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ABSTRACT  

Phosphatidylinositol 3-kinases (PI3Ks) are a family of lipid kinases that phosphorylate the 3-OH 

of the inositol ring of phosphoinositides and deregulation of this pathway has implications in many 

diseases.  The search for novel PI3K inhibitors has been at the forefront of academic and industrial 

medicinal chemistry with over 600 medicinal chemistry-based publications and patents appearing 

to date, leading to 38 clinical candidates and the launch of 2 drugs, idelalisib in 2014 and copanlisib 

in 2017. This perspective will discuss medicinal chemistry design approaches to novel isoform-

selective inhibitors through considering brief case histories of compounds that have progressed 
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either into clinical development or that have revealed new structural motifs in this highly 

competitive area of research.  

 

INTRODUCTION 

Phosphatidylinositol 3-kinases (PI3Ks) are a family of intracellular signal transducer enzymes 

possessing regulatory roles in critical cellular processes including cell growth, proliferation, 

differentiation, motility and intracellular trafficking. Specifically, these lipid kinases 

phosphorylate the 3-position hydroxyl group of the inositol ring of phosphatidylinositol.1 

Deregulation of the phosphoinositide 3-kinase (PI3K) pathway has been implicated in numerous 

pathologies such as: cancer, diabetes, thrombosis, rheumatoid arthritis, activated PI3K-delta 

syndrome (APDS) and asthma. The eight known family members are sub-divided into three 

classes, I, II, and III where class I PI3Ks have been the most extensively studied; the class I is 

further subdivided into IA (PI3Kα, β, and δ) and IB (PI3Kγ), based upon the types of regulatory 

subunits, with which the catalytic domains combine in the active heterodimeric forms. Class 1A 

PI3Ks mediate the signal transduction from receptor tyrosine kinases (RTKs), while PI3Kγ is 

principally activated by G protein-coupled receptors (GPCRs). PI3Kα and β are ubiquitously 

expressed whereas PI3Kδ and γ are present in the hematopoietic system, epithelial cells and the 

central nervous system (CNS). Genetic deregulation of PI3K activity (such as overexpression) 

has been implicated in cancer for all the class I PI3K isoforms. 2, 3, 4, 5, 6, 7 In addition, mounting 

evidence supports a role for inhibition of PI3Kα in diabetes, 8,9  PI3K in thrombosis therapy, 

10,11 PI3Kδ and PI3Kγ in both rheumatoid arthritis and asthma therapy 12, 13, 14 and PI3K for 

APDS.15–17,18,19 Further, increased PI3Kγ expression in fibroblasts and basal cells has been 
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implicated in idiopathic pulmonary fibrosis. 20 It should be noted though that apart from cancer 

therapy, none of the other indications have been clinically validated to date. 21 

Consequently, the selective inhibition of individual PI3K isoforms using small molecule ATP-

competitive inhibitors has been well documented as a promising therapeutic strategy to treat 

these conditions. This increasing validation of the role of PI3K in several diseases has seen an 

expansion of research outputs from Pharmaceutical companies and academic groups alike. This 

perspective examines the published recent chemical literature, concentrating on case histories for 

the design of PI3K inhibitors that have entered into clinical development, as well as selected 

examples of structurally diverse compounds. However, we should comment on the huge amount 

of medicinal chemistry-based patent disclosures within this time frame, with a total of 418 

chemical patents being published since 2012 alone. This clearly demonstrates the large medicinal 

chemistry effort being employed to discover new inhibitors of PI3Ks. The number of patent 

publications has been mirrored to a good degree by the number of medicinal chemistry 

publications (n = 192) that have been published within this corresponding time frame (Figure 1). 
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Figure 1. PI3K medicinal chemistry-based publications and PI3K chemical patents from 2012-

2018 - source SciFinder 

 

In order to understand mechanisms underlying the isoform selectivity of these inhibitors, ligand-

bound X-ray structures on isoform- and pan-selective class I PI3K inhibitors have been extensively 

studied. These results have revealed selectivity, mainly towards PI3Kδ, can be achieved by 

exploiting the conformational flexibility and sequence diversity of active site residues that do not 

contact ATP.22 In their pioneering work, Berndt et al. 23 suggested that inhibitors can be organized 

into three general classes through a consideration of their binding to the ATP active site, namely:  

(a) inhibitors that adopt a “propeller-shaped” conformation when bound to the enzyme leading 

to the stabilization of a conformation that opens a hydrophobic “specificity” pocket in the active 

site that is not present in the apo-structure of the enzyme – these are mostly PI3Kδ selective 

inhibitors  

(b) inhibitors that are essentially “flat” which are mostly pan-selective class I PI3K inhibitors 

that do not provoke such a conformational rearrangement  

(c) inhibitors which have a “distorted propeller-shape” when bound to the enzyme but do not 

open the “specificity” pocket, again these are these are mostly PI3Kδ selective inhibitors  

The ATP-binding pocket of the compounds discussed by Berndt et al. were shown to contact a 

core set of six residues in the ATP-binding pocket and, apart from the hinge residue Val827 in 

PI3K were invariant in all of the class I PI3K isoforms. Four regions within the ATP-binding 

pocket were shown to be important for inhibitor binding including: an “adenine” pocket (hinge); 

a “specificity” pocket; an “affinity” pocket and the hydrophobic region II located at the mouth of 

the active-site (Figure 2).  
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Figure 2. The ligand bound X-ray crystal structure of IC87114 in PI3K showing the essential 

hinge binding interaction of Val828 and the specificity and affinity pockets as well as the 

hydrophobic region II (PDB 2X38) visualized in PyMOl.24 

 

As well as searching for isoform-specific PI3K inhibitors, many groups have investigated dual 

inhibition design and these approaches will be discussed in this perspective.25  

The major dual inhibitor approach is the search for compounds that inhibit both PI3K and the 

mammalian target of rapamycin (mTOR). The kinase mTOR is a member of the PIKK 

(phosphatidylinositol like kinase) family and is activated downstream of AKT leading to 

increased protein synthesis and growth. Analogs of rapamycin, which inhibit mTOR when 

complexed in part to rapamycin-insensitive companion of mammalian target of rapamycin 

(rictor, mTORC1 complex), have been approved for the treatment of advanced renal cell 

carcinoma, thus validating this target in humans.26 However, a potential limitation of exclusive 
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mTORC1 inhibition by such analogs is that the mTOR kinase can also participate in the 

mTORC2 protein complex, leading to activation of the oncogene AKT and, in doing so, promote 

cell survival through other signaling mechanisms.27 Therefore, to avoid this undesired feedback 

mechanism leading to potential resistance, ATP competitive mTOR kinase inhibitors that can 

inhibit both mTORC1 and mTORC2 have been pursued as alternatives to the rapamycin 

analogs.28 Given the quantity of evidence implicating both PI3K and mTOR in cancer, various 

groups have developed compounds that inhibit both kinases.  

This perspective will investigate the medicinal chemistry evolution of these inhibitor classes 

leading to clinical candidates (Table 1), as well as discussing new series of compounds grouped 

by chemical structure highlighting those that have progressed to deliver structurally diverse 

clinical candidates. 

Table 1. PI3K inhibitors progressed to clinical evaluation and development status as of July 2018  

Inhibitora Other names Primary indication Biological target Trial phaseb Company 

Alpelisib BYL719 oncology PI3Kα III Novartis 

AMG319  oncology PI3K II Amgen 

Apitolisib GDC-0980 oncology PI3K/mTOR Not 

progressing 

Genentech 

AZD8186  oncology PI3Kβ I AstraZeneca 

BGT226 NVP-BGT226 oncology PI3K/mTOR Not 

progressing 

Novartis 

Bimiralisib PQR309  oncology PI3K/mTOR I/II PIQUR 

Buparlisib BKM120 oncology Pan-PI3K III Novartis 

CH5132799  oncology PI3Kα Not 

progressing 

Chugai 

Copanlisib BAY 80-6946 oncology Pan-PI3K Approved Bayer 

CUDC-907 Fimepinostat oncology PI3KHDAC II Curacite 
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Inhibitora Other names Primary indication Biological target Trial phaseb Company 

Dactolisisb BEZ235  oncology PI3K/mTOR Not 

progressing 

Novartis 

Duvelisib IPI-145 oncology PI3K III Verastem 

GDC-0084  oncology PI3K/mTOR II Genentech 

Gedatolisib  PF-05212384; 

PKI-587 

oncology PI3K/mTOR II Pfizer 

GSK2292767  COPD/Asthma PI3K I GlaxoSmithKline 

GSK2636771  oncology PI3Kβ II GlaxoSmithKline 

Idelalisib  oncology PI3K Approved  Gilead 

IPI-549  oncology PI3Kγ I Infinity 

Leniolisib CDZ173 primary 

immunodeficiency 

disease 

PI3K III Novartis 

LY3023414  oncology PI3K/mTOR II Lilly 

Nemiralisib GSK2269557 COPD/Asthma PI3K II GlaxoSmithKline 

Omipalisib GSK2126458 oncology PI3K/mTOR I/II GlaxoSmithKline 

PF-04691502  oncology PI3K/mTOR Not 

progressing 

Pfizer 

Pictilisib GDC-0941 oncology Pan-PI3K II Genentech 

Pilaralisib SAR245408; 

XL147 

oncology Pan-PI3K II Sanofi/Exelixis 

RV-1729  COPD/Asthma PI3K I RespiVert 

Sapanisertib MLN0128; 

TAK-228;, 

INK128 

oncology mTOR II Millenium 

SAR260301  oncology PI3Kβ I Sanofi 

Serabelisib MLN1117; 

INK1117; 

TAK-117 

oncology PI3Kα II Takeda 

SF1126  oncology Pan-PI3K 

(prodrug) 

Not 

progressing 

SignalRx 

Sonolisib PX-866 oncology PI3K II Oncothyreon 

Taselisib GDC-0032 oncology PI3K / PI3Kβ-

sparing 

III Genentech 
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Inhibitora Other names Primary indication Biological target Trial phaseb Company 

Tenalisib RP6530 oncology PI3K II Rhizen-

Pharmaceuticals 

Umbralisib TGR-1202 oncology PI3K III TG Therapeutics 

Voxtalisib SAR245409;  

XL-765 

oncology PI3K/mTOR II Exelixis/Sanofi 

VS-5584  SB2343 oncology PI3K/mTOR Not 

progressing 

Verastem 

WX-037  oncology Pan-PI3K Not 

progressing 

WILEX AG 

ZSTK474  oncology Pan-PI3K Not 

progressing 

Zenyaku 

a For chemical structures see Supplementary material (Table ST1). b Source Fruman et al. 21, 

PubChem 29 

 

The propeller-shaped PI3K-selective inhibitors 

In 2006, a series of compounds were disclosed 8 describing a new class of PI3K compounds 

that existed in a “propeller-shaped” configuration. The class of compounds exemplified by 1 

(PIK-39) was more potent (>50-fold) towards the PI3Kδ isoform relative to the other class 1 

PI3Ks. This selectivity was attributed to the unusual overall shape of the molecules, as typical 

“flat kinase inhibitors” bound in the ATP-binding pocket with no significant difference in 

activity between the PI3K isoforms. It was considered, and demonstrated through X-ray 

crystallography 8 that the quinazolinone forces a key methionine (Met752 PI3Knumbering) that 

is conserved in all isoforms to move to accommodate the large quinazolinone group. This ligand-

induced fit confers a conformational shift in the peptide backbone leading to a conformational 

change in the ATP-binding region, enhancing isoform selectivity in favor of the PI3Kδ isoform 

(Figure 3). This unique binding mode has been the source of inspiration for many groups 
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involved in the search for selective PI3K inhibitors and a summary of key findings will be 

discussed here.  

 

Figure 3. Crystal structure of 1 (PIK-39) in PI3K demonstrating the propeller-shape 

conformation (PDB 2WXF) - visualized in PyMol. 

 

Idelalisib (2) was the first-in-class selective inhibitor of PI3K, which was approved by the 

FDA in 2014 for use with patients with chronic lymphocytic leukemia (CLL), focular lymphoma 

(FL) and small lymphocytic lymphoma (SLL). Idelalisib was initially discovered by Calistoga 

and was later advanced by Gilead and represented an important advance in the search for highly-

selective PI3K inhibitors.30 The European Medicines Agency (EMA), at the request of the 

European Commission, is currently reviewing idelalisib following concerns over serious adverse 

events in ongoing trials, mostly due to infections. TGR-1202 (3) a selective PI3K inhibitor, is 

currently undergoing Phase 2 Studies to assess the safety and efficacy in patients with CLL who 

are intolerant to prior Bruton Tyrosine Kinase (BTK) or PI3K inhibitor therapy. Duvelisib (4), a 

dual inhibitor of phosphoinositide 3-kinase PI3K and PI3K was shown to be clinically active 

in advanced hematologic malignancies and US FDA approval is currently being sought in both 

FL and CLL. In addition, a structural analog tenalisib (5), a dual inhibitor of phosphoinositide 3-
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kinase PI3K and PI3K recently obtained US FDA Fast Track Designations for treatment of 

relapsed/refractory peripheral T-cell lymphoma and relapsed refractory cutaneous T-cell 

lymphoma in addition to orphan-drug designations for treatment of peripheral and cutaneous T-

cell lymphoma. 

  

Unfortunately, to date there has been no journal publication detailing the discovery of 

idelalisib. However, the ligand-bound X-ray crystal structure (Figure 4) revealed the rationale for 

the observed high PI3K selectivity. Idelalisib binds in a similar conformation to 1 in the ATP 

binding site of the P110 catalytic subunit of PI3Kδ, with the purine forming two hydrogen bonds 

with key hinge residues (Val828 and Glu826).31 
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Figure 4. X-ray crystal structure of idelalisib bound to the ATP site of the P110 catalytic subunit 

of PI3Kδ showing the “propeller shape” adopted and the key hinge interactions with Val828 and 

Glu826 (PDB 4XEO) - visualized in PyMol.7  

 

The fluorine containing quinazolinone ring assumes a perpendicular conformation to the hinge 

binder and is embedded in a specificity pocket between Trp760 and Met752 that is closed in the 

apo structure of the enzyme. The phenyl ring adopts a binding conformation perpendicular to the 

quinazolinone ring and protrudes into a hydrophobic region out of the ATP-binding pocket. The 

improved PI3Kδ selectivity of these “propeller shaped” compounds is proposed to be a 

consequence of the lower energy requirement for the creation of the specificity pocket in PI3Kδ 

relative to the other class 1 PI3K isoforms. The remainder of this section will concentrate on new 

medicinal chemistry disclosures based around the core structures of compounds 2-5 disclosed 

since 2012, highlighting key areas of SAR and learning from the original papers. 

Scientists at Gilead Sciences investigated the replacement of the hinge binding purine ring 

present in idelalisb, which was a known primary site of metabolism.32 The starting compound for 

their studies was 6, as this had a combination of good activity (PI3K IC50 = 1 nM) and good 

overall isoform selectivity (1200 ; 290 ; 55 ).33  

Scheme 1. Exploration of the hinge binding groups present in 2 (idelalisib) 

 

In their initial design, the purine was replaced with a series of substituted heterocyclic rings, 

maintaining the N-3 pyrimidine nitrogen and the 4-amino moiety which were believed to be 
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essential for activity (Scheme 1). Unfortunately, the structural modification led to a 100-fold 

drop in potency 7 (PI3K IC50 = 99 nM, selectivity >100 ; ; ). It was suggested that the 

loss in potency was due to the removal of the N-7 nitrogen of the purine ring which participates 

in a water-mediated hydrogen bonding interaction. In addition, removal of the 4-amino group 

resulted in a large drop in potency 8 (PI3K IC50 = 1700 nM). The potency and isoform 

selectivity was recovered through the introduction of a 5-cyano group 9 (PI3K IC50 = 8 nM), 10 

(PI3K IC50 = 0.4 nM, selectivity 4600 ; 200 ; 680 ) however, conversion to the 

pyridine analogue led to a drop-off in activity 11 (PI3K IC50 = 30 nM). Compound 10 was 

progressed to an in vivo metabolism study however, its clearance (1.1 L/h/kg) was 5-fold higher 

from its predicted clearance derived from in vitro microsomes, signifying the possibility of extra 

hepatic aldehyde oxidase (AO) metabolism. This was confirmed by the addition of the known 

AO inhibitor raloxifene in metabolism studies. In the presence of raloxifene there was very little 

turn over in human hepatocytes which was similar to that observed in human liver microsomes. 

In addition, metabolite identification demonstrated a major metabolite 12 (PI3K IC50 = 1500 

nM). Extensive structure activity relationship studies were initiated exploring modification of the 

pyrimidine ring to generate 13 (PI3K IC50 = 0.1 nM, selectivity 2200 ; 80 ; 60 hHeps 

(+ raloxifene )). This was followed by derivatization of the phenyl ring and 

replacement of the 2-chloro substituent with a fluorine atom to give 14 (PI3K IC50 = 2.2 nM, 

selectivity 1900 ; 650 ; 180 hHeps 0.34 L/h/kg). 
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Compound 14 offered a favorable combination of biochemical potency, isoform selectivity and 

metabolic stability. Additionally, when tested in a whole blood basophil cellular assay, 14 

inhibited PI3Kδ with an EC50 of 1 nM. In a KinomeScan screen against 395 non-mutant kinases 

14 displayed a high degree of kinase selectivity. When administered in vivo, 14 demonstrated 

low to intermediate total clearance in both rat (0.74 L/h/kg) and dog (0.58 L/h/kg), high volumes 

of distribution and high oral bioavailability (rat F = 106 ± 24%) and (dog F = 100 ± 40%), 

suggesting a good profile for target coverage at predicted trough concentrations after twice-daily 

dosing. Additionally, in a rat whole blood assay, 14 inhibited ex vivo anti-IgD stimulation of B 

cells with EC50 and EC90 values of 11 and 100 nM respectively. Therefore, 14 was progressed to 

a rat collagen-induced arthritis (CIA) model. In this model, dosing of 14 to rats with established 

CIA showed a significant and dose-dependent reduction in ankle swelling. In addition, a 

pharmacokinetic/pharmacodynamic (PK/PD) correlation between plasma concentration and 

efficacy was established. Although 14 proved a good compound for in vivo concept testing, it 

was still predicted to require twice-daily dosing and so Gilead scientists explored further 

refinement to reduce clearance and improve half-life.34 A correlation had been shown between a 

reduction of calculated lipophilicity (cLogP) and predicted clearance in hHEPS.33 Replacement 

of the phenyl group present in 14 (cLogP = 3.0) with a pyridine ring gave 15 (cLogP = 1.6, 

PI3K IC50 = 0.6 nM), a compound with lower predicted clearance and excellent isoform 
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selectivity (selectivity 1720 ; 167 ; 120 hHeps = 0.34 L/h/kg). When dosed in rats, 15 

had a good overall PK profile (CL 1.5 ± 0.13 L/h.kg; Vss 1.9 ± 0.3 L/kg; t1/2 2.5 ± 1.4 h; F 42%). 

However, it was demonstrated that the pyridine-containing compounds degraded rapidly at low 

pH due to ring opening of the quinazolinone ring, mediated through protonation of the pyridine 

nitrogen. A strategy to reduce the basicity of the N-1 quinazolinone nitrogen by substitution with 

small electron withdrawing groups in the 5- and 8-positions on the quinazolinone ring resulted in 

16 (PI3K IC50 = 0.4 nM, cpKa 0.28), a compound with a reduced N-1 basicity compared to 15 

(cpKa 1.97). This change resulted in a 7-fold increase in chemical stability (T1/2 = 19 h) when 

measured at 40oC, pH 2. Further SAR through changing the methyl substituent to a cyclopropyl 

group afforded 17, which was selected as the pre-clinical development candidate as GS-9901 

(PI3K IC50 = 1 nM, selectivity 750 ; 100 ; 190 stability at 40oC, pH 2 T1/2 = 20 h, rat 

PK CL 0.43 L/h.kg; Vss 0.83 L/kg; F 57%).  

 

Further exploration to build PI3K potency into the PI3K-selective template was achieved 

through targeting the non-conserved PI3K Asp856 in the hydrophobic region of class 1 PI3Ks. 

This was achieved through incorporating an H-bond donor moiety on the phenyl ring (Figure 

5).35  
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Figure 5. Building on PI3Kinhibitor idealisib to generate the PI3Kinhibitor 21 

 

In their initial work they replaced the phenyl ring in idelalisib (2) with a 4-phenol group to 

give 18 (PI3K IC50 = 14 nM; PI3K IC50 = 2.7 nM; PI3K IC50 = 1600 nM; PI3K IC50 = 4300 

nM). This change led to a large increase in PI3K activity compared to 2 (PI3K IC50 = 18 nM; 

PI3K IC50 = 3700 nM; PI3K IC50 = 7500 nM; PI3K IC50 = 2100 nM), demonstrating that the 

concept of targeting the non-conserved Asp856 present in PI3K was correct, to increase PI3K 

activity. Further SAR studies demonstrated that the phenol could be replaced with a pyrazol-3-yl 

group 19 (PI3K IC50 = 0.6 nM; PI3K IC50 = 2.5 nM; PI3K IC50 = 82 nM; PI3K IC50= 990 

nM) with slightly improved physicochemical properties, although selectivity over PI3K was 

compromised. Unfortunately, the addition of the further H-bond donor groups dramatically 

decreased permeability 20 as well as decreasing metabolic stability. Further structural 

modifications afforded 21 (PI3K IC50 = 5.3 nM; PI3K IC50 = 7.8 nM; PI3K IC50 = 850 nM; 

PI3K IC50 >10000 nM; Caco-2 (AB / BA) 5.7 / 21.7 106 cms-1; rat PK CL 0.26 L/h.kg; Vss 0.52 

L/kg; F 66 ± 17%) as a potent and selective PI3Kinhibitor with good pharmacokinetic 

properties that demonstrated efficacy in a PTEN-deficient LNCaP prostate carcinoma xenograft 

tumor model. 
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Scientists at Amgen were also inspired by the rationalization of the PI3Kisoform selectivity 

imposed by the induced fit of the propeller-shaped compounds. In 2012 they reported the discovery 

and in vivo evaluation of a series of dual PI3Kinhibitors for the treatment of inflammatory 

diseases. A series of constrained and highly-substituted 4-aminoquinolines (e.g. 22 - 25) were 

prepared. After several rounds of SAR 22 (PI3K IC50 = 30 nM; PI3K IC50 = 58 nM; PI3K IC50 

= 3960 nM; PI3K IC50 = 2010 nM) became a promising lead. The addition of a pyridine ring led 

to a slight increase in activity and selectivity (PI3K IC50 = 7 nM; PI3K IC50 = 30 nM; PI3K 

IC50 = 1720 nM; PI3K IC50 = 92 nM). Replacement of the hinge binding morpholine with other 

heterocycles could be achieved, although PI3Kisoform selectivity was reduced e.g. 24 (PI3K 

IC50 = 3 nM; PI3K IC50 = 18 nM; PI3K IC50 = 510 nM; PI3K IC50 = 28 nM). The addition of 

a tetrahydropyran ring afforded a compound with enhanced water solubility, improved selectivity 

and good in vivo pharmacokinetics 25 (PI3K IC50 = 11 nM; PI3K IC50 = 44 nM; PI3K IC50 = 

3250 nM; PI3K IC50 = 509 nM, sol. (PBS) 146 mg/L, rat PK CL 0.8 L/h/kg; Vss 3.3 L/kg; F 

65%). Compound 25 was found to be efficacious in several inflammation models including a 

keyhole limpet hemocyanin study and a collagen-induced arthritis model.36 

Further investigation of this class of compound initially explored the linker group between the 

quinoline bicycle and the purine hinge binder (Figure 6).37  
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Figure 6. Discovery of the selective PI3Kδ inhibitor 33 (AMG319) 

 

Although 26 (PI3K IC50 = 0.24 M) was a reasonable starting point, the thioether was 

highlighted as a potential metabolic liability and SAR exploration revealed that the ether linkage 

27 (PI3K IC50 = 0.017 M) had higher enzymatic activity, whereas the methylene linker 29 was 

much less active (PI3K IC50 = 3.6 M). In addition, because of specific ligand-protein 

interactions, there was a demonstrable difference between the enantiomers 30 ((S)-enantiomer 

PI3K IC50 = 7.1 nM) and 31 (PI3K IC50 = 2.6 M) due to a steric clash between the (R)-

methyl and the protein.  Importantly, the amino linker 28 (PI3K IC50 = 0.041 M) had a similar 

level of activity to 27 which was mirrored in the preference for the (S)-enantiomer 32 (PI3K 

IC50 = 8 nM). Unsurprisingly, the compounds proved poorly soluble and had high microsomal 

instability displaying poor rat pharmacokinetics. Extensive SAR to optimize biological activity, 

isoform selectivity and CYP2D6 inhibition was achieved. Removal of the 8-methyl group and 

subsequent fluorination of the quinoline ring, in addition to substitution of the 2-aryl group with 

a 2-pyridyl group led to an increase in solubility and improvement in rat pharmacokinetics. The 

detailed SAR study eventually resulted in the identification of 33 (PI3K IC50 = 18 nM; PI3K 

IC50 = 2.7 M; PI3K IC50 = 33 M; PI3K IC50 = 0.85 M, sol. (PBS) 146 mg/L, rat PK CL 

0.34 L/h/kg; F 54%). Compound 33 had excellent activity in a whole blood assay (IC50 = 16 nM) 
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and selectivity over a large panel of kinases. In addition, 33 displayed a high level of in vivo 

efficacy as measured in two rodent disease models of inflammation and is currently being 

evaluated in phase 2 clinical trials for the treatment of human papillomavirus (HPV) and 

negative head and neck squamous cell carcinoma (HNSSCC). 

In a series of papers and patent disclosures, Amgen scientists demonstrated that the core 

quinoline scaffold present in 22-33 could be exchanged for a wide range of heterocycles38 in 

combination with exchanging the purine ring for other hinge binding motifs. The regioisomeric 

quinoline underwent extensive SAR studies exploring substitution at the quinoline 4-position, as 

typified by compound 34 (PI3K IC50 = 2.4 nM, rat PK CL = 0.057 L/h/kg; F 51%).39 In an 

additional publication, 40 exploration of the quinoline with a novel 4-carboxamide group 

generated compounds as typified by 35 (PI3K IC50 = 2.9 nM; rat PK CL = 0.51 L/h/kg; F 70%) 

and 36 (PI3K IC50 = 4.6 nM; rat PK CL = 0.42 L/h/kg; F 29%), with very high selectivity over 

the Class-1 PI3K isoforms 35 (6068 ; 979 ; 1217 ), 36 (3082 ; 478 ; 700 ). 36 

had selectivity against a panel of 442 protein kinases as well as excellent cellular potency in 

mouse B cells (pAKT IC50 = 0.7 nM and 0.8 nM respectively). Efficacy experiments in a key rat 

limpet hemocyanin model demonstrated that administration of 35 or 36 resulted in a strong dose-

dependent reduction in IgG and IgM antibodies, making the compounds suitable for pre-clinical 

development.  



 19 

 

 In a final publication38 the quinoline core was exchanged for a substituted benzimidazole, 

resulting in the disclosure of two further pre-clinical candidates with good pharmacokinetic 

properties: 37 (PI3K IC50 = 16 nM; PI3K IC50 = 1.78 M; PI3K IC50 = 58.2 M; PI3K IC50 

= 5.8 M; mouse B cell (pAKT) IC50 = 4.6 nM; rat PK CL 0.93 L/h.kg; F 45%); and 38 (PI3K 

IC50 = 19 nM; PI3K IC50 = 2.33 M; PI3K IC50 = 27.2 M; PI3K IC50 = 5.9 M; mouse B 

cell (pAKT) IC50 = 4.2 nM; rat PK CL 0.99 L/h.kg; F 41%). The compounds inhibited B cell 

receptor (BCR)-mediated AKT phosphorylation (pAKT) in PI3Kδ-dependent in vitro cell based 

assays and were effective when administered in vivo at unbound concentrations consistent with 

their in vitro cell potency as a consequence of improved unbound drug concentration (0.36, 0.32 

respectively fraction unbound (rat)) with lower unbound clearance. In addition, the compounds 

demonstrated efficacy in a rat Keyhole Limpet Hemocyanin, where the blockade of PI3Kδ 

activity led to effective inhibition of antigen-specific IgG and IgM formation after immunization 

with KLH.  

Erra et al. reported on a series of selective PI3K inhibitors based on a pyrrolotriazine scaffold 

(Scheme 2).41 Moving the methyl group from the phenyl ring in 39 (PI3K IC50 = 130 nM) to the 

linker in 40 (PI3K IC50 = 75 nM) not only resulted in a slight increase in activity but also 

removed the potential for atropisomerism. Extensive SAR studies exploring the hinge binder, 
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linker and substitution on the pyrrolotriazine resulted in 41 (PI3K IC50 = 2.6 nM; PI3K IC50 = 

94 M; PI3K IC50 = 8.2 M; PI3K IC50 = 72 M; M-CSF-induced AKT in THP-1 cells IC50 = 

7.8 nM rat PK CL 1.4 mL/min/kg; Vz 1.2 L/kg ; F 98%) and entered clinical development as 

LAS191954 for the treatment of pemphigus.41 

 

Scheme 2. Discovery of 41 (LAS191954) through an extensive SAR exploration 

 

Wei et al. reported on the synthesis and evaluation of 5-alkynyl substituted quinazolin-4(3H)-

ones as selective PI3K inhibitors.42 Interestingly, they also reported on a series of analogs 

where the hinge binder is linked to the quinazolin-4(3H)-one via a 4- or 5-membered ring. The 

optimal compounds had good potency e.g. 42 (PI3K IC50 = 6.7 nM), 43 (PI3K IC50 = 7.1 nM), 

demonstrating that the incorporation of the ring linking group was not detrimental to biological 

activity. In addition, the compounds had good selectivity over PI3K (133-fold) and good 

cellular activity of IC50 = 37.2 nM and 58.9 nM in a SU-DHL-6 cell line challenge.     
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Evans et al. from Infinity Pharmaceuticals described the discovery of a series of selective 

PI3K inhibitors for the treatment of immuno-oncology diseases.43 Once again starting from the 

8-Cl isoquinolone core, a series of hinge binding groups were explored resulting in the discovery 

of a substituted pyrazolo[1,5-a]pyrimidine as a new hinge binding motif. Interestingly, this 

change resulted in a PI3K-selective inhibitor e.g. 44 (PI3K IC50 = 400 nM; PI3K IC50 = 40 

nM). Further SAR of the C-8 alkynyl substitution in 45 (PI3K IC50 = 700 nM; PI3K IC50 = 14 

nM) resulted in the discovery of 46 (PI3K IC50 >8400 nM; PI3K IC50 = 16 nM), a compound 

with very good mouse hepatocyte stability (T1/2 = 6 hours) and selectivity over other lipid 

kinases. In addition, 46 demonstrated favorable pharmacokinetic properties (mouse PK CL 3.6 

mL/min/kg; Vss 10.8 L/kg; F 88%) and showed robust inhibition of PI3K mediated neutrophil 

migration in vivo and is currently in phase 1 clinical trials in patients with advanced solid tumors 

as IPI-549 for a monotherapy or in combination with pembrolizumab (Scheme 3).     
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Scheme 3. Exploration of the hinge binding regions and introduction of a C-8 alkynyl substituent 

 

In the search for further new hinge binding motifs Srinivas et al. used the Huisgen 

cycloaddition reaction to synthesize a range of 1,4-substituted 1H-12,3-triazolo-quinazolin-

4(3H)-ones (Scheme 4).44 The chemistry resulted in the identification of a series of weak PI3K 

inhibitors e.g. 47 (PI3K IC50 = 5 M; PI3K IC50 = 430 M; PI3K IC50 = 250 M; PI3K IC50 

= 1 M). 

 

Scheme 4. Huisgen cycloaddition to generate a range of analogs such as 47 

 

Perry et al. disclosed the synthesis of soluble and cell-permeable PI3K inhibitors for long-

acting inhaled administration for the treatment of asthma (Figure 7).45 
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Figure 7. The incorporation of dibasic groups to improve lung tissue retention after delivery 

through inhalation  

 

The novel thiazolidinpyridone core was substituted to give 48, a potent and selective PI3K 

inhibitor (PI3K pIC50 = 9.4; PI3K pIC50 = 7.3; PI3K pIC50 = 6.2 M; PI3K pIC50 = 7.9). 

Unfortunately, the compound had modest solubility and had no detectable level in lung tissue 

when dosed through inhalation (i.t.). An X-ray crystal structure of 48 in PI3K revealed that 

substitution of the aryl group in the meta-position (group R) was favorable to position a potential 

solubilizing group into the exposed solvent. In light of this, a strategy was evolved to attach a 

(di)basic group to improve both the solubility and improve lung tissue retention. 46, 47 This 

resulted in 49 (PI3K pIC50 = 9.3), however this compound was not retained in lung tissue for 

sufficient time to have a pharmacodynamic effect. The addition of a dibasic group e.g. 50 (PI3K 

pIC50 = 9.3) and 51 (PI3K pIC50 = 9.2) gave compounds with excellent solubility and lung 

pharmacokinetic half-lives of 23.2 and 9.9 hours respectively. However, dibasic compounds 

generally exhibit poor cell permeability resulting in a decrease in activity from the isolated 

enzyme activity. Perry et al. describe the basicity and lipophilicity requirements required to 

balance lung tissue retention and cell permeability and suggested the overall driver of cell 

permeability was lipophilicity and concluded if log D is greater than ~1.6 then a compound with 
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a good enzyme activity will most probably have good cell potency and this was reflected in the 

cell-based potency of pIC50 8.0 and 8.9 respectively. 

The flat PI3K inhibitors 

 

In 2008, Folkes et al. from Genentech disclosed the synthesis and biological evaluation of a 

series of thieno[3,2-d]pyrimidines that demonstrate potent inhibition of PI3K⍺ culminating in the 

discovery of the pan PI3K inhibitor pictilisib 52 (GDC-0941).48 A crystal structure of 52 bound 

to PI3Kγ was obtained demonstrating a binding mode that many compounds in this perspective 

section share: the morpholine oxygen forms a pivotal hydrogen bond to the hinge region of the 

kinase via the amide of Val882 and the indazole moiety points towards the affinity pocket where 

the indazole nitrogen atoms make key interactions with the carboxyl group of Asp841 and the 

phenol oxygen of Tyr867.23 In addition, the 4-methanesulfonyl-piperazin-1-ylmethyl group 

extends out to solvent where the piperazine ring packs against the side chain of Met804, and the 

sulfonyl group oxygen atoms are within hydrogen bond distance of the side chain of Lys802 and 

the amide nitrogen of Ala805 (Figure 8). 
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Figure 8. X-ray crystal structure of 52 (GDC-0941) in PI3K (PDB 3DBS) visualized in PyMol. 

   

In their discovery, Genentech scientists utilized the thienopyrimidine 53 previously identified 

by Hayakawa et al. 49 which was shown to be potent against PI3K⍺ and showed significant anti-

proliferative activity in vitro. However, the PK profile of 53 was poor with a half-life of less than 

10 min after inter-peritoneal administration in mice and, at the onset of the project, Genentech’s 

scientists aim was to improve upon physicochemical properties, metabolic stability and potency 

of 53. 

Initially, the importance of the morpholine ring for P13K activity was shown when its 

substitution resulted in large reductions in potency, thus the morpholine group on all further 

derivatives was maintained.50 Methyl substitutions at the 6- and 7- position on the 

thienopyrimidine ring was investigated showing that 6-Me substitution 54 (PI3K IC50 = 6 nM) 

was well tolerated but 7-Me substitution showed a decrease in activity 55 (PI3K IC50 = 21 nM). 
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Effort was focused on the 6-position to block metabolism at this position. From the large range 

of active substituents, the addition of tertiary amines offering the potential for salt formation to 

aid kinetic solubility dissolution rates as well as in vivo absorption and tumor exposure proved 

promising. Of these, the piperazine analogs, such as 56 (PI3K IC50 = 10 nM), displayed 

enhanced metabolic stability in human and mouse microsomes (85 - 90%). However, they 

exhibited low bioavailability in mouse and rat (F = 0-11%) mainly due to glucuronidation of the 

phenol. This metabolic liability led to the exploration of bioisostere replacements using hydrogen 

bond donating heterocyclic groups. Ultimately, these changes led to the discovery of 52 (IC50 

PI3Kα = 0.003 µM, PI3Kβ = 0.033 µM, PI3Kδ = 0.003 µM, PI3Kγ = 0.075 µM, mTOR = 0.58 

µM). Acceptable oral bioavailability was achieved in all species tested including mouse (77%), 

rat (30%), dog (71%), and monkey (20%). 

Good levels of selectivity were observed for 52 when tested against members of PI3K classes 

II, III, and IV, including C2β (0.670 µM), Vps34 (>10 µM), DNA-PK (1.23 µM), and mTOR 

(0.58 µM). Additionally, 52 displayed outstanding selectivity for the PIK family kinases over a 

panel of 228 kinases in the Kinase Profiler panel from Millipore (formerly Upstate 

Biotechnologies). Only two kinases displayed greater than 50% inhibition at 1 μM. Flt3 

displayed 59% inhibition and TrkA displayed 61% inhibition by 52 μM, (IC50 2.85 μM). 52 

showed minimal inhibition of six of the principal cytochrome P450 isoforms and, at a 

concentration of 25 μM there was negligible induction of CYP1A and CYP3A4. There was also 

no significant blockade of the hERG channel (IC50 64 μM) in the patch clamp assay. 52 was 

progressed to in vivo studies and it was found that 52 exhibited a strong inhibitory effect on the 

growth of human U87MG glioblastoma xenografts in athymic mice (tumor growth inhibition of 
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83%). 52 progressed to phase I and II clinical trials but further studies have been not progressed 

at this time. 

 

In 2009, with increasing evidence of clinical need for a dual mTOR/PI3K inhibitor, Genentech 

scientists set out to build mTOR activity into 52. They used Piramed’s PI-103 (57) as a tool 

compound as it contained the morpholino-pyrimidine core and was known to inhibit mTOR and 

the PI3Ks. They aimed to improve clearance of the compounds whilst maintaining or improving 

on potency and solubility. Additionally analogs containing a methyl group on the 

thienopyrimidine core (54-55) showed that it was possible to inhibit both mTOR and class 1 

PI3Ks simultaneously.51, 52 

When the indazole group in 52 was replaced with 2-aminopyrimidine 58, a 20-fold increase in 

mTOR activity was observed (from 570 nM to 29 nM). However, this change didn’t dramatically 

change the proliferation potency. The microsomal stability data correlated well with in vivo data 

except in dog pharmacokinetic studies, where a methyl substitution on the core was required to 

improve dog clearance 59 (GNE-477, PI3Kα IC50 = 4 nM, mTOR IC50 = 21 nM).52 

However, these structural changes led to solubility issues and the design focus moved to 

improving compound solubility whilst maintaining the good biological and pharmacokinetic 

properties. This was achieved by considering changes to the solvent exposed sulfonamide. A 
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series of piperazine amides were prepared to maintain the neutral charge of the distal amine 

using both amino and hydroxy acids, with and without substitution at the 7-position to modulate 

metabolic stability (Scheme 5). 

 

Scheme 5. Chemical exploration of the piperizine group through amidation to deliver (S)-61 

(apitoloisib) 

 

 Amine-based analogs all had good potency 60 (PI3K IC50 = 1.0 nM, mTOR IC50 = 14 nM) 

and showed good improvement in solubility (1.0 mg/mL pH 6.5). However,bioavailability was 

poor (F = 6%). The alcohol-based amides, such as (S)-61 and (R)-61 showed much better PK 

properties giving reasonable solubility (0.084 mg/mL pH 6.5), low to moderate predicted human 

clearance (3.1 – 6.5 mg/min/kg), and good oral bioavailability (F = 77 – 100%). The enantiomer 

(R)-61 demonstrated reduced biochemical activity and increased microsomal stability than (S)-

61 and was chosen for further study due to its low predicted clearance in human (3.1 ml/min/kg), 

its low in vivo clearance in rat (15 ml/min/kg) and its high oral bioavailability (F% = 100%). 
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The in vivo profile of (S)-61 was characterized through PK studies conducted in several 

different species. Clearance was low (predicted Clh 33 mL/min/kg, Clp 9.2 mL/min/kg), PPB was 

low (71%), solubility was good (0.084 mg/mL pH 6.5) and the volume of distribution was 1.7 

L/kg. The maximum tolerated dose of (S)-61 was found to be 7.5 mg/kg and at this dose tumor 

stasis or regression was observed in PC-3 and MCF-7 neo/HER2 mouse xenograft models. This 

is likely due to the high cellular potency, low plasma clearance and relatively high free-fraction 

of the drug in vivo. (S)-61  was found to show a high degree of selectivity over off-target kinases 

even while maintaining dual inhibition of mTOR and the PI3K isoforms. This was confirmed by 

Invitrogen’s SelectScreen panel. Of the 240 kinases in the panel, only 5 other kinases 

consistently showed greater than 60% inhibition when treated with 1 µM (Fgr 697 nM, Mlk1 232 

nM, PAK4, Syk 134 nM, and Yes1). (S)-61 was highly selective over closely related PIKK 

family kinases: C2⍺ (1300 nM), C2β 794 nM, VPS34 2000 nM and DNA-PK 623 nM and (S)-

61 (GDC-0980, Apitolisib) was advanced into development and is currently in phase I and II 

clinical trials.51  

 

Having disclosed a pan-PI3K and a pan PI3K/mTOR inhibitor, Genentech scientists disclosed 

the development of a series of PI3Kδ-selective compounds 53 including 62 (PI3Kδ = 1.8 nM, δ/⍺ 

= 129, δ/β = 104, δ/γ = 1444) which used a 4-substituted indole as the phenol bioisostere 
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replacement. They hypothesized that, although the residues in the affinity pocket are highly 

conserved between the PI3K isoforms, disruption of the strong hydrogen bond between the 

indazole nitrogen atom and Tyr867, could radiate and extend past the conserved affinity pocket 

resulting in undesirable conformational changes for the anti-targets (α, β, γ), thereby providing 

PI3Kδ specificity when the indazole is replaced with an indole. Although this bioisosteric 

replacement led to improvements in selectivity they also observed dramatic differences in time-

dependent CYP3A4 inhibition, which could lead to auto-inhibition and poor drug-drug 

interactions. They employed several strategies to reduce this time-dependent inhibition to 

develop 63 (PI3Kδ = 12.3 nM, δ/⍺ = 50, δ/β = 815, δ/γ = 112). Unfortunately, they were 

unsuccessful in identifying an indole containing compound with the combination of reduced 

time-dependent inhibition, acceptable potency, selectivity and drug-like properties. 

 

After their previous programs that led to the discovery of 52 and (S)-61, Heffron et al.  

extended the study towards brain penetrant inhibitors.54 Compound 52 ([brain]u/[Plasma]u = 

<0.05), and (S)-61 ([brain]u/[Plasma]u = <0.05) were found to poorly penetrate the blood-brain-

barrier (BBB), which was attributed to efflux by the two most prevalent transporters in the BBB, 

P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp1). The properties of these 

compounds are markedly different from marketed drugs that target the CNS, where the median 
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values are: MW = 305, HBD = 1, TPSA = 45, and cLogP = 2.8. In order to bring these properties 

in-line with the median, they initially truncated the solvent exposed regions of the compounds, 

showing that the compounds retained biological activity. Additionally, using a central nervous 

system multi-parameter optimization (CNS MPO) scoring system (a score of 0-6) which was 

shown to display a correlation between higher CNS MPO score and low Pgp efflux, they 

prioritized the synthesis of compounds that have a CNS MPO score of  ≥4.5 for their study. Of 

the molecules they made prior to implementing an in silico evaluation, 53% had high efflux 

mediated by P-gp and 66% by Bcrp1. After employing the CNS MPO score of ≥4.5 as a filter, 

new compounds were more than twice as likely as those made before to have low efflux as a 

result of either P-gp or Bcrp1 transporters. This design strategy led to the discovery of 64 

([brain]u/[Plasma]u = 0.5, PI3K⍺ = 1 nM, mTOR = 10 nM) and 65 ([brain]u/[Plasma]u = 0.4, 

PI3K⍺ = 2 nM, mTOR = 9 nM). Both compounds were highly potent brain penetrant 

PI3K/mTOR inhibitors. Furthermore, compounds 64 and 65 were evaluated in a panel of 59 

kinases provided by Invitrogen’s SelectScreen service. Only 65 inhibited any kinase in the panel 

by >75% at 1 μM concentration of the test compound (PI3KC2β, 77%). 

By utilizing the highly-selective substituted indole group as a bioisostere for the phenol group, 

Sutherlin et al. reported a highly selective PI3Kδ compound, 66 (PI3Kδ = 3.8 nM, δ/⍺ = 340, δ/β 

= 200, δ/γ = 410). 55 Additionally, they reported that the methyl groups of the tertiary alcohol of 

66 could form hydrophobic contacts with the face of Trp760. This interaction would allow them 

to specifically target the space created by the Thr750 side chain in PI3Kδ, which is electronically 

and structurally distinct from the residues found in PI3Kα, β, and γ (Arg770, Lys771, and 

Lys802, respectively). This hydrophobic region present in PI3Kδ is often referred to as the 

“tryptophan shelf”. Compound 66 was progressed to in vivo studies in mouse and rat, and 
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showed moderate hepatic clearance (53 mL/min/kg and 59 mL/min/kg respectively). Reasonable 

half-lives were observed upon oral dosing (2.6 - 5 h and 2.6 - 4 h respectively) as well as good 

oral bioavailability (80% and 90% respectively). 

 

Murray et al. identified benzimidazole-based inhibitors of PI3Kδ with improved selectivity 

against other PI3K isoforms as well as improved in vitro and in vivo pharmacokinetic 

properties.56 They initially looked at modification of the central heterocycle, which they 

hypothesized would allow them to tune the interaction of the solvent region of the inhibitors with 

the “tryptophan shelf”. They explored a range of heterocyclic replacements and found that 

purines were interesting replacements for the thienopyrimidine, as these inhibitors were inactive 

against PI3Kγ and only weak inhibitors of PI3Kβ. The calculated ground state conformation of 

the purines indicated that a low-energy conformation is adopted in which the purine and 

benzimidazole rings are coplanar. Further optimization of PI3Kδ selectivity was achieved by 

increasing interactions with Trp760 through substitution of the solvent exposed group with 

alternative sterically demanding amines, compounds containing a hydrophobic groups attached 

to the piperazine ring, bulky amine groups and azetidines. Although substitution with the 4-

methanesulfonylpiperazine of 52 resulted in a significant increase in activity versus PI3Kα and 

PI3Kγ. 67 (PI3Kδ = 2 nM, δ/⍺ = 100, δ/γ = 260) is a representative example of the series; it is 

soluble in aqueous solution (sol. at pH 6.5 = 338 μg/mL) and has good permeability in a standard 
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MDCK assay (Papp = 16 × 10−6 cm/s). Rat (90%) and human (91%) plasma protein binding 

were moderate/good. There was no reversible or time-dependent CYP inhibition associated with 

67 in testing against five CYP isoforms. Additionally, very weak inhibition (less than 25% 

inhibition at 1 μM) was observed against a panel of 55 diverse kinases. Pharmacokinetic 

profiling of 67 indicated that it had moderate to low clearance, CL (rat) = 34 mL/min/kgand a Vss 

of 6.5 L/kg, and T1/2 = 2.6 h. 

Safina et al. reported 57 that inhibitors such as 67 were found to induce micronuclei formation 

in both the micronucleus test (MNT) and human chromosome aberration (HCA) assays in the 

absence of compound metabolism using the liver S9 fraction (-S9). However, it was determined 

to be non-genotoxic in the Ames test, suggesting that neither the MNT nor HCA result was 

directly linked to DNA mutation. They reported that genotoxicity SAR suggested that it was the 

combination of the purine core with the benzimidazole moiety that was responsible for the 

observed genotoxicity. Initially compounds that tested negative in the MNT assay were 

successfully identified through modifications of the molecular volume of the 2-benzimidazole. 

However, whilst they were exploring the conformational preferences required for selectivity 

towards PI3Kδ they simultaneously explored the effects of substitution and conformational 

restriction on genotoxicity. They designed analogs that altered the dihedral angle between the 

amine group and the purine N-7, mainly by substitution of the methylene carbon with 

heteroatoms. Through crystallographic and docking studies, the preferred dihedral angle was 

determined to be 10–30°. This led to the discovery of 68, where an isopropyl group increases the 

molecular volume of the 2-benzimidazole and an oxygen linker favors a torsional angle of <30°.  

68 tested negative in the HCA assay and exhibited excellent PI3K isoform selectivity (PI3K δ = 

0.47 nM, δ/⍺ = 256, δ/β = 420, δ/γ = 219) and broad kinase selectivity through Invitrogen’s 239 
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kinase panel at 1 µM, only B-Raf was inhibited at 61% and PI4Kβ at 71%. Additionally, 68 

possessed favorable pharmacokinetic properties with low predicted hepatic clearance in human 

(1.7 mL/min/kg) and moderate permeability (MDCK Papp A to B 8.23 x 10-6) which led to high 

oral absorption across species (F = 82–100%) and acceptable half-lives (T1/2 = 2.59–11.6 h). 

Unfortunately, the series of thienopyrimidine containing brain penetrant PI3K inhibitors were 

deemed not suitable for clinical development due to projected poor metabolic human stability. 

With the knowledge that desirable metabolic stability was attainable with a purine scaffold they 

evaluated purine-based analogs of their previous thienopyrimidine series, ultimately resulting in 

69 (GDC-0084 PI3K⍺ = 2nM, mTOR = 0.07 µM). 69 exhibited excellent human metabolic 

stability in microsomal and hepatocyte incubations (CL (mouse) = 19 mL/min/kg) and had good 

oral bioavailability in mouse (F = 75%). 69 was shown to penetrate the BBB through 

determination of the brain-to-plasma ratio in mouse, where [Brain]u/[Plasma]u = 0.4. 

Additionally, 69 was studied in a subcutaneous U87 tumor xenograft model of glioblastoma in 

mice, showing a dose-dependent tumor growth inhibition. As a consequence, 69 was progressed 

to clinical development. 
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ZSTK474 (70) was discovered as a library hit by the Japanese Foundation for Cancer Research 

and showed strong anti-proliferative activity.58 However, its molecular target and therefore its 

potential as a novel anticancer drug was unknown at that time. They initially observed that the 

cellular potencies of 70 against a panel of cell-lines closely correlated with the cellular potencies 

of LY294002 (71) so they examined the ability of 70 to inhibit PI3K, observing that 70 was 20-

fold more active (PI3K⍺ = 8.9 nM, PI3Kβ = 17 nM, PI3Kγ = 53 nM, PI3Kδ = 16 nM) than 

LYS294002 (71) against PI3K and did not substantially inhibit the activity of 139 other protein 

kinases. 

In 2011, Burger et al. reported the identification of 72 (buparlisib, NVP-BKM120), (PI3K⍺ = 

52 nM, PI3Kβ = 166 nM, PI3Kγ = 262 nM, PI3Kδ = 116 nM). Their original hit came from a 

high throughput screen on a series of 2-morpholino 6-(3-hydroxyphenyl) pyrimidines identified 

from a solid phase combinatorial library of 2, 4, 6-trisubstituted pyrimidines in the same 

chemical class as 70.59, 60 After further modification the compounds per se had good oral 

bioavailability, low or sub-nanomolar biochemical potency and sub-micromolar cellular potency 
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against PI3K⍺, however had high clearance in rat. Their goal was to decrease clearance while 

maintaining and optimizing potency, solubility, permeability and safety. Initially improved 

clearance was achieved through substituting with an aminoquinoline in the solvent exposed 

region. In addition to increase potency they made substitutions in the activity pocket. In changing 

the pyrimidyl group to a pyridyl group they found that the biochemical potency increased upon 

the addition of an electron withdrawing group in the C-4 position of the pyridine, forcing the 

group out of plane to slightly improving aqueous solubility. This did not compromise the PK 

properties however, the compounds still exhibited low aqueous solubility and low Caco-2 

permeability. From previous work it was known that substitution of the C-4 position on the 

pyrimidine core could tolerate a wide range of moieties. Additionally, it was known that a 

morpholine group at the C-4 position of the core maintained reasonable potency while improving 

solubility relative to the aminoquinoline, and thus the aminoquinoline was substituted for a 

morpholine to give 72. The additional morpholine at the C-4 position did not compromise the rat 

PK parameters and solubility was improved.  

The biochemical activity of 72 was assessed across related lipid kinases and against more than 

200 protein kinases (VPS34 (2.4 µM), mTOR (4.6 µM), DNAPK (>5 µM), PIK4β (>25 µM)). 

No significant activity was observed against the protein kinases tested. The in vivo profile of 72 

was characterized through PK studies conducted in several different species including: mouse, 

rat, dog, and monkey. With the favorable cellular potency, kinase selectivity, pre-clinical 

pharmacology and rodent, dog and monkey pharmacokinetics, physical properties and preclinical 

safety profile, 72 was advanced into clinical trials in 2008. It was later reported that 72 exhibited 

an off-target activity at high concentrations that is not related to PI3K inhibition. This off-target 
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activity was found to be linked to mitosis and ultimately found to be due to inhibition of tubulin 

polymerization.61 

In order to overcome tubulin binding of 72, Bohnacke et al. from the University of Basel 

described the discovery of 73 (bimiralisib, PQR309).62  They reported the crystal structure of 72 

bound to tubulin (PDB 5M7E) and showed that high affinity binding of 72 to tubulin occurs via 

the pyrimidine core C–H group which is oriented towards βMet259 of tubulin. 73 was found to 

not bind to tubulin, which can be explained by the core C-H being replaced with a nitrogen atom. 

73 was found to be highly potent (PI3K⍺ = 15 nM, PI3Kβ = 11 nM, PI3Kγ = 25 nM, PI3Kδ = 25 

nM) and showed a satisfactory PK profile in vitro showing low clearance in rat, dog and human 

liver microsomes. 73 was progressed to in vivo studies in rodents and dogs, where it was found 

to be orally bioavailable and brain penetrable. The in vivo profile and a PC3 xenograft model in 

nude rats validated 73 as a clinical candidate and thus 73 was advanced through phase I clinical 

trials and is currently in phase II studies in relapsed and refractory lymphoma and advanced solid 

tumors. 

Zhang et. al., contrary to SAR studies conducted by Novartis and The University of Basel on 

the 4- and 6- positions, designed derivatives by replacing the C-2 morpholine with various 

aliphatic or long-chain substituted aromatic amines. Their work led to the discovery of 74 as a 

potent PI3K inhibitor (PI3Kα = 18 nM, PI3Kβ = 2014 nM, PI3Kδ = 13 nM, PI3Kγ = 80 nM) that 

showed comparable bioactivity with 70.63 
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The discovery of 79 (Gedatolisib, PKI-587 or PF05212384)64 by Wyeth (later Pfizer) followed 

on from the discovery of 75 (PKI-402).65 The initial lead compound was a triazolopyrimidine 76 

that exhibited good potency against PI3K⍺ (IC50 = 83 nM), PI3Kγ (IC50 = 435 nM), and mTOR 

(IC50 = 50 nM). However, activity, particularly against mTOR, and microsomal stability was 

improved by replacement of a benzylic alcohol with a substituted urea. The urea containing 

compound 77 was highly potent against PI3K⍺ (IC50 = 3.5 nM), PI3Kγ (IC50 = 24.8 nM), and 

mTOR (IC50 = 0.32 nM), however the compound exhibited very poor solubility. In order to 

increase solubility, basic amines were introduced onto the urea, giving compounds such as 75. 

However, solubility issues still persisted and advanced studies were halted until modifications to 

75 were implemented to decrease the overall lipophilicity of the series. In addition, another 

morpholine group was included to address a reported morpholine metabolic liability via 

oxidation ⍺ to the morpholine ring oxygen causing loss of potency. This morpholine change to 

the bismorpholino-1, 3, 5- triazine scaffold, such as 78, led to potent PI3K⍺, PI3Kγ, and mTOR 

inhibitory activity but only moderate potency in cell proliferation assays, attributed to poor 
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solubility and permeability. Due to the retention of biochemical potency, they probed the SAR to 

improve cellular potency. They observed a drop in PI3K activity when substituting the phenyl 

moiety of the urea with an alkyl group. However, the compounds maintained mTOR potency and 

incorporating basic amines onto the phenyl ring, as in the case of 79, led to excellent biochemical 

and cell potencies. These analogs had good microsomal stability across species and exhibited 

good to moderate solubility. On the basis of enhanced potency (PI3K⍺ = 0.4 nM, PI3Kβ = 6.0 

nM, PI3Kγ = 8 nM, PI3Kδ = 6 nM, mTOR = 1.6 nM), solubility (14 µg/mL pH 7.4), microsomal 

stability and a lack of Cyp inhibition, 79 was chosen for further in vivo evaluations, showing low 

plasma clearance (7 mL/min/kg), high volume of distribution (7.2 L/kg), and long half-life (T½ = 

14.4 h). 79 was also evaluated against a panel of 236 human protein kinases at 10 μM, where it 

was found to be highly selective for PI3K and mTOR. 79 progressed to phase I and II clinical 

trials. 
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Miller et. al. reported a series of inhibitors in the same structural class as 63, although they 

were consistently less potent.66 Compound 80 (PI3K⍺ IC50 = 375 nM, PI3Kβ IC50 = 214 nM, 

PI3Kγ IC50 = >10 µM, PI3Kδ IC50 = 110 nM) is representative of that series. Overall, they found 

that substitution in the 5-position was consistently ~10-fold more potent than substitution at the 

6-position. In a subsequent paper the morpholine in the solvent exposed region was replaced 

with piperazine amides derived from amino acids, 81 is representative of the series.67 They 

sought to form interactions with Asn836 of PI3Kδ to gain selectivity towards PI3Kδ but found 

that 81 was a β/δ inhibitor (PI3K⍺ IC50 = 2611 nM, PI3Kβ IC50 = 36 nM, PI3Kγ IC50 = 5859 nM, 

PI3Kδ IC50 = 12 nM). In a subsequent publication, Pinson et al. highlighted 82 as a compound 

with high PI3K isoform selectivity (PI3K⍺ IC50 = 4700 nM, PI3Kβ IC50 = 63 nM, PI3Kγ IC50 = 

>100 µM, PI3Kδ IC50 = 2200 nM) through targeting the non-conserved Asp862 on PI3K. 

Compound 82 showed strong inhibition of cellular Akt phosphorylation and growth of PTEN-

deficient MD-MBA-468 cells.68 

Also, in the same structural class are a series of inhibitors reported by Dugar et al. from 

Sphaera Pharma.69 Compound 83 was identified as their candidate compound for further 

development exhibiting good potency towards PI3K⍺ (IC50 = 60 nM) and good cellular potency 

(IC50 = 500 nM). 83 also showed a high level of microsomal stability, excellent oral 

bioavailability (AUC = 5.2 µM/h), no hERG liability and minimal inhibition activity for 

CYP3A4, CYP2C19, and CYP2D6 at 10 μM concentrations. Gamage et al. produced extensive 

SAR on analogs of 70, replacing one of the morpholine groups with a sulphonamide containing 

substituents lead to a series of PI3K inhibitors.70 Most compounds synthesized suffered solubility 

issues, however 84 (PI3K⍺ IC50 = 22 nM, PI3Kβ IC50 = 116 nM, PI3Kδ IC50 = 13 nM), as the 

methanesulfonate salt, showed suitable solubility (3.82 µg/mL) to be progressed in vivo. 
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Compound 84 was evaluated in a mouse study using U87MG human glioblastoma tumor 

xenografts in Rag1-/- mice at a dose of 60 mg/kg qd x 10 by i.p. injection effectively slowed 

tumor growth over the 10 day dosing period. 

 

Ohwada et al. from Chugai Pharmaceutical Co. superimposed compounds 57 and 71. The 

structure based design led to a phenol and morpholine containing lead 85, which showed 

excellent activity (PI3K IC50 = 8.6 nM) but exhibited poor metabolic stability in human 

microsomes and poor oral bioavailability in mouse mainly due to rapid glucuronidation of the 

phenol.71, 72 They sought to address the metabolic instability through bioisosteric replacement of 

the phenol with an aminopyrimidine moiety, which showed a slight reduction in PI3K⍺ activity 

but exhibited good antitumor activity in vivo in a human prostate cancer PC3 xenograft model, as 

a result of improved metabolic stability and oral bioavailability. With room for improvement in 

terms of its physicochemical and ADME profile, they embarked upon modification of the solvent 

exposed region to ultimately lead to the discovery of 86 (CH5132799), a clinical candidate that 

showed good activity against PI3K⍺ (IC50 = 14 nM), good oral bioavailability in mouse (F = 
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101%), good human liver microsomal stability and in vivo antitumor activity in the PC3 

xenograft model (TGI: 101% at 25 mg/kg, 11 days). 86 selectively inhibits class I PI3Ks and 

showed less inhibition of class II PI3Ks (C2⍺ = >10 µM, C2β = 5.3 µM), class III PI3K (Vps34 

= >10 µM) and mTOR (IC50 = 1.6 µM) . Additionally, 86 showed no inhibitory activity (IC50 

>10 µM) against 26 other protein kinases. 

After the development of 86, Kawada et al. made changes to further improve the PK profile. 

The chemistry focused on introducing a solubilizing group in the solvent exposed region to give 

compound 87.73 Additionally, 87 incorporates an ortho-substituent which disrupts the molecular 

planarity and improves water solubility. The pharmacokinetic profile of 87 in mouse showed a 

good clearance (CL = 11.1 mL/min/kg) and oral bioavailability (F = 86%), without significant 

loss of inhibitory activity (PI3K⍺ = 42 nM).  

In a follow up paper, Kawada et al. from Chugai Pharmaceutical Co reported that the 

introduction of an urea functionality, as in the case of 88, enhanced PI3K⍺ activity (22 nM).74 

They proposed that this observation was due to the urea acting as a spacer, placing the aromatic 

ring close enough to the Trp760 to make a favorable interaction, thus enhancing the inhibitory 

activity. This change however introduced a solubility issue, due to intermolecular hydrogen 

bonding between the urea and the pyrimidine core, resulting in a flat conformation that increases 

the crystallization propensity. They attempted to disrupt the planarity by introducing a methyl 

group to the ortho-position on the amino-pyrimidine however, this led to an 8-fold reduction of 

potency as disrupting the planarity in this region of the inhibitor was not acceptable for keeping 

key interactions in the affinity pocket. They then shifted attention back to the urea region 

introducing ortho-substituents to the phenyl ring and including solubilizing amines such as ethyl 

piperazine. However,this was not enough to improve the solubility to a satisfactory level. 
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Incorporating an ortho-fluorine on the phenyl ring in which electrostatic repulsion between the 

fluorine atom and the urea carbonyl can be expected, resulted in a flat conformation and thus 

poor solubility. However, evaluation of the difluoro compound showed a modest increase to the 

solubility as this compound prefers a twisted conformation that avoids the electrostatic repulsion 

of the second fluorine atom with the urea carbonyl group. Liver microsomal stability of 88 was 

good in both mouse (7.6 µL/min/mg) and human (2.2 µL/min/mg) and permeability was also 

acceptable (1.1 x 10-6 cm/sec in PAMPA). 

 

Wang et al. from the Chinese Academy of Sciences utilized the structural information of 57 to 

design a series of 4-(2-arylpyrido[30,20:3,4]pyrrolo[1,2-f][1,2,4]triazin-4-yl)morpholine 

derivatives containing phenolic esters.75 The compounds had comparable PI3K⍺ activity to 57. 

All of the compounds showed selectivity over 15 protein kinases and anti-proliferative activity at 
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micromolar concentration against several cancer cell lines. An example of the series is 

compound 89 (PI3K⍺ IC50 = 33.6 nM). 

González et al. from the Spanish National Cancer Research Centre developed 90 (ETP-46321), 

employing a similar strategy to the Genentech team in the development of 52. Through a rational 

design exercise, they replaced the C-C unit between the pyrimidine ring and the thiophene with a 

C-N unit.76 In an effort to optimize potency and in vivo properties, they explored a variety of 

hetero-aromatic groups at the imidazo [1, 2-a] pyrazine C-6 position, leading to the discovery of 

90 (PI3K⍺ IC50 = 2.3 nM, PI3Kβ IC50 = 170 nM, PI3Kγ IC50 = 179 nM, PI3Kδ IC50 =14.2 nM). 

Compound 90 was shown to be a potent PI3K ⍺/δ inhibitor that was highly selective over mTOR 

(IC50 = 4.88 µM) and 288 representative kinases and demonstrated a good pharmacokinetic 

profile in mice (CL = 0.6 L/h/kg, F = 90%). Compound 90 was selected for preliminary in vivo 

evaluation in a lung tumor mouse model driven by a K-RasG12V oncogenic mutation and 

showed significant tumor growth inhibition (ca. 51%). In a later publication76 they applied a 

conformational restriction strategy to enable the exploration of the solvent-exposed region. 96 

(PI3K⍺ IC50 = 0.5 nM) is an example of the series and was progressed to a preliminary in vivo 

PK study and showed similar results to 90. Additionally González et al. reported a scaffold 

hopping strategy to replace the core moiety of 90 to produce compounds such as 97 (PI3K⍺ IC50 

= 1.52 nM, PI3Kβ IC50 = 155 nM).77  

With the goal of developing a dual mTOR/pan PI3K inhibitor, structure and ligand-based 

design was used to develop the lead structure 98 from 91 (VS-5584; SB2343). Using the SAR of 

compounds 57, 71 and 70, in combination with core modification, they developed a lead 

structure 98, possessing a purine core substituted with a morpholine ring, a phenol head group 

and a hydrophobic substituent.76 Compound 98 showed good potency against PI3K⍺ (IC50 = 89 
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nM) and mTOR (IC50 = 400 nM), however the phenol group posed a metabolic liability through 

glucoronidation. In order to overcome the metabolic liability, bioisoteric replacement of the 

phenol was employed resulting in substitution of the phenol for an amino-pyrimidine head group. 

The amino-pyrimidine head group was found to be equipotent with the phenol in inhibiting 

mTOR (300 nM) but introduced an imbalance in the inhibitory activity between mTOR and 

PI3Kα, being 10-fold more potent toward PI3Kα (IC50 = 34 nM). Optimization of the 8- and 9-

position side chains led to the discovery of 91, a compound with improved mTOR potency (IC50 

= 37 nM) and PI3K activity (PI3K⍺ IC50 =16 nM, PI3Kβ IC50 = 68 nM, PI3Kδ IC50 = 42 nM, 

and PI3Kγ IC50 = 25 nM). 91 was selected for further profiling and found to have excellent PK 

and ADME properties, as well as being active in animal models. 91 progressed to phase I trials 

in patients with advanced non-hematologic malignancies or lymphoma. 

Nacht et al. from Celgene Avilomics Research described 92 (CNX-1351), the first example of 

a targeted covalent inhibitor of the lipid kinase family that is an isoform-selective inhibitor of 

PI3Kα.78  After examining the ATP binding site and nearby residues of PI3Kα to identify 

opportunities for selective covalent modification they identified Cys862, which is unique to 

PI3K⍺, as a promising amino acid to target for covalent inhibition. Using the core of 52 in 

combination with a series of design cycles exploring both linker spacing and electrophilic 

functional groups they identified 92 and, although useful as a tool compound, the 

pharmacokinetic properties were suboptimal and thus they are currently focusing their efforts on 

improving the oral bioavailability. 

Saurat et al. described a series of dual mTOR/PI3K inhibitors based on a pyridopyrimidine 

scaffold that have nanomolar enzymatic and cellular activities with an acceptable kinase 
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selectivity profile. 93 (PI3K⍺ IC50 = 58 nM, mTOR IC50 = 5 nM) is a representative example of 

the series.79 

Starting from a morpholino-pyrrolotriazine heterocyclic lead, Dugar et al. from Sphaera 

Pharma Pte. Ltd developed their pre-clinical compound 94.80 94 (PI3K⍺ IC50 = 20 nM) was 

found to be inactive in a panel of close homology kinases, except for other isoforms of PI3K 

(PI3Kβ 54% inhibition at 1 µM, PI3Kδ 67% inhibition at 1 µM) and mTOR (85% inhibition at 1 

µM). 

Wang et al. described a series of compounds based on a quinazoline scaffold. 95 (PI3K⍺ IC50 

= 96 nM, PI3Kβ IC50 = 128 nM, PI3Kδ IC50 = 330 nM, and PI3Kγ IC50 = 465 nM) is 

representative of the series. 95 showed anti-proliferative effects in vitro and was found to induce 

apoptosis. Western blots suggested that 95 can block the PI3K/AKT/mTOR pathway. 

Additionally, 95 inhibited tumor growth on a mouse S180 homograft model.81 

 

Wang et al. synthesized a series of inhibitors based on a thiopyrano-pyrimidine core such as 

compound 99 (PI3K⍺ IC50 = 8.38 µM). These compounds showed cytotoxicity against four 

cancer cell lines (IC50 = 6.02–10.27 µM).82 In a later publication they incorporated the core from 

97 to produce a series of compounds, where 101 (PI3K⍺ IC50 = 1.25 µM) is representative of the 

series.83  
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Considering 52 as the chemical starting point, Schwehm et al. investigated the incorporation of 

a tricyclic molecular scaffold leading to the discovery of a series of potent and highly-selective 

PI3Kδ inhibitors.84 Compound 100 includes a 4-substituted indole group in the activity pocket, 

which was reported to give rise to good PI3Kδ selectivity.55 Additionally, they reported that an 

overlay of the available crystal structures of the class I PI3K isoforms reveals a potential key 

π−cation interaction present in the structures of the PI3Kα (Arg770), PI3Kβ (Lys771), and 

PI3Kγ (Lys802) isoforms with Trp760 (δ-numbering) that is not present in PI3Kδ (Thr750). 

They reported that this may suggest that their inhibitors might be able to form an extra Van der 

Waals π−π face to face interaction with Trp760, an interaction that is obstructed in the case of 

the other isoforms. These effects coupled together produced a synergistic group effect, to 

introduce high δ-selectivity. The physicochemical properties of compound 100 were calculated 

(PI3K δ (pIC50 = 9.1), MW 540.7, cLogP 3.9, clogD 2.5, TPSA 88 Å2, solubility at pH 7.4 in 

water: 0.02 mg/mL, solubility category: Low, LIPE = 5.2) and they report that the properties 

may not be ideal for oral drug likeness, however the compounds may fulfil inhalation delivery 

criteria.85 

The remainder of the perspective will examine the medicinal chemistry design and evaluation 

based on a core chemical structure categorized by scaffold class. 

Pyrrolo[2,1-f][1,2,4]triazin-4-amines  
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A novel series of pyrrolo[2,1-f][1,2,4]triazin-4-amines have been reported by researchers from 

Bristol-Myers Squibb, resulting in the identification of selective PI3K inhibitors. Bhide et al. 

reported on the identification of 102 (PI3K IC50 = 22 nM) from a kinase-directed screen.86 

However, 102 was shown to be non-selective against other PI3K isoforms (fold selectivity PI3K 

 = 4/120/0.4) and a potent CYP inhibitor which was attributed to the 4-pyridyl moiety as 

well as poor microsomal stability due, in part, to the lipophilic cyclohexyl ring. Extensive SAR 

aimed at changing the cyclohexyl group and the pyridine ring resulted in the identification of 103 

(PI3K IC50 = 2 nM, fold selectivity PI3K  = 665/800/130), a compound with improved 

metabolic stability (58% remaining @ 0.5 M 10 min incubation) and good pharmacokinetics 

(mouse PK CL 82.1 mL/kg/Kg; Vss 6.2 L/kg, F = 46%) that subsequently demonstrated in vivo 

efficacy in a mouse Keyhole Limpet Hemocyanin (KLH) and collagen-induced arthritis (CIA) 

model, when dosed at 100 mg/kg. The efficacy was reported to be better than that of 

methotrexate at 1mg/kg. Qin et al. reported on the optimization of the ADMET properties of the 
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compounds leading to the identification of 104 (PI3K IC50 = 1.3 nM, fold selectivity PI3K 

 = 611/1443/44), a compound with reduced hERG activity (18% @ 10 M – patch clamp) 

and metabolic stability. 104 progressed to a 4-day exploratory toxicity study in mice dosed up to 

300 mg/kg/day (QD) and was found to be well tolerated at all doses. In addition, 2 showed 

efficacy in the KLH model when dosed at 3 mg/kg, reflecting the improvement in whole cell 

potency and pharmacokinetic properties, compared to 103.87 Running in parallel, Marcoux et al. 

reported further SAR studies to improve the physical and pharmacokinetic properties of 104. 

Further exploration of the substituted piperazine and the replacement of the substituted pyrazole 

with smaller moieties resulted in the identification of the highly isoform-selective PI3K 

inhibitor 105 (PI3K PIC50 = <0.2 nM, fold selectivity PI3K  = >1000) that was highly 

potent in a human B cell proliferation assay (IC50 = 1 nM). In addition, 105 was shown not to 

inhibit any CYPS or ion channels. It possessed very good permeability but unfortunately 

exhibited poor stability towards liver microsomes where it was determined that the morpholine 

ring was extensively metabolized and was not progressed further.88 Liu et al. finally reported on 

the identification of a pre-clinical candidate 108 identified after further extensive SAR studies to 

improve on the pharmacokinetic properties within the evolving series. Guided by X-ray 

crystallography of 106 (PI3K IC50 = 2.4 ± 0.8nM, fold selectivity PI3K  = 270), in PI3K 

(Figure 9), the polar pyrazole group was replaced with either a simple chlorine atom or a 

trifluoromethyl group, which led to 107 (PI3K IC50 = 3 ± 1 nM, fold selectivity PI3K  

=110/37), a compound with improved Caco-2 permeability, reduced hERG activity (12% @ 3 

M – patch clamp) and increased selectivity profile, while maintaining potency in the CD69 

hWB assay.  
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Figure 9. X-ray co-crystal structure of 106 bound into PI3K Key interactions between 106 and 

the hinge included Val828 and Glu826 and a close interaction between the carbonyl of the 

acetamide group and Thr750. The pyrazole group of 106 filled a hydrophobic pocket formed by 

Ile825 (not shown) and participated in an edge-to-face interaction with Tyr813 (PDB 5VLR) 

Final optimization of the aryl substitution identified 108 (PI3K IC50 = 1.9 ± 0.9 nM, fold 

selectivity PI3K  =700/1443/>5000), where it was shown that the 4-CN group led to an 

improved human/rodent scaling in microsomal metabolic stability and excellent cross species 

pharmacokinetics (e.g. rat PK CL = 2.3 ± 0.3 mL/min/kg; Vss = 0.5 ± 0.1 L/kg; F = 71%). 108 

proved highly efficacious in a mouse collagen-induced arthritis model for 42 days. Although 

lower than expected exposures were observed for 108, a dose-dependent reduction of the clinical 

score was observed where doses of 2 and 5 mg/kg showed greater than 50% suppression of paw 

swelling. Taking the exposure into consideration, an EC50 of 10 nM at 24 h (ED50 of ∼1.25 

mg/kg) was derived.89  

Amino triazine-based hinge binders 
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Figure 10. Amino triazine-based hinge binders 

 

In a series of publications scientists from Amgen reported on the optimization of a novel series 

of substituted amino triazines culminating in the identification of 113 (AMG 511, Figure 10). In 

their first paper, Smith et al. discussed the optimization of a benzimidazole triazine 109 obtained 

from a HTS screen.90 109 had favorable properties (PI3K IC50 = 0.32 M; PI3K IC50 = 0.38 

M; PI3K IC50 = 0.24 M; PI3K IC50 = 0.1 M, mTOR IC50 = 0.097 M) and a co-crystal 

structure was determined in PI3K demonstrating that 109 bound in the ATP binding site. 

Optimization of 109 led to 110 (PI3K IC50 = 9 nM; PI3K IC50 = 5 nM; PI3K IC50 = 2 nM; 

PI3K IC50 = 4 nM, mTOR IC50 = 4.8 M), where the substituted piperazine was making 

interactions with the ribose pocket and the metabolically-labile 3-phenol was replaced with a 

substituted pyridine. 110 had good oral exposure in mice (F = 95%, 25 mg/kg p.o.) and inhibited 

HGF-stimulated PI3K signaling in a mouse liver PD assay where a 75 mg/kg dose was able to 

maintain sufficient plasma concentrations for 24 h to provide at least 64% target coverage over a 

24 h period (plasma free fraction concentration = 68 nM at 24 h). Subsequently, 110 caused a 
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dose-dependent inhibition of tumor growth with an ED50 of 6.0 mg/kg (AUC0–24 h = 7.6 μM/h) in 

CD1 nude mice and tumor stasis was achieved at 25 mg/kg QD. However, it was concluded that 

continuous robust inhibition of PI3K over 14 days may be poorly tolerated.91 Wurtz et al. 

reported on the hybridization of compounds; combining the amino triazines, such as 110 with a 

series of substituted aminobenzthiazoles 111 (PI3K IC50 = 1.2 nM; mTOR IC50 = 2.1 nM) 92 to 

generate 112 (PI3K IC50 = 7.7 nM; PI3K IC50 = 0.4 nM; PI3K IC50 = 2 nM; PI3K IC50 = 1 

nM, mTOR IC50 = 163 M), which exhibited good oral bioavailability in rats (F = 63%) and 

showed a dose dependent reduction in the phosphorylation of Akt in a U87 tumor 

pharmacodynamic model with a plasma EC50 = 193 nM.93 Norman et al. reported on further 

optimization of 110 to identify 113, a potent pan inhibitor of class I PI3Ks with a superior 

pharmacokinetic profile (PI3K Ki = 4 nM; PI3K Ki = 6 nM; PI3K Ki = 2 nM; PI3K Ki = 1 

nM).94 113 was shown to potently block the targeted PI3K pathway in a mouse liver 

pharmacodynamic model as indicated by a dose-dependent decrease in phosphorylated AKT (p-

AKT) at Ser473 and a nonlinear regression analysis revealed a plasma EC50 of 228 ng/mL. It was 

shown that inhibition of AKT phosphorylation directly correlated with plasma concentrations. 

113 inhibit tumor growth in a U87 malignant glioma glioblastoma xenograft model where 

treatment at 1 mg/kg QD resulted in significant inhibition of tumor growth of approximately 

70% compared to the vehicle control group. Tumor stasis was observed in the cohort treated with 

3 mg/kg, and tumor regression was observed in the 10 mg/kg cohort. The ED50 of compound 113 

was 0.6 mg/kg, with an AUC at EC50 of 3.6 μg·h/mL. On the basis of its excellent in vivo 

efficacy and pharmacokinetic profile, compound 113 was selected for further evaluation as a 

clinical candidate. However, to date no further information has been reported. 
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In a subsequent paper, Lanman et al. reported on studies to replace the piperazine sulfonamide 

portion of 113 with an array of primary alcohols to reduce molecular weight and improve 

interaction within the ribose binding pocket, leading to the identification of 114 (PI3K Ki = 23 

nM), a compound with much reduced MWt compared to 113 (327 Da for 114 vs 518 Da for 

113). 114 demonstrated a similar pharmacokinetic profile to that of 113 with oral bioavailability 

slightly reduced (37% vs 57%) and clearance elevated (1.1 vs 0.45 L/h/kg). 114 was further 

evaluated in a mouse liver pharmacodynamic model that measured the inhibition of hepatocyte 

growth factor (HGF)-induced Akt phosphorylation at Ser473 in female CD1 nude mice and it 

significantly suppressed PI3K signaling at 10 and 30 mg/kg bringing about a dose-dependent 

decrease in p(S473)Akt. A nonlinear regression analysis established an EC50 of 239 ng/mL, 

comparable to that obtained from compound 113 (EC50 = 240 ng/mL). The biological activity of 

the significantly truncated analog 114 relative to 113 highlights both the efficiency of the 2-

hydroxypropyl group as a ribose pocket binding group however, compounds from this class were 

unable to replicate the enzymatic potency of the piperazine sulfonamide series.95 Stec et al. 

investigated the use of the imidazo[1,2-a]pyridine ring system as a scaffold and identified 115 as 

a potent dual phosphoinositide-3-kinase (PI3K)/mammalian target of rapamycin (mTOR) 

inhibitor (PI3K Ki = 11 nM; PI3K Ki = 17 nM; PI3K Ki= 0.6 nM; PI3K Ki = 5.3 nM) 

mTOR IC50 = 206 nM). When dosed orally in rats (2 mg/kg), 115 showed good oral 

bioavailability (51%) and moderate plasma exposure (AUC = 640 ng·h/mL). The in vivo activity 

of compound 115 was evaluated in the mouse liver pharmacodynamic assay and showed 

significant inhibition of AKT phosphorylation at all three doses with a maximum inhibition of 

56% at the 30 mg/kg dose. The calculated ED50 relative to vehicle was 11 mg/kg.96  

2,3-Dihydroimidazo[1,2-c]quinazolin-5-yl)pyrimidine-based inhibitors (copanlisib) 
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Scheme 6. Discovery of 119 (copanlisib) a PI3K inhibitor with potential antineoplastic activity 

 

Scott et al. recently reported on the identification of 119 (copanlisib), a selective 

PI3Kinhibitor that has been granted an accelerated approval as a treatment for patients with 

relapsed follicular lymphoma who have received at least 2 least prior systemic therapies (Scheme 

6).97, 98 HTS on a series of PI3Kγ‐active leads led to the discovery of the structurally novel 2,3‐

dihydroimidazo[1,2‐c]quinazoline 116 (PI3Kγ IC50 = 810 nM, PI3Kβ IC50 = 4000 nM). In the 

lead optimization phase, the enol moiety of 116 could be replaced with an amide moiety giving 

117 (PI3Kγ IC50 = 60 nM, PI3Kβ IC50 = 1 nM) and further substitutions on the phenyl ring led to 

118 (PI3Kγ IC50 = 60 nM, PI3Kβ IC50 = 1700 nM) and both were shown to have an effect on 

isoform selectivity. Therefore, a program to optimize the PI3Kβ and PI3Kα activity of the 2,3‐

dihydroimidazo[1,2‐c]quinazoline lead for potential use in cancer therapies was undertaken. 

Scott et al. reported on extensive SAR studies where multiple substitutions on the A ring in 

combination to changes in the B and C rings eventually led to the discovery of 119 
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(copanlisib).97 An X-ray crystal structure showed that the imidazoline N-1 nitrogen atom formed 

a critical hydrogen bond to Val882 in the adenine hinge pocket and the 4-aminopyrimiding group 

interacted in the affinity pocket forming hydrogen bonds with Asp836 and Asp841 through the 

amino group, and with Lys833 through a pyrimidine nitrogen atom (PDB 5G2N).  Copanlisib 

was shown to be a potent PI3K inhibitor (PI3K IC50 = 0.5 nM, PI3K IC50 = 3.7 nM, PI3K 

IC50 = 6.4 nM, PI3K IC50 = 45 nM) as well as inhibiting mTOR (IC50 = 45 nM) and has potent 

cellular mechanistic activity, inhibiting both IGF‐1‐stimulated AKT phosphorylation in S473 

cells, and basal AKT phosphorylation in KPL4 cells. The intravenous first-in-human phase I 

study of copanlisib in patients with advanced solid tumors and non-Hodgkin's lymphomas 

(NHL) showed that it was well tolerated with a MTD of 0.8 mg/kg. Copanlisib exhibited dose-

proportional pharmacokinetics and promising anti-tumor activity, particularly in patients with 

NHL.99 

4,6-Disubstituted indazole-based inhibitors (GSK2269557 & GSK2292767) 
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Scheme 7. Identification of 120 and the evolution to 122 (GSK2269557) and 124 (GSK2292767) 

 

Down et al. reported on the discovery of a series of selective indazole-based PI3K inhibitors for 

the treatment of respiratory diseases, culminating in the discovery of the development compound 

122 (GSK2269557) and the back-up clinical candidate 124 (GSK2292767) (Scheme 7).100 

Compound 120 was selected as a lead due to its favorable selectivity profile for PI3K (PI3K 

pIC50 = 7.0; PI3K pIC50 = 5.2; PI3K pIC50 = 5.0; PI3K pIC50 = 5.2) and, to avoid any 

potential negative impact of broad systemic inhibition of this biology, a lead optimization 

program was initiated with the aim of delivering an inhaled clinical candidate.  Inhibition of 

PI3K enzymatic activity was determined using a homogeneous time-resolved fluorescence 

(HTRF) assay format and to measure cellular activity for compounds of interest. In addition, a 

peripheral blood mononuclear (PBMC) assay was used using cytostim to stimulate cytokine 

production from the T-lymphocyte compartment. Interferon γ (IFNγ) was selected as an optimal 
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analyte owing to robust stimulation by cytostim and exquisite sensitivity to PI3Kδ inhibition. 

The target profile was established of high potency, which is a requirement for inhaled delivery 

due to dose limitations and the target PK profile was intended to minimize systemic circulation 

after inhaled delivery. Therefore, moderate to high intrinsic clearance was required in order to 

ensure removal of drug once absorbed through the lung into the plasma and low oral 

bioavailability was required to limit absorption of the swallowed fraction of the inhaled dose. 

Exploration of the SAR at the two positions of substitution on the indazole core was examined, 

where initially group R2 was fixed as indole and exploration of R1 pursued. A set of 4-position 

amide modifications were prepared while keeping the 6-indole substituent fixed. Extensive SAR 

showed that in this position a planar amide conformation was important for potency and isoform 

selectivity, as typified by 121 (PI3K pIC50 = 7.3; PI3K pIC50 = 5.0; PI3K pIC50 <4.6; PI3K 

pIC50 = 5.4). The requirements for planarity to balance both isoform potency and 

pharmacokinetics led to the application of heteroaromatic bioisosteric replacements for the co-

planar amide substitutent R1, leading to the eventual discovery of 122 (PI3K pKi = 9.9; PI3K 

pKi = 5.8; PI3K pKi = 5.3; PI3K pKi = 5.2), a compound with excellent cellular activity 

(PBMC IFN pKi 9.7). The rat PK profile of 122 was encouraging, with low oral bioavailability 

(F = 2%) and in vivo clearance of 28 mL min–1 kg–1, which met the criteria for progression. 

Importantly, due to the dibasic nature of 122 in combination with its moderate lipophilicity 

(clogP = 4.4), 122 also had a high volume of distribution of 6.3 L/kg, which suggested a 

beneficial tissue retention when delivered topically to the lung. 122 was progressed to a human 

lung parenchyma assay where finely chopped lung tissue was incubated with the plant lectin 

phytohemagglutinin (PHA) for 72 h to induce production of cytokines including IFNγ and IL-2. 

This response was inhibited by 122 in a concentration-dependent manner, returning pIC50 values 
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of 8.2 (IFNγ) and 8.1 (IL-2). In a disease relevant brown Norway rat acute OVA model of Th2 

driven lung inflammation, 122 was shown to protect against eosinophil recruitment, with an 

ED50 of 67 μg/kg. In addition, the activity of 122 was assessed using other end points in this 

model, including leukocyte recruitment to the lung (neutrophils, macrophages, CD4 and CD8 T-

lymphocytes at 48 h) and Th2 cytokines such as IL-13. Importantly, 122 was shown to dose-

dependently reduce recruitment of all leukocyte sub-populations and IL-13 in the lungs. In light 

of all the data, 122 progressed to clinical evaluation as GSK2269557. In phase I studies, inhaled 

GSK2269557 had an acceptable safety profile for progression into larger studies in COPD 

patients and resulted in suppression of sputum IL-8 and IL-6 levels, consistent with the known 

anti-inflammatory activity of a PI3Kδ inhibitor and further clinical trials are on-going.101 

Replacing the indole in 121 with a pyridyl methylsulfonamide gave 123 (PI3K pIC50 = 8.7; 

PI3K pIC50 = 6.0; PI3K pIC50 = 6.5; PI3K pIC50 = 7.3). Although this replacement resulted 

in a greater than 10-fold increase in potency for PI3Kδ, potency at the other PI3K isoforms was 

also significantly enhanced, such that compound 123 was no more selective than compound 121. 

However, further evolution of the sulfonamide group and bioisosteric replacement of the 

secondary amide resulted in 124 ((PI3K pKi = 10.1; PI3K pKi = 6.2; PI3K pKi = 6.3; PI3K 

pKi = 6.3), with excellent cellular activity (PBMC IFN pKi = 9.2). In a human lung parenchyma 

assay, 124 inhibited both IFNγ and IL-2 production in a concentration-dependent manner, with 

pIC50 values of 8.7 and 8.5, respectively. In the brown Norway rat acute OVA model of Th2 

driven inflammation in the lungs, 124 was shown to protect against eosinophil recruitment with 

an ED50 of 35 μg/kg, similar to compound 122. A PK study in rat, demonstrated a high in vivo 

clearance of 50 mL min–1 kg–1 which was significantly higher than that for compound 122 and 

fitted well for the target profile for a follow-up inhaled candidate. In addition, the oral 
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bioavailability was low (F < 2%), in line with the data observed for compound 122 and therefore 

124 was progressed into preclinical development as a back-up for 122.  

1,3-Dihydro-2H-imidazo[4,5-c][1,5]naphthyridin-2-ones (BEZ235) - inspired inhibitors 

 

Starting from 125 (BEZ235, dactolisib),61 the first PI3K inhibitor to enter clinical trials in 2006, 

Chen et al. from Pfizer reported on a fast-follower approach to discover 126, which exhibited 

excellent properties (mouse PI3K Ki = 1.41 nM, which translates to a ligand efficiency (LE) of 

0.354). When tested in an mTOR kinase domain in vitro biochemical assay, 126 exhibited good 

activity with a Ki of 4.51 nM. However, in a BT20 cell assay, measuring inhibition of AKT 

phosphorylation at S473, 126 exhibited only moderate cellular potency with an IC50 of 144 nM, 

which relates to a cell-based LipE of 2.15, due to high lipophilicity (cLogP 4.69). 

Unsurprisingly, the combination of lack of sp3 atoms and lipophilicity led to the reported poor 

solubility (2.0 M). 102 SAR studies, directed to increasing both PI3K and mTOR activity 

whilst reducing lipophilicity led to the discovery of 127 (PF-04979064), as a structurally diverse 

back-up to their first development compound 79.64 Compound 127 (PI3K Ki = 0.3 nM; mTOR 

Ki = 1.42 nM) and, due in part to the reduction in lipophilicity (cLogP = 1.27) and increase in 

solubility (539 M), had very good cellular potency (IC50 = 9.1 nM), which relates to a cell-

based improved LipE of 6.8. 127 progressed to pharmacokinetic studies (rat PK CL = 19.3 

ml/min/kg; Vdss = 5.23 L/kg; F = 61%) and progressed to mouse in vivo xenograft efficacy 
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studies, where it exhibited dose proportional tumor growth inhibition (TGI) in a U87MG mouse 

xenograft model, achieving 88% TGI at the highest tolerated dose, 40 mg/kg QD. 

2,8-Disubstituted pyrido[3,2-d]pyrimidine and substituted 5,6,7,8-tetrahydropyrido[4,3-

d]pyrimidine inhibitors (leniolisib) 

 

Hoegenauer et al. from Novartis also used 125 as a starting point for the discovery of 131.103 In 

their first disclosure they reported on efforts to synthesize a PI3K inhibitor. Guided by docking 

studies they deconstructed the imidazolquinoline present in 125, which they considered was 

contributing to the affinity of 125 for mTOR (mTOR IC50 = 6 nM), to the simplified quinazoline 

fragment 128 (PI3K IC50 = 0.65 M; PI3K IC50 = 8.1 M; PI3Kand mTOR IC50 = >10M). 

Further SAR studies led to 129 (PI3K IC50 = 0.262 M; PI3K IC50 = 9 nM; PI3KIC50 = 1.65 

M; PI3K IC50 = 4.63 M, cell activity PI3K IC50 = 0.049 M). In rats, 129 showed a moderate 

22% oral bioavailability. While a higher total exposure could be reached with increasing the dose 

to 30 mg/kg, this overall gain was not dose-linear and bioavailability dropped to 10%, likely due 

to solubility limited absorption. However, in dogs the overall pharmacokinetic properties for 129 

were similar but with a better 42% oral bioavailability at 0.3 mg/kg. PK/PD studies were performed 

in rodents following a single oral dose of compound 129 (30 mg/kg) in male Lewis rats. Blood 

was collected at various time points and changes for two PD biomarker expression profiles as well 

as drug levels were determined. A clear relationship of drug exposure, inhibition of Akt 
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phosphorylation and anti-IgM/rIL-4-induced CD86 expression was observed.104 Further SAR was 

reported by Hoegenauer et al. to improve physicochemical properties of the quinazoline  series, as 

typified by 129, through reducing the MWt and fsp3 which are known drivers of poor 

physicochemical properties. Further SAR studies resulted in the identification of 130 (PI3K IC50 

= 0.424 M; PI3K IC50 = 22 nM; PI3KIC50 = 1.03 M; PI3K IC50 = 2.94 M). However, the 

improvement in physicochemical properties did not lead to an increase in cellular activity (IC50 = 

0.022 M), due in part, to the reduction in PI3K activity.105 In their final publication, further 

optimization led to the discovery of 131 (leniolisib PI3K IC50 = 0.244 M; PI3K IC50 = 11 nM; 

PI3KIC50 = 0.424 M; PI3K IC50 = 2.23 M). 131 demonstrated 30-fold cell activity over 

PI3K (PI3KIC50 = 56 nMwas tested in a mouse ozone-induced lung inflammation model 

where it dose-dependently inhibited the increase in bronchoalveolar lavage (BAL) neutrophil and 

macrophage numbers with ED50 values of 16 mg/kg and 40 mg/kg, respectively. In a rat model of 

collagen-induced arthritis (rCIA) it significantly inhibited pathogenic anti-rat collagen antibodies, 

paw swelling, inflammatory cell infiltration, proteoglycan loss and joint erosion when dosing 

started, before disease onset and full efficacy was also observed with low doses (3 mg/kg bid). In 

a therapeutic setting when 131 was administered when significant paw swelling was present, a 

dose of 10 mg/kg bid significantly ameliorated disease parameters.103 Currently 131 is undergoing 

Phase II/III studies for Activated PI3Kδ syndrome and Primary Sjögren syndrome.106 

Xin et al. reported on the synthesis of a range of 4-anilinequinazoline derivatives as PI3K 

inhibitors designed as a fast follower approach. 
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Scheme 8: 2,8-Disubstituted pyrido[3,2-d]pyrimidine inhibitors 

 

Changing the aromatic linkage present in the Novartis compound 132 generated a new series of 

6-aryl substituted 4-anilinquinazoline derivatives (Scheme 8), which resulted in the identification 

of 133 (PI3K IC50 = 9.3 nM). 133 demonstrated similar anti-proliferative profiles to idelalisib in 

several human B cell lines (e.g RPMI-8226 IC50 = 6.61 M; idelalisib IC50 = 5.49 M).107 Further 

studies, changing the aniline group for less lipophilic moieties resulted in the identification of 134 

(PI3K IC50 = 2.7 nM; PI3K IC50 = 25.6 nM; PI3KIC50 = 263.8 nM; PI3K IC50 = 174.2 nM).108 

134 showed significant potent anti-proliferative activity against human B cell line Ramos (IC50 = 

0.57 M), moderate anti-proliferation against RPMI-8226 (IC50 = 4.34 M) and SU-DHL-6 (IC50 

= 4.55 M), but no activity against Raji (IC50 > 10 M). 
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Hei et al. reported on a series of 4,6-disubstituted quinazoline derivatives, as typified by 135, 

which displayed high potency against PI3K enzymes (PI3K IC50 = 465 nM, PI3K IC50 = 37 

nM) and anti-proliferative activities against both HCT-116 (IC50 = 0.51 M) and MCF-7 (IC50 = 

2.10 M) and could efficaciously inhibit tumor growth in a mice S-180 model.109 In a similar series 

of compounds, Xin et al. demonstrated that 136 had good PI3K enzyme activity (PI3K IC50 = 

9.3 nM) and showed similar anti-proliferative profiles to idelalisib in human B cell lines [e.g. 

RPMI-8226 cells IC50 = 6.61 M, idelalisib 5.49 M].110 Zhang et al. reported on 137, a potent 

PI3K/mTOR dual inhibitor which significantly inhibit Class I PI3Ks (PI3K IC50 = 0.87 nM; 

PI3K IC50=  3.9 nM; PI3K IC50 = 1.7 nM; PI3K IC50 = 8.4 nM), mTOR (IC50 = 10 nM) and 

phosphorylation of pAkt(Ser473) at low nanomolar level.111 Moreover, 137 displayed high 

potency in an anti-proliferative assay in PC-3 cells (IC50 = 80 nM) and showed acceptable in vivo 

pharmacokinetic properties in mice after oral administration at 5 mg/kg as a crystalline suspension 

in 0.5% methylcellulose [ CL = 0.42 L/h/kg, Vd, = 1.0 L/kg, plasma terminal half-life (T1/2, 1.6 

h)]. Mah et al. reported the identification of 4‑phenoxyquinoline based inhibitor for L1196M 
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mutant of anaplastic lymphoma kinase as typified by 138 discovered by a fragment growing 

strategy.112 138 exhibited significant anti-proliferative effects on H2228 CR crizotinib-resistant 

cells by decreasing PI3K/AKT and MAPK signaling. Fan et al. highlighted compound 139 with 

potent anti-proliferative activity without cytotoxicity to human normal cells. 139 was reported to 

be selective for PI3Ka (IC50 = 13.6 nM. Selectivity ~10-fold) and, in a western blot assay, 138 

demonstrated inhibition of cell proliferation via suppression of PI3K kinase activity (IC50 of 13.6 

nM) and subsequently blocked PI3K/Akt pathway activation in HCT116 cells.113  

 

7,9-Disubstituted-2-morpholino-4H-pyrido[1,2-a]pyrimidin-4-one-based inhibitors – 

evolution of AZD6482 and AZD8186 

TGX-221 (140) was disclosed as a selective PI3K inhibitor by Kinaacia Ply Ltd, a spin out 

from Monash University, and has served as the inspiration of several drug discovery programs 

looking for potent and selective PI3K inhibitors (Scheme 9). 

 

Scheme 9. Evolution of 7,9-disubstituted-2-morpholino-4H-pyrido[1,2-a]pyrimidin-4-one-

based inhibitors 
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Scientists at GSK separated the enantiomers by chiral HPLC and discovered that the biological 

activity resided in one enantiomer, with the (R)-enantiomer 141 (PI3K IC50 = 6 nM) being ~30-

fold more potent than the (S)-enantiomer (PI3K IC50 = 200 nM), suggesting that the aniline 

plays an important role in the interaction with PI3K.114 It was suggested that imadazo[1,2-a]-

pyrimidine-5(1H)-one, with a N-1 substituted benzyl group, would be a replacement scaffold and 

SAR demonstrated that a 2, 3-disubstituted benzyl group was optimal for balancing potency and 

PI3K isoform selectivity 142 (PI3K = 1 nM; PI3K = 2M; PI3K = 8 nM; PI3K = 1 M), 

as well as demonstrating potent cell growth inhibition (EC50 = 0.14 M) against a PTEN-

deficient breast cancer cell line (MDA-MB-468). In a follow on publication, the core 

imadazo[1,2-a]-pyrimidine-5(1H)-one was changed to a 1,2,4-triazolo[1,5-a]pyrimidin-7(3H)-

one with similar activity, 143 (PI3K = 1.5 nM; PI3K = 4 nM), as well as demonstrating good 

cell growth inhibition (EC50 = 0.1 M) against a PTEN-deficient breast cancer cell line (MDA-

MB-468). Substituting the morpholine ring with a 2-methyl group substantially increased 

potency and cell-based activity 144 (PI3K = 0.3 nM; PI3K = 4 nM; EC50 = 0.5 nM). 

Unfortunately, the series of compounds suffered high rat clearance and was not progressed.115 In 

light of the poor rat metabolic stability, a core change to a new thiazolopyrimidinone series was 

evolved.114 Once more extensive SAR studies identified 145 (PI3K = 0.6 nM; PI3K = 2.5 M; 

PI3K = 20 nM; PI3K = 0.79 M; cell: MDA-MB-468 pAKT IC50 24 nM; proliferation gIC50 = 

0.103 M). Importantly, 145 showed good pharmacokinetics (mouse PK CL 29.6 mL/min/kg); 

Vdss 2.8 L/kg; F 49%) and progressed to a PTEN-deficient PC-3 prostate carcinoma xenograft 

mouse model, where it was dosed once-daily for 21 days at 100 and 300 mg/kg, demonstrating 

complete tumor growth inhibition relative to vehicle treated mice, with no effect on body weight. 

However, the authors conclude by stating that other unknown activities of PI3K may be 
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contributing to the effects on tumor growth. However, these studies represented a significant 

milestone towards validating PI3K as a potential target for proliferative disorders. 

Scheme 10. Chemical modifications on 146 to deliver AZD8186 a PI3K Inhibitor for use in 

treating patients with advanced solid tumors with PTEN or PIK3CB mutations that are metastatic 

or cannot be removed by surgery 

 

Once more taking inspiration from 141 and 146 (AZD6482), Barlaam et al. reported on the 

discovery of 9-(1-anilinoethyl)-2-morpholino-4-oxo-pyrido[1,2-a]pyridine carboxamides as 

selective PI3Kinhibitors for the treatment of PTEN-deficient tumors.116 With an aim of 

reducing lipophilicity and balancing PI3K enzyme and cellular activity through increasing 

permeability, a series of 6-substituted carboxamides were synthesized which resulted in the 

identification of 147 (PI3K IC50 = 5 nM; PI3K IC50 = 0.075 M; PI3K IC50 = 32 nM; PI3K 

IC50 = 0.51 M; cell: MDA-MB-468 pAKT IC50 = 3 nM, mouse PK CL = 82 mL/min/kg; F = 

31%)). 147, a compound with low/medium metabolic stability, showed profound 

pharmacodynamic modulation of phosphorylated Akt in a PC3 prostate tumor xenograft after a 

single oral dose. In addition, 148 (PI3K IC50 = 7 nM; PI3K = 0.34 M; PI3K IC50 = 45 nM; 

PI3K IC50 = 3.0 M; cell: MDA-MB-468 pAKT IC50 = 34 nM, mouse PK CL = 74 mL/min/kg; 

F = 35%) demonstrated significant inhibition of tumor growth in the PC3 prostate xenograft 

model after chronic oral dosing. In order to address the low/medium metabolic stability, improve 
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solubility and increase bioavailability, a reduction in lipophilicity was explored, where the core 

was changed to a 2-morpholino-4-oxo-4H-chromene-6-carboxamide scaffold to generate, after 

extensive SAR studies, 149 (PI3K IC50 = 4 nM; PI3K IC50 = 35 nM; PI3K IC50 = 12 nM; 

PI3K IC50 = 0.675 M; cell: MDA-MB-468 pAKT IC50 = 3 nM, mouse PK CL = 77 

mL/min/kg; F = 18%) (Scheme 10).117 149 proved to be efficacious for p-Akt in PTEN-deficient 

PC3 prostate tumor bearing mice after oral administration and showed complete inhibition of 

tumor growth in a mouse PTEN-deficient PC3 prostate tumor xenograft model. 149 was selected 

as a clinical candidate for patients with advanced castrate-resistant prostate cancer (CRPC), 

squamous non-small cell lung cancer (sqNSCLC), triple negative breast cancer (TNBC) and 

known PTEN-deficient / mutated or PIK3CB mutated / amplified advanced solid malignancies as 

a monotherapy and in combination with vistusertib or abiraterone acetate. Further clinical studies 

are on-going. 

Marshall et al. reported on further SAR evaluation of pyrido[1,2-a]pyrimidinone-based class 1 

PI3K inhibitors (Scheme 11).118 Extensive SAR, such as replacement of the group X of by CH2O 

and CH2S decreased both potency and selectivity as well as constraining the group X with 

NHSO2, NHCO or CONH moieties confirming the structural requirements for these “T-shaped” 

inhibitors.117 Interestingly, in this report the N-methyl analogue 150 showed the best potency 

(PI3K IC50 = 20 nM) but was not tested in a cell-based assay. 
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Scheme 11. Pyrido[1,2-a]pyrimidinone-based class 1 PI3K inhibitors 

 

 146 is an ATP-competitive PI3Kβ inhibitor and the first human target validation of PI3Kβ 

inhibition with 2 was reported following a 3 h infusion of seven different doses of 146; a wide 

separation between anti-thrombotic effect and bleeding was observed, demonstrating that 

previous pharmacodynamic findings in dog translated well to man. Whereas 146 was well 

tolerated in man, a weak but significant concentration-dependent increase in plasma insulin and 

corresponding homeostasis model analysis (HOMA) index was recorded. In the plasma 

concentration range tested, it was suggested that such an effect could be ascribed to the 

compound’s ability to inhibit PI3Kα (IC50 = 0.87 μM). In addition, 146 had a short plasma half-

life (5–43 min) due to high metabolic clearance and a relatively small distribution volume (40–

68 L).117 Thus the pharmacokinetic and pharmacodynamic profile of 146 might limit its use to 

parenteral administration in situations where a low bleeding risk is desirable. Giordanetto et al. 

reported  fragment-based drug discovery approaches 119,120 to reduce the PI3K inhibitory 

activity through investigating the requirement of the aromatic carboxylic acid, the linking group 

to the aniline and the incorporation of a group to improve water solubility. This extensive SAR 

resulted in 151 (PI3K IC50 = 100 nM; PI3K IC50 = 3.5 M; PI3K IC50 = 0.4 M; PI3K IC50 

= 83 M; dog PK CL = 8 mL/min/kg; F = 31%) as a novel orally bioavailable PI3K inhibitor.  

151 inhibited platelet activation in plasma and whole blood, was highly soluble and 

metabolically stable. Furthermore, no significant inhibition of Cyp450 enzymes and ion channels 

involved in cardiac function was recorded. Efficacy versus bleeding in anaesthetized dogs 

showed 151 elicited a concentration-dependent inhibition of platelet aggregation ex vivo (EC80 = 

0.69 ± 0.06 μM), which well predicted its inhibition of thrombosis in vivo (EC80: 0.6 ± 0.05 μM). 

Importantly, no significant increase in bleeding time and blood loss was recorded at the observed 
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maximum compound concentration (24.1 ± 2.3 μM).  Finally, no significant increase of the 

homeostasis model analysis (HOMA-index) from baseline was apparent at the maximum 

compound concentration (20.4 ± 2.1 μM). Therefore, the safety margin to compound 

concentrations resulting in full antithrombotic effect was acceptable and 151 was selected as a 

preclinical candidate for further development (Scheme 12).121 

 

Scheme 12. Extensive SAR to deliver 151 

 

Starting from a high throughput screening campaign, Certal et al. identified 152 as an interesting 

lead due to its selectivity for PI3K versus other PI3K isoforms (PI3K IC50 42-2133 nM in 

various screens and >10 M on PI3K). Chemistry to exchange the potentially labile amide 

bond with heterocyclic replacements gave 153 (PI3K IC50 = 158 nM) and 154 (PI3K IC50 = 

82nM) and further SAR optimization resulted in 155 (PI3K IC50 = 99 nM; PI3K IC50 = 1395 

nM and >10 M on PI3K), a compound with adequate in vitro pharmacokinetic properties 

and was shown to potently inhibit Akt phosphorylation in PTEN-deficient PC3 prostate 

carcinoma cell line when dosed at 300 mg/kg b.i.d. for 9 days.122 
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In a continuation of their studies, Certal et al. reported on the identification of the clinical 

candidate 156 (SAR260301), a low molecular weight compound (MW 354 cLogP 1.5) with 

improved physicochemical and in vitro pharmacokinetic properties (PI3K IC50 = 23 nM; PI3K 

IC50 = 1.5 M; PI3K IC50 = 0.47 M; PI3K IC50 = >10 M; dog PK CL = 0.4 L/h/kg; F = 

67%). The first X-ray co-crystal structure of p110β with the selective inhibitor 156 bound to the 

ATP site demonstrated the “T-shaped” nonplanar binding mode. The X-ray showed that the 

morpholine oxygen accepts a H-bond from Val-848 in the hinge region.123 The aniline generates 

an induced fit in the P-loop at the top of the ATP binding site creating a lipophilic pocket lined 

with Met771 and Trp781 and this was the reason for the -isoform selectivity (Figure 11).  
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Figure 11. Binding of 156 to the ATP binding site of p110 (PDB 4BFR) – visualized in PyMol 

 

Compound 156 demonstrated significant in vivo activity in a mouse UACC-62 xenograft model 

and entered phase I/Ib clinical trials in patients with advanced cancer where 156 had an 

acceptable safety profile, but exposure sufficient to inhibit the PI3K pathway was unachievable 

because of rapid clearance, and clinical development was terminated.124  

Benzoxazepin-based PI3K Inhibitors 

In 2011, Staben et al. identified a benzopyran-based inhibitor 157 from a HTS.125  
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Compound 157 exhibited reasonable potency for PI3KIC, however the 

physicochemical properties were not ideal (cLogP = 4.1, LE = 0.39, LipE = 2.5, MW = 356). 

Due to the structural novelty of the scaffold, a SAR study was initiated where the aryl substituent 

on the aniline amide revealed the importance of the ortho-halogen for PI3K activity. 

Additionally, a crystal structure of 158 (PI3Kα = 0.108 µM) indicated that the N-methylaniline 

amide bound in a cis-fashion in the activity pocket, and that the hinge binding interaction of the 

pyran oxygen was suboptimal, and could be potentially improved upon through ring expansion. 

This led to a 7-membered ring with a 4-fold increase in potency (PI3K = 0.024 µM) and 

subsequent expansion to an 8-membered ring, 159, reduced potency drastically (>10 µM). 

Comparison of the crystal structures of 157 and 159 confirmed a shorter hydrogen bond and 

better angle for interaction with the hinge Val882 (Figure 12). Although potency had increased, 

the rate of clearance proved consistently high across the series of analogs. A metabolite ID 

experiment in human hepatocytes revealed hydrolysis of the aniline amide and an oxidative 

metabolite resulting from demethylation, aromatic oxidation and glucoronindation of the aniline. 

Para-substitution with an electron withdrawing polar amide 161 (GNE-614) reduced 

lipophilicity (clogP = 2.7), blocked para-oxidation, and decreased clearance in rat (36 

mL/min/kg). Compound 161 exhibited good potency towards the class I PI3Ks (PI3Kα IC50 = 

4.6 nM, PI3Kβ IC50 = 60 nM, PI3Kγ IC50 = 5 nM, PI3Kδ IC50 = 1.7 nM) and was relatively 

inactive against mTOR (IC50 = 530 nM). However, 161 showed only a moderate PK profile: rat 

(CL = 36 mL/min/kg, F = 50%, AUC = 39 µM/h), mouse (CL = 15 mL/min/kg, F = 28%, AUC 

= 330 µM/h), and dog (CL = 5 mL/min/kg, F = 120%, AUC = 17 µM/h) and was found to inhibit 

DNA-PK (IC50 = 6 nM), a structurally similar counter target.  
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Figure 12. The X-ray crystal structures of 157 showing a shorter hydrogen bond and better angle 

for interaction with the hinge Val882 (PDB 3R7R) 

 

In a follow-up paper, Staben et al. aimed to improve the upon the PK profile of 161 by 

replacing the metabolically liable cis-N-methyl anilide with an appropriate bioisostere. After 

extensive SAR they discovered that replacing the aryl group with an alkyl group was not 

tolerated. However, replacement with heteroaryl groups led to the discovery of 162 (PI3Kα IC50 

= 4 nM) which showed improved properties for further optimization (rat CL = 13 mL/min/kg), 

AUC = 5.7 - 17.8 µM/h).126 

 

Following the discovery of 162, Staben et al. set out to further decrease the lipophilicity of the 

series by modification of the thiophene.127 In addition, replacement of the thiophene would 
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remove the potential oxidative metabolism of this group. After identifying a number of suitable 

heteroaryl groups the group opted to select the thiazole, 163 for further development. 163 was 

highly potent towards the class I PI3Ks (PI3Kα IC50 = 0.27, PI3Kβ IC50 = 15 nM, PI3Kγ IC50 = 

0.55 nM, PI3Kδ IC50 = 0.61 nM), although they observed that potency towards PI3Kβ was 

consistently lower with specific substitutions at the 8-position of the benzoxepin. They 

hypothesized that this was due to a different conformation (in PI3Kβ) of the tryptophan residue 

that makes up the tryptophan shelf in the case of PI3Kδ. Compound 163 showed a suitable PK 

profile for further advancement as it had low clearance and high bioavailability in rodents (rat 

CL = 5.4 mL/min/kg, F = 83%, mouse CL = 9.5 mg/mL/kg, F = 110%), acceptable PK in dog 

(CL = 14 mL/min/kg, F = 22%) and moderate predicted clearance in human (hepatocyte Clp = 

12 mL/min/kg). In addition, 163 showed modest tumor growth inhibition in an MCF7-neo/HER2 

xenograft breast cancer model and activity against counter targets were also reduced (mTOR 

IC50 >4.3 µM and DNA-PK IC50 = 0.34 µM). 

With 163 showing only modest tumor growth inhibition in a MCF7-neo/HER2 xenograft 

breast cancer model despite being highly potent and exhibiting a moderate PK profile, Staben et 

al. aimed to increase the unbound exposure by further reducing the lipophilicity. An extensive 

screen of heteroaryl isosteres was performed, with focus on lowering the lipophilicity, leading to 

the discovery of 164 (GDC-0032, clogD 2.5). Compound 164 showed good activity towards the 

class I PI3Ks, with decreased PI3Kβ activity (PI3Kα IC50 = 0.29 nM, PI3Kβ IC50 = 9.1 nM, 

PI3Kγ IC50 = 0.12 nM, PI3Kδ IC50 = 0.97 nM). In addition, against a panel of 235 kinases, only 2 

(not including the Class I PI3Ks) exhibiting greater than 50% inhibition at 10 M concentration: 

C2β (80.4%), and Vps34 (69.9%). 164 also had a good PK profile, exhibited low in vivo 
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clearance in rat with high oral bioavailability (F = 99%). After toxicological and safety 

evaluations, 164 was progressed to clinical trials for PI3K-related cancers.128 

 

Having only reported pan or so-called β-sparing benzoxepins, in 2016, Heffron et al. moved 

the focus of their program towards the development of selective PI3Kα inhibitors. 129 At the 

onset of their PI3Kα program, a crystal structure of one of their benzoxepin inhibitors was 

obtained, revealing two residues unique to the α-isoform, Gln859 and His855. From molecular 

modelling evidence the team decided to target Gln859 in order to gain selectivity towards PI3Kα. 

Extensive SAR, and monitoring of torsion angle at the 8-position, focused on optimizing 

hydrogen bonding with Gln859. This led to the discovery of 165 (GDC-0326), where the primary 

amide makes 3 concerted hydrogen bonds with Gln859 (Figure 13). 165 is a PI3Kα-selective 

inhibitor (PI3Kα IC50 = 0.2 nM, ⍺/β = 133, ⍺/γ = 51, ⍺/δ= 20) and showed a comparable PK 

profile to 164 and was selected for further study, although it has not yet progressed into the clinic 

at the time of writing.  
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Figure 13. 165 X-ray crystal structure in PI3K where the primary amide makes 3 concerted 

hydrogen bonds with Gln859 (PDB 5DXT) 

 

In their most recent publication, Safina et al. used their previous experience with the design of 

selective PI3Kδ inhibitors in order to build-in PI3Kδ selectivity into the benzoxepin core.130 

Since the benzoxepin core was a result of ADME optimization it possessed favorable drug-like 

properties and therefore this was an attractive endeavor. They discovered 166 as a PI3Kδ-

selective inhibitor (PI3Kδ IC50 = 1.9 nM, δ/⍺ = 113) through interaction via the tryptophan 

shelf.130 Compound 166 had low lipophilicity (clogD 1.29), yet maintained good permeability 

(MDCK A to B = 10 × 10−6 cm/s). 

Amino thiazole and aminobenzthiazole urea-based inhibitors 

 

Scheme 13. Discovery of the urea-based inhibitor 171 from early HTS of a kinase focused library 
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In 2012, scientists from Cellzome reported 167 (PI3Kα pIC50 < 4, PI3Kβ pIC50 < 4, PI3Kγ 

pIC50 = 5.4, PI3Kδ pIC50 = 4.5) and 168 (PI3Kα pIC50 = 4.9, PI3Kβ pIC50 = 4.7, PI3Kγ pIC50 = 

5.7, PI3Kδ pIC50 = 5.2) as hits from an HTS of a kinase focused library of 16000 compounds 

(Scheme 13).131–133 SAR around the core led to 169 (CZC19945, PI3Kα pIC50 = 5.6, PI3Kγ pIC50 

= 7.6, PI3Kδ pIC50 = 5.8). Further SAR on the central core led to 170 (CZC24832, PI3Kα pIC50 

< 5, PI3Kγ pIC50 = 7.6, PI3Kδ pIC50 = 5.1). 170 showed moderate PK properties in mouse (CL = 

11.5 mL/min/kg, F = 37%), showed no inhibition of hERG up to 100 µM, no CYP inhibition and 

was negative in the Ames test. In addition, 170 demonstrated efficacy in a chronic model of 

inflammation, although poor aqueous solubility (5 µg/mL) made pre-clinical development 

problematic. Crystallographic studies show that these compounds bound to the hinge region of 

PI3Kγ via the donor/acceptor motif of the triazolopyridine with the pyridine sulphonamide 

interacting with the activity pocket. In a further publication, Ellard et al. detailed more SAR at 

the solvent exposed region, leading to PI3Kγ/δ compounds such as 171 (PI3Kα pIC50 6.4, PI3Kγ 

pIC50 = 8.4, PI3Kδ pIC50 = 7.8, PI3K pIC50 = 6.3), although poor physicochemical properties 

precluded them from oral absorption.134 

 

In parallel, Oka et al. identified 172 as a hit in their HTS with excellent enzymatic potency 

(PI3Kγ IC50 = 5 nM). Through structural modification, struggling initially with permeability 

issues, they developed 173 (PI3Kγ IC50 = 10 nM, α/γ = 4) and 174 (PI3Kγ IC50 = 3 nM, α/γ = 5). 
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However, although both demonstrated improved permeability leading to improved cellular 

potency, they showed low selectivity over PI3Kγ.135 In a later publication, it was reported that 

the de-acetylated version of 173 was positive in the Ames test.136 Although the de-acetylated 

product was not found to be a major metabolite, they sought to mitigate mutagenic risk by 

replacing the oxazole ring with more -electron deficient heterocycles. This led to the 2-amino-

5-oxadiazolyl thiazole 175, where both the acetylated and de-acetylated analogs were negative in 

the Ames test. Being approximately equipotent in terms of PI3Kγ potency to 174, they were able 

to explore 175 further, leading to the discovery of 176 (TASP0415914, PI3Kγ IC50 = 29 nM). 

176 exhibited a better PK profile, showed no CYP inhibition and was progressed to in vivo 

studies in a mouse collagen-induced arthritis model and was effective in a dose-dependent 

manner. 

 

Also, in 2012, Bruce et al. revealed 177 as a hit from a HTS targeting PI3Kγ.137 A docking 

study involving 177 showed that the thiazole nitrogen and amide hydrogen form a bidentate 

donor–acceptor pair with the hinge region, and the sulfonamide interacts with the activity pocket. 

They observed that residues lining the binding pocket were less conserved and hypothesized that 

isoform selectivity might be achievable by extending or replacing the acyl moiety with diverse 

substituents to exploit these differences. After developing a method of thiazole synthesis 
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amenable to automation, they were able to generate approximately 400 analogs with 

replacements for the acyl moiety. Most of these compounds were found to be either inactive or 

weak pan-PI3K inhibitors. However, 3 types of amines were identified which led to potent 

isoform selective inhibitors. For example, (S)-pyrrolidine carboxamides such as 178 (NVS-PI3-

1, PI3Kα Ki = 0.005 µM, PI3Kβ Ki = 2.0 µM, PI3Kγ Ki = 0.53 µM, PI3Kδ Ki = 0.22 µM) and 

179 (NVS-PI3-2, PI3Kα IC50 = 0.04 µM, PI3Kβ IC50 = 22.94 µM, PI3Kγ IC50 = 1.19 µM, PI3Kδ 

IC50 = 0.54 µM) were the optimal compounds. A structurally related benzothiazole was shown to 

be selective towards PI3Kα, due to the carboxamide making favorable interactions with the non-

conserved Gln859 of PI3Kα. Aminopropionic acid derivatives such as 180 (NVS-PI3-3, PI3Kα 

Ki = 0.15 µM, PI3Kβ Ki = 0.34 µM, PI3Kγ Ki = 1.02 µM, PI3Kδ Ki = 0.004 µM), 181 (NVS-

PI3-4, PI3Kα Ki = 1.89 µM, PI3Kβ Ki = 0.25 µM, PI3Kγ Ki = 0.088 µM, PI3Kδ Ki = 0.74 µM) 

and 182 (NVS-PI3-5, PI3Kα Ki = 1.40 µM, PI3Kβ Ki = 0.32 µM, PI3Kγ Ki = 0.036 µM, PI3Kδ 

Ki = 0.47 µM) led to PI3Kδ-selective (180) and PI3Kγ-selective (181 and 182). The authors 

suggested that the PI3Kδ and PI3Kγ selectivity was most likely derived from interactions 

between the terminal functional groups of the urea side chain and non-conserved amino acids at 

the outer edge of the binding site. Additionally, all examples in the series were much less potent 

towards PI3Kβ than the other isoforms. However, the PK properties of 178-182 were not 

adequate for further progression, but this work led to some interesting observations towards 

selective inhibitors. 

Following this in 2013, Furet et al. disclosed the discovery of the PI3Kα selective inhibitor 

183, Alpelisib (NVP-BYL719).138 Addressing the poor PK and isoform selectivity within the 

series to date, extensive SAR studies around 178 led to the discovery of 183 (PI3Kα IC50 = 0.005 

µM, PI3Kβ IC50 = 1.2 µM, PI3Kγ IC50 = 0.25 µM, PI3Kδ IC50 = 0.29 µM). Crystallographic 
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evidence of 183 in complex with PI3Kα shows that 183 exhibited its excellent selectivity 

towards PI3Kα by exploiting the non-conserved Gln859 of PI3Kα. 183 had a suitable PK profile 

(rat CL = 10 mL/min/kg, Vss = 1.9 L/kg) and showed no significant CYP or related-kinase 

inhibition, and was progressed to clinical development.  

 

In 2014, Collier et al. analyzed the crystal structure of PIK-93 and observed that there was 

sufficient space in the ATP binding pocket to allow for a ring fusion of the thiazole into a 

benzothiazole where hinge binding could be achieved through the donor-acceptor motif of the 

nitrogen atoms of the aminobenzothiazole. 184 (PI3Kγ Ki = 0.004 µM, α/γ =1, β/γ = 10, and δ/γ 

= 3) and 185 (PI3Kγ Ki = 0.002 µM, α/γ = 66, β/γ = 21, and δ/γ = 61) were compounds which 

exhibited isoform selectivity towards PI3Kγ.139 After obtaining an X-ray crystal structure for 185 

in PI3Kγ (Figure 14, PDB 4PS3), they hypothesized that this selectivity was a result of two non-

conserved residues within the binding site. The first is Ala885, which is unique to PI3Kγ.  In 

PI3Kα, β, and δ this is a serine residue where the OH of serine is involved in hydrogen bonding 

with the hinge valine residue. They proposed that introduction of urea functionality allows for 

the urea carbonyl to form an additional hydrogen bond to the hinge valine, which in-turn breaks 

the serine-valine hydrogen bond, freeing up the OH group thereby introducing a steric clash with 

the lipophilic side chain. This steric clash is unfavorable in the anti-targets and does not happen 

in the case of PI3Kγ. The second non-conserved residue is Gly829, a glutamic acid residue in 

PI3Kα. This aids selectivity over PI3Kα upon increasing the length of the terminal alkyl chain. 
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These compounds were not progressed further, however they were useful in determining 

important residues for identifying new approaches for PI3K isoform selectivity.  

 

Figure 14. X-ray crystal structure of 185 in PI3Kγ, demonstrating new key interactions 

generating isoform selectivity (PDB 4PS3)  

 

To improve the overall physicochemical properties (as typified by 185), Collier et al. aimed to 

reduce the overall lipophilicity in combination with increasing the fraction of Sp3 atoms (FSp3) 

within the series.140 In order to accomplish this, they replaced the central benzothiazole core with 

a thiazolopiperidine, leading to 186 (PI3Kγ Ki = 0.002 µM, α/γ = 228, β/γ = 105, and δ/γ = 395). 

In 186 they suggested that incorporating fluorine atoms onto the terminal alkyl chain increased 

selectivity markedly through increasing affinity for PI3Kγ, due to a C−F···C=O interaction with 

Thr827. Additionally, they suggested that the increase in selectivity was driven by a favorable 

interaction of the acidic methine proton of the fluoroethyl group with Glu814, a residue unique to 
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PI3Kγ. Compound 186 showed no significant inhibition in a screen of structurally related 

kinases.  

 

Figure 15. Strategy employed to reduce the number of H-bond donor groups to aid CNS 

penetration and compound 187. 

In a recent publication, Come et al. disclosed further refinement of the core structure with a 

view to increasing blood-brain barrier penetration. The authors highlighted the general difficulty 

in designing CNS-penetrant kinase inhibitors due, in part, to the property space characteristics of 

the ATP-competitive kinase inhibitors, where hydrogen bond donor moieties are essential 

pharmacophoric elements required to bind to the kinase hinge region. They proposed a very 

elegant solution where an isoindolinone carbonyl group would provide a hydrogen bond acceptor 

to the backbone NH of the hinge residue Val882 and, in addition, an aromatic proton would be 

positioned in place of the urea NH donor (Figure 15). Further functionalization gave 187 as a 

selective, brain penetrant inhibitor of PI3Kγ (PI3Kγ Ki = 4 nM, α/γ = 60, β/γ = 10, and δ/γ = 14). 

187 was an orally bioavailable compound (rat PK CL = 20 (mL/min)/kg, F = 100%, T1/2 = 5.1 h) 

that showed efficacy in murine experimental autoimmune encephalomyelitis (EAE), a preclinical 

model of multiple sclerosis.141 
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Pemberten et al. discovered 188 (PI3Kγ pIC50 = 6.8) from a HTS. They showed that 

methylation of the acetamide 189 led to a large reduction in potency, suggesting that the 

acetamido-substituted isoxazole was the hinge binding motif.142 SAR to replace the isoxazole 

with amino heterocycles that are typical kinase hinge-binding motifs lead to replacement of the 

isoxazole with a thiazole, 190 (R)-enantiomer PI3Kγ pIC50 = 8.9. Failing to co-crystallize 

inhibitors of the series in PI3Kγ, the team looked to co-crystallize inhibitors in PI3Kδ. 

Successfully crystallizing 190 within PI3Kδ they confirmed the aminothiazole forms hydrogen 

bonds to the hinge residue Val828 and that the carbonyl of the lactam interacts with Lys779. The 

N-alkyl tail is oriented perpendicular to the isoindolinone core and extends deep into the ATP-

binding pocket. An interesting observation was that removal of the N-alkyl group led to a 100-

fold decrease in PI3Kγ activity and a corresponding 15-fold increase in PI3Kα potency, 

suggesting that PI3Kγ selectivity seems to originate from the N-alkyl tail extending deep into the 

ATP-binding pocket. Compound 190 exhibited poor properties for oral administration due to a 

combination of poor solubility, high in vitro clearance and high lipophilicity. Introduction of a 

sulfone led to the discovery of 191, with excellent isoform selectivity (PI3Kα pIC50 < 4.5, PI3Kβ 

pIC50 < 4.5, PI3Kγ pIC50 = 8.1, PI3Kδ pIC50 = 6.0) and good bioavailability (F = 51%) and low 

in vivo clearance (rat 6.3 mL/min/kg). In a kinase screen only related kinases C2β (84%) and C2γ 

(71%) showed significant inhibition at 10 M concentration. In a rat LPS-induced acute 
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inflammation model, oral administration of 191 resulted in a dose-dependent inhibition of airway 

neutrophilia in rats. 

PI3K dual pharmacology compounds 

 

Qian et al. observed synergistic effects between PI3K inhibitors and HDAC inhibitors and 

therefore synthesized a novel series of dual-acting PI3K and HDAC inhibitors by incorporating 

HDAC inhibitory functionality into a PI3K inhibitor pharmacophore.143 They incorporated the 

morpholine-pyrimidine core from 85 and 70 for PI3K inhibition and the hydroxamic acid from 

SAHA (Vorinostat), LBH-589 (Panobinostat) and JNJ-16241199 for HDAC inhibition to 

produce 192 (CUDC-907).144,145 They reported that 192 displayed potent anticancer activity in 

both cultured cancer cells and xenograft models and may offer therapeutic benefits in multiple 

cancers, through broad signaling network disruption. 192 is currently in phase I and II clinical 

trials. In a similar fashion, Chen et al. once more combined the PI3K and HDAC 

pharmacophores to generate a series of dual inhibitors typified by 193 (PI3K⍺ = 28 nM, HDAC1 

= 1.1 nM, HDAC6 = 4.2 nM). Compound 193 demonstrated target modulation in cancer cell 

lines and in mice bearing MV4-11 and HepG2 tumors and, in particular, showed significant 

single agent oral efficacy in hypervascular liver cancer models (e.g., HepG2, HuH-7, and 

Hep3B) and was well-tolerated.146 



 85 

 

Ding et al. reported novel 4-aminoquinazolines as dual target inhibitors of EGFR-

PI3KBased on the structural similarity to omipalisib and gefitinib,compound 194 was shown 

to possess reasonable PI3K activity (IC50 = 317 nM) in combination with very high EGFR 

activity (IC50 = 2.4 nM). Compound 194 could induce cell cycle arrest in G1 phase and apoptosis 

in BT549 cells. The western blot assay indicated that 194 inhibited the proliferation of BT549 

cell through EGFR and PI3Ka/Akt signaling pathway, suggesting that compound 194 could be a 

potential dual inhibitors of EGFR and PI3K.147 

 

Pujala et al. reported a range of pyrazolopyrimidine derivatives, such as 195, as dual inhibitors 

of Bruton’s tyrosine kinase (BTK, IC50 = 32 nM) and PI3Kδ (IC50 = 16 nM). 195 had a 

reasonable mouse pharmacokinetic profile [10 mg/kg PO, CL = 0.59 L/h/kg, Vz = 3.44 L/kg, 

plasma terminal half-life = 1.3 h, F = 40%)]. No in vivo results were shown for the compound.148    

Conclusion and perspective comment: 
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The PI3K pathway has attracted enormous industrial and academic interest as a therapeutic 

target for clinical conditions, such as cancer, diabetes and asthma. Idelalisib was the first PI3K 

inhibitor approved by the US Food and Drug Administration (FDA) and is utilized in the 

treatment of relapsed/refractory chronic lymphocytic leukemia/small lymphocytic lymphoma and 

follicular lymphoma.149 However, the use of idelalisib may come with toxicities that are distinct 

from the side effects of immunochemotherapy and, as such, co-dosing strategies with steroids are 

currently being investigated in the clinic. 150,151 Subsequently, copanlisib was approved for 

relapsed follicular lymphoma in patients who have received at least two prior systemic 

therapies.152 In addition, there is a wealth of PI3K agents currently in clinical development (38 at 

this present time), which target various combinations of the PI3K isoforms. While idelalisib has 

proven to be efficacious for patients, unexpected infectious and autoimmune toxicities have 

demonstrated the need for careful development and monitoring of new agents. 

The phosphatidylinositol 3-kinase family consists of highly conserved enzymes that are part of 

the intracellular PI3K/Akt/mammalian target of rapamycin (mTOR) signaling axis. As such, 

early medicinal chemistry strategies concentrated on the discovery of non-selective PI3K 

inhibitors. However, the identification of “propeller-shaped” PI3K inhibitors signaled a step-

change in the design of isoform selective PI3K inhibitors. This led to the identification of 

idelalisib, the first FDA-approved PI3K inhibitor.  

Concerns over isoform toxicity has led to groups exploring structural modification to 

synthesize compounds with PI3K isoform selectivity through subtle change in chemical 

structure.  This led to the explosion of structural variation, with many changes to the core of the 

molecules, mainly to secure intellectual property, but has also, in some cases leading to subtle 

changes in isoform selectivity. In general, the initial pan PI3K inhibitors suffered from poor 
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physicochemical properties, such as poor solubility and permeability from the combination of 

multiple aromatic rings and lack of sp3 carbons leading to compounds with poor pharmacokinetic 

properties.153,154 These early issues were rapidly solved by medicinal chemists, through 

decreasing lipophilicity and adding ionizeable groups to deliver compounds with excellent 

permeability and good oral pharmacokinetic properties. Drug delivery has also been considered, 

with various groups exploring the design of compounds with improved pharmacokinetics for 

topical lung delivery, thus removing some of the safety issues involved with systemic exposure 

of the high affinity inhibitors.  

Running in parallel with the discovery of the propeller shaped inhibitors, the identification of 

“flat-shaped” pan PI3K inhibitors has resulted in the delivery of many potent clinical candidates. 

However, their inherent lack of 3 dimensional structure resulted in compounds with higher 

lipophilicity leading again to poor water solubility. These physicochemical properties resulted in 

compounds with reduced cellular potency and off-target toxicity in pre-clinical studies. Once 

more concerns over pan-PI3K inhibition has, through careful consideration of ligand-bound X-

ray structures, led to the creative design of inhibitors with good to excellent isoform selectivity. 

However, these highly selective inhibitors have generally gained their selectivity at a 

consequence of increased molecular weight resulting, in the case of PI3K inhibitors, movement 

towards topical (i.e. inhaled) delivery.  

Bivalent or dual pharmacology inhibitors have been disclosed, where secondary pharmacology 

has been built into the original PI3K core scaffold, such as the dual PI3K/HDAC inhibitors and 

more recently EGFR-PI3K dual inhibitors utilizing solvent-exposed positions of the PI3K 

scaffold to incorporate the secondary pharmacology.  
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Finally, it should be noted the extremely positive effect that ligand-bound X-ray 

crystallography has had on the design and synthesis on new isoform selective PI3K inhibitors. 

Outputs from these studies has enabled medicinal chemistry groups to thoroughly explore 

structural diversity in pursuit of gaining freedom to operate in a very congested and narrow field. 

In addition, the often non-predictive subtle targeting of specific residues inducing isoform 

selectivity was made possible through information gleaned from multiple ligand-bound X-ray 

crystal data, once more highlighting the importance of structure based drug design for to increase 

isoform selectivity. 

In conclusion, it is disappointing that many PI3K inhibitors have not met their true clinical 

potential due to: the absence of reliable and effective biomarkers, the limited efficacy as single 

agents and the lack of development of rational therapeutic combinations, off-target effects, and 

suboptimal therapeutic exposures.7 Therefore, it is hoped that with regard to current PI3K 

inhibitors in late-stage clinical trials, the identification of appropriate efficacy biomarkers and the 

development of optimal combination regimens will lead to future successful FDA drug 

approvals. 
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