, which indicate, at most, 1 °C warming across 2.2 km. Thus, similar 

manual adjustments to images may identify the impact of discrete inputs (e.g., springs or stormwater), but 

misrepresent general long profile trends. 

Despite these challenges, TIR imagery clearly has potential for delineating the 2D surface extent of thermal 

plumes (Figure 5). Following appropriate manual correction for the effects of solar/skylight reflections, 

images of the spring (Figure 5a) and stormwater plumes (Figure 5b, c) can be applied to constrain the surface 

dimensions and seasonal variability of thermal plumes. In particular, while smaller differences between 

stormwater and channel temperatures produced a short plume in May (Figure 5b), increased temperature 

differences (ie. warmer channel vs cooler stormwater) yielded a more extensive plume in July (Figure 5c). 

However, it is nonetheless pertinent to note that the 2D surface manifestation of thermal plumes may differ 

substantially from their subsurface dimensions, especially during times of maximum temperature difference 

between the plume and main stem which will cause buoyancy differences and impact mixing. 

 

4. Discussion 

4.1 Challenges and opportunities for sUAS-Based TIR 

sUAS-based TIR enables repeatable, low-altitude surveys at lower cost than ‘conventional’ (i.e. 

helicopter/aeroplane-based) airborne TIR (Lee et al., 2016) while producing high resolution images captured 

at nadir. Though these merits make sUAS-based TIR an attractive method for thermal imaging of 

waterbodies, susceptibility to within- and inter-image temperature biases presents an impediment to the 

extraction of true temperature data. Unlike ‘conventional’ airborne TIR which has repeatedly been shown to 

characterise stream temperature with a high degree of accuracy (ie. within 0.5 °C of TK; Dugdale 2016; 

Handcock et al. 2012; Torgersen et al. 2001), we found that sUAS-based TIR poorly matched TK observations 

at both sites. While empirical corrections using relationships between kinetic and radiant temperatures have 

been used to surmount these issues (e.g. Jensen et al. 2013), our findings suggest that this type of correction 

may not be capable of adequately compensating for non-monotonic drift which results from complex 

interactions between flight characteristics and environmental conditions that may change from site to site, 

from flight to flight, and even within a single flight. This is particularly evident from the Baddoch Burn surveys 

(Figures 2 and 3), which highlight the extent to which observed longitudinal temperature data are obscured 

by TIR drift. This drift renders the characterisation of true diffuse temperature heterogeneity extremely 

difficult with current sUAS-based TIR sensor technology. We also found that within-image biases resulting 

from solar/skylight reflections across images (Fig 3) may be especially pernicious in sUAS TIR data (compared 

to conventional TIR). This is potentially due to the use of a (relatively) wide angle lens, which is required when 

conducting flights at low altitude, reducing the angle of incidence between the sensor and water surface at 

locations towards the edge of the lens’s field of view (eg. Kim et al. 2013). Increased within-image biases may 

also result from vignetting which is also associated with wider angle lenses (eg. Goldman, 2010; Kelcey and 

Lucieer, 2012).  Although we acknowledge that only one type of TIR sensor was tested in the current study, 

many of the currently-available miniaturised TIR camera solutions are derivatives of this same sensor, 



rendering our findings relevant to others using similar TIR cameras. Indeed, a recent study by Abolt et al. 

(2018) reported similar issues of temperature drift with both the FLIR Tau 2 sensor (upon which the DJI 

Zenmuse XT camera used in this study is based) and also the FLIR Vue Pro sensor, indicating that this problem 

is both a) relatively common and b) not limited to one particular camera model.  Similarly, recent work with 

UAV-TIR imaging of glacier temperatures revealed temperature drift of a comparable magnitude using a 

SenseFly ThermoMap TIR camera, albeit under very different environmental conditions (Kraaijenbrink et al. 

2018). During the current study we tested three versions of the same camera which all generated very similar 

results, emphasising that observed drift was not an artefact of a single faulty camera. Taken together, these 

results highlight the current challenges surrounding the derivation of diffuse temperature heterogeneity 

from sUAS. Although we acknowledge that there exist a other miniaturised TIR cameras which may not suffer 

from similar problems, we conclude that popular miniaturized TIR cameras based upon the TIR sensors/cores 

described above are more susceptible to drift than ‘conventional’ TIR systems. It is possible that greater drift 

results from insufficient insulation (or shielding) from external influences in comparison to larger TIR 

cameras. However, we also hypothesise that camera miniaturisation necessitates closer mounting of 

electronic components, potentially resulting in increased heat build-up (e.g., Ribeiro-Gomes et al. 2017; 

Kraaijenbrink et al. 2018) and thus greater temperature drift in comparison to larger TIR cameras. This 

presents a continued challenge for sUAS-based TIR imagery acquisition. 

We were also surprised that TIR was unable to accurately quantify the difference between plume and main 

stem temperature during the July 2017 survey of Onondaga Creek (given this analysis was conducted using a 

single image and is hence unaffected by inter-image temperature drift). The poorer performance of TIR in 

July may result from differences in mixing of the cooler plume water between May and July, due to either  

changes in flow/velocity between the two surveys, or the increased temperature difference between the 

main stem and inflow (in comparison to May) which can cause the cool inflow to ‘plunge’ underneath the 

warmer main stem water mass due to its reduced buoyancy, thus complicating its measurement at the 

surface using TIR (eg. Handcock et al. 2006). Because TIR is only sensitive to surface values, substantial 

differences in mixing may have resulted in surface temperatures that are not representative of the true TK 

value of the temperature inflow, and instead, reflect a combination of the both the main stem and plume 

temperature. Thus, season (both explicitly and implicitly) as well as temperature difference between the 

input and main channel may affect the ability of sUAS-based TIR to assess discrete temperature 

heterogeneity. Nevertheless, TIR surveys of Onondaga Creek highlight the capabilities of sUAS-based TIR 

imagery for delivering high-resolution 2D images that can be used to identify the location of discrete 

advective contributions, with the reduced sUAS flight altitude (and thus, increased image resolution) clear 

delineation of the plume’s surface extent. By combining TIR data with spatially explicit in-situ measurements 

from logger grids of distributed temperature sensing (DTS) systems, drone-based TIR holds significant 

promise for quantifying the three-dimensional form of discrete advective inputs to river systems.  The 

applications explored here include plumes resulting from natural springs and stormwater, demonstrating 

that sUAS-based TIR can be useful for detecting impacts of natural and human-derived sources. Other 

potential uses include assessment of thermal effluent from power plants (required under the US Clean Water 

Act and the EU Water Framework Direct; Miara et al. 2014) and dams. Alongside human impacts, there is 

also recent interest in TIR for mapping potential cool water refuges used by freshwater species to avoid heat 

stress (e.g. Frechette et al. 2018; George et al. 2016; Wawrzyniak et al. 2016); identifying these refuges is 

crucial in light of projected climate change. sUAS-based TIR would be advantageous in smaller or remote river 

systems where ‘conventional’ airborne TIR is too costly and traditional in-stream measurements risk missing 

local spatial variation. However, it is worth noting that these applications present situations where the 

thermal impacts of discrete temperature inputs may be unknown, may vary seasonally, and may have mixing 



patterns that are difficult to discern. Therefore, simultaneous acquisition of in-stream temperature data is 

essential to validate the findings of sUAS-based TIR-based datasets. 

 

4.2 Sources of bias and suggested methodological improvements 

Although the drift observed within this study represents a considerable challenge to the derivation of diffuse 

river temperature heterogeneity from TIR imagery, results of the regression analysis and CCA indicate that 

the drift may have identifiable systematic elements (Fig 2B). Thus, it may be possible to take steps to improve 

the accuracy of TIR-derived temperatures. Kin was identified as the most important covariate governing long 

profile variability, presumably caused by the impact of radiative warming on the camera (and thus drift). 

Similarly, the relative strength of TS is likely due to the role of topographic shading from the mountainous 

Baddoch Burn terrain in controlling streamwise variability in the receipt of solar radiation by (and hence, 

radiative warming of) the camera. Elapsed time was also identified as an important covariate, in agreement 

with Mesas-Carrascosa et al. (2018). This variable integrates both time of day (comprising diurnal air 

temperature variation) and time passed during the survey (potentially corresponding to heat build-up due to 

energy dissipation from internal electronics). Thus, time can also be considered a proxy both for the external 

and internal heating of the TIR camera. This also explains the moderate importance of Ta as a covariate. 

Relative humidity was also found to be a strong covariate, presumably because overcast conditions which 

accompanied increased RH (particularly on 11 July) reduced radiative warming (and possibly aided sensible 

cooling) of the camera. These findings indicate that it may be feasible to minimise thermal drift (to a limited 

extent) by planning surveys to coincide with overcast conditions which would limit external (radiative) 

camera warming. However, given that TIR survey flights should generally be conducted on warm/sunny days 

and during low flows to exploit the increased thermal difference from cool advective inputs and radiative 

warming of the channel (eg. Dugdale, 2016), this may not be a practical solution. In our investigation, we 

conducted flights throughout the day with a view to characterising temporal change in the Baddoch Burn’s 

longitudinal temperature profile, and we acknowledge that this practise may have increased drift in 

comparison to if we had consistently conducted flights later in the day (coinciding with reduced solar 

radiation). However, although these findings might also be construed to suggest that conducting surveys 

during night-time will reduce radiative warming, systematic testing of similar miniaturised drone-based 

cameras during night-time suggests that this practise does not eliminate drift (E. Baker, personal 

communication), presumably as other sources of interference (e.g. sensible and latent heat fluxes) are still 

present, something that we have also observed during ground-based testing at night.  Indeed, our findings 

suggest that no single covariate is responsible for all of the temperature drift. While solar radiation was found 

to be the strongest covariate in general terms, surveys 4 and 6 exhibited relatively high levels of drift in spite 

of reduced solar radiation.  On these occasions, it is likely that a combination of other covariates (eg. 

topographic shading and relative humidity, which were particularly pronounced during surveys 4 and 6 

respectively) explain the majority of the drift. 

While external flight characteristics and environmental metrics explained 66% of the long profile variability, 

the remaining 34% is unaccounted for. This remaining variability is presumably a combination of true diffuse 

river temperature heterogeneity and internal sensor warming due to power dissipation from camera circuitry 

(Olbrycht and Więcek 2015; Strąkowki 2017). Not only does this partially account for why drift is present in 

night-time flights, but also indicates that even through minimising all external sources of drift, it will still be 

difficult to separate true diffuse heterogeneity from drift caused by internal sensor warming. Although 

researchers have published a range of drift compensation methods, these are either experimental hardware-

based techniques (eg. Olbrycht and Więcek 2015; Ribeiro-Gomes et al. 2017) or involve modelling or 



additional image acquisition to remove inter-image bias and ‘normalise’ image sequences (eg. Abolt et al., 

2018; Jensen et al. 2014; Mesas-Carrascosa et al. 2018), which, when applied over the spatial scales at which 

diffuse thermal heterogeneity occurs (102 – 104 m), may also have the unwanted effect of removing true 

longitudinal temperature variability present within the image series. We therefore advocate the 

development of new processing techniques specific to river environments that are capable of compensating 

for sUAS-based TIR drift while preserving true streamwise temperature variability. Two promising avenues 

of research include the use of image mosaics to quantify (and thus, remove) the inter-image bias as a function 

of the temperature difference between overlapping image segments (similar to the method of Abolt et al., 

2018), or the use of statistical river temperature models with river network smoothers to ‘detrend’ the image 

data based on temperature records from loggers (e.g. Jackson et al. 2017). These techniques are the subject 

of ongoing research by the authors. The simultaneous acquisition of river temperature data using ground-

based/handheld TIR cameras also holds potential for enhancing TIR data collection using drones. Indeed, 

recent research (eg. Bonar & Petre, 2015; Hare et al. 2015; Ganji et al., 2016) has demonstrated that such 

methods are both a cost-effective and relatively simple technique for acquiring spatially-explicit river 

temperature data. The collection of ground-based temperature data at the same time as sUAS imagery 

surveys may therefore prove useful for compensating for drift observed here. 

 

5. Conclusions 

While sUAS-based TIR can produce high resolution imagery that clearly delineates the extent and location of 

discrete advective thermal inputs to streams, our results do not currently support the use of certain popular 

miniaturised TIR camera solutions (such as those discussed in this article) to quantify true river temperature 

data without substantial correction using distributed kinetic temperature data (that may substantially 

increase resource requirements and thus reduce the overall value of TIR data). Both inter-image biases 

(temperature drift) and within-image biases (resulting from solar/skylight reflections in each image) 

generated substantial differences between radiant and kinetic temperatures in two different river systems. 

Statistical approaches to separate the drivers of long profile variability across flights demonstrate that 

temperature drift is partially the result of flight conditions and environmental variables, but more work 

remains to separate other (eg. internal) drivers of errors. sUAS-based TIR represents a promising approach 

for collecting data at spatial scales situated between ‘conventional’ remote sensing approaches and point 

measurements. However, this potential cannot be truly realised without further developments to correct for 

the biases observed here. Without such development, the primary value of these data is for identifying and 

delineating discrete thermal inputs where true temperatures are less important. We therefore call for 

enhanced clarity and reporting of (potentially negative) results by those using drone-based TIR cameras in 

the hydrological sciences in order to develop thorough recommendations for the ‘best-practise’ collection of 

water temperature data using TIR.  Nevetheless, ongoing technological advancements at the interface of 

sensor technologies and sUAS platforms will no doubt yield future improvement in the extraction of 

quantitative temperature data for future research endeavours. 
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Tables 

Table 1.  Characteristics of sUAS thermal imaging surveys of Baddoch Burn, Scotland 

Survey 
no. 

No. 
images 

Date/time 
Duration 
(MM:SS) 

TIR 
camera 
yaw (°) 

Altitude 
AGL (m) 

Air 
temperature 
(°C) 

Relative 
humidity 
(%) 

Incoming 
shortwave 
radiation 
(W m2) 

Net 
radiation 
(W m2) 

1 239 2017-05-03 13:08 03:58 11.4 106.2 14.8 29.7 821.0 629.7 
2 242 2017-05-03 14:38 04:02 11.7 106.3 14.2 28.2 522.9 376.3 
3 241 2017-05-03 16:13 04:02 11.2 106.3 13.7 28.2 424.2 282.9 
4 219 2017-05-03 17:29 03:38 12.1 105.8 12.4 25.8 94.2 -10.4 
5 216 2017-07-11 11:46 03:36 11.1 100.0 12.0 69.5 334.3 251.8 
6 209 2017-07-11 13:08 03:34 9.9 100.0 10.6 78.5 205.3 58.1 
7 212 2017-07-12 11:14 03:36 11.1 100.0 13.5 56.7 505.8 405.2 
8 217 2017-07-12 11:31 03:38 11.0 100.0 13.6 53.8 562.0 455.2 
9 220 2017-07-12 11:55 03:40 0.1 100.0 13.8 51.8 344.5 250.9 
10 192 2017-07-12 15:12 03:50 198.3 102.2 15.9 43.1 377.7 278.2 

 

Table 2. Flight details for sUAS imagery acquisition in Syracuse, NY. 

Survey no. No. images Date/time 
TIR 
camera 
yaw (°) 

Altitude 
AGL (m) 

Air 
temperatur
e (°C) 

Relative 
humidity (%) 

May (1) 20 2017-05-12 15:30 28 61 18.9 44 

July (2) 14 2017-07-19 15:30 28 61 29.4 50 

 

Table 3. Importance of covariates in stepwise multiple linear regression (R2 = 0.66, p < 0.001) ranked from 
largest to smallest (ie. size of influence on temperature long profile). Covariates are incoming solar 
shortwave radiation (Kin), seconds elapsed since midnight (time), topographic shading (TS), relative 
humidity (RH), air temperature (Ta), sine of TIR camera yaw (sincam), altitude (alt) and sine of stream 
azimuth (sinazm) 

Covariate ΔBIC p-value 

Kin 289.91 <0.001 

time 214.67 <0.001 

TS 114.35 <0.01 

RH 109.93 <0.001 

Ta 43.89 <0.001 

sincam 9.82 <0.001 

alt 1.95 <0.001 

sinazm 0.49 <0.001 

 

  



Figures 

 

Figure 1. Maps of the study sites, including (a) Baddoch Burn, Scotland and (b) Onondaga Creek, Syracuse, 

NY 

 



 

Figure 2. Drift-affected TIR image mosaics of Baddoch Burn showing (a) highest magnitude TIR drift 

observed over all flights (survey 3) and lowest magnitude TIR drift observed (survey 8). For more details on 

magnitude of drift, see Table S2. 



 

Figure 3. Temperature long profiles from 10 surveys of Baddoch Burn showing substantial temperature drift 

in TIR data (TR) in comparison to loggers (TK). 



 

Figure 4. Canonical correlation analysis (CCA) showing positive relationship between flight / environmental 

metrics detailed in section 2.4 and temperature long profiles (including drift) derived from TIR data. 

Standardised CCA coefficients indicate relative influence of given covariate on TIR drift. 



 

Figure 5. Post-processed TIR imagery along Onondaga Creek with relative stream temperatures for (a) the 

upstream spring during a May 2017 flight and the downstream active culvert during flights in (b) May and 

(c) July 2017. 


