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ABSTRACT

E-cadherin is a tumor suppressor gene in invasive lobular breast cancer. However, a proportion of 

high-grade ductal carcinoma shows reduced/loss of E-cadherin. In this study, we assessed the 

underlying mechanisms and molecular implications of E-cadherin loss in invasive ductal carcinoma. 

This study utilized large, well-characterized cohorts of early stage breast cancer evaluated E-cadherin 

expression via various platforms including immunohistochemistry, microarray analysis using Illumina 

HT-12V3, copy number analysis using Affymetrix SNP 6.0 arrays and next generation sequencing for 

differential gene expression. Our results showed 27% of high-grade invasive ductal carcinoma 

showed reduced/loss of E-cadherin membranous expression. CDH1 copy number loss was in 21% of 

invasive ductal carcinoma which also showed low CDH1 mRNA expression (p=0.003). CDH1 copy 

number was associated with copy number loss of TP53, ATM, BRCA1 and BRCA2 (p<0.001). 79% of 

invasive ductal carcinoma with reduced CDH1 mRNA expression showed elevated expression of E-

cadherin transcription suppressors TWIST2, ZEB2, NFKB1, LLGL2, CTNNB1 (p<0.01). Reduced/loss 

E-cadherin expression was associated with differential expression of 2143 genes including those 

regulating Wnt (FZD2, GNG5, HLTF, WNT2, and CER1), and PIK3-AKT (FGFR2, GNF5, GNGT1, 

IFNA17, and IGF1) signaling pathways. Interestingly, key genes differentially expressed between 

invasive lobular carcinoma and invasive ductal tumors did not show association with E-cadherin loss 

in invasive ductal carcinoma. We conclude that E-cadherin loss in invasive ductal carcinoma is likely a 

consequence of genomic instability occurring during carcinogenesis. Potential novel regulators 

controlling E-cadherin expression in invasive ductal carcinoma warrant further investigation.  
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INTRODUCTION 

Worldwide, breast cancer accounts for 23% of total diagnosed cancer cases, and is the second 

leading cause of cancer-related death amongst women 1. In solid tumors, cell-cell decohesion is a 

recognized phenomenon allowing tumor cells to grow invasively into surrounding tissues 2. E-

cadherin, a calcium-dependent adhesion molecule encoded by the CDH1 gene located on 

chromosome 16q22.1 3, plays an important role in gland formation, cell differentiation, polarity and 

maintaining the integrity of epithelial cells 4. Subsequently, decreased expression of E-cadherin, which 

is frequently seen in breast cancer, may lead to cellular de-differentiation and invasiveness 5-6. 

Reduced/loss of E-cadherin expression in the vast majority of invasive lobular carcinomas and lobular 

carcinoma in situ together with loss of CDH1 gene copy number 7-8-9 or CDH1 gene mutation 10 in a 

large proportion of cases  suggests a plausible role for E-cadherin as a tumor suppressor gene 11-9. 

However, there is limited evidence to support a role for E-cadherin as a tumor suppressor gene  in 

invasive ductal carcinoma 12. In fact,  ductal carcinoma in situ and low grade invasive ductal 

carcinoma generally show stronger E-cadherin membrane staining than that seen in the normal 

breast epithelial cells, denoting increased expression, rather than a loss of expression 13. Although 

some studies indicated that a proportion of invasive ductal carcinoma shows loss/reduced E-cadherin 

protein expression, these tumors were typically high-grade aggressive tumors. Of note, accumulating 

evidence suggests that high grade invasive ductal carcinoma are characterized by genomic instability 

with loss of increasing number of tumor suppressor genes during the carcinogenesis process that 

contributes to their aggressive behavior 12. In addition, reduced/loss of E-cadherin expression is 

frequently associated with loss of estrogen expression, larger tumor size, and with the development of 

metastasis and recurrence 14-15-16-17. These findings suggest that E-cadherin loss occurs as a late 

event in the process of carcinogenesis arising in association with or as a part of genomic instability, 

rather than as an early neoplastic event as seen in invasive lobular carcinoma 13-18-19. However, the 

reasons for dysregulation of E-cadherin protein expression remain ill-defined 20. 

We therefore aimed to study the mechanisms of reduced/loss E-cadherin expression in high grade 

invasive ductal carcinoma compared to invasive lobular carcinoma and its potential molecular 

implications. 
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MATERIALS AND METHODS

Study cohort 

This study was conducted on multiple well-characterized cohorts of high grade invasive ductal 

carcinoma using different molecular techniques (Supplementary Table 1). First, a well-characterized 

cohort of primary grade 3 invasive ductal carcinoma from patients presenting to Nottingham City 

Hospital between 1989 and 1998 (n=813), and for whom detailed clinicopathologic data were 

available was used to determine E-cadherin expression using immunohistochemistry 12. The mean 

patient age was 52 years (range 18-71), and tumor size ranged in diameter from 0.1 cm to 5 cm at 

time of presentation, with a mean tumor size of 2 cm (Supplementary Table 2). To understand the 

molecular biology of E-cadherin expression, high grade invasive ductal carcinoma (n=883) cases in 

the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) cohort21 were used 

to investigate copy number alterations and CDH1 mRNA expression. The mean patient age was 59 

(range 26-96), and mean tumor size at time of presentation was 3 cm (range from 1 cm to 18 cm). In 

the METABRIC-invasive ductal carcinoma series, DNA/RNA was isolated from fresh frozen samples 

and transcriptional profiling was obtained using the Affymetrix SNP 6.0 Illumina Total Prep RNA 

Amplification Kit and Illumina Human HT-12 v3 Expression Bead Chips (Ambion, Warrington, UK). 

Copy number alteration was considered at the gene level by segments and the Šidák correction 22, 

whereas gene expression data were pre-processed and normalized as described previously 21. In this 

cohort, patients with estrogen positive tumor and /or lymph node negative at time of diagnosis did not 

receive adjuvant chemotherapy, whereas those with estrogen negative tumors and lymph node 

positive status received adjuvant treatment. Next generation RNA sequencing was conducted on an 

additional triple negative breast cancer cohort (n=106) to investigate E-cadherin reduced/loss 

expression in this subtype of breast cancer. The mean patient age was 48 (range 27-69) and tumors 

size ranged in diameter from 1 to 6 cm at time of presentation, with a mean tumor size of 2 cm 

(Supplementary Table 2).

Immunohistochemistry staining and scoring 

Mouse monoclonal anti-E-cadherin antibody [Cl;4A2C7, Ref#180223, LOT 954621A, Invitrogen, UK] 

was used to assess protein expression on immunohistochemically-stained tissue sections after prior 
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validation of the antibody by Western blot using MDA-MB-231 and MDA-MB-157 breast cancer cell 

lysates (obtained from American Type Culture Collection, Rockville, MD, USA). Immunohistochemistry 

staining procedure was performed using Novocastra Novolink TM Polymer Detection Systems kit 

(Code: RE7280-K, Leica, Biosystems, UK) on 4 µm tissue microarray sections 20. Sections were 

incubated for 24 hours with the anti-CDH1 antibody diluted to a concentration of 1:25. Scoring of 

membranous protein expression was performed using the modified histo-score 23. We used the lower 

quartile from the modified histochemical score value (i.e. 85) to stratify the cohort into high and 

reduced/loss E-cadherin expression groups. Cases in the METABRIC cohort were stratified using a 

similar approach for total CDH1 mRNA expression. Copy number alteration and CDH1 mRNA 

expression were correlated with E-cadherin protein expression in the same cases where available 

(n=131).

RNA sequencing 

RNA sequencing was performed on representative formalin-fixed paraffin-embedded blocks of triple 

negative breast cancers (n=106) which had also been assessed histopathologically for tumor burden. 

Invasive tumor cells were micro-dissected from unstained tissue sections where tissue burden was at 

least 50% of the tissue section area. Micro-dissected tissues were deparaffinized, rehydrated, and 

centrifuged to remove excess ethanol. RNA was extracted using the Omega Mag-Bind XP formalin 

fixed paraffin embedded RNA isolation kit (Omega, M2595-01) and Kingfisher Flex magnetic particle 

separator (ThermoFisher) as per manufacturer’s instructions. RNA was measured with a Nanodrop 

2000c spectrophotometer (Thermo Scientific). First strand cDNA synthesis was performed on 

approximately 100 ng RNA at 25°C for 10 min, 42°C for 15 min, and 70°C for 15 minutes using 

random hexamers and ProtoScript II Reverse Transcriptase (New England BioLabs, Ipswich, MA). 

Second strand synthesis and RNA sequencing libraries were prepared using the Illumina TruSeq RNA 

access library kit (Illumina, RS-301-2002) and sequenced on an Illumina HiSeq 2500 using PE75 run 

chemistry. The targeted read count was 60M total reads per sample. Sequencing was performed at 

the Emory Integrated Genomics Core Facility, Emory University, Atlanta, USA. Raw FastQ sequence 

reads files were quality assessed and adapter processed using the trim galore wrapper for Fastqc and 

Cutadapt with reads with phred scores >30 retained. The resultant quality trimmed reads were aligned 
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to the hg38 (GRCh38.83) build of the human genome using the STAR aligner. Transcript abundance 

quantification were performed using HTSEQ [34]. Only one sample per patient was included in 

downstream analyses by random selection. Differential gene expression was assessed using Robina 

implementation of Edge-R 24. 

Pathway analysis 

The online public available web-based gene set analysis tool, Webgestalt, (http://www.webgestalt.org/

option.php) was used to identify differentially regulated canonical pathways. This pathway analysis 

was based on transcripts differentially expressed at the p<0.05 level and generated by Robina 

analysis, including only unbiased hits with significant z-scores based on network-adjusted p-values 

<0.05 using KEGG pathway database 25. 

Statistical analysis

IBM SPSS 24.0 (Chicago, IL, USA) software was used for statistical analysis. The chi-squared test 

was used to assess the effect of copy number alteration on reduced/loss of CDH1 mRNA expression. 

Furthermore, we evaluated copy number alteration of established tumor suppressor genes in cases 

that exhibited reduced/loss of CDH1 mRNA expression and copy number loss via copy number 

alteration in the METABRIC cohort, to infer genetic instability as the likely driver of the reduced/loss of 

CDH1 mRNA expression using chi-squared test. Mann-Whitney test was used to compare the 

expression of CDH1 mRNA expression with expression of well-established transcription factors 

affecting E-cadherin expression26. Furthermore, we evaluated expression of a set of genes previously 

demonstrated to have 93% predictive accuracy in distinguishing invasive lobular carcinoma from 

invasive ductal carcinoma via the prediction analysis for microarrays test 27. Expression of proteins 

related to DNA repair and proliferation were compared to expression of the E-cadherin protein using 

the Mann-Whitney test. Furthermore, the association of E-cadherin protein expression with that of 

transcription factors mRNA expression (assessed using next generation sequencing -HTSEQ values) 

was evaluated using the Mann-Whitney test. Two tailed p-value <0.05 was considered as statistically 

significant. RNA-Seq values were expressed as standard error of means in GRAPH PAD PRISM v.7 

for data presentation.
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RESULTS

Evaluation of E-cadherin protein expression in the high grade invasive ductal breast 

carcinoma cohort (n=813) 

The specificity of E-cadherin antibody was validated by western blot that showed a single specific 

band at the expected molecular weight (~100 kDa). A total of 217/813 (27%) of high-grade invasive 

ductal carcinoma and 46/106 (43%) of triple negative breast cancer showed reduced/loss membrane 

expression of E-cadherin. Within the METABRIC cohort, reduced/loss CDH1 mRNA expression was 

observed in 208/883 (23%) cases. Furthermore, triple negative breast cancer showed reduced/loss of 

CDH1 mRNA expression in 90/235 (38%) cases. Reduced/loss CDH1 mRNA expression cases were 

observed in 104 cases of the basal (37%), 18 cases of the HER2 enriched (11%), 40 cases of luminal 

A (27%), 29 cases of luminal B (12%), and 17 cases of the Normal like (29%) molecular subtypes 

(Supplementary Table 3 & Supplementary Figure 1). In the subset of cases that were included in the 

METABRIC dataset (n=131), there was a positive linear correlation between CDH1 mRNA and the 

dichotomized E-cadherin protein expression (r=0.27, p=0.002).

Reduced/loss E-cadherin protein expression was associated with GammaH2AX (p<0.0001) and 

PTEN (p=0.003) protein expression (Table 1).

E-cadherin copy number alteration in ductal breast cancer

To investigate whether reduced/loss of E-cadherin expression in the invasive ductal carcinoma cases 

is due to copy number alteration, we examined copy number alteration and CDH1 mRNA levels. We 

observed that 44/208 (21%) of cases showed significant association between loss of CDH1 copy 

number and reduced/loss CDH1 mRNA expression (p=0.003) (Supplementary Table 4). Only 1 case 

with copy number loss did not show any association with the transcription factors investigated while 

the remaining cases showed upregulation of one or more transcription factors (Supplementary Table 

5). Interestingly, 77% of tumors presenting with reduced/loss CDH1 mRNA expression did not show 

CDH1 copy number loss, indicating that other mechanisms are implicated. Subsequently, 

investigating the triple negative tumors, only 7/90 (8%) of cases showed copy number to be 

associated with reduced/loss CDH1 mRNA expression. However, there was no statistical association 
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between copy number loss and reduced/loss of CDH1 mRNA expression (p=0.10) (Supplementary 

Table 6). More importantly, amongst those cases, only 1 (copy number loss) case did not show any 

association with any transcription factors while the rest of the 6/90 (7%) cases (copy number loss) 

showed upregulation of one or more transcription factors (Supplementary Table 7). Moreover, 83/90 

(92%) of triple negative tumors with reduced/loss CDH1 mRNA expression showed neutral/amplified 

CDH1 copy number expression. 

In addition, reduced/loss CDH1 mRNA expression in invasive ductal carcinoma showed copy number 

loss of multiple well-established breast cancer tumor suppressor genes located at different 

chromosome loci; TP53, ATM, BRCA1, and BRCA2 (p<0.001) (Supplementary Table 8). 

Expression of E-cadherin suppressor transcription factors

In cases with reduced/loss E-cadherin expression (n=208) from the METABRIC cohort, upregulated 

mRNA expression was observed with ZEB2 (56%), TWIST2 (54%), NFKB1 (54%), ZEB1 (53%), 

TWIST1 (52%), SLUG (51%), SNAIL (50%), GSK3BETA (49%), TGFB1 (47%), LLGL2 (38%), and 

CRUMBS3 (34%). Only 4% of the cases were affected by 9 or more upregulated transcription factors 

(Supplementary Table 9 & Supplementary Figure 2). Upregulated expression of TWIST2, ZEB2, 

NFKB1, LLGL2 and CRUMBS3 were significantly associated with reduced/loss of CDH1 mRNA 

expression (Table 2).  In triple negative breast cancer with reduce/loss E-cadherin expression, 

upregulated mRNA expression was observed with ZEB2 (63%), SLUG (62%), TWIST2 (59%), 

TWIST1 (57%), ZEB1 (54%), SNAIL (52%), TGFB1 (51%), GSK3BETA (50%), NFKB1 (46%), LLGL2 

(24%), and CRUMBS3 (24%) (Supplementary Table 10 & Supplementary Figure 3). Only 3% of the 

cases harbored 9 or more upregulated transcription factors (Supplementary Table 7). Upregulated 

expression of TWIST2, TWIST1, ZEB2, ZEB1, SLUG, LLGL2 and CRUMBS3 were significantly 

associated with reduced/loss of CDH1 mRNA expression (Table 3).

Proteins associated with E-cadherin expression in invasive triple negative ductal breast 

carcinoma
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There was no significant statistical correlation between reduced/ loss of E-cadherin expression with 

transcription factors, DNA repair family, nor other markers such as ki67, ATM and PTEN on the protein 

level in triple negative breast cancer (Table 4 A, B & Supplementary Figure 4A) 

E-cadherin loss and expression of genes deferentially expressed between invasive lobular 

carcinoma and invasive ductal carcinoma within the triple negative breast cancer cohort. 

There was no significant association between reduced/ loss of E-cadherin expression in the high 

grade triple negative ductal cancer and those genes differentially expressed between invasive lobular 

and ductal carcinoma (Cathepsin  B, TPI1, SPRY1, SCYA14, TFAP2B, thrombospondin 4, 

Osteopontin, HLA-G, CHC1) 27 (Table 5 & Supplementary Figure 4B).

Genomic study and pathway analysis

Next generation sequencing identified 2143 differentially expressed genes (Benjamin-Hochberg; p< 

0.05, differentially expressed by >two-fold, false discovery rate <0.05). Triple negative invasive ductal 

carcinoma with reduced/loss E-cadherin expression (n=46) showed 849 significantly overexpressed 

and 1294 downregulated genes. It is noteworthy that dysregulation of genes regulating Wnt signaling 

pathway, the top predicted master regulator of E-cadherin expression, based on p-value, whose 

activity could explain protein expression differences were (FZD2, GNG5, HLTF, WNT2, and CER1), 

PIK3-AKT signaling pathway top predicted master regulator controlling E-cadherin expression were 

(FGFR2, GNF5, GNGT1, IFNA17, and IGF1) (Table 6). Importantly, key genes differentially expressed 

between invasive lobular carcinoma and invasive ductal tumors 27 did not show association with E-

cadherin reduced/loss of expression in the invasive triple negative ductal carcinoma (Table 5).
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DISCUSSION

Reduced/loss of E-cadherin expression is recognized as part of the main molecular events driving 

loss of cell-cell adhesion and thus facilitating cancer invasion and metastasis 28. Some authors have 

suggested that E-cadherin can serve as a phenotypic marker to distinguish between invasive lobular 

carcinoma and non-invasive lobular tumors 27. Mechanisms seeding reduced/loss of E-cadherin 

expression comprise CDH1 gene mutation 10, truncating mutation 29, promoter hypermethylation 30 

and transcriptional inactivation 31. Reduced/loss of E-cadherin expression is observed in 84% of 

invasive lobular carcinomas 9. Several studies have shown that approximately 38% of high-grade 

invasive ductal tumors show reduced/ loss of E-cadherin expression, and this phenomenon has been 

linked to aggressive tumor behavior. Interestingly, CDH1 gene mutations were not identified in this 

subgroup 11-19-32. 

One of the recognized mechanisms leading to reduced/loss of E-cadherin expression is loss of 

heterozygosity at chromosome 16q22.1, where the CHD1 gene is located 33. Studies investigating the 

mechanism underlying reduced/loss of E-cadherin protein expression in invasive lobular carcinoma 

cases uncovered loss of wild-type allele due to loss of heterozygosity  at 16q22.1 occurring in more 

than 70% of cases 7-8. Furthermore, CDH1 gene mutation and promoter hypermethylation were 

observed in 20% and 56% of invasive lobular carcinomas, respectively 7. Interestingly, co-occurrence 

of these mechanisms rarely occurs in invasive lobular tumors 34. Remarkably, mutational inactivation 

of CDH1 gene mostly coexists with loss of the wild type allele in invasive lobular carcinoma 35. Since 

reduced/loss of E-cadherin expression in invasive lobular tumors is predominantly caused by loss of 

heterozygosity, it has been suggested that copy number loss of the CDH1 gene can be utilized to 

discriminate between invasive ductal carcinoma and invasive lobular tumors when it is difficult to 

differentiate them based on histological evaluation 36. Our investigation revealed that copy number 

loss occurred in only 21% of invasive ductal carcinomas displaying reduced/loss of E-cadherin 

expression. Therefore, other mechanisms must underlie the downregulation of E-cadherin in the 

majority of cases. Other mechanisms of E-cadherin reduced/loss of expression without copy number 

loss include DNA hypermethylation, a mechanism that may induce the CDH1 reduced/loss of mRNA 

expression detected in 60% of metastatic invasive ductal carcinoma 37.
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Loss of CDH1 gene at 16q22.1 in invasive lobular carcinoma is one of the main genet events and is 

observed early in the process of carcinogenesis in lobular carcinomas.  We hypothesized that 

reduced/loss of E-cadherin expression in a subset of invasive ductal tumors might be the result of 

genomic instability and occurs as a late event during the process of cancer progression. Our results 

demonstrate that loss of CDH1 copy number is associated with copy number aberrations of multiple 

well-established breast cancer tumor suppressor genes located at different chromosomes; copy 

number loss of ATM (11q22.3), PTEN (10q23.31), RB1 (13q14.2), TP53 (17p13.1), BRCA1 

(17q21.31), and BRCA2 (13q13.1) tumor suppressor genes. Moreover, DNA damage response 

pathways which are crucial for detecting DNA lesions and arresting the cell cycle until the DNA is 

repaired or inducing cell death if cells sustain irreparable DNA damage 38, play key roles in preventing 

genetic instability and tumorigenesis 39. Investigation of correlations between reduced/loss of E-

cadherin expression and expression of biomarkers related to DNA damage response pathways in 

breast cancer revealed negative correlation between reduced/loss of E-cadherin protein expression 

and GammaH2AX and PTEN expression suggesting that reduced/loss of E-cadherin expression is 

associated with impaired DNA damage response and likely, genomic instability. Taken together, these 

results support our hypothesis that reduced/loss of E-cadherin expression in invasive ductal 

carcinomas is associated with genomic instability.

Reduced/loss of E-cadherin expression can also be caused by overexpression of its associated 

transcription factors 40-41-42-26. Our results showed a negative correlation between reduced/loss of 

CDH1 mRNA expression and the mRNA expression of transcription factors known to suppress E-

cadherin expression and cause disruption of cell-cell adhesion43-44; in fact, 76% of cases harboring 

reduced/loss of CDH1 mRNA show upregulation of one or more of these transcriptional repressors. 

Remarkably, other key players in epithelial-mesenchymal transition such as TGFBeta1, SNAIL and 

SLUG did not show any correlation with E-cadherin reduced/loss of mRNA expression. These 

observations suggest that reduced/loss of E-cadherin expression is not merely a surrogate for 

epithelial-mesenchymal transition but represents a readout of other pathways controlling E-cadherin 

expression at membranes level. 
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Of note, reduced/loss of E-cadherin protein expression occurs in up to 50% of triple negative invasive 

ductal carcinoma, which may contribute to increased lymph node metastasis, and poor patient 

outcomes 45. We observed a negative correlation between reduced/loss of CDH1 mRNA expression 

and the mRNA expression of multiple transcription factors known to suppress E-cadherin expression 

in our triple negative breast cancer cohort. On the contrary, when we investigated the same genotype 

within the cohort tested by next generation sequencing, none of these transcription factors showed 

statistically significant associations with E-cadherin expression. It is possible that different molecular 

mechanisms regulate E-cadherin expression, although we cannot exclude the possibility that our 

cohort is small to such associations. 

More importantly, genes differentially expressed between invasive ductal  and invasive lobular breast 

tumors as identified by Waldman et al 27 and could represent the effect of E-cadherin loss in lobular 

carcinoma compared to ductal tumors showed no statistically significant difference, when tested on 

mRNA level, in breast cancer cases showing reduced/loss of E-cadherin expression compared to 

these tumour with normal expression. This may indicate not only that more complex molecular 

mechanisms are responsible for E-cadherin reduced/loss of protein expression in these cases but 

also E-cadherin loss in ductal carcinoma does not produce the same effects in lobular tumors. This 

may also be supported by the lack of morphological features and metastatic behavior characteristic of 

lobular carcinomas in ductal tumors lacking E-cadherin expression.

In this study, differential gene expression using next generation sequencing investigating differences 

between cases with reduced/loss of E-cadherin expression and cases with normal/high expression 

showed dysregulation of genes regulating PIK3-AKT signaling pathway. Our analysis exposed a 

negative correlation between the genes regulating this pathway and reduced/loss of E-cadherin 

protein expression suggesting that overexpression of those indicators may promote signaling via the 

PIK3-AKT pathway and thus negatively regulate E-cadherin expression. Receptors such as insulin 

like growth factor receptor 1, can induce the activity of Akt pathway 46. Our results are in agreement 

with reports indicating activation of PIK3-AKT represses E-cadherin expression and stimulates cell 

migration 47. Nonetheless, dysregulation of genes regulating Wnt signaling pathway was also present 
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in our results. Mutation or deregulation of gene expression of the canonical Wnt pathway is implicated 

in cancer 48-49-50.

Our study limitation relates to comparing gene expression data obtained from microarrays, as used in 

the METABRIC cohort comprising different molecular subtypes of invasive ductal tumors, and the 

RNA sequencing dataset available for our triple negative breast cancers only. We have chosen triple 

negative breast cancer to study E-cadherin protein expression in invasive ductal carcinoma cases as 

up to 50% of this molecular subtype show reduced/loss of E-cadherin protein expression 45- 51. On the 

contrary, studies have shown that reduced/loss of E-cadherin expression occurs in 23% and 27% of 

luminal and HER2 enriched subtypes, respectively 51. RNA-Seq approaches cover multiple aspects of 

the transcriptome without any a priori knowledge, allowing to identify novel transcripts, splice junctions 

and noncoding RNAs 52. We acknowledge that comparison between these two different approaches 

may or may not provide the same results due to intrinsic differences in assay design 53. For instance, 

next generation sequencing may have different lower limits of detection or may encompass different 

genomic regions 52. More importantly, invasive ductal carcinoma cases used in the METABRIC cohort 

comprise different molecular subtypes, while the RNA sequencing data was acquired for a triple 

negative breast cancer cohort, which also may play a role in our study. Therefore, further validation of 

our findings is warranted. 

Conclusion: Reduced/loss E-cadherin expression in invasive ductal carcinoma is a complex 

biological phenomenon, which, according to the findings of this study, appears to be a part of the 

genomic instability process occurring late in the process of carcinogenesis rather than an initial 

neoplastic event and results in different effects to those produced in invasive lobular carcinomas. 

Using the high throughput next generation sequencing, we have unraveled potential novel regulators 

controlling different signaling pathways that regulate E-cadherin protein expression in invasive ductal 

carcinoma. These regulators warrant further investigation and validation using different platforms.
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 Table 1: Correlation between level of proteins associated with altered E-
cadherin expression in high grade invasive breast cancer cohort (n=813)

Identifier
Protein of 
interest

E-cadherin 
expression 
frequency

Mean
RANK

Z- 
score

p-value
Low
(%)

High
(%)

Low High

Pr
ote
in
Le
vel

Tra
ns
cri
pti
on
Fa
cto
r

TGFBeta1 143 (27) 371 (73) 257 258 -0.04 0.96

TWIST2 130 (25) 376 (75) 259 251 -0.60 0.540

ZEB 126 (26) 352 (74) 240 239 -0.19 0.840

DN
A 

rep
air 
fa
mil
y

BRCA1 178 (26) 491 (74) 336 335 -0.05 0.950

BRCA2 132 (26) 375 (74) 248 256 -1.19 0.230

GammaH2a
x

120 (23) 387 (77) 221 264 -3.48 <0.001

RAD51 110 (25) 320 (75) 199 221 -1.96 0.050

Pr
olif
era
tio
n 

an
d 

oth
er 
ma
rke
rs 
fa
mil
y

Ki67 174 (25) 501 (75) 329 341 -1.14 0.250

PTEN 104 (28) 260 (72) 164 189 -2.93 0.003

ATM 143 (28) 358 (72) 245 253 -0.70 0.480

TP53 214 (26) 590 (74) 408 400 -0.47 0.630



Significant p values are in bold 



Table 2: Correlation between mRNA levels of the genes associated with altered 
E-cadherin expression in breast cancer in the METABRIC cohort 

Significant p values are in bold 

Identifier Genome 
of 

interest

E-cadherin 
expression frequency

Mean
RANK Z- score p-value

Low
(%)

High
(%)

Low High

Transc
ription
Factor 
mRNA 
Level

TGFB1

208 
(23)

675 
(77)

443 442 -0.07 0.940

TWIST2 481 430 -2.51 0.012

TWIST1 466 434 -1.58 0.110

ZEB2 489 427 -3.05 0.002

ZEB1 445 441 -0.21 0.830

SLUG 463 436 -1.33 0.180

SNAIL 457 437 -0.94 0.340

NFKB1 489 427 -3.06 0.002

LLGL2 349 470 -6.00 <0.001

GSK3B 439 443 -0.150 0.880

CRUMB
S 335 475 -6.93 <0.001



Table 3: Correlation between mRNA level of the genes associated with E-
cadherin expression in triple negative high grade invasive ductal carcinoma in 
the METABRIC cohort 

*Significant p values are in bold 
*Dichotomization of mRNA level was based on median of the total expression of each 
gene

Identifier Gene of 
interest

E-cadherin 
expression frequency

Mean
RANK Z- 

score p-value Low
(%)

H high
(%)

Low High

Transc
ription
Factor 
mRNA 
Level

TGFB1

90 
(38)

145
 (62)

114 120 - 0.74 0.460

TWIST2 130 110 - 2.16 0.030

TWIST1 132 109 - 2.51 0.010

ZEB2 138 106 - 3.49 <0.001

ZEB1 134 108 - 2.825 0.005

SLUG 129 111 - 2.048 0.040

SNAIL 113 121 - 0.94 0.340

NFKB1 115 119 - 0.47 0.630

LLGL2 89 135 - 5.00 <0.001

GSK3B 108 124 -1.71 0.080

CRUMB
S 91 135 - 4.80 <0.001



Table 4A: Correlation between level of proteins known to control E-cadherin 
expression using triple negative invasive breast carcinoma cohort (n=106)

Identifier
Protein of 
interest

E-cadherin 
expression 
frequency

Mean
RANK

Z- 
score

p-value
Low
(%)

High
(%)

Low High

Pr
ote
in
Le
vel

Tra
ns
cri
pti
on
Fa
cto
r

TGFBeta1 27 (47) 30 (53) 27 31 -0.87 0.380

TWIST2 26 (48) 28 (52) 27 31 -0.23 0.810

ZEB 25 (49) 26 (51) 27 25 -0.79 0.430

DN
A 

rep
air 
fa
mil
y

BRCA1 33 (44) 41(56) 37 38 -0.26 0.790

BRCA2 26 (45) 31 (55) 26 32 -1.90 0.060

GammaH2a
x

27 (43) 35 (57) 28 34 -1.47 0.140

RAD51 23 (51) 22 (49) 21 24 -0.85 0.390

Pr
olif
era
tio
n 
an
d 

oth
er 
ma
rke
rs 
fa
mil
y

Ki67 35 (47) 40 (53) 42 34 -1.61 0.100

PTEN 21 (47) 19 (53) 22 19 -0.96 0.390

ATM 28 (49) 29 (51) 29 29 -0.18 0.850

TP53 39 (41) 45 (59) 43 42 -0.32 0.750



Table 4B: Correlation between level mRNA expression of other genes known to 
control E-cadherin expression using triple negative invasive breast carcinoma 
cohort (n=106)

Identifier
Gene of 
interest

E-cadherin 
expression 
frequency

Mean
RANK

Z- score p-value
Low
(%)

High
(%)

Low High

mR
NA 
Lev
el

Tra
nscr
iptio

n 
Fact
or

fami
ly

TGFB1

46 
(43)

60 
(57)

56 51 -0.88 0.370

TWIST2 56 51 -1.28 0.200

TWIST1 53 53 -0.01 0.990

ZEB2 56 52 -0.74 0.450

ZEB1 57 51 -0.94 0.340

SLUG 51 55 -0.69 0.480

SNAIL 55 53 -0.43 0.660

NFKB1 57 51 -0.95 0.340

LLGL2 58 50 -1.33 0.180

GSK3B 54 53 -0.29 0.760

CRUMB
S

53 54 -0.07 0.930



Table 5:  Genes differentially expressed between lobular versus ductal breast 
carcinomas in triple negative breast cancer cohort (n=106)

Identifie
r

Gene of Interest E-cadherin 
expression 
frequency

Mean
RANK

Z- 
score

p-value

Low
(%)

High
(%)

Low High

mRN
A 

Level

Cathepsin B

46
(43)

60 
(57)

51 55 -0.57 0.560

TPI1 56 51 -0.87 0.380

SPRY1 54 53 -0.39 0.690

SCYA14 54 53 -0.20 0.830

TFAP2B 52 55 -0.46 0.640

Thrombospondin 
4 53 54 -0.09 0.920

Osteopontin 54 53 -0.26 0.790

HLA-G 52 55 -0.51 0.600

CHC1 53 54 -0.13 0.890



Table 6: Pathway analysis results using Web gestalt to identify differentially 
regulated canonical pathways in the triple negative breast cancer cohort 

    Significant P values are in bold 

M a s t e r 
regulator

G e n e 
symbol

Gene name s c o r
e

F D R 
s c o r e 
f r o m 
GSEA

p value 
f r o m 
GSEA

PI3K-Akt 
signalling 
pathway

FGFR2 Fibroblast growth factor receptor 
2

0.04

0.0069 <0.001

GNG5 G protein subunit gamma 5 0.03

GNGT1 G prote in subuni t gamma 
transducin1

0.02

IFNA17 Interferon alpha 17 0.03

IGF1 Insulin like growth factor 0.03

Wnt 
signalling 
pathway

FZD2 frizzled class receptor 2 0.01

0.0024 <0.001

GNG5 G protein subunit gamma 5 0.03

HLTF helicase like transcription factor 0.01

WNT2 Wnt family member 2 0.03

        
CER1

Cerberus 1, DAN family BMP 
antagonist

0.01



Supplementary Figure 1:  Western blotting & Immunohistochemistry 

    

A. Immunohistochemistry for E-cadherin expression in Invasive ductal carcinoma of the breast 

showing strong membranous staining.

B. Immunohistochemistry for E-cadherin expression in Invasive ductal carcinoma of the breast 

showing complete loss of membranous staining.

C. Specificity of the E-cadherin antibody (clone 4A2C7, Ref#180223, LOT 954621A, Invitrogen, 

UK) was confirmed by western blotting using MDA-MB231 and MDA-MB157 cell lines (The 

American Type Culture Collection; Rockville, MD, USA), which indicated a specific band at 

approximately 100 kDa.
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Supplementary Figure2: Frequency of genes associated with reduced E-
cadherin expression in invasive ductal carcinoma in the METABRIC cohort

�
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Supplementary Figure 3: Frequency of genes associated with reduced E-
cadherin expression in the triple negative invasive ductal carcinoma in the 
METABRIC cohort

�

Dichotomiza,on	of	mRNA	level	was	based	on	median	of	the	total	expression	of	each	gene
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Supplementary Figure 4A: Frequency of Transcription factors suppressing E-
cadherin expression in Cases showing reduced/loss CDH1 mRNA expression 
in the triple negative breast cancer  cohort
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• Dichotomization of mRNA was based on frequency of E-cadherin cases 

Supplementary Figure 4B: Differentially expressed genes between 
lobular versus ductal breast carcinomas in the triple negative breast 
cancer cohort

�
• Dichotomization of mRNA was based on frequency of E-cadherin cases 
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 Supplementary Table 1: Summary of the study cohorts 

METABRIC: Molecular Taxonomy of Breast Cancer International Consortium
*Next generation sequencing was carried out on a sub cohort of triple negative invasive breast cancer 
(n=106) 

Cohort Immunohistochemist
ry

Microarray 
data

Next 
Generation 
sequencing

High grade invasive ductal 
carcinoma (n=813) Yes No Yes*

High grade invasive ductal 
carcinoma within 
METABRIC series (n=883)

No Yes No

�1



Supplementary Table 2: Clinicopathological data of patient’s cohorts used in 
the study 

Clinicopathological Parameter Whole 
Invasive 
ductal 

carcinoma 
cohort 

(n=813)

N (%)

High grade 
Invasive ductal 
carcinoma in 
METABRIC 

cohort (n=883)
N (%)

Triple negative 
-Invasive 

ductal 
carcinoma 

cohort (n=106)

N (%)

Age (years)
< 50

≥ 50

326 (40) 266 (30) 59 (56)

487 (60) 617 (70) 47 (44)

Tumour size (cm)
≤ 2cm

>2cm

319 (39) 325 (37) 29 (27)

494 (61) 551 (63) 77 (73)

Stage	
1
2
3

455 (56) 186 (27) 64 (60)

258 (32) 420 (62) 29 (27)

100 (12) 73 (11) 13 (13)

Estrogen receptor status

Positive

Negative

452 (56) 372 (42) 0 (0)

361 (44) 511 (58) 106 (100)

Nottingham prognostic index

Good prognosis 

Moderate prognosis

Poor prognosis

1 (0.1) 0 (0) 2 (2)

567 (69.9) 705 (80) 72 (68)

245 (30) 178 (20) 32 (30)
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Supplementary Table 3:   Frequency of CDH1 mRNA level cases in invasive 
ductal carcinoma of the breast (all METABRIC cohort) based on PAM50 
classification  

Dichotomiza.on	of	CDH1	mRNA	level	was	based	on	the	lower	quar.le	of	the	total	expression	of	the	gene.	

PAM50 
Classification 

Cases with 
reduced/

loss CDH1 
mRNA 

expression

Percentage 
of cases 

with 
reduced/

loss CDH1 
mRNA 

expression

Cases with 
normal/
above 

threshold 
CDH1 
mRNA 

Expression

Percentage of 
cases with 

normal/above 
threshold CDH1 

mRNA 
Expression TOTAL

Basal Type 104 37% 174 63% 278

HER2 
Enriched Type 18 11% 141 89% 159

Luminal A 
Type 40 27% 110 73% 150

Luminal B 
Type 29 12% 208 88% 237

Normal Like 
Type 17 29% 42 71% 59

Total 208 675 883
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Supplementary Table 4: CDH1 copy number alteration (CNA) in invasive ductal 
carcinoma of the breast (all METABRIC cohort)

Significant p values are in bold

CNA region 
for CDH1

CNA  Cases with 
reduced/loss 
CDH1 mRNA 

expression

 Cases with 
normal/above 

threshold 
CDH1 mRNA 
Expression

Total p-value

Chromosom
e 16q22.1

Loss (%) 44 (35%) 81 (65%) 125 (100%)
0.003

Gain (%) 4 (15%) 23 (85%) 27 (100%)

Neutral (%) 160 (22%) 571 (78%) 731 (100%)

Total (%) 208 (23%) 675 (77%) 883 (100%)

�4



Supplementary Table 5: Frequency of genes associated with reduced E-
cadherin expression in invasive ductal carcinoma in the METABRIC cohort

Dichotomiza.on	of	mRNA	level	was	based	on	median	of	the	total	expression	of	each	gene.	

 Frequency of Cumulative Number of Upregulation of 
Transcription Factor suppressor of CDH1 mRNA 
expression in cases with reduced/loss of CDH1 
mRNA expression Frequency Percentage

11 1 1%

10 1 1%

9 5 3%

8 19 12%

7 35 21%

6 42 26%

5 38 23%

4 32 20%

3 21 13%

2 8 5%

1 5 3%
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Supplementary Table 6: CDH1 copy number alteration (CNA) in the high-grade 
triple negative invasive ductal carcinoma in the METABRIC cohort 

CNA region 
for CDH1

CNA  Cases with 
reduced/loss 
CDH1 mRNA 

expression

 Cases with 
normal/above 

threshold 
CDH1 mRNA 
Expression

Total Asymptotic 
Significanc
e (2-sided)

P-value

Chromosom
e   16q22.1

Loss (%) 7 (70%) 3 (30%) 10 (100%)

0.10Gain (%) 4 (36%) 7 (64%) 11 (100%)

Neutral 
(%) 79 (37%) 135 (63%) 214 (100%)

Total (%) 90 (38%) 145 (62%) 235 (100%)
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Supplementary Table 7: Frequency of genes associated with reduced E-
cadherin expression in invasive ductal carcinoma in triple negative breast 
cancer within the METABRIC cohort

Dichotomiza.on	of	mRNA	level	was	based	on	median	of	the	total	expression	of	each	gene.	

Frequency of cumulative number of upregulation of 
transcription factors’ suppressor of CDH1 mRNA 
expression in cases with reduced/loss of CDH1 
mRNA expression

Frequency of 
cases Percentage

10 1 1%

9 2 2%

8 10 11%

7 20 24%

6 15 17%

5 14 16%

4 11 12%

3 9 10%

2 3 3%

1 4 4%

�7



Supplementary Table 8: Copy number alteration (CNA) within other 
chromosomes in invasive ductal carcinomas with reduced/loss CDH1 mRNA 
expression in METABRIC cohort

      

Significant p values are in bold

Gene

Cases with reduced/loss CDH1 mRNA expression p-value

Loss Gain Neutral

ATM 26 (12%) 2 (1%) 180 (87%) <0.001

PTEN 17 (8%) 8 (4%) 178 (88%) 0.53

RB1 36 (17%) 24 (12%) 145 (71%) 0.46

TP53 25 (12%) 0 (0%) 183 (88%) <0.001

BRCA1 13 (6%) 8 (4%) 187 (90%) <0.001

BRCA2 12 (6%) 15 (7%) 180 (87%) <0.001
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Supplementary Table 9: Genes associated with reduced E-cadherin expression 
in invasive ductal carcinoma in METABRIC cohort

   

Dichotomiza.on	of	mRNA	level	was	based	on	median	of	the	total	expression	of	each	gene.	

Upregulation of transcription factors’ suppressor of 
CDH1 mRNA expression in cases with reduced/
loss of CDH1 mRNA expression

Percentage

ZEB2 56%

TWIST2 54%

NFKB1 54%

ZEB1 53%

TWIST1 52%

SLUG 51%

SNAIL 50%

GSK3BETA 49%

TGFB1 47%

LLGL2 38%

CRUMBS3 34%
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Supplementary Table 10: Genes associated with reduced E-cadherin 
expression in the triple negative invasive ductal carcinoma in the METABRIC 
cohort

				
Dichotomiza.on	of	mRNA	level	was	based	on	median	of	the	total	expression	of	each	gene

Upregulation of transcription factor suppressor of 
CDH1 mRNA expression in cases with reduced/
loss of CDH1 mRNA expression

Percentage

ZEB2 63%

SLUG 62%

TWIST2 59%

TWIST1 57%

ZEB1 54%

SNAIL 52%

TGFB1 51%

GSK3BETA 50%

NFKB1 46%

LLGL2 24%

CRUMBS3 24%
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Supplementary Table 11: Genomic study and pathway analysis based on data 
generated from next generation RNA sequencing in triple negative breast 
cancer cohort 

• Negative (-) correlation with CDH1 genomic and protein expression (downregulated 
when CDH1 is low/negative cases)

• Positive (+) correlation with CDH1 genomic and protein expression (upregulated 
when CDH1 is low/negative cases)

• Significant p values are in bold

Identifier Log Fold 
Change

False Discovery 
Rate

p-value

FZD2 3.60 0.01 <0.001

GNG5 -2.73 0.03 <0.001

HLTF 3.39 0.01 <0.001

WNT2 -2.47 0.03 <0.001

CER1 4.17 0.01 <0.001

FGFR2 -3.26 0.04 <0.001

GNGT1 -4.49 0.02 <0.001

IFNA17 -6.90 0.03 <0.001

IGF1 -2.99 0.03 <0.001
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